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ABSTRACT

Data compression attempts to reduce the amount of information needed to
recreate a signal. A source coder is a data compression system which attempts to
maximize the quality of the signal reproduction for a fixed transmission rate or
minimize the transmission rate for a fixed reproduction quality. Source coders are
designed by exploiting the statistics of their signal sources. A vector quantizer
can be used as a source coder.

In this thesis, a generalized pruning technique called trimming is introduced
which improves upon the performance of pruned tree-structured vector quanti-
zation. The algorithm designs a large balanced nonbinary tree and trims it back
to create useful lower-rate subtrees. Trimming differs from pruning in that it
does not necessarily remove all descendants of the node being trimmed. How-
ever, appropriate codebook replacement is performed during each trim so that all
codevectors within the trimmed subtree represent the centroids of their encoding
cells.

With trimming replacing pruning, the generalized BFOS algorithm of Chou,
Lookabaugh, and Gray still identifies those subtrees which lie on the lower con-
vex hull of the initial tree’s operational distortion-rate function. It is shown
experimentally that this new convex hull is often lower than the one found using
pruning. In this sense, the new algorithm outperforms pruned tree-structured
vector quantization. Both algorithms are allowed to time share at rates where
no subtrees are located.

To design the initial balanced nonbinary tree, it is sufficient to specify the
number of children each tree node will have. However, a constraint is imposed
so that all nodes located at the same depth within the initial tree have the same

number of children. For a given maximum rate constraint, there are clearly many
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initial tree structures which could be used. Specifying the initial tree structure is
an extra degree of freedom not found with binary pruned tree-structured vector
quantization. The new algorithm identifies the nonbinary tree which is optimal
with respect to the transmission statistics of a multirate channel. Experimental

results are supplied which demonstrate this performance.
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1 INTRODUCTION

In recent years, compression of digital images has found applications in areas such as
television transmission, video conferencing, relay of sensing images obtained from satellites,
and storage for video databases [1]. Vector quantization techniques, as applied to image
coding, attempt to exploit the statistical dependence between neighboring pixels in order
to reduce the bit rate for either transmission or storage. These efforts are motivated by
Shannon’s rate-distortion theory, which states that superior performance is theoretically
achievable by coding vectors instead of scalars.

Vector quantization (VQ) techniques can be grouped into several broad categories and
their hybrids [1]. Spatial VQ blocks an image into vectors and then replaces each using a
fixed set of reproduction vectors according to some fidelity criterion. Predictive VQ takes
advantage of intervector dependencies by predicting future vectors and then coding only the
residual error. Transform VQ attempts to reduce correlation between vector components
through a suitable linear transformation in addition to allocating bits on the basis of human
perceptual importance. Within each of these categories, there are adaptive versions of these
algorithms which modify V(Q parameters based on the short-term statistics of the source. Of
these techniques, spatial V() is generally the simplest to implement because it is memoryless
and has a table lookup for its decoder. Spatial VQ)s are often evaluated on the basis of
arithmetic complexity and codebook storage in addition to compression performance.

The simplest spatial VQ technique is full search VQ (FSVQ). Input vectors are encoded
by the codebook vector that minimizes the chosen fidelity criterion. To find this best repro-
duction vector, a full (or unstructured) search is made through the entire codebook. For this
reason, FSVQ has high arithmetic complexity. Tree-structred VQ (TSVQ) was introduced
in [2] as a means of reducing arithmetic complexity by using a decision tree to create a search

which is logarithmic in codebook size instead of linear. Pruned tree-structured VQ (PTSVQ)



was introduced in [3] as a means of improving the performance of TSVQ. All three of these
techniques will be discussed in further detail in Chapter 2.

In addition to structuring the search at the V(Q) encoder, trees can also be used to represent
a variable block-size segmentation of an image. In [4], quad-trees were used to vary the size
of the pixel vectors based on the local activity within the image. Small blocks were used for
regions with high levels of activity (as determined by the variance) while large regions were
used for regions of low activity. Separate quad-trees were used for both mean-subtraction
and subsequent detail segmentation. It was found that at low bit rates, edges within the
images were reproduced perceptually much better than with FSVQ. In [5], a tree structure
was created that varied the dimension of its vectors with depth from large to small. The
authors used the algorithm introduced in [3] to adjust the average rate and performance of
the encoding tree.

For high quality image reproduction, very large reproduction codebooks are often needed.
As such, special attention has been paid in the literature to reducing storage without sacrific-
ing performance. In [6], a spatial VQ technique was introduced which designs M codebooks
for N different sources where M < N. The design algorithm is based on the generalization
of necessary conditions for FSVQ optimality and can be used to create a cascade of encoders
in which each stage is used to select the subsequent codebook. In [7], TSVQ storage was
reduced by quantizing the reproduction vectors used to guide the search. The secondary VQ
also had to be stored in order to generate the initial TSVQ. Although this method increases
complexity and decreases performance, it was found that significant storage reductions were
possible at modest costs.

If arithmetic complexity and codebook size are not constrained, entropy-constrained VQ
(ECVQ) can typically perform better than all techniques mentioned thus far [§8]. The ECVQ
design algorithm minimizes both the entropy of the VQ output and the average distortion,

because the ECVQ is followed by an entropy coder which yields even further rate compres-



sion. To reduce arithmetic complexity, various tree structures that minimize some form of
entropy have been introduced in the literature. In [3], entropy-pruned TSVQ (EPTSVQ)
was introduced as a method of generating TSVQs which traded quantization distortion for
output entropy. In [9], a technique was introduced which redesigned the leaf nodes of a
PTSVQ under an entropy constraint. Although this procedure generates trees which satisfy
necessary conditions for optimality at the leaves, the important nesting property of PTSVQ
to be discussed in Section 2.2 is lost. In [10], both entropy and storage constraints were
placed upon each level of TSVQ design, resulting in a tree of ECV(Qs. Once again, the
important nesting property of PTSVQ is sacrificed to improve performance.

The nesting property of PTSV(Q is important because it allows efficient access to many
TSVQs through the storage of one large initial tree. This property is most useful when images
must be transmitted over channels whose transmission rates vary with time. Additionally,
the PTSVQ’s tree structure permits images to be sent progressively due to the successive
approximation character of its interior codevectors. Progressive transmission systems pro-
duce estimations of the fully decoded signal as data are being received. However, no extra
data are sent to create these intermediate reproductions. Instead, the indices generated
by the encoder specify the appropriate approximations for each input block. Progressive
transmission, as it applies to TSVQ), is discussed further in Section 2.1.

Because PTSV(Q has been shown experimentally to have rate-distortion performance close
to full search vector quantization over a substantial range of bit rates [3], in applications
where variable rate coding is acceptable, PTSVQ’s reduced encoding complexity makes it an
attractive spatial VQ technique. However, in a packet network environment where bandwidth
availability fluctuates in time, it is of interest to have a data compression system that works

well when averaged over the available transmission rates. This problem has not previously

been addressed with PTSVQ.



In this thesis, I introduce a generalized pruning technique called “trimming” which im-
proves the performance of PTSVQ). This new algorithm achieves a lower mean-square encod-
ing error than PTSV(Q while retaining a tree structure for efficient encoding and progressive
transmission. Moreover, the tree structure is optimized with regard to a given histogram
of available transmission rates on the channel. The interior nodes of the encoding tree are
allowed to have fanouts greater than two. For a fixed number of bits spent per input vector,
this technique can improve the signal-to-noise ratio at the cost of less flexible progressivity
since the nodes at each interior level within a TSVQ can be used to create an intermediate
signal reproduction. The main idea is to first grow a large balanced tree with variable fanouts
and then trim it back to create useful subtrees.

The idea of using variable fanout trees is not new [11], and, in fact, the process of locating
all pruned subtrees which lie on the lower convex hull of the operational rate-distortion
function for nonbinary TSVQs was also previously studied in [3]. However, trimming, when
applied to a variable fanout TSVQ, generates additional trees (i.e., rate-distortion pairs),
some of which often lie below the lower convex hull as found by the generalized BFOS
algorithm.

In Chapter 2, the fundamentals of FSVQ, TSVQ, and PTSVQ are presented, with em-
phasis on their interrelations. In Chapter 3, the variable fanout trimmed TSVQ algorithm
is introduced, and its storage requirements and application to multirate channels are dis-
cussed. In Chapter 4, experimental results which quantify the performance gain achievable

using variable fanout trimmed TSVQ are provided. Chapter 5 concludes the thesis.



2 VECTOR QUANTIZATION FUNDAMENTALS

A vector quantizer is a mapping from R* into a finite set Cy C R* con-

taining N codevectors. A vector quantizer () is entirely specified by its par-
tition cells Ri={xeR*:Q(x)=y;} for :€{0,1,..., N—1} and its codebook
Cn ={yo, Y1, ---, Yn-1}. The partition determines the encoding rule for ¢ while the

codebook determines the decoding rule. The input to @) is a k-dimensional random vector
X with probability density function fx; thus, Q(X) is also a random vector. Figure 1 is a
useful representation of a vector quantizer. The indices generated by the encoder are either
stored or transmitted for retrieval by the decoder. Since the exact value of the source ran-
dom vector X is not reproduced at the decoder, vector quantization is a lossy compression

technique.

index in{0, 1, 2, ..., N-1}
ENCODER DECODER

Q(X)

Figure 1: A block diagram of an N-point vector quantizer.

An important measure of performance for a vector quantizer which takes into account
the statistical properties of the input random vector X is the average distortion. Let d(x,y)
denote a nonnegative, real-valued cost incurred by replacing x by the codevector y. In all

that follows, the squared error, defined by

k-1

d(X7Y) = ”X_YHZ = Z(mi_yi)zv (1)

=0
is used as the cost function. With this d, the average distortion for () is the mean square

error (MSE) defined as

Do = [ dx.Qe) fx(x) ix = [ lhx= QI fxlx) dx )



In order for Dg to be minimized for a given source X, it is necessary (but not sufficient)

that @ satisify the following two conditions [12]:

Nearest Neighbor Condition: Q(x)=1y; only if d(x,y;) <d(x,y;) ¥Yj (3)

Centroid Condition: y;,=FE[X|X €eR;]. (4)

The Generalized Lloyd Algorithm (GLA) is an iterative descent technique which generates
vector quantizers which have locally optimal values of average distortion [12]. The GLA
repeatedly improves the VQ partition by enforcing the nearest neighbor condition (3) and
the codebook by enforcing the centroid condition (4). Each application of the Lloyd iteration
either reduces Dg or leaves it unchanged.

The VQ technique described so far is typically referred to as full search VQ because the
minimum distortion codevector is determined by computing d(x,y) for each y € Cx. In
Section 2.1, a VQ algorithm is considered which uses a structured codebook to avoid an
exhaustive search of C'y. Upon determining the optimum codevector, the encoder generates
the corresponding index. For FSVQ), all indices are specified by the same number of bits
(assuming N = 2™ for some positive integer m). Thus, FSVQ generates a fixed rate code.
If r denotes the number of bits transmitted per vector component (i.e., the rate), then each
FSVQ index is specified by kr bits. Since the FSVQ encoder performs an exhaustive search
over C'y for each source vector, FSVQ has encoding complexity on the order of 2" = N.

Increasing k£ allows a quantizer to exploit dependencies between vector components and
to take advantage of the vector partition’s shape-filling efficiency [13]. In [14], it was shown

that, for N large, Dg is asymptotically
Do(N;k,2) ~ C(k,2) N7% || fx(x)|lky42) (5)
where C'(k,2) is the coefficient of quantization and

Ixeal = ( | fx(X)”de/y . (6)
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Figure 2: Example of a balanced binary tree with maximum depth 4.

This implies that increasing the codebook size N by increasing r will lower the MSE of
the reproduced output. Thus, for applications requiring low average distortion, the size of
the product kr can make the encoding complexity of FSVQ, which is on the order of 2",

prohibitively large.
2.1 Tree-Structured Vector Quantization

A useful approach for reducing computational complexity is to impose some form of
structural constraints on the encoder. Tree-Structured Vector Quantization is one such tech-
nique [2]. A tree T is a finite collection of nodes with a unique root node. Each node, except
the root, has a single parent node. If a node has children, it is called an interior node. Nodes
without children are called leaf nodes. A node’s fanout indicates how many children it has.

The TSVQ encoder performs its search iteratively so that a substantial number of possible
codevectors are eliminated from further consideration upon each repetition. More specifically,
a balanced m-ary tree reduces the set of possible codevectors by a factor of 1/m at each
iteration. (A balanced tree is one where all leaf nodes are located at the same depth.) An

example of a balanced binary tree is given in Figure 2.



A balanced binary tree with 2% leaf nodes requires only kr dot-products and threshold

comparisons to encode a given input vector since

(yll* = llyill*) - (7)

DO | =

Ix —yill <llx -yl & x(y;-yi) <

Thus, for a fixed vector dimension k, TSVQ’s encoding complexity is a linear function of
the rate as opposed to exponential. The codevectors associated with TSVQ’s interior nodes
also give TSVQ a progressive quality. To accomplish this, the first : < kr bits for each
index are transmitted before sending additional bits for any block. The decoder uses each
sequence of ¢ bits to map a path through the tree to a single interior node. The codevector
associated with this interior node can then be used as an approximation to the input block
in an intermediate reconstruction. These two advantages come at the cost of an increase in

storage and suboptimality of the encoder. The number of codevectors which must be stored

for a TSVQ decoder with 2% leaf nodes is

kr
PRAET AL (8)
1=0

which is nearly twice that of FSVQ since all interior nodes must be stored to enable pro-
gressive output. The TSV(Q encoder is suboptimal because it typically does not obey the
nearest neighbor condition.

To improve the performance of TSVQ, the tree is often allowed to be unbalanced. An
unbalanced TSVQ does not have all of its leaf nodes at the same depth. Thus, the encoder
is able to devote more bits to regions of the input space that contribute most to the average
distortion. A popular method of designing an unbalanced TSVQ), called greedy growing, was
described in [15] and [16]. The algorithm proceeds by repeatedly splitting the node which
yields the maximum ratio of decrease in average distortion to increase in average rate. The
process terminates when a constraint on maximum average rate is reached. Figure 3 shows
an example of an unbalanced binary tree. In [16] it was noted that unbalanced trees usually

require greatly increased storage relative to balanced trees with the same average rate. This



Figure 3: Example of an unbalanced binary tree.

occurs since the greedy growing technique places no constraint on the actual number of nodes
within the tree; only average rate is limited. Also, the codevector indices, which represent
a path map through the tree, are no longer fixed-length for unbalanced TSVQ due to the
variable depths of the leaf nodes. This is another disadvantage because a single channel
error can cause a loss of synchronization between the encoder and decoder. If the codevector
indices of the unbalanced tree are mapped into fixed length codewords, the progressive nature

of the tree is lost.

2.2 Pruned Tree-Structured Vector Quantization

If variable-length indices are allowable, an appropriate question to pose is, “What tree
structure minimizes average distortion for a given average rate constraint and input source
X7?” Although there is no known closed-form solution to this problem, Chou et al. addressed
a related issue in [3]. In order to discuss their results, the concept of pruning, as it relates
to TSVQ, must be defined. Pruning is a tree operation which takes a node as input and

modifies the tree structure by removing all descendants of the node. In Figure 4, node ¢



Figure 4: Node t is pruned by removing all of its descendants (dashed lines).

is pruned by removing the dashed portion of the tree, excluding ¢ itself. If S is a pruned
subtree of T', the notation S < T is used, signifying that S contains a subset of the nodes in
T.

Pruned Tree-Structured Vector Quantizalion generalizes an algorithm introduced by
Breiman, Friedman, Olshen, and Stone (BFOS) [17] under the context of classification and
regression trees. The notation s € S denotes that s is a node in the tree S. For S < T and
s € S, let R, represent the encoding cell associated with node s and let y, denote its corre-
sponding codevector. Next, define the following quantities: px(s) = Pr[X € R;], [(s) is the
number of bits needed to specify the path from the root to s, and d(s) = E[d(X,y,) | X € R,].
Finally, let S contain the leaf nodes from S (i.e., S C S). For a given source X, the average
rate and average distortion of S are

Rs =" 1(s) px(s) )

SES'

Ds =3 d(s) pxs) . (10)

SES'

Each subtree of T' is represented by a point (Rs, Ds) in the rate-distortion plane. Using

10



these points, the operational distortion-rate function
Dr(R) = min {Ds|Rs < R} (11)

then defines the optimal tradeoff between rate and distortion under the constraint that the
quantizer must be a pruned subtree of T'. This constraint is imposed so that the subtrees
considered are still TSVQs designed for the source X, although their maximum average rates
will vary. The generalized BFOS algorithm is an efficient method for locating the extreme
points of the lower convex hull of the operational distortion-rate function and their associated
subtrees [3].

Tree functionals are real-valued functions on trees and their subtrees. Examples include
Dgs and Rs. A monotonic nondecreasing tree functional is a tree functional which cannot
increase as branches are pruned from the tree. Rg is an example of a monotonic nondecreas-
ing tree functional. Likewise, a monotonic nonincreasing tree functional is a tree functional
which cannot decrease as branches are pruned. Dg is an example of a monotonic nonincreas-
ing tree functional. A tree functional u(.S) is said to be linear if it has the property that its
value is given by the sum of its values at the leaf nodes of S

u(S) =Y u(s). (12)

565

In [3], it is shown that the generalized BFOS algorithm can be used to optimize the tradeoff
between any two monotonic, linear tree functionals. Since both Rg and Dg are monotonic,
linear tree functionals, the generalized BFOS algorithm can optimally trade average rate
versus average distortion for the set {S: S < T}, under a given maximum rate constraint.
Denote the pruned subtrees representing the vertices of the lower convex hull of DT(R)
as S1,52,...,5, when traveling right to left on the lower convex hull starting from 7' (as
shown in Figure 5). A key result proven in [3] is that {0 < 5, < -+ < 52 < 51 < T where
lo,0 denotes the root node of T'. In words, the pruned subtrees determing the lower convex

hull of DT(R) are nested from the initial tree T' back to the root node £y o. This permits very

11



Average Distortion (D)

too ¢

Average Rate (R)

Figure 5: The lower convex hull of the operational distortion-rate function ﬁT(R).

efficient use of memory since only 7' (and the optimal pruning sequence) has to be stored
in order to access all such subtrees. In addition, the generalized BFOS algorithm can locate
these subtrees without an exhaustive search over {S : S < T'} due to this nesting property.

In [3] it is shown that PTSVQ can outperform both TSVQ and FSVQ, in a rate-distortion
sense, over a substantial range of bit rates. To accomplish this, time-sharing between adja-
cent subtrees on the lower convex hull is permitted. More specifically, to time share at rate R,
PTSVQ uses S; as the codebook for the fraction v of the time and S;4; as the codebook for
(1 —~) of the time where 0 <y <1 and Rs,,, < R < Rg,. The average rate and distortion

with this time-sharing technique are then yRs, + (1 — v)Rs,,, and vDs, + (1 —v)Ds,,, re-

i+1
spectively. If the lower convex hull of Dr is denoted by ¢, then ¢(R) is the minimum average
distortion attainable at a rate no greater than R (with time-sharing between pruned subtrees

of T'). In [18], it was noted that time-sharing can result in a nonstationary distribution of

distortion over the quantizer output because adjacent image blocks may have significantly

12



different distortions when encoded using different codebooks. PTSVQ also suffers from the
same disadvantages as unbalanced TSV(), namely, the variable length of its indices and the

increased storage needed for the tree.
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3 THE VARIABLE FANOUT TRIMMED TSVQ
ALGORITHM

Although the formulation of the generalized BFOS algorithm presented in [3] assumed a
binary tree structure, it was noted that the algorithm did not, in general, require this. By
applying the generalized BFOS algorithm to a broader class of tree structures, a new tree
operator can be exploited in order to find an improved collection of subtrees. A wvariable
fanout TSVQ is defined to be a TSVQ with the property that all nodes at the same depth
have the same number of children. Between different tree depths, however, the number of
children may vary, but all node fanouts are assumed to be integer powers of two. Because
of these constraints, variable fanout TSVQs are special cases of nonbinary TSVQs.

Let T' be a variable fanout TSVQ (e.g., see Figure 6). As with binary TSVQ), the binary
sequence specifying the path from root to leaf node is an instantaneous code. Since T' is
balanced, this code is also fixed rate (all paths beginning at the root of 7" and ending at a leaf
node are described by the same number of bits). The variable fanout tree 7' is completely
specified by the number of bits used to address children of nodes at each depth, represented
by the fanout vector, b = (bo,by,... ,br—1), where L is the maximum depth of the tree and
“depth-0" refers to the root. Thus, each interior node at depth-i has 2% children. As an
example, the variable fanout TSV(Q shown in Figure 6 has . = 2 and the fanout vector
(b = 2,b; = 1). To determine the number of variable fanout TSVQs for a given maximum
rate constraint B = Ef:_ol b; bits/vector, the number of sequences of positive integers which

sum to B are counted:
B-1
B—-1
> ()= (13)
m=0 m

Thus, the number of variable fanout TSVQs increases exponentially with the maximum rate

B.
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Figure 6: Example of a variable fanout TSVQ; ¢;; denotes the ;" node at depth-i within
the tree.

Recall that ¢(R) denotes the minimum average distortion attainable at rate no greater
than R by pruning a given TSVQ. Let C' be a random variable representing the available
transmission rate for a channel connecting a PTSV(Q encoder to its decoder. Let fo be the
density function of available rates for the channel being used. One measure of performance
of a source coder for this channel is the MSE averaged over available transmission rates, that
is

D= / o(r) fo(r) dr (14)

where time-sharing between codebooks is allowed. Note that D depends both on the statistics

of the source X and the statistics of the channel C.

3.1 Design of the Initial Variable Fanout TSVQ

The method used to produce the initial variable fanout TSVQ generalizes the design
procedure for balanced binary TSVQ (i.e., “splitting”). For now, a prescribed fanout vec-
tor b = (bg,b1,...,br_1) is assumed. Let Cx = {yo,¥1,...,¥~n-1} denote an N-point,
k-dimensional vector codebook generated by the generalized Lloyd algorithm using a train-
ing set V. If {; ; is the 5 node at depth-i within 7', then let V(*.) denote all those vectors in
V which are closer to {; ; than any other node at depth-i. Using this notation, Cq(lti’]) denotes

a size-n codebook designed for node ¢; ; using V.,
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The design algorithm for the initial variable fanout TSVQ follows:

STEP ZERO: Design C’l(to’o) for the root node by finding the centroid of V (initialize counters
n <« 1and t;; < top).

STEP ONE: Split the vectors in c) and design CQ(Z’]) by running the GLA with V)
(n < 2n).

STEP TWO: If n < 2% the current set of vectors split again (go to step one), else assign the
codevectors in C’:Lti’]) to the n = 1 codebooks of each of {; ;’s children.

STEP THREE: If all nodes at depth-i: have been designed, go to step four, else move laterally
to next node (n < 1, t;; + 1;;41), determine the new set V*.), and go to step one.

STEP FOUR: If i + 1 is the terminal level of T', then quit, else descend one level in T' (n « 1

and t; ; < t;410), determine V(“J), and go to step one.

The algorithm described above begins by creating a 2°-point FSVQ using the GLA. It
then repeatedly designs a single 2%-point FSVQ for each of the encoding cells generated
during the previous iteration (1 = 1,2,...,L —1). The procedure for generating balanced
binary TSVQs is identical except that 2-point FSVQs are generated at each iteration (i.e.,
the else directive in STEP TWO is always executed). However, as discussed in Section 2.1,
greedily grown binary TSVQs do not follow this procedure.

For variable fanout trimmed TSVQ, all intermediate (or additional) codebooks
{Off”) :n=2,4,...,2%  and t;; ¢ T} are used for the trimming of 7. Note that
{C’l(t”) :1;,; € T'} represents the set of codevectors used by the initial tree T', and as such,
these are not considered additional codebooks. It will be shown in Section 3.3 that the stor-
age needed for the variable fanout trimmed TSVQ decoder is identical to that of a balanced
binary TSVQ at the same maximum coding rate B. Thus, a decoder using either of these

TSVQs will have to store the same number of vectors. For greedily grown binary TSVQ,
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the resulting tree has experimentally been observed to require considerably more storage
space at the decoder than variable fanout trimmed TSVQ since the number of nodes is not

constrained [16].

3.2 Trimming of Variable Fanout TSVQ

The generalized BFOS algorithm can be modified to exploit the additional codebooks
stored with variable fanout trimmed TSVQ, and thus potentially generate an even lower
convex hull of the operational distortion-rate function. The tree operation of trimming
provides this extension. Again let 7' be a variable fanout TSV(Q with fanout vector b. Let
t;; denote the j' node at depth-s within 7. 3(1; ;) is defined as the current fanout of node
t; ;, so that before trimming, 8(¢;;) = 2" for all interior nodes. In order to trim node ¢, ;,

the procedure below is followed:

Trimming a Node

STEP ONE: Prune any branches extending from ¢, ;’s children.

STEP_TWO: Reduce ¢;;’s children by a factor of 1/2™ where m is a positive integer such that
2" < B(tyy) (e, Btiy) < Bltig)/2™).

STEP THREE: If 3(¢; ;) = 1, prune at node t; ;, else replace the codevectors from the remain-

ing children with the vectors stored in C[(;(”tji) .

The codebook replacement in STEP THREE guarantees that ¢; ;’s new children generate
the minimum MSE partition (as determined by the GLA) for its input cell. Without such
replacement, the codevectors of the remaining children would no longer satisfy the centroid
condition. Figure 7 shows a subtree of a variable fanout TSVQ with b = (2,2,1) which
could be produced by this trimming procedure. The dashed portion of the tree identifies

the nodes which are removed in order to trim ¢ ; using m = 1. Note that during trimming,
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Figure 7: Example of a subtree for variable fanout trimmed TSV(). The dashed lines indicate
a possible way to trim at node ; 5.
the remaining two children of ¢, ; will have their codevectors replaced by the 2-point FSVQ
which was created for {; 3 during the design of the initial variable fanout tree.

Let Pr denote the set of all subtrees which can be created by pruning some initial tree
T. Likewise, let Tr denote the set of all subtrees which can be created by trimming 7. Tt is
important to observe that when the if directive in STEP THREE of the trimming procedure
is executed, trimming is identical to pruning since STEP ONE and STEP TWO only affect
tree nodes which are then removed in STEP THREE. Thus, trimming is a generalization of
pruning. This implies Pr C Tr. In words, any pruned subtree of T can be generated by
some trimming sequence. However, there exist, in general, trimmed subtrees of 7' which
cannot be generated by any pruning sequence. It is the subtrees in 77 \ Pr which can enable
variable fanout trimmed TSV(Q to outperform PTSVQ in a rate-distortion sense. For this
to occur, there has to be at least one S € T that generates a rate-distortion pair which lies
below the lower convex hull of Pr. Even if there is no such S in 77 \ Pr, since Pr C Tr,
variable fanout trimmed TSVQ will always perform at least as well as PTSVQ.

It can be shown, in a manner similar to [3], that the trimmed subtrees lying at the vertices
of the lower convex hull of D7 are nested in the sense that each can be obtained from its higher

rate neighbor through a sequence of trims. Referring back to Figure 5, this implies S;4; < .5;
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where S < T' denotes that S is a trimmed subtree of T'. (This is not an abuse of notation
since trimming is a generalization of pruning.) The proof of this property from [3] and how
it applies to variable fanout trimmed TSV(Q are provided for completeness in Appendix B.
A modified implementation of the generalized BFOS algorithm which locates the trimmed
subtrees which determine the lower convex hull of D is presented in Appendix A.

Since the rate-distortion optimal subtrees are nested, they can be generated efficiently
for use at both the encoder and decoder from the initial variable fanout tree structure. A
method introduced in [18] for accessing nested PTSVQ subtrees is now extended so that
it also applies to variable fanout trimmed TSV(Q. Corresponding to each codebook Cy(zt”)
where n =1,2,...,2% Y and ¢,; € T is a trim number denoted as a(t;;,n). a(t;;,n) >0
indicates that, during the generalized BFOS algorithm, node {¢; ; is trimmed, and codebook
replacement is performed using Cy(zt”) (i.e., n equals the size of the codebook replaced during
the trim). Initially, a(t;;,n) =0 V¢, ;,n. If trimming at node ¢ yields the first subtree
on the lower convex hull, then a(t,n) =1 (n = 1 if the trim is actually a prune). Likewise,
if trimming at s generates the second subtree on the lower convex hull, then a(s,n) = 2.
This process continues as 7' is trimmed back to the root node. When the variable fanout
trimmed TSVQ encoder generates the reproduction index for an input vector using the n'"
trimmed subtree on the lower convex hull (where T is the 0" subtree), it simply descends
from the root until it encounters either a leaf node or an interior node with a(¢;;,n) <n
where n = 1,2,...,2%~1. Note that an interior node with a(t;;,n) < n for some valid n

th

would be trimmed in the process of generating the n'"* subtree.

3.3 Storage of Variable Fanout Trimmed TSVQ

Since available storage is often a limiting factor in VQ system design, the stor-

age required by variable fanout trimmed TSVQ is now compared to variable fanout

pruned TSVQ and balanced binary PTSVQ. Let T denote a variable fanout TSVQ with
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maximum depth L. Recall that if 7" encodes each input vector X with B bits, then
Ef:_ol b; = B. Let C denote the set of all additional codebooks associated with 7', namely
C = {C’flt”) tn=24,...,2%vand t;; ¢ T} , and let T};, be a depth-B balanced binary
tree. In order for a variable fanout tree-structured decoder to be progressive, it must store
a codevector for each interior node. If the encoder transmits the first n bits for each input
block, the decoder can use the interior codevectors at depth-m where E;n:gl b; < n to gener-
ate an approximation to the final image. These interior vectors are specified using the first
E?:Bl b; bits of the received index for each block. Thus, the variable fanout trimmed TSVQ
decoder must store one k-dimensional codevector for each node in T'. The decoder must also

store all codevectors contained within C to permit all trimmed subtrees to be accessed. The

decoder storage for T' is

7+ |C] (15)
L—-1 i—1
SUEDY (<2 +a+---+ 2 ] 26]) 1o
1=0 7=—1
L—-1 i—1
=T+ ((2’% -2) [ 2’%) (17)
=0 7=—1
L—1 -1
=|T|+ T -1-2- ] 2™ (18)
=0 j=-1
L—1
=|T|4+|T|-1-2- <|T|—H26J> (19)
7=0
=92. (250+51+"'+5L—1) —1 (20)
=2.28 —1 (21)
=1424+44+84--- 425 (22)
=[Tyin] (23)

In the equations above, b_y = 0. Also, (19) follows by noting that the last term in (18) is

twice the number of interior nodes in T'. For a maximum encoding rate B, a progressive
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decoder using either variable fanout trimmed TSV(Q or balanced binary PTSVQ has to store
the same number of vectors. Variable fanout pruned TSVQ, however, requires less storage
at the decoder since it does not use additional codebooks.

A storage comparison at the encoder is more complex because any tree node with a fanout
of two only needs to store a single vector equal to the difference between the codevectors
of its children. A dot-product between an input X and this difference vector, followed by a
threshold comparison, is enough to determine which child is closer to X (see Eq. (7)). This
technique reduces the balanced binary TSVQ encoder storage by a factor of two. Variable
fanout TSVQ cannot take advantage of this shortcut for any nodes with fanouts greater
than 2 (i.e., b; > 1) because the number of vector differences that would need to be stored
equals (2;i) for any node at depth-z. Clearly, it is more memory efficient to simply store the

2% codevectors whenever b; > 1. The encoder storage for 71" is

((1+4+8+16+---+26=‘)ﬁ2bﬂ) (24)

=0 7=—1
L-1 i—1
= ((zbé“ -3 [] 2’%) (25)
=0 7=—1
=2 (|IT| = 1) =3 (|T| - 2°) (26)
=|Tyin| — |T'| + 27 — 1 (27)
=lC| +2P —1 (28)
1
=[Cl + 5(|Tbinl = 1) (29)

Thus, variable fanout trimmed TSVQ requires that |C| more codevectors be stored at the
encoder than does balanced binary PTSVQ. Variable fanout pruned TSV(Q also requires less

encoder storage because it does not use additional codebooks.
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3.4 Choosing the Fanout Vector to Minimize D

So far, the fanout vector b has been assumed to be fixed. However, in Section 2.2 it
was shown that for a given maximum rate constraint B, there exist 28~! possible fanout
vectors. This introduces an extra degree of freedom which is not present in PTSV(Q) systems.
Since each fanout vector b yields a different initial tree structure, there is generally a unique
lower convex hull associated with each b. If the allowable transmission rates for a given
channel are known, the fanout vector yielding the trimmed subtrees with the lowest MSEs
at or near these rates should be chosen. Likewise, if a probability distribution for available

transmission rates, fo, is either known or can be estimated for the channel, the fanout vector

which minimizes D (see Eq. (14)) should be chosen.

Since the variable fanout trimming process generates rate-distortion pairs which deter-
mine the lower convex hull (see Appendix A), a numeric integration subroutine can be
embedded within the algorithm in order to approximate D for a given rate density fo. Un-
fortunately, as the maximum rate B grows, it may become computationally infeasible to
design all 28~1 variable fanout TSVQs in order to minimize D. The following heuristic
approach will be shown experimentally to be satisfactory in Section 4.2.

Given a transmission rate density fo with peaks at rq,ry,... ,r,, the initial tree structures

which minimize D will be those which satisy

(m - %) <) bi< (rj + %) (30)

for each j=1,2,...,n where m; € {0,1,2,...,L —1}. For example, if fc is bimodal
with peaks at 5 bits/vector and 8 bits/vector, fanout vectors such as (bg = 5,b; =3,...)
or (bg =1,b; =4,by =3,...) would likely perform well. Thus, if computational resources

are limited, these tree structures alone can be generated and tested.
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4 EXPERIMENTAL RESULTS

In this chapter, two ways of experimentally evaluating the performance of variable fanout
trimmed TSVQ are considered. First, the lower convex hull of the rate-distortion pairs
is generated by each of the various algorithms operating under the same maximum rate
constraint, B. Since the convex hull is determined as part of the codebook design procedure,
this analysis evaluates how the various algorithms perform only on training data. Second, D,
the MSE averaged over available rates, is evaluated for the various algorithms and choices of
b. To accomplish this, several test images are encoded using the lower convex hull subtrees
generated by each algorithm in order to find their experimental average rates and MSEs.
In addition to providing performance results using test data, this also demonstrates how

variable fanout trimmed TSV(Q can be optimized for the channel.

4.1 Lower Convex Hull Results

First, a comparison is made between the locations within the rate-distortion plane of the
subtrees generated by variable fanout trimmed TSV(Q) and variable fanout pruned TSVQ.
This is accomplished by running both algorithms on the same initial variable fanout tree
and then plotting the resulting lower convex hulls. The variable fanout tree structure was
designed for a maximum rate of B =6 bits/vector using the fanout vector (2,2,2). The
initial tree was trained using two 512 x 512 images (“Man” from the USC database and
“Goldhill” from the RPI database) and vector dimension k& = 4. Figure 8 shows the lower
convex hulls resulting from optimal trimming and optimal pruning. As expected, some
of the additional rate-distortion pairs generated by trimming fall below the lower convex
hull created by pruning alone. Most noticeably, at the average rate R =1 bit/vector, the
trimmed hull dips lower than the pruned one. Since pruning does not incorporate additional

codebooks, it cannot generate any subtrees between 2 bits/vector and 0 bits/vector.
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Figure 8: Trimmed and pruned-only lower convex hulls using initial tree with fanout vector
(2,2,2). Squares are trimmed subtrees; crosses are pruned subtrees.

In Figure 9, the 4-6 bits/vector range from Figure 8 is expanded. It is interesting to note
that the six subtrees located from R = 4.30 bits/vector to R = 5.02 bits/vector are identical.
This implies that trimming either did not generate additional subtrees in this region, or the
additional subtrees generated were all located above the pruned lower convex hull.

Since variable fanout trimmed TSVQ is not guaranteed to outperform variable fanout
pruned TSVQ, it is interesting to observe empirically how often trimming generates a rate-
distortion pair below the pruned convex hull. Using the same two training images and vector
dimension, all possible variable fanout trees for B = 10 bits/vector were designed. Recall
from Section 2.2 that there are 28~! = 512 fanout vectors possible for this maximum rate.
However, only 444 initial variable fanout trees were generated. The other 68 combinations
had some node #; ; which could not be split during the design process because |V*s)| < 2%
After using the generalized BFOS algorithm to optimally trim each variable fanout tree, 443

of them were found to have used codebook replacement while trimming. The only variable
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Figure 9: Enlargement of range 4-6 bits/vector from Figure 8.

fanout tree that used pruning alone (no codebook replacement) was the one representing
balanced binary TSVQ (i.e., fanout vector (1,1,1,1,1,1,1,1,1,1)).

Both balanced and unbalanced binary PTSV(Q are now incorporated into the figures.
Binary PTSVAQ is included because it represents a popular implementation of PTSV(Q. The
lower convex hulls of rate-distortion pairs for all four algorithms are shown in Figure 10
for the same training images, dimension, and maximum rate of 10 bits/vector. However,
the fanout vector used for the figure is (1,1,1,3,2,2). Figure 10 displays the restricted
range of 6-8 bits/vector so that the various subtrees can be distinguished. Again, variable
fanout trimmed TSV generates subtrees which lie below the hull of variable fanout pruned
TSVQ. Also, the nonbinary fanouts allow variable fanout trimmed TSVQ to outperform
balanced binary PTSVQ by 0.4-0.8 dB over the displayed range. Finally, unbalanced binary
PTSVQ does not approach variable fanout trimmed TSVQ’s rate-distortion performance un-
til R = 8 bits/vector, and this only occurs because the unbalanced subtrees become substan-

tially larger than the variable fanout subtrees at higher rates. For example, the unbalanced
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binary PTSVQ subtrees with R =~ 8 bits/vector contain approximately 7500 nodes while
the variable fanout subtrees contain only 835 nodes. Thus, even though the rate-distortion
performance of unbalanced binary PTSV(Q might eventually exceed that of variable fanout

trimmed TSVQ as R grows, trimming would still have the advantage of reduced storage.

4.2 Minimizing D for a Known f¢

Now, several examples are considered in order to demonstrate that the heuristic method
introduced in Section 3.4 for choosing b given fo yields tree structures which minimize D.
To accomplish this, the 10 minimum-D fanout vectors for various channel rate distributions
are listed. The training data, vector dimension, and maximum rate all remain equal to
their values from the end of Section 4.1. Let fco be uniform on R € [0,10]. Let fc; and
fc.2 both be Gaussian with ¢ = 0.01, py = 5.5 bits/vector, and py = 8.0 bits/vector. Let
fos = %(fC,l + fc2), a bimodal distribution. D was evaluated for all 444 variable fanout
trees which could be generated (see Section 4.1). The results are presented in Table 1.

For fcp, the uniform distribution, most of the minimum-D fanout vectors begin with
2 or 3 unitary allocations. This assures that there are trimmed subtrees at low bit rates.
This is important because the MSE is greatest for subtrees with small B. For fq;, the
Gaussian distribution with g = 5.5 bits/vector, the minimum-D fanout vectors all have
b =(1,4,...). It is somewhat surprising that trees with by = 5 are not ranked highest for
fc1, since their trimmed subtrees are approximately size-32 FSVQs at R ~ 5 bits/vector.
However, such trees only have trimmed subtrees at integer rates below R =5 bits/vector
(i.e., R=4,3,2,1,0). Thus, any variable fanout TSVQs with subtrees satisfying 4 < R <5
will tend to have lower values of D for fo since these subtrees typically lie below the line
segment connecting a 16-point FSVQ to a 32-point FSVQ within the rate-distortion plane.
Furthermore, for fo 1, the fanout vectors whose D values ranked 18-32 smallest (not included

in Table 1) all have b = (5,...) while those from 33-44 all have b = (2,3,...). Thus, a tree’s
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Table 1: Fanout vectors which minimize D on the training images “Man” and “Goldhill” for
various available rate distributions (k =4 and B = 10 bits per vector).

Fanout Vector b
Rank fC,o f0,1 f0,2 f0,3

1 (1,1,1,3,4) (1,4,2,1,2) (7,3) (1,4,3,2)
2 (1,1,4,4) (1,4,2,3) (1,6,3) (1,4,2,3)
3 (1,1,1,3,2,2) | (1,4,2,2,1) (7,1,2) (1,4,2,1,2)
4 (1,4,2,3) (1,4,2,1,1,1) | (1,6,1,2) | (1,4,3,1,1)
5 (1,1,1,3,1,3) (1,4,3,2) (7,2,1) (1,4,2,2,1)
6 (1,1,4,1,3) (1,4,3,1,1) | (1,6,2,1) | (1,4,2,1,1,1)
7 (1,1,1,3,3,1) | (1,4,1,2,2) | (1,1,5,3) (5,3,2)

8 (1,1,3,2,3) (1,4,1,1,3) | (1,2,4,3) (5,2,3)

9 (1,4,2,1,2) | (1,4,1,2,1,1) | (7,1,1,1) (1,4,5)
10 (1,1,4,2,2) (1,4,1,3,1) (1,5,4) (5,2,1,2)

performance is closely related to whether nodes are located at the channel’s peak rates. The
results in Table 1 for fco can be explained in a manner similar to fe; (note that none
of the top 10 fanout vectors have by = 8 for fc ). Finally, fos illustrates the importance
of performing well at those rates which contribute most to D since many of the best tree
structures for fc 3 are also optimal for fo;. If fo1 and fo 2 had been weighted differently in
creating fc 3, this would not necessarily be the case.

In order to demonstrate that this minimum-D ranking for various b is empirically correct,
allocations (1,4,3,1,1) and (1,2,4,3) were tested on the channel with density fc1 using
three 512 x 512 images (“Plane,” “Woman,” and “Peppers” from the USC database). In
Figure 11, the product of fc; and the MSE is displayed, where the MSE is averaged over the
three test images for each subtree. The integral of this curve yields D, the MSE averaged
over available rates. This curve is important to view because it identifies those rates which

contribute most to D. The points plotted are not subtrees; instead they represent the
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Figure 11: The product of available rate distribution and MSE for test data. The channel
density is N (5.5,0.01).

rates used to approximate D). The curve for unbalanced binary PTSVQ is also included
as a benchmark. As predicted in Table 1, fanout vector b = (1,4,3,1,1) provides superior
performance to (1,2,4,3) (a fanout vector optimized for fcq).

Using the same test images, the performance gain using variable fanout trimmed
TSVQ on two channels with rate distributions fec; and fe, was numerically evaluated.
Three fanout vectors were chosen: one which is optimal for fco, one which is optimal
for fc1, and one which is otimal for feo (see Table 1). The peak signal-to-noise ratio
(PSNR = 101log,,(2552/D) ) achieved on the test data is listed in Table 2 for each of these,
normalized to the PSNR attainable using unbalanced binary PTSVQ. In addition, pruned
versions of these same variable fanout tree structures are included along with balanced bi-
nary PTSVQ. The approximate subtrees sizes are included for all entries to permit a fair
comparison. Note that all four algorithms use time-sharing at channel rates where they have

no pruned or trimmed subtrees.

29



Table 2: PSNR gain of variable fanout TSV(Q (both pruned and trimmed) compared to
unbalanced binary PTSV(Q on test images for two different channel densities.

fC,l fC,Z
Algorithm Bits/Level | Gain (dB) | Nodes | Gain (dB) | Nodes
unbalanced binary PTSVQ NA 0.000 15,105 0.000 16,260
balanced binary PTSVQ 111111t -0.022 1700 -0.499 1895
variable fanout trimmed TSVQ 14311 0.707 1540 -0.271 1665
variable fanout PTSVQ 14311 0.682 1585 -0.483 1670
variable fanout trimmed TSVQ 1243 -0.491 940 0.241 1075
variable fanout PTSVQ 1243 -1.652 1000 0.266 1120
variable fanout trimmed TSVQ 11134 0.055 900 -0.053 1010
variable fanout PTSVQ 11134 -0.763 815 -0.094 1025

Referring to Table 2, trimming offers a PSNR gain of up to 1.16 dB over variable fanout
PTSVQ for density fc;. The pattern in the experimental data demonstrates that trimming
can achieve a substantial gain over pruned TSVQ for a given channel rate distribution.
Performance gains are found at rates where trimming creates additional subtrees which lie
below the lower convex hull found by the ordinary BFOS algorithm. This occurs more at
lower rates because PTSV(Q generates fewer subtrees in this region for variable fanout trees.
For fc 2, this phenomenon is best seen for b = (1,4,3,1,1).

When compared to binary tree structures, the best variable fanout trimmed TSV(Q in
each case offers a PSNR gain of approximately 0.7 dB over balanced binary PTSV(Q and
0.24-0.71 dB over unbalanced binary PTSV(Q). The reason the performance gap narrows
between variable fanout trimmed TSV(Q and unbalanced binary PTSVQ as the rate increases
is because the difference in subtree sizes becomes significant. For example, the pruned
subtrees of the unbalanced binary PTSVQ with average rate near 8.0 bits/vector contain
approximately 16,260 nodes. This is in comparison to both variable fanout trimmed TSVQ

and balanced binary PTSV(Q whose initial trees (R = 10 bits/vector) require the storage
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Table 3: PSNR gain of variable fanout trimmed TSV(Q compared to unbalanced binary
PTSVQ on individual test images for two different channel densities.

fou feo

Test Image | Bits/Level | Gain (dB) | Bits/Level | Gain (dB)
“Plane” 111322 1.433 1243 -0.652
“Woman” 1144 0.810 1243 0.917

“Peppers” 1423 2.364 1612 0.612

of only 2047 codevectors at the decoder. Therefore variable fanout trimmed TSV(Q offers a
performance gain over unbalanced binary PTSVQ while actually reducing the storage. This
memory reduction is significant since it implies that multiple variable fanout tree structures
can be stored at the decoder with less memory than a single greedily grown binary PTSVQ.
Thus, if the channel rate distribution has a bimodal distribution such as f¢ 3, variable fanout
trees with b = (1,4,3,1,1) and (1,2,4,3) can both be stored. Since the initial unbalanced
binary PTSVQ contained 17,177 nodes, storing both variable fanout trees would provide
superior performance at only 1/4 the memory usage.

The experimental results presented so far are averaged over three images. However,
it is interesting to quantify how well variable fanout trimmed TSV(Q can perform on a
single image. In Table 3, the maximum PSNRs achieved for each test image using the
fanout vectors from the first three columns and the top eight rows of Table 1 are listed. All
PSNRs in Table 3 are relative to the PSNR achieved by unbalanced binary PTSVQ on the
corresponding test image. In many cases, variable fanout trimmed TSV(Q can outperform
unbalanced binary PTSVQ by a substantially larger margin than found in Table 2. For
example, coding “Peppers” with b = (1,4, 2, 3) provides a PSNR gain of over 2 dB. However,
“Plane” transmitted over the channel with density fc 2 is an exception, a result which may

be due to unbalanced binary PTSVQ’s substantially larger codebook at higher rates.
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5 CONCLUSION AND FUTURE RESEARCH

In this thesis, I have introduced a new variable-rate encoding technique called variable
fanout trimmed TSVQ which experimentally outperforms PTSV(Q. This improvement is
made possible through the generalized pruning technique of trimming which creates new
subtrees for a given initial tree. Often, these new rate-distortion pairs lie below the lower
convex hull generated by pruning alone. I have also shown that variable fanout trimmed
TSVQ’s memory use at both the encoder and decoder is on the order of other PTSVQ
techniques. In the case of greedily grown binary PTSVQ, variable fanout trimmed TSVQ
generally requires considerably less storage. Thus, variable fanout trimmed TSV(Q provides
the benefits of progressivity and low encoding complexity while providing a lower MSE than
PTSVQ. Additionally, the fanout vector for the initial tree can be optimized with respect
to an available rate density of a channel, providing a further advantage over PTSVQ.

Since the design of the initial tree is separate from the generation of trimmed subtrees,
a different design algorithm could be used prior to trimming. Thus, the initial nonbinary
tree could be created using the greedy growing technique described in Section 2.1. Since a
variable fanout tree is not likely to result, the subsequent trimming algorithm would have
to be altered. The experimental performance of greedily grown trimmed TSVQ could then
be compared to variable fanout trimmed TSV(Q and PTSVQ. However, it should be noted
that growing the initial nonbinary tree in a greedy fashion prevents the channel optimization

possible with variable fanout trimmed TSVQ.
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APPENDIX A PSEUDOCODE FOR OPTIMAL
TRIMMING

In this appendix, the algorithm used to generate the rate-distortion optimal sequence of
trimmed subtrees is presented. It is very similar to the generalized BFOS algorithm intro-
duced in [3] except for the incorporation of additional codebooks. Let u = (u1, uz) represent
the pair of average rate and MSE, respectively, for the tree currently under consideration.
Associated with each interior node at depth-z is a data structure containing several arrays of
length b; and various pointers. Each array element corresponds to a codebook stored at the
node (i.e., Y for n = 1,2,4,...,2%1). Similarly to [3], the following quantities for interior

node t are defined:

Auq(t,n) = change in average rate of tree by trimming at node ¢

and performing codebook substitution if n # 1

Ausy(t,n) = change in MSE of tree by trimming at node ¢ and performing
codebook substitution if n # 1

A(t,n) = negative slope of line segment within the rate-distortion plane

resulting from trimming node ¢

Amin(?) = minimum value of A achievable by trimming at either

node ¢ or any of its descendants (not an array)

a(t,n) = trim number described in Section 3.2 .

Additionally, each interior node contains pointers to its parent node and each of its children.
In the following pseudocode, parent(t) dereferences the pointer to t’s parent node. Leaf
nodes have these same data fields except each array has only one entry since leaf nodes have
no additional codebooks. Two additional parameters are needed for the initialization of the
trimming algorithm. Given input random vector X, let ui(¢t,n) = px(t) - (I(t) + logy(n)),

and let uy(t,n) = px(l) - d, where d,, represents the average distortion of those input vectors
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mapped into node ¢ and encoded using ¢, The trimming algorithm begins with the
following initialization.

For each leaf node t,

Auy(t,1) « 0
Auy(t, 1) 0
A(t,1) ¢ o0
Amin (1) < 00
a(t,1) « 0.

b;—1
>

For each interior node ¢ at depth-2 and n =1,2,4,... .2

Au(t,n) « —u(t,n)+ Y (u(s,1)+ Au(s,1))

s:parent(s)=t
At,n) < —Auy(t,n)/Auq(t,n)
Amin(t) < min{ At,n), Amin(s) :n=1,2,4,...,2% " and parent(s) = { }

a(t,n) <« 0.

With this initialization, the minimum value of A over all interior nodes will be stored
in the root’s data structure, Amin(to0). As in [3], this algorithm begins with the full tree
and trims the node with the minimum value of A. Then, all data structures affected by the
trim are updated, and the process is repeated until only the root remains. The trimming

algorithm follows.

t < too

u ¢« u(t,1) + Au(t, 1)

n <+ 0

print 1, Amin(f00), U
while ( Amin(to,0) < 00 ) do
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n+<n+1
n<+ 1
while ( A(,n) # Amin(t00) ) do

if ( Amin(t0,0) € {Amin(s) : parent(s) =t} )

t < s where Amin($) = Amin(t0,0)
else
n ¢ m where A(t,m) = Amin(to,0)
end
A+ Au(t,n)
a(t,n) < n
if (n=1)
Amin (1) < 00
else
Alt,n) + oo
m <+ 1
while (m < n) do
Au(t,m) < Au(t,m) — A
At,m) «— —Aug(t,m)/Auy(t, m)
m<+2-m

end

Amin (1) < min{/\(t,m) :m=1,2,4,...

while (¢ # o) do
t « parent()
n+1
while (n < (1) ) do
Au(t,n) + Au(t,n) — A
At,n) < —Aug(t,n)/Aui(t,n)
n<2-n

end

Amin (1) < min{ At,n), Amin(s) :n=1,2,4,...,

end
u+—u—A
print 7, Amin(t00), U

end.

35

72

B(t)

2

and parent(s) = }



APPENDIX B PROOF OF NESTING PROPERTY

For completeness, the proof from [3] is presented to show that the trimmed subtrees lying
on the lower convex hull of T" have tree structures which are nested from the initial balanced
tree to the single root node. All unions and intersections are taken with respect to the
tree structures themselves, not their associated codevectors. It is assumed that codebook
replacement, as detailed in Section 3.2, is performed after each union and intersection in
order to guarantee that the resulting subtree yields the minimum average distortion for its
structure. In the subsequent lemma and corollary, if tree S can be attained from T' through
a sequence of trimming operations, the notation S < T is used.

Let u(S) = (u1(S), u2(S)) where uy(S) represents the average rate of S and uy(S) repre-
sents the average distortion (MSE), both with respect to a given source X. Let 3(¢) denote
the fanout at node ¢.

Lemma 1 Let S, S" < T be trimmed subtrees of T', and let F' be a face of the lower convex
hull of {u(S): S < T}. Define R=5 N S and R =5 U §'. Ifu(S), u(s) € F, then
u(R), u(R)eF .

Proof The intersection and union imply the following about the structure of R and R':

B(ri;) = min{B(si;), B(s'i;)} (31)
B(r's ;) = max{B(si;), B(s"i;)} (32)

where if either s or ¢’ are nonexistent, 3 returns zero. These relations imply that R < S, 5’
and 5,5 < R'. Thus, there exists a sequence of trimming operations that convert S’ into
R. These operations remove those branches of S’ that are not found in S. Likewise, R’ can
be converted into S through a sequence of trimming operations. These operations remove
those branches from S’ that are not contained in S. In both cases, the set of branches being

removed is identical. Since the subtrees S, S’ represent partitions of the input space R*,
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Figure 12: Interpretation of (33) and (34) on the lower convex hull of the operational
distortion-rate function for 7T'.

these adjustments will affect the average rate and MSE in the same way. This result can be

expressed as

u(R) + A = u(s) (33)

u(S)+ A =u(R) (34)

where Ay > 0 since average rate cannot decrease as branches are added and A, < 0 since
MSE cannot increase with a finer partition. Figure 12 along with (33) and (34) imply that
both R and R’ must lie on F since if either did not, there would be a rate-distortion pair

outside the convex hull. O

Corollary 1 Letl F' be a face of the convex hull {u(é’) ' S < T} with lower right endpoint ug
and upper left endpoint uy. Then there exist So, S1 < T such that u(So) = ug, u(S1) = uy,

and S; < Sp.

Proof Let Tp={S:5=<T, u(S)€ F} be the set of all trimmed subtrees of T ly-
ing on the face F' of the lower convex hull. Repeated application of Lemma 1 yields
u(N7r), u(UTr) € F. Clearly, NTp < S < UTF for all S € Tr. Therefore, by monotonic-

ity of average rate or MSE, u; = u(N7x) and ug = u(U7r). O
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