
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Network coding for function computation

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Rathinakumar Appuswamy

Committee in charge:

Professor Massimo Franceschetti, Co-Chair
Professor Kenneth Zeger, Co-Chair
Professor Larry Carter
Professor William Hodgkiss
Professor Alex Vardy

2011



Copyright

Rathinakumar Appuswamy, 2011

All rights reserved.



The dissertation of Rathinakumar Appuswamy is ap-

proved, and it is acceptable in quality and form for pub-

lication on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2011

iii



EPIGRAPH

“Thou must harbor chaos

to give birth to a dancing star.”

— Nietzche
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ABSTRACT OF THE DISSERTATION

Network coding for function computation

by

Rathinakumar Appuswamy

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2011

Professor Massimo Franceschetti, Co-Chair
Professor Kenneth Zeger, Co-Chair

In this dissertation, the following network computing problem is considered. Source

nodes in a directed acyclic network generate independent messages and a single receiver node

computes a target function f of the messages. The objective is to maximize the average number

of times f can be computed per network usage, i.e., the “computing capacity”. The network

coding problem for a single-receiver network is a special case of the network computing problem

in which all of the source messages must be reproduced at the receiver. For network coding with

a single receiver, routing is known to achieve the capacity by achieving the network min-cut

upper bound. First we extend the definition of min-cut to the network computing problem

and show that the generalized min-cut is an upper bound on the maximum achievable rate

and is tight for computing (using coding) any target function in multi-edge tree networks and

for computing linear target functions in any network. We also study the bound’s tightness for

different classes of target functions. In particular, we give a lower bound on the computing

capacity in terms of the Steiner tree packing number and a different bound for symmetric

functions. We also show that for certain networks and target functions, the computing capacity

can be less than an arbitrarily small fraction of the min-cut bound.

Next, we study the use of linear codes for network computing in single-receiver networks

with various classes of target functions of the source messages. Such classes include reducible,

injective, semi-injective, and linear target functions over finite fields. Computing capacity

xi



bounds are given with respect to these target function classes for network codes that use

routing, linear coding, or nonlinear coding.

Lastly, we consider the scenario in which a set of sources generate messages in a network

over a finite field alphabet and a receiver node demands an arbitrary linear function of these

messages. We formulate an algebraic test to determine whether an arbitrary network can

compute linear functions using linear codes. We identify a class of linear functions that can

be computed using linear codes in every network that satisfies a natural cut-based condition.

Conversely, for another class of linear functions, we show that the cut-based condition does not

guarantee the existence of a linear coding solution. For linear functions over the binary field,

the two classes are complements of each other.
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Chapter 1

Introduction

With great progress in electronics technology, some systems including automobiles,

sensors, and portable personal devices are radio enabled and communicate and cooperate with

other devices. In such networks, receivers may need to compute a target function of the messages

generated by the sources rather than obtain the messages themselves. Examples of such target

functions that can arise in applications include average, histogram, maximum, and minimum,

etc. In this setting, we use the term ‘network computing’ to refer to problems where a subset of

nodes in a network generate messages and a receiver node wants to compute a given function

of these messages. My dissertation focuses on investigating the information theoretic limits of

computing in networks and on designing codes to achieve such limits.

Network computing in its most general form includes the problem of communicating

possibly correlated messages to a specific destination, at a desired fidelity with respect to a joint

distortion criterion dependent on the given target function. The overwhelming complexity

of this general problem suggests that simplifications be examined in order to obtain some

understanding of the field.

As part of my dissertation, I propose a natural model of network computing that is

closely related to the network coding model of Ahlswede, Cai, Li, and Yeung [Ahlswede 00].

Unlike routing, network coding allows every network node to send an arbitrary function of its

received symbols on its out-edges. A network code provides an assignment of such functions for

each of the network edges. It is known [Ahlswede 00, Harvey 06, Ngai 04] that network coding

provides some advantages over routing including increased throughput, robustness against link

failures, etc. Network coding considers networks with multiple sources and multiple receivers

and studies the special case when each of the receivers wants a subset of the source messages.

In contrast, in network computing, we consider the setting where source nodes generate inde-

pendent messages and a single receiver node computes a target function f of these messages.

The objective of the receiver node is to compute f as often as possible. We introduce the notion

1
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of achievable computing rate which captures how often the target function is computed by the

receiver by a given network code and define the computing capacity to be the supremum of all

the achievable computing rates over all possible codes. Similarly, we define linear computing

capacity and routing computing capacity by restricting the node operations to be linear and

routing, respectively.

The notion of min-cut was studied in graph theory by Menger in 1927 [Menger 27]

and it was later incorporated in to the study of single-source single-receiver networks by Ford

and Fulkerson [Ford 56]. This idea was later generalized to multiple-source multiple-receiver

networks by Hu [Hu 63] and Leighton and Rao [Leighton 99].The min-cut is also referred to as

“sparsity” by some authors, such as Harvey, Kleinberg, and Lehman [Harvey 06] and Vazirani

[Vazirani 04]. In Chapter 2, we define a generalized min-cut to the network computing problem

and show that this new min-cut is an upper bound on the computing capacity for arbitrary

target functions and networks. In addition, a lower bound on the computing capacity is given

in terms of the Steiner tree packing number for any network and any target function. Our

next objective is to understand if and when the min-cut upper bound is achievable i.e., given a

network and a target function, does there exist a network code that achieves a computing rate

that is close to the min-cut? Our approach toward answering this question is twofold. First,

we restrict the set of allowed networks and show that within this restricted set of networks,

the min-cut is equal to the computing capacity for any target function. Next, by grouping

target functions into divisible, symmetric, λ-exponential, and λ-bounded functions, we present

several coding schemes for computing these groups of functions and show that the min-cut

upper bound and lower bounds are within a constant factor of each other for λ-exponential and

λ-bounded target functions. On the other hand, we also show that if the target function is the

arithmetic sum, then the gap between the computing capacity and the min-cut may grow with

the number of source nodes [Appuswamy 11c].

Linear codes are of fundamental importance in communication systems since they are

easy to design and exhibit low encoding and decoding complexity. For network computing, it is

of interest to know if linear codes are sufficient to achieve the computing capacity, or how much

capacity gain they may provide over routing. In Chapter 3, we investigate the performance of

linear network codes for computing different types of target functions. We compare the lin-

ear computing capacity with the (non-linear) computing capacity and the routing computing

capacity for different classes of target functions. Our results show that whether or not linear

network codes provide a capacity advantage depends on the target function computed at the

receiver. It is also shown that non-linear codes are necessary in general to achieve the comput-

ing capacity and that for computing scalar linear functions over finite fields, linear codes are

capacity achieving. One important contribution of our research is that we provide a characteri-

zation of the class of target functions for which the use of linear codes may provide a computing

capacity advantage over routing [Appuswamy 11b].
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Finally, we consider the following problem: Given a network, an arbitrary target func-

tion f , and a rational number r, does there exists a linear code that computes f and achieves

a computing rate of r? There are, in general, infinitely many linear codes that need to be

examined before we can answer this question. In Chapter 4, we formulate a more ‘efficient’

algebraic test to answer this question by restricting the set of allowable target functions to be

linear. We further show that for a small subclass of linear target functions, a linear code that

computes the target function exists whenever the computing rate r is less than the correspond-

ing min-cut defined in Chapter 2. Conversely, we also show that for another large class of linear

target functions, there always exist a network with min-cut larger than r but the network does

not have a linear code that achieves a computing rate of r [Appuswamy 11a].

Each of the three Chapters 2-4 in this dissertation is a copy of a published or submitted

co-authored journal paper. These are as follows:

Chapter 2 R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: cut-set bounds,”
IEEE Transactions on Information Theory,
vol. 57 (2), pp. 1015-1030, Feb. 2011.

Chapter 3 R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Linear Codes, Target Function Classes, and Network Computing Capacity,”
submitted to the IEEE Transactions on Information Theory, May 2011.

Chapter 4 R.Appuswamy, and M.Franceschetti,
“Computing linear functions by linear coding over networks,”
submitted to the IEEE Transactions on Information Theory, Feb. 2011.



Chapter 2

Network computing: Cut-set

bounds

2.1 Introduction

We consider networks where source nodes generate independent messages and a single

receiver node computes a target function f of these messages. The objective is to characterize

the maximum rate of computation, that is the maximum number of times f can be computed

per network usage.

Giridhar and Kumar [Giridhar 05] have recently stated:

“In its most general form, computing a function in a network involves communi-
cating possibly correlated messages, to a specific destination, at a desired fidelity
with respect to a joint distortion criterion dependent on the given function of in-
terest. This combines the complexity of source coding of correlated sources, with
rate distortion, different possible network collaborative strategies for computing
and communication, and the inapplicability of the separation theorem demarcating
source and channel coding."

The overwhelming complexity of network computing suggests that simplifications be examined

in order to obtain some understanding of the field.

We present a natural model of network computing that is closely related to the network

coding model of Ahlswede, Cai, Li, and Yeung [Ahlswede 00, Yeung 02]. Network coding is a

widely studied communication mechanism in the context of network information theory. In

network coding, some nodes in the network are labeled as sources and some as receivers. Each

receiver needs to reproduce a subset of the messages generated by the source nodes, and all

nodes can act as relays and encode the information they receive on in-edges, together with the

information they generate if they are sources, into codewords which are sent on their out-edges.

In existing computer networks, the encoding operations are purely routing: at each node, the

4
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codeword sent over an out-edge consists of a symbol either received by the node, or generated

by it if is a source. It is known that allowing more complex encoding than routing can in

general be advantageous in terms of communication rate [Ahlswede 00, Harvey 06, Ngai 04].

Network coding with a single receiver is equivalent to a special case of our function computing

problem, namely when the function to be computed is the identity, that is when the receiver

wants to reproduce all the messages generated by the sources. In this paper, we study network

computation for target functions different than the identity.

Some other approaches to network computation have also appeared in the literature. In

[Körner 79, Orlitsky 01, Doshi 06, Doshi 07b, Ma 08, Cuff 09] network computing was consid-

ered as an extension of distributed source coding, allowing the sources to have a joint distribu-

tion and requiring that a function be computed with small error probability. A rate-distortion

approach to the problem has been studied in [Yamamoto 82, Feng 04, Doshi 07a]. However, the

complexity of network computing has restricted prior work to the analysis of elementary net-

works. Networks with noisy links were studied in [Gamal 87, Gallager 88, Ying 07, Goyal 08,

Dutta 08, Karamchandani 09, Ayaso 07, Nazer 07, Ma 09] and distributed computation in net-

works using gossip algorithms was studied in [Kempe 03, Boyd 06, Mosk-Aoyama 08, Ayaso 08,

Dimakis 06, Benezit 07].

In the present paper, our approach is somewhat (tangentially) related to the field

of communication complexity [Kushilevitz 97, Yao 79] which studies the minimum number of

messages that two nodes need to exchange in order to compute a function of their inputs

with zero error. Other studies of computing in networks have been considered in [Giridhar 05,

Subramanian 07], but these were restricted to the wireless communication protocol model of

Gupta and Kumar [Gupta 00].

In contrast, our approach is more closely associated with wired networks with inde-

pendent noiseless links. Our work is closest in spirit to the recent work of [Ramamoorthy 08,

Rai 10b, Rai 09] on computing the sum (over a finite field) of source messages in networks. We

note that in independent work, Kowshik and Kumar[Kowshik 09] obtain the asymptotic max-

imum rate of computation in tree networks and present bounds for computation in networks

where all nodes are sources.

Our main contributions are summarized in Section 2.1.3, after formally introducing the

network model.

2.1.1 Network model and definitions

In this paper, a network N consists of a finite, directed acyclic multigraph G = (V, E),

a set of source nodes S = {σ1, . . . , σs} ⊆ V, and a receiver ρ ∈ V. Such a network is denoted

by N = (G,S, ρ). We will assume that ρ 6∈ S and that the graph1 G contains a directed path

1Throughout the paper, we will use “graph" to mean a directed acyclic multigraph, and “network" to mean
a single-receiver network. We may sometimes write E(G) to denote the edges of graph G.



6

from every node in V to the receiver ρ. For each node u ∈ V, let Ei(u) and Eo(u) denote the

set of in-edges and out-edges of u respectively. We will also assume (without loss of generality)

that if a network node has no in-edges, then it is a source node.

An alphabet A is a finite set of size at least two. For any positive integer m, any

vector x ∈ Am, and any i ∈ {1, 2, . . . ,m}, let xi denote the i-th component of x. For any

index set I = {i1, i2, . . . , iq} ⊆ {1, 2, . . . ,m} with i1 < i2 < . . . < iq, let xI denote the vector

(xi1
, xi2

, . . . , xiq
) ∈ A|I|.

The network computing problem consists of a network N and a target function f of

the form

f : As −→ B

(see Definition 2.1.4 for some examples). We will also assume that any target function depends

on all network sources (i.e. they cannot be constant functions of any one of their arguments).

Let k and n be positive integers. Given a network N with source set S and alphabet A, a

message generator is any mapping

α : S −→ Ak.

For each source σi, α(σi) is called a message vector and its components α(σi)1 , . . . , α(σi)k are

called messages.2

Definition 2.1.1. A (k, n) network code for computing a target function f in a network N

consists of the following:

(i) For any node v ∈ V − ρ and any out-edge e ∈ Eo(v), an encoding function:

h(e) :



























∏

ê∈Ei(v)

An



× Ak −→ An if v is a source node

∏

ê∈Ei(v)

An −→ An otherwise

(ii) A decoding function:

ψ :
|Ei(ρ)|
∏

j=1

An −→ Bk.

Given a (k, n) network code, every edge e ∈ E carries a vector ze of at most n alphabet

symbols,3 which is obtained by evaluating the encoding function h(e) on the set of vectors carried

by the in-edges to the node and the node’s message vector if it is a source. The objective of the

receiver is to compute the target function f of the source messages, for any arbitrary message

generator α. More precisely, the receiver constructs a vector of k alphabet symbols such that

for each i ∈ {1, 2, . . . , k}, the i-th component of the receiver’s computed vector equals the value

2 For simplicity, we assume that each source has exactly one message vector associated with it, but all of the
results in this paper can readily be extended to the more general case.

3By default, we will assume that edges carry exactly n symbols.
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of the desired target function f applied to the i-th components of the source message vectors,

for any choice of message generator α. Let e1, e2, . . . , e|Ei(ρ)| denote the in-edges of the receiver.

Definition 2.1.2. A (k, n) network code is called a solution for computing f in N (or simply

a (k, n) solution) if the decoding function ψ is such that for each j ∈ {1, 2, . . . , k} and for every

message generator α, we have

ψ
(

ze1
, · · · , ze|Ei(ρ)|

)

j
= f

(

α(σ1)j , · · · , α(σs)j

)

. (2.1)

If there exists a (k, n) solution, we say the rational number k/n is an achievable computing rate.

In the network coding literature, one definition of the coding capacity of a network is the

supremum of all achievable coding rates [Cannons 06, Dougherty 06]. We adopt an analogous

definition for computing capacity.

Definition 2.1.3. The computing capacity of a network N with respect to target function f is

Ccod(N , f) = sup
{k

n
: ∃ (k, n) network code for computing f in N

}

.

Thus, the computing capacity is the supremum of all achievable computing rates for a

given network N and a target function f . Some example target functions are defined below.

Definition 2.1.4.

Target function f Alphabet A f (x1, . . . , xs) Comments

identity arbitrary (x1, . . . , xs)

arithmetic sum {0, 1, . . . , q − 1} x1 + x2 + · · · + xs ‘+’ is integer addition

mod r sum {0, 1, . . . , q − 1} x1 ⊕ x2 ⊕ . . .⊕ xs ⊕ is mod r addition

histogram {0, 1, . . . , q − 1} (c0, c1, . . . , cq−1) ci = |{j : xj = i}|

linear any finite field a1x1 + a2x2 + . . .+ asxs arithmetic over the field

maximum any ordered set max {x1, . . . , xs}

Definition 2.1.5. For any target function f : As −→ B, any index set I ⊆ {1, 2, . . . , s}, and

any a, b ∈ A|I|, we write a ≡ b if for every x, y ∈ As, we have f(x) = f(y) whenever xI = a,

yI = b, and xj = yj for all j 6∈ I.

It can be verified that ≡ is an equivalence relation4 for every f and I.
4 Witsenhausen [Witsenhausen 76] represented this equivalence relation in terms of the independent sets of

a characteristic graph and his representation has been used in various problems related to function computation
[Doshi 06, Doshi 07b, Orlitsky 01]. Although ≡ is defined with respect to a particular index set I and a function
f , we do not make this dependence explicit – the values of I and f will be clear from the context.
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Definition 2.1.6. For every f and I, let RI,f denote the total number of equivalence classes

induced by ≡ and let

ΦI,f : A|I| −→ {1, 2, . . . , RI,f }

be any function such that ΦI,f (a) = ΦI,f (b) iff a ≡ b.

That is, ΦI,f assigns a unique index to each equivalence class, and

RI,f =
∣

∣

∣

{

ΦI,f (a) : a ∈ A|I|
}∣

∣

∣
.

The value of RI,f is independent of the choice of ΦI,f . We call RI,f the footprint size of f

with respect to I.

X Y

x yg(x)

f(x, y)

Figure 2.1: X, Y are two sources with messages x and y respectively. X communicates g(x)

to Y so that Y can compute a function f of x and y.

Remark 2.1.7. Let Ic = {1, 2, . . . , s} − I. The footprint size RI,f has the following interpre-

tation (see Figure 2.1). Suppose a network has two nodes, X and Y , and both are sources. A

single directed edge connects X to Y . Let X generate x ∈ A|I| and Y generate y ∈ A|Ic|. X

communicates a function g(x) of its input, to Y so that Y can compute f(a) where a ∈ As,

aI = x, and aIc = y. Then for any x, x̂ ∈ A|I| such that x 6≡ x̂, we need g(x) 6= g(x̂). Thus
∣

∣g
(

A|I|
)∣

∣ ≥ RI,f , which implies a lower bound on a certain amount of “information" that X

needs to send to Y to ensure that it can compute the function f . Note that g = ΦI,f achieves the

lower bound. We will use this intuition to establish a cut-based upper bound on the computing

capacity Ccod(N , f) of any network N with respect to any target function f , and to devise a

capacity-achieving scheme for computing any target function in multi-edge tree networks.

Definition 2.1.8. A set of edges C ⊆ E in network N is said to separate sources σm1
, . . . , σmd

from the receiver ρ, if for each i ∈ {1, 2, . . . , d}, every directed path from σmi
to ρ contains at

least one edge in C. The set C is said to be a cut in N if it separates at least one source from

the receiver. For any network N , define Λ(N ) to be the collection of all cuts in N . For any

cut C ∈ Λ(N ) and any target function f , define

IC = {i : C separates σi from the receiver}

RC,f = RIC ,f . (2.2)

Since target functions depend on all sources, we have RC,f ≥ 2 for any cut C and any

target function f . The footprint sizes RC,f for some example target functions are computed

below.
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A multi-edge tree is a graph such that for every node v ∈ V, there exists a node u such

that all the out-edges of v are in-edges to u, i.e., Eo(v) ⊆ Ei(u) (e.g. see Figure 2.2).

Figure 2.2: An example of a multi-edge tree.

2.1.2 Classes of target functions

We study the following four classes of target functions: (1) divisible, (2) symmetric,

(3) λ-exponential, (4) λ-bounded.

Definition 2.1.9. A target function f : As −→ B is divisible if for every index set I ⊆

{1, . . . , s}, there exists a finite set BI and a function f I : A|I| −→ BI such that the following

hold:

(1) f{1,...,s} = f

(2)
∣

∣f I
(

A|I|
)∣

∣ ≤ |f (As)|

(3) For every partition {I1, . . . , Iγ} of I, there exists a function

g : BI1
× · · · × BIγ

−→ BI such that for every x ∈ A|I|, we have

f I(x) = g
(

f I1(xI1
) , . . . , fIγ

(

xIγ

))

.

Examples of divisible target functions include the identity, maximum, mod r sum, and

arithmetic sum.

Divisible functions have been studied previously5 by Giridhar and Kumar [Giridhar 05]

and Subramanian, Gupta, and Shakkottai [Subramanian 07]. Divisible target functions can be

computed in networks in a divide-and-conquer fashion as follows. For any arbitrary partition

{I1, . . . , Iγ} of the source indices {1, . . . , s}, the receiver ρ can evaluate the target function f by

combining evaluations of f I1 , . . . , fIγ . Furthermore, for every i = 1, . . . , γ, the target function

f Ii can be evaluated similarly by partitioning Ii and this process can be repeated until the

function value is obtained.
5The definitions in [Giridhar 05, Subramanian 07] are similar to ours but slightly more restrictive.
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Definition 2.1.10. A target function f : As −→ B is symmetric if for any permutation π of

{1, 2, . . . , s} and any vector x ∈ As,

f(x1, x2, . . . , xs) = f(xπ(1), xπ(2), . . . , xπ(s)).

That is, the value of a symmetric target function is invariant with respect to the order

of its arguments and hence, it suffices to evaluate the histogram target function for computing

any symmetric target function. Examples of symmetric functions include the arithmetic sum,

maximum, and mod r sum. Symmetric functions have been studied in the context of comput-

ing in networks by Giridhar and Kumar [Giridhar 05], Subramanian, Gupta, and Shakkottai

[Subramanian 07], Ying, Srikant, and Dullerud [Ying 07], and [Karamchandani 09].

Definition 2.1.11. Let λ ∈ (0, 1]. A target function f : As −→ B is said to be λ-exponential

if its footprint size satisfies

RI,f ≥ |A|λ|I| for every I ⊆ {1, 2, . . . , s}.

Let λ ∈ (0,∞). A target function f : As −→ B is said to be λ-bounded if its footprint size

satisfies

RI,f ≤ |A|λ for every I ⊆ {1, 2, . . . , s}.

Example 2.1.12. The following facts are easy to verify:

• The identity function is 1-exponential.

• Let A be an ordered set. The maximum (or minimum) function is 1-bounded.

• Let A = {0, 1, . . . , q − 1} where q ≥ 2. The mod r sum target function with q ≥ r ≥ 2 is

logq r-bounded.

Remark 2.1.13. Giridhar and Kumar [Giridhar 05] defined two classes of functions: type-

threshold and type-sensitive functions. Both are sub-classes of symmetric functions. In addition,

type-threshold functions are also divisible and c-bounded, for some constant c that is indepen-

dent of the network size. However, [Giridhar 05] uses a model of interference for simultaneous

transmissions and their results do not directly compare with ours.

Following the notation in Leighton and Rao [Leighton 99], the min-cut of any network

N with unit-capacity edges is

min-cut(N ) = min
C∈Λ(N )

|C|

|IC |
. (2.3)

A more general version of the network min-cut plays a fundamental role in the field of multi-

commodity flow [Leighton 99, Vazirani 04]. The min-cut provides an upper bound on the

maximum flow for any multi-commodity flow problem. The min-cut is also referred to as

“sparsity" by some authors, such as Harvey, Kleinberg, and Lehman [Harvey 06] and Vazirani

[Vazirani 04]. We next generalize the definition in (2.3) to the network computing problem.
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Definition 2.1.14. If N is a network and f is a target function, then define

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A| RC,f
. (2.4)

Example 2.1.15.

• If f is the identity target function, then

min-cut(N , f) = min
C∈Λ(N )

|C|

|IC |
.

Thus for the identity function, the definition of min-cut in (2.3) and (2.4) coincide.

• Let A = {0, 1, . . . , q − 1}. If f is the arithmetic sum target function, then

min-cut(N , f) = min
C∈Λ(N )

|C|

logq ((q − 1) |IC | + 1)
. (2.5)

• Let A be an ordered set. If f is the maximum target function, then

min-cut(N , f) = min
C∈Λ(N )

|C| .

2.1.3 Contributions

The main results of this paper are as follows. In Section 2.2, we show (Theorem 2.2.1)

that for any network N and any target function f , the quantity min-cut(N , f) is an upper

bound on the computing capacity Ccod(N , f). In Section 2.3, we note that the computing ca-

pacity for any network with respect to the identity target function is equal to the min-cut upper

bound (Theorem 2.3.1). We show that the min-cut bound on computing capacity can also be

achieved for all networks with linear target functions over finite fields (Theorem 2.3.2) and for

all multi-edge tree networks with any target function (Theorem 2.3.3). For any network and

any target function, a lower bound on the computing capacity is given in terms of the Steiner

tree packing number (Theorem 2.3.5). Another lower bound is given for networks with sym-

metric target functions (Theorem 2.3.7). In Section 2.4, the tightness of the above-mentioned

bounds is analyzed for divisible (Theorem 2.4.2), symmetric (Theorem 2.4.3), λ-exponential

(Theorem 2.4.4), and λ-bounded (Theorem 2.4.5) target functions. For λ-exponential target

functions, the computing capacity is at least λ times the min-cut. If every non-receiver node in

a network is a source, then for λ-bounded target functions the computing capacity is at least a

constant times the min-cut divided by λ. It is also shown, with an example target function, that

there are networks for which the computing capacity is less than an arbitrarily small fraction

of the min-cut bound (Theorem 2.4.7). In Section 2.5, we discuss an example network and

target function in detail to illustrate the above bounds. In Section 2.6, conclusions are given

and various lemmas are proven in the Appendix.
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2.2 Min-cut upper bound on computing capacity

The following shows that the maximum rate of computing a target function f in a

network N is at most min-cut(N , f).

Theorem 2.2.1. If N is a network with target function f , then

Ccod(N , f) ≤ min-cut(N , f).

Proof. Let the network alphabet be A and consider any (k, n) solution for computing f in N .

Let C be a cut and for each i ∈ {1, 2, . . . , k}, let a(i), b(i) ∈ A|IC |. Suppose j ∈ {1, 2, . . . , k}

is such that a(j) 6≡ b(j), where ≡ is the equivalence relation from Definition 2.1.5. Then there

exist x, y ∈ As satsifying: f(x) 6= f(y), xIC
= a(j), yIC

= b(j), and xi = yi for every i 6∈ IC .

The receiver ρ can compute the target function f only if, for every such pair
{

a(1), . . . , a(k)
}

and
{

b(1), . . . , b(k)
}

corresponding to the message vectors generated by the sources in IC , the

edges in cut C carry distinct vectors. Since the total number of equivalence classes for the

relation ≡ equals the footprint size RC,f , the edges in cut C should carry at least (RC,f )k

distinct vectors. Thus, we have

An|C| ≥ (RC,f )k

and hence for any cut C,
k

n
≤

|C|

log|A| RC,f
.

Since the cut C is arbitrary, the result follows from Definition 2.1.3 and (2.4).

The min-cut upper bound has the following intuition. Given any cut C ∈ Λ(N ), at

least log|A| RC,f units of information need to be sent across the cut to successfully compute a

target function f . In subsequent sections, we study the tightness of this bound for different

classes of functions and networks.

2.3 Lower bounds on the computing capacity

The following result shows that the computing capacity of any network N with respect

to the identity target function equals the coding capacity for ordinary network coding.

Theorem 2.3.1. If N is a network with the identity target function f , then

Ccod(N , f) = min-cut(N , f) = min-cut(N ).

Proof. Rasala Lehman and Lehman [Lehman 03, p.6, Theorem 4.2] showed that for any single-

receiver network, the conventional coding capacity (when the receiver demands the messages

generated by all the sources) always equals the min-cut(N ). Since the target function f is the

identity, the computing capacity is the coding capacity and min-cut(N , f) = min-cut(N ), so

the result follows.
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Theorem 2.3.2. If N is a network with a finite field alphabet and with a linear target function

f , then

Ccod(N , f) = min-cut(N , f).

Proof. Follows from [Rai 10b, Theorem 2].

Theorems 2.3.1 and 2.3.2 demonstrate the achievability of the min-cut bound for arbi-

trary networks with particular target functions. In contrast, the following result demonstrates

the achievability of the min-cut bound for arbitrary target functions and a particular class of

networks. The following theorem concerns multi-edge tree networks, which were defined in

Section 2.1.1.

Theorem 2.3.3. If N is a multi-edge tree network with target function f , then

Ccod(N , f) = min-cut(N , f).

Proof. Let A be the network alphabet. From Theorem 2.2.1, it suffices to show that Ccod(N , f) ≥

min-cut(N , f). Since Eo(v) is a cut for node v ∈ V − ρ, and using (2.2), we have

min-cut(N , f) ≤ min
v ∈ V−ρ

|Eo(v)|
log|A| REo(v),f

. (2.6)

Consider any positive integers k, n such that

k

n
≤ min

v ∈ V−ρ

|Eo(v)|
log|A| RIEo(v),f

. (2.7)

Then we have

|A||Eo(v)|n ≥ Rk
IEo(v),f for every node v ∈ V − ρ. (2.8)

We outline a (k, n) solution for computing f in the multi-edge tree network N . Each source

σi ∈ S generates a message vector α(σi) ∈ Ak. Denote the vector of i-th components of the

source messages by

x(i) = (α(σ1)i , · · · , α(σs)i) .

Every node v ∈ V − {ρ} sends out a unique index (as guaranteed by (2.8)) over A|Eo(v)|n

corresponding to the set of equivalence classes

ΦIEo(v),f (x(l)
IEo(v)

) for l ∈ {1, · · · , k}. (2.9)

If v has no in-edges, then by assumption, it is a source node, say σj . The set of

equivalence classes in (2.9) is a function of its own messages α(σj)l for l ∈ {1, . . . , k}. On the

other hand if v has in-edges, then let u1, u2, · · · , uj be the nodes with out-edges to v. For

each i ∈ {1, 2, · · · , j}, using the uniqueness of the index received from ui, node v recovers the

equivalence classes

ΦIEo(ui),f (x(l)
IEo(ui)

) for l ∈ {1, · · · , k}. (2.10)
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Furthermore, the equivalence classes in (2.9) can be identified by v from the equivalance classes

in (2.10) (and α(v) if v is a source node) using the fact that for a multi-edge tree network N ,

we have a disjoint union

IEo(v) =
j
⋃

i=1

IEo(ui).

If each node v follows the above steps, then the receiver ρ can identify the equivalence

classes ΦIEi(ρ),f

(

x(i)
)

for i ∈ {1, . . . , k}. The receiver can evaluate f(x(l)) for each l from these

equivalence classes. The above solution achieves a computing rate of k/n. From (2.7), it follows

that

Ccod(N , f) ≥ min
v ∈ V−ρ

|Eo(v)|
log|A| RIEo(v),f

. (2.11)

We next establish a general lower bound on the computing capacity for arbitrary target

functions (Theorem 2.3.5) and then another lower bound specifically for symmetric target

functions (Theorem 2.3.7).

For any network N = (G,S, ρ) with G = (V, E), define a Steiner tree6 of N to be a

minimal (with respect to nodes and edges) subgraph of G containing S and ρ such that every

source in S has a directed path to the receiver ρ. Note that every non-receiver node in a Steiner

tree has exactly one out-edge. Let T (N ) denote the collection of all Steiner trees in N . For

each edge e ∈ E(G), let Je = {i : ti ∈ T (N ) and e ∈ E(ti)}. The fractional Steiner tree packing

number Π(N ) is defined as the linear program

Π(N ) = max
∑

ti∈T (N )

ui subject to















ui ≥ 0 ∀ ti ∈ T (N ) ,
∑

i∈Je

ui ≤ 1 ∀ e ∈ E(G).
(2.12)

Note that Π(N ) ≥ 1 for any network N , and the maximum value of the sum in (2.12) is attained

at one or more vertices of the closed polytope corresponding to the linear constraints. Since

all coefficients in the constraints are rational, the maximum value in (2.12) can be attained

with rational ui’s. The following theorem provides a lower bound7 on the computing capacity

for any network N with respect to a target function f and uses the quantity Π(N ). In the

context of computing functions, ui in the above linear program indicates the fraction of the

time the edges in tree ti are used to compute the desired function. The fact that every edge in

the network has unit capacity implies
∑

i∈Je
ui ≤ 1.

6Steiner trees are well known in the literature for undirected graphs. For directed graphs a “Steiner tree
problem” has been studied and our definition is consistent with such work (e.g., see [Jain 03]).

7 In order to compute the lower bound, the fractional Steiner tree packing number Π(N ) can be evaluated
using linear programming. Also note that if we construct the reverse multicast network by letting each source
in the original network N become a receiver, letting the receiver in the N become the only source, and reversing
the direction of each edge, then it can be verified that the routing capacity for the reverse multicast network is
equal to Π(N ).
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Lemma 2.3.4. For any Steiner tree G′ of a network N , let N ′ = (G′, S, ρ). Let C ′ be a cut

in N ′. Then there exists a cut C in N such that IC = IC′ .

(Note that IC′ is the set indices of sources separated in N ′ by C ′. The set IC′ may

differ from the indices of sources separated in N by C ′.)

Proof. Define the cut

C =
⋃

i′∈IC′

Eo(σi′). (2.13)

C is the collection of out-edges in N of a set of sources disconnected by the cut C ′ in N ′. If

i ∈ IC′ , then, by (2.13), C disconnects σi from ρ in N , and thus IC′ ⊆ IC .

Let σi be a source. such that i ∈ IC and Let P be a path from σi to ρ in N . From

(2.13), it follows that there exists i′ ∈ IC′ such that P contains at least one edge in Eo(σi′). If

P also lies in N ′ and does not contain any edge in C ′, then σi′ has a path to ρ in N ′ that does

not contain any edge in C ′, thus contradicting the fact that σi′ ∈ IC′ . Therefore, either P does

not lie in N ′ or P contains an edge in C ′. Thus σi ∈ IC′ , i.e., IC ⊆ IC′ .

Theorem 2.3.5. If N is a network with alphabet A and target function f , then

Ccod(N , f) ≥ Π(N ) · min
C∈Λ(N )

1
log|A| RC,f

.

Proof. Suppose N = (G,S, ρ). Consider a Steiner tree G′ = (V ′, E ′) of N , and let N ′ =

(G′, S, ρ). From Lemma 2.3.4 (taking C ′ to be Eo(v) in N ′), we have

∀ v ∈ V ′ − ρ, ∃ C ∈ Λ(N ) such that I ′
Eo(v) = IC . (2.14)

Now we lower bound the computing capacity for the network N ′ with respect to target function

f .

Ccod(N ′, f) = min-cut(N ′, f) [from Theorem 2.3.3] (2.15)

= min
v ∈ V′−ρ

1
log|A| RI′

Eo(v)
,f

[from Theorem 2.2.1, (2.6), (2.11)]

≥ min
C∈Λ(N )

1
log|A| RIC ,f

[from (2.14)]. (2.16)

The lower bound in (2.16) is the same for every Steiner tree of N . We will use this uniform

bound to lower bound the computing capacity for N with respect to f . Denote the Steiner

trees of N by t1, . . . , tT . Let ǫ > 0 and let r denote the quantity on the right hand side of

(2.16). On every Steiner tree ti, a computing rate of at least r−ǫ is achievable by (2.16). Using

standard arguments for time-sharing between the different Steiner trees of the network N , it

follows that a computing rate of at least (r− ǫ) ·Π(N ) is achievable in N , and by letting ǫ → 0,

the result follows.
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The lower bound in Theorem 2.3.5 can be readily computed and is sometimes tight.

The procedure used in the proof of Theorem 2.3.5 may potentially be improved by maximizing

the sum

∑

ti∈T (N )

ui ri subject to















ui ≥ 0 ∀ ti ∈ T (N ) ,
∑

i∈Je

ui ≤ 1 ∀ e ∈ E(G)
(2.17)

where ri is any achievable rate8 for computing f in the Steiner tree network Ni = (ti, S, ρ).

We now obtain a different lower bound on the computing capacity in the special case

when the target function is the arithmetic sum. This lower bound is then used to give an

alternative lower bound (in Theorem 2.3.7) on the computing capacity for the class of symmetric

target functions. The bound obtained in Theorem 2.3.7 is sometimes better than that of

Theorem 2.3.5, and sometimes worse (Example 2.3.8 illustrates instances of both cases).

Theorem 2.3.6. If N is a network with alphabet A = {0, 1, . . . , q− 1} and the arithmetic sum

target function f , then

Ccod(N , f) ≥ min
C∈Λ(N )

|C|

logq Pq,s

where Pq,s denotes the smallest prime number greater than s(q − 1).

Proof. Let p = Pq,s and let N ′ denote the same network as N but whose alphabet is , the finite

field of order p.

Let ǫ > 0. From Theorem 2.3.2, there exists a (k, n) solution for computing the -sum

of the source messages in N ′ with an achievable computing rate satisfying

k

n
≥ min

C∈Λ(N )
|C| − ǫ.

This (k, n) solution can be repeated to derive a (ck, cn) solution for any integer c ≥ 1 (note

that edges in the network N carry symbols from the alphabet A = {0, 1, . . . , q − 1}, while

those in the network N ′ carry symbols from a larger alphabet ). Any (ck, cn) solution for

computing the -sum in N ′ can be ‘simulated’ in the network N by a
(

ck, ⌈cn logq p⌉
)

code

(e.g. see [Appuswamy 09]). Furthermore, since p ≥ s(q − 1) + 1 and the source alphabet is

{0, 1, . . . , q−1}, the -sum of the source messages in network N is equal to their arithmetic sum.

Thus, by choosing c large enough, the arithmetic sum target function is computed in N with

an achievable computing rate of at least

min
C∈Λ(N )

|C|

logq p
− 2ǫ.

Since ǫ is arbitrary, the result follows.

8From Theorem 2.3.3, ri can be arbitrarily close to min-cut(ti, f).
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Theorem 2.3.7. If N is a network with alphabet A = {0, 1, . . . , q− 1} and a symmetric target

function f , then

Ccod(N , f) ≥

min
C∈Λ(N )

|C|

(q − 1) · logq P (s)

where P (s) is the smallest prime number9 greater than s.

Proof. From Definition 2.1.10, it suffices to evaluate the histogram target function f̂ for com-

puting f . For any set of source messages (x1, x2, . . . , xs) ∈ As, we have

f̂ (x1, . . . , xs) = (c0, c1, . . . , cq−1)

where ci = |{j : xj = i}| for each i ∈ A. Consider the network N ′ = (G,S, ρ) with alphabet

A′ = {0, 1}. Then for each i ∈ A, ci can be evaluated by computing the arithmetic sum target

function in N ′ where every source node σj is assigned the message 1 if xj = i, and 0 otherwise.

Since we know that
q−1
∑

i=0

ci = s

the histogram target function f̂ can be evaluated by computing the arithmetic sum target func-

tion q − 1 times in the network N ′ with alphabet A′ = {0, 1}. Let ǫ > 0. From Theorem 2.3.6

in the Appendix, there exists a (k, n) solution for computing the arithmetic sum target function

in N ′ with an achievable computing rate of at least

k

n
≥

min
C∈Λ(N )

|C|

log2 P (s)
− ǫ.

The above (k, n) solution can be repeated to derive a (ck, cn) solution for any integer c ≥ 1.

Note that edges in the network N carry symbols from the alphabet A = {0, 1, . . . , q− 1}, while

those in the network N ′ carry symbols from A′ = {0, 1}. Any (ck, cn) code for computing the

arithmetic sum function in N ′ can be simulated in the network N by a (ck, ⌈cn logq 2⌉) code10.

Thus by choosing c large enough, the above-mentioned code can be simulated in the network N

to derive a solution for computing the histogram target function f̂ with an achievable computing

rate11 of at least

1
(q − 1)

·
1

logq 2
·

min
C∈Λ(N )

|C|

log2 P (s)
− 2ǫ.

Since ǫ is arbitrary, the result follows.

9 From Bertrand’s Postulate [Hardy 79, p.343], we have P (s) ≤ 2s.
10To see details of such a simulation, we refer the interested reader to [Appuswamy 09].
11Theorem 2.3.7 provides a uniform lower bound on the achievable computing rate for any symmetric function.

Better lower bounds can be found by considering specific functions; for example Theorem 2.3.6 gives a better
bound for the arithmetic sum target function.
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σ1

σ1

σ2

σ2

N2

σ3

ρ

ρ

N3

Figure 2.3: The Reverse Butterfly Network N2 has two binary sources {σ1, σ2} and network

N3 has three binary sources {σ1, σ2, σ3}, each with A = {0, 1}. Each network’s receiver ρ

computes the arithmetic sum of the source messages.

Example 2.3.8. Consider networks N2 and N3 in Figure 2.3, each with alphabet A = {0, 1}

and the (symmetric) arithmetic sum target function f . Theorem 2.3.7 provides a larger lower

bound on the computing capacity Ccod(N2, f) than Theorem 2.3.5, but a smaller lower bound

on Ccod(N3, f).

• For network N2 (in Figure 2.3), we have max
C∈Λ(N )

RC,f = 3 and min
C∈Λ(N )

|C| = 2, both of

which occur, for example, when C consists of the two in-edges to the receiver ρ. Also,

(q − 1) logq P (s, q) = log2 3 and Π(N ) = 3/2, so

Ccod(N2, f) ≥ (3/2)/ log2 3 [from Theorem 2.3.5]

Ccod(N2, f) ≥ 2/ log2 3 [from Theorem 2.3.7]. (2.18)

In fact, we get the upper bound Ccod(N2, f) ≤ 2/ log2 3 from Theorem 2.2.1, and thus

from (2.18), Ccod(N2, f) = 2/ log2 3.

• For network N3, we have max
C∈Λ(N )

RC,f = 4 and min
C∈Λ(N )

|C| = 1, both of which occur when

C = {(σ3, ρ)}. Also, (q − 1) logq P (s, q) = log2 5 and Π(N ) = 1, so

Ccod(N3, f) ≥ 1/ log2 4 [from Theorem 2.3.5]

Ccod(N3, f) ≥ 1/ log2 5 [from Theorem 2.3.7].

From Theorem 2.3.3, we have Ccod(N3, f) = 1/ log2 4.

Remark 2.3.9. An open question, pointed out in [Cannons 06], is whether the coding capac-

ity of a network can be irrational. Like the coding capacity, the computing capacity is the

supremum of ratios k/n for which a (k, n) solution exists. Example 2.3.8 demonstrates that
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the computing capacity of a network (e.g. N2) with unit capacity links can be irrational when

the target function is the arithmetic sum function.

2.4 On the tightness of the min-cut upper bound

In the previous section, Theorems 2.3.1 - 2.3.3 demonstrated three special instances

for which the min-cut(N , f) upper bound is tight. In this section, we use Theorem 2.3.5 and

Theorem 2.3.7 to establish further results on the tightness of the min-cut(N , f) upper bound

for different classes of target functions.

The following lemma provides a bound on the footprint size RI,f for any divisible target

function f .

Lemma 2.4.1. For any divisible target function f : As −→ B and any index set I ⊆

{1, 2, . . . , s}, the footprint size satisfies

RI,f ≤ |f (As)| .

Proof. From the definition of a divisible target function, for any I ⊆ {1, 2, . . . , s}, there exist

maps f I , f Ic

, and g such that

f(x) = g
(

f I(xI), f Ic

(xIc)
)

∀ x ∈ As

where Ic = {1, 2, . . . , s} − I. From the definition of the equivalence relation ≡ (see Defini-

tion 2.1.5), it follows that a, b ∈ A|I| belong to the same equivalence class whenever f I(a) =

f I(b). This fact implies that RI,f ≤
∣

∣f I
(

A|I|
)∣

∣. We need
∣

∣f I
(

A|I|
)∣

∣ ≤ |f (As)| to complete

the proof which follows from Definition 2.1.9(2).

Theorem 2.4.2. If N is a network with a divisible target function f , then

Ccod(N , f) ≥
Π(N )
|Ei(ρ)|

· min-cut(N , f)

where Ei(ρ) denotes the set of in-edges of the receiver ρ.

Proof. Let A be the network alphabet. From Theorem 2.3.5,

Ccod(N , f) ≥ Π(N ) · min
C∈Λ(N )

1
log|A| RC,f

≥ Π(N ) ·
1

log|A| |f (As)|
[from Lemma 2.4.1]. (2.19)

On the other hand, for any network N , the set of edges Ei(ρ) is a cut that separates the set of

sources S from ρ. Thus,

min-cut(N , f) ≤
|Ei(ρ)|

log|A| REi(ρ),f
[from (2.4)]

=
|Ei(ρ)|

log|A| |f (As)|
[from IEi(ρ) = S and Definition 2.1.6 ]. (2.20)

Combining (2.19) and (2.20) completes the proof.
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Theorem 2.4.3. If N is a network with alphabet A = {0, 1, . . . , q − 1} and symmetric target

function f , then

Ccod(N , f) ≥
logq R̂f

(q − 1) · logq P (s)
· min-cut(N , f)

where P (s) is the smallest prime number greater than s and12

R̂f = min
I⊆{1,...,s}

RI,f .

Proof. The result follows immediately from Theorem 2.3.7 and since for any network N and

any target function f ,

min-cut(N , f) ≤
1

logq R̂f

min
C∈Λ(N )

|C| [from (2.4) and the definition of R̂f ].

The following results provide bounds on the gap between the computing capacity and

the min-cut for λ-exponential and λ-bounded functions (see Definition 2.1.11).

Theorem 2.4.4. If λ ∈ (0, 1] and N is a network with a λ-exponential target function f , then

Ccod(N , f) ≥ λ · min-cut(N , f).

Proof. We have

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A| RC,f

≤ min
C∈Λ(N )

|C|

λ |IC |
[from f being λ-exponential]

=
1
λ

· min-cut(N ) [from (2.3)].

Therefore,

min-cut(N , f)
Ccod(N , f)

≤
1
λ

·
min-cut(N )
Ccod(N , f)

≤
1
λ

where the last inequality follows because a computing rate of min-cut(N ) is achievable for the

identity target function from Theorem 2.3.1, and the computing capacity for any target function

f is lower bounded by the computing capacity for the identity target function (since any target

function can be computed from the identity function), i.e., Ccod(N , f) ≥ min-cut(N ).

Theorem 2.4.5. Let λ > 0. If N is a network with alphabet A and a λ-bounded target function

f , and all non-receiver nodes in the network N are sources, then

Ccod(N , f) ≥
log|A| R̂f

λ
· min-cut(N , f)

12From our assumption, R̂f ≥ 2 for any target function f .
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where

R̂f = min
I⊆{1,...,s}

RI,f .

Proof. For any network N such that all non-receiver nodes are sources, it follows from Edmond’s

Theorem [West 01, p.405, Theorem 8.4.20] that

Π(N ) = min
C∈Λ(N )

|C| .

Then,

Ccod(N , f) ≥ min
C∈Λ(N )

|C| · min
C∈Λ(N )

1
log|A| RC,f

[from Theorem 2.3.5]

≥ min
C∈Λ(N )

|C|

λ
[from f being λ-bounded]. (2.21)

On the other hand,

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A| RC,f

≤ min
C∈Λ(N )

|C|

log|A| R̂f

[from the definition of R̂f ]. (2.22)

Combining (2.21) and (2.22) gives

min-cut(N , f)
Ccod(N , f)

≤ min
C∈Λ(N )

|C|

log|A| R̂f

·
1

min
C∈Λ(N )

|C|
λ

=
λ

log|A| R̂f

.

Since the maximum and minimum functions are 1-bounded, and R̂f = |A| for each, we

get the following corollary.

Corollary 2.4.6. Let A be any ordered alphabet and let N be any network such that all non-

receiver nodes in the network are sources. If the target function f is either the maximum or

the minimum function, then

Ccod(N , f) = min-cut(N , f).

Theorems 2.4.2 - 2.4.5 provide bounds on the tightness of the min-cut(N , f) upper

bound for different classes of target functions. In particular, we show that for λ-exponential

(respectively, λ-bounded) target functions, the computing capacity Ccod(N , f) is at least a

constant fraction of the min-cut(N , f) for any constant λ and any network N (respectively,

any network N where all non-receiver nodes are sources). The following theorem shows by
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means of an example target function f and a network N , that the min-cut(N , f) upper bound

cannot always approximate the computing capacity Ccod(N , f) up to a constant fraction. Sim-

ilar results are known in network coding as well as in multicommodity flow. It was shown

in [Leighton 99] that when s source nodes communicate independently with the same number

of receiver nodes, there exist networks whose maximum multicommodity flow is O(1/ log s)

times a well known cut-based upper bound. It was shown in [Harvey 04] that with network

coding there exist networks whose maximum throughput is O(1/ log s) times the best known

cut bound (i.e. ŞmeagernessŤ). Whereas these results do not hold for single-receiver networks

(by Theorem 2.3.1), the following similar bound holds for network computing in single-receiver

networks. The proof of Theorem 2.4.7 uses Lemma 2.7.1 which is presented in the Appendix.

Theorem 2.4.7. For any ǫ > 0, there exist networks N such that for the arithmetic sum target

function f ,

Ccod(N , f) = O

(

1
(log s)1−ǫ

)

· min-cut(N , f).

Proof. Note that for the network NM,L and the arithmetic sum target function f ,

min-cut(NM,L, f) = min
C∈Λ(NM,L)

|C|

log2 (|IC | + 1)
[from (2.5)].

Let m be the number of sources disconnected from the receiver ρ by a cut C in the network

NM,L. For each such source σ, the cut C must contain the edge (σ, ρ) as well as either the L

parallel edges (σ, σ0) or the L parallel edges (σ0, ρ). Thus,

min-cut(NM,L, f) = min
1≤m≤M

{

L+m

log2(m+ 1)

}

. (2.23)

Let m∗ attain the minimum in (2.23) and define c∗= min-cut(NM,L, f). Then,

c∗/ ln 2 ≥ min
1≤m≤M

{

m+ 1
ln(m+ 1)

}

≥ min
x≥2

{ x

ln x

}

> min
x≥2

{

x

x− 1

}

> 1

L = c∗ log2 (m∗ + 1) −m∗ [from (2.23)]

≤ c∗ log2

(

c∗

ln 2

)

−

(

c∗

ln 2
− 1
)

(2.24)

where (2.24) follows since the function c∗ log2 (x+ 1)−x attains its maximum value over (0,∞)

at x = (c∗/ ln 2) − 1. Let us choose L = ⌈(logM)1−(ǫ/2)⌉. We have

L = O(min-cut(NM,L, f) log2(min-cut(NM,L, f))) [from (2.24)] (2.25)

min-cut(NM,L, f) = Ω((logM)1−ǫ) [from (2.25)] (2.26)

Ccod(NM,L, f) = O(1) [from Lemma 2.7.1]

= O

(

1
(logM)1−ǫ

)

· min-cut(NM,L, f) [from (2.26)].
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σ3

σ1 σ2

ρ

Figure 2.4: Network N̂ has three binary sources, σ1, σ2, and σ3 with A = {0, 1} and the

receiver ρ computes the arithmetic sum of the source messages.

2.5 An example network

In this section, we evaluate the computing capacity for an example network and a

target function (which is divisible and symmetric) and show that the min-cut bound is not

tight. In addition, the example demonstrates that the lower bounds discussed in Section 2.3

are not always tight and illustrates the combinatorial nature of the computing problem.

Theorem 2.5.1. The computing capacity of network N̂ with respect to the arithmetic sum

target function f is

Ccod

(

N̂ , f
)

=
2

1 + log2 3
.

Proof. For any (k, n) solution for computing f , let w(1), w(2), w(3) ∈ {0, 1}k denote the message

vectors generated by sources σ1, σ2, σ3, respectively, and let z1, z2 ∈ {0, 1}n be the vectors

carried by edges (σ1, ρ) and (σ2, ρ), respectively.

Consider any positive integers k, n such that k is even and

k

n
≤

2
1 + log2 3

. (2.27)

Then we have

2n ≥ 3k/22k/2. (2.28)

We will describe a (k, n) network code for computing f in the network N̂ . Define vectors

y(1), y(2) ∈ {0, 1}k by:

y
(1)
i =

{

w
(1)
i + w

(3)
i if 1 ≤ i ≤ k/2

w
(1)
i if k/2 ≤ i ≤ k

y
(2)
i =

{

w
(2)
i if 1 ≤ i ≤ k/2

w
(2)
i + w

(3)
i if k/2 ≤ i ≤ k.
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The first k/2 components of y(1) can take on the values 0, 1, 2, and the last k/2 components

can take on the values 0, 1, so there are a total of 3k/22k/2 possible values for y(1), and similarly

for y(2). From (2.28), there exists a mapping that assigns unique values to z1 for each different

possible value of y(1), and similarly for z2 and y(2). This induces a solution for N̂ as summarized

below.

The source σ3 sends its full message vector w(3) (k < n) to each of the two nodes

it is connected to. Source σ1 (respectively, σ2) computes the vector y(1) (respectively, y(2)),

then computes the vector z1 (respectively, z2), and finally sends z1 (respectively, z2) on its out-

edge. The receiver ρ determines y(1) and y(2) from z1 and z2, respectively, and then computes

y(1) + y(2), whose i-th component is w(1)
i +w

(2)
i +w

(3)
i , i.e., the arithmetic sum target function

f . The above solution achieves a computing rate of k/n. From (2.27), it follows that

Ccod

(

N̂ , f
)

≥
2

1 + log2 3
. (2.29)

We now prove a matching upper bound on the computing capacity Ccod

(

N̂ , f
)

. Con-

sider any (k, n) solution for computing the arithmetic sum target function f in network N̂ . For

any p ∈ {0, 1, 2, 3}k, let

Ap = {(z1, z2) : w(1) + w(2) + w(3) = p}.

That is, each element of Ap is a possible pair of input edge-vectors to the receiver when the

target function value equals p.

Let j denote the number of components of p that are either 0 or 3. Without loss of

generality, suppose the first j components of p belong to {0, 3} and define w̃(3) ∈ {0, 1}k by

w̃
(3)
i =

{

0 if pi ∈ {0, 1}

1 if pi ∈ {2, 3}.

Let

T = {(w(1), w(2)) ∈ {0, 1}k × {0, 1}k : w(1) + w(2) + w̃(3) = p}

and notice that

{

(z1, z2) : (w(1), w(2)) ∈ T,w(3) = w̃(3)
}

⊆ Ap. (2.30)

If w(1) + w(2) + w̃(3) = p, then:

(i) pi − w̃
(3)
i = 0 implies w(1)

i = w
(2)
i = 0;

(ii) pi − w̃
(3)
i = 2 implies w(1)

i = w
(2)
i = 1;

(iii) pi − w̃
(3)
i = 1 implies (w(1)

i , w
(2)
i ) = (0, 1) or (1, 0).

Thus, the elements of T consist of k-bit vector pairs (w(1), w(2)) whose first j components are

fixed and equal (i.e., both are 0 when pi = 0 and both are 1 when pi = 3), and whose remaining
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k − j components can each be chosen from two possibilities (i.e., either (0, 1) or (1, 0), when

pi ∈ {1, 2}). This observation implies that

|T | = 2k−j . (2.31)

Notice that if only w(1) changes, then the sum w(1) +w(2) +w(3) changes, and so z1 must change

(since z2 is not a function of w(1)) in order for the receiver to compute the target function.

Thus, if w(1) changes and w(3) does not change, then z1 must still change, regardless of whether

w(2) changes or not. More generally, if the pair (w(1), w(2)) changes, then the pair (z1, z2) must

change. Thus,
∣

∣

∣

{

(z1, z2) : (w(1), w(2)) ∈ T,w(3) = w̃(3)
}∣

∣

∣
≥ |T | (2.32)

and therefore

|Ap| ≥
∣

∣

∣

{

(z1, z2) : (w(1), w(2)) ∈ T,w(3) = w̃(3)
}∣

∣

∣ [from (2.30)]

≥ |T | [from (2.32)]

= 2k−j . [from (2.31)] (2.33)

We have the following inequalities:

4n ≥
∣

∣

∣{(z1, z2) : w(1), w(2), w(3) ∈ {0, 1}k}
∣

∣

∣

=
∑

p∈{0,1,2,3}k

|Ap| (2.34)

=
k
∑

j=0

∑

p∈{0,1,2,3}k

|{i:pi∈{0,3}}|=j

|Ap|

≥
k
∑

j=0

∑

p∈{0,1,2,3}k

|{i:pi∈{0,3}}|=j

2k−j [from (2.33)]

=
k
∑

j=0

(

k

j

)

2k2k−j

= 6k (2.35)

where (2.34) follows since the Ap’s must be disjoint in order for the receiver to compute the

target function. Taking logarithms of both sides of (2.35), gives

k

n
≤

2
1 + log2 3

which holds for all k and n, and therefore

Ccod

(

N̂ , f
)

≤
2

1 + log2 3
. (2.36)

Combining (2.29) and (2.36) concludes the proof.
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Corollary 2.5.2. For the network N̂ with the arithmetic sum target function f ,

Ccod

(

N̂ , f
)

< min-cut
(

N̂ , f
)

.

Proof. Consider the network N̂ depicted in Figure 2.4 with the arithmetic sum target function

f . It can be shown that the footprint size RC,f = |IC | + 1 for any cut C, and thus

min-cut
(

N̂ , f
)

= 1 [from (2.5)].

The result then follows immediately from Theorem 2.5.1.

Remark 2.5.3. In light of Theorem 2.5.1, we compare the various lower bounds on the com-

puting capacity of the network N̂ derived in Section 2.3 with the exact computing capacity. It

can be shown that Π
(

N̂
)

= 1. If f is the arithmetic sum target function, then

Ccod

(

N̂ , f
)

≥ 1/2 [from Theorem 2.3.5]

Ccod

(

N̂ , f
)

≥ 1/ log2 5 [from Theorem 2.3.7]

Ccod

(

N̂ , f
)

≥ 1/2 [from Theorem 2.4.2].

Thus, this example demonstrates that the lower bounds obtained in Section 2.3 are not always

tight and illustrates the combinatorial nature of the problem.

2.6 Conclusions

We examined the problem of network computing. The network coding problem is a

special case when the function to be computed is the identity. We have focused on the case

when a single receiver node computes a function of the source messages and have shown that

while for the identity function the min-cut bound is known to be tight for all networks, a

much richer set of cases arises when computing arbitrary functions, as the min-cut bound can

range from being tight to arbitrarily loose. One key contribution of the paper is to show the

theoretical breadth of the considered topic, which we hope will lead to further research. This

work identifies target functions (most notably, the arithmetic sum function) for which the min-

cut bound is not always tight (even up to a constant factor) and future work includes deriving

more sophisticated bounds for these scenarios. Extensions to computing with multiple receiver

nodes, each computing a (possibly different) function of the source messages, are of interest.
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2.7 Appendix

Define the function

Q :
M
∏

i=1

{0, 1}k −→ {0, 1, . . . ,M}k

as follows. For every a = (a(1), a(2), . . . , a(M)) such that each a(i) ∈ {0, 1}k,

Q(a)j =
M
∑

i=1

a
(i)
j for every j ∈ {1, 2, . . . , k}. (2.37)

We extend Q for X ⊆
M
∏

i=1

{0, 1}k by defining Q(X) = {Q(a) : a ∈ X}.

We now present Lemma 2.7.1. The proof uses Lemma 2.7.2, which is presented there-

after. We define the following function which is used in the next lemma. Let

γ(x) = H−1

(

1
2

(

1 −
1
x

))

⋂

[

0,
1
2

]

for x ≥ 1 (2.38)

where H−1 denotes the inverse of the binary entropy function H(x) = −x log2 x−(1−x) log2(1−

x). Note that γ(x) is an increasing function of x.

Lemma 2.7.1. If lim
M→∞

L

log2 M
= 0, then lim

M→∞
Ccod(NM,L, f) = 1.

Proof. For any M and L, a solution with computing rate 1 is obtained by having each source

σi send its message directly to the receiver on the edge (σi, ρ). Hence Ccod(NM,L, f) ≥ 1.

Now suppose that NM,L has a (k, n) solution with computing rate k/n > 1 and for each

i ∈ {1, 2, . . . ,M}, let

gi : {0, 1}k −→ {0, 1}n

be the corresponding encoding function on the edge (σi, ρ). Then for any A1, A2, . . . , AM ⊆

{0, 1}k, we have
(

M
∏

i=1

|gi (Ai)|

)

· 2nL ≥

∣

∣

∣

∣

∣

Q

(

M
∏

i=1

Ai

)∣

∣

∣

∣

∣

. (2.39)

Each Ai represents a set of possible message vectors of source σi. The left-hand side of (2.39)

is the maximum number of different possible instantiations of the information carried by the

in-edges to the receiver ρ (i.e., |gi (Ai)| possible vectors on each edge (σi, ρ) and 2nL possible

vectors on the L parallel edges (σ0, ρ)). The right-hand side of (2.39) is the number of distinct

sum vectors that the receiver needs to discriminate, using the information carried by its in-

edges.

For each i ∈ {1, 2, . . . ,M}, let zi ∈ {0, 1}n be such that
∣

∣g−1
i (zi)

∣

∣ ≥ 2k−n and choose

Ai = g−1
i (zi) for each i. Also, let U (M) =

M
∏

i=1

Ai. Then we have

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≤ 2nL [from |gi (Ai)| = 1 and (2.39)]. (2.40)



28

Thus (2.40) is a necessary condition for the existence of a (k, n) solution for computing f in

the network NM,L. Lemma 2.7.2 shows that13

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥ (M + 1)γ(k/n)k (2.41)

where the function γ is defined in (2.38). Combining (2.40) and (2.41), any (k, n) solution for

computing f in the network NM,L with rate r = k/n > 1 must satisfy

r γ(r) log2(M + 1) ≤
1
n

log2

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≤ L. (2.42)

From (2.42), we have

r γ(r) ≤
L

log2(M + 1)
. (2.43)

The quantity rγ(r) is monotonic increasing from 0 to ∞ on the interval [1,∞) and the right

hand side of (2.43) goes to zero as M → ∞. Thus, the rate r can be forced to be arbitrarily

close to 1 by making M sufficiently large, i.e. Ccod(NM,L, f) ≤ 1. In summary,

lim
M−→∞

Ccod(NM,L, f) = 1.

Lemma 2.7.2. Let k, n,M be positive integers such that k > n. For each i ∈ {1, 2, . . . ,M},

let Ai ⊆ {0, 1}k be such that |Ai| ≥ 2k−n and let U (M) =
M
∏

i=1

Ai. Then,

∣

∣

∣
Q
(

U (M)
)∣

∣

∣
≥ (M + 1)γ(k/n)k.

Proof. The result follows from Lemmas 2.7.4 and 2.7.7.

The remainder of this Appendix is devoted to the proofs of lemmas used in the proof

of Lemma 2.7.2. Before we proceed, we need to define some more notation. For every j ∈

{1, 2, . . . , k}, define the map

h(j) : {0, 1, . . . ,M}k −→ {0, 1, . . . ,M}k

by

(

h(j)(p)
)

i
=







max {0, pi − 1} if i = j

pi otherwise.
(2.44)

That is, the map h(j) subtracts one from the j-th component of the input vector (as long as the

result is non-negative) and leaves all the other components the same. For every j ∈ {1, 2, . . . , k},

define the map

φ̂(j) : 2{0,1}k

× {0, 1}k −→ {0, 1}k

13One can compare this lower bound to the upper bound
∣

∣Q
(

U(M)
)∣

∣ ≤ (M + 1)k which follows from (2.37).
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by

φ̂(j)(A, a) =







h(j)(a) if h(j)(a) /∈ A

a otherwise
∀ A ⊆ {0, 1}k and a ∈ {0, 1}k. (2.45)

Define

φ(j) : 2{0,1}k

−→ 2{0,1}k

by

φ(j)(A) =
{

φ̂(j)(A, a) : a ∈ A
}

. (2.46)

Note that
∣

∣

∣
φ(j)(A)

∣

∣

∣
= |A| . (2.47)

A set A is said to be invariant under the map φ(j) if the set is unchanged when φ(j) is applied

to it, in which case from (2.45) and (2.46) we would have that for each a ∈ A,

h(j)(a) ∈ A. (2.48)

Lemma 2.7.3. For any A ⊆ {0, 1}k and all integers m and t such that 1 ≤ m ≤ t ≤ k, the set

φ(t)(φ(t−1)(· · ·φ(1)(A))) is invariant under the map φ(m).

Proof. For any A′ ⊆ {0, 1}k, we have

φ(i)(φ(i)(A′)) = φ(i)(A′) ∀ i ∈ {1, 2, . . . , k}. (2.49)

The proof of the lemma is by induction on t. For the base case t = 1, the proof

is clear since φ(1)(φ(1)(A)) = φ(1)(A) from (2.49). Now suppose the lemma is true for all

t < τ (where τ ≥ 2). Now suppose t = τ . Let B = φ(τ−1)(φ(τ−2)(· · ·φ(1)(A))). Since

φ(τ)(φ(τ)(B)) = φ(τ)(B) from (2.49), the lemma is true when m = t = τ . In the following

arguments, we take m < τ . From the induction hypothesis, B is invariant under the map φ(m),

i.e.,

φ(m)(B) = B. (2.50)

Consider any vector c ∈ φ(τ)(B). From (2.48), we need to show that h(m)(c) ∈ φ(τ)(B). We

have the following cases.

cτ = 1 : c, h(τ)(c) ∈ B [from cτ = 1 and c ∈ φ(τ)(B)] (2.51)

h(m)(c) ∈ B [from (2.50) and (2.51)] (2.52)

h(τ)
(

h(m)(c)
)

= h(m)
(

h(τ)(c)
)

∈ B [from (2.50) and (2.51)] (2.53)

h(m)(c) ∈ φ(τ)(B) [from (2.52) and (2.53)]
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cτ = 0 : ∃ b ∈ B such that h(τ)(b) = c [from cτ = 0 and c ∈ φ(τ)(B)] (2.54)

h(m)(b) ∈ B [from (2.50) and (2.54)] (2.55)

h(m)
(

h(τ)(b)
)

= h(τ)
(

h(m)(b)
)

∈ φ(τ)(B) [from (2.55)] (2.56)

h(m) (c) ∈ φ(τ)(B) [from (2.54) and (2.56)].

Thus, the lemma is true for t = τ and the induction argument is complete.

Let A1, A2, . . . , AM ⊆ {0, 1}k be such that |Ai| ≥ 2k−n for each i. Let U (M) =
M
∏

i=1

Ai

and extend the definition of φ(j) in (2.46) to products by

φ(j)(U (M)) =
M
∏

i=1

φ(j)(Ai).

U (M) is said to be invariant under φ(j) if

φ(j)(U (M)) = U (M).

It can be verifed that U (M) is invariant under φ(j) iff each Ai is invariant under φ(j). For each

i ∈ {1, 2, . . . ,M}, let

Bi = φ(k)(φ(k−1)(· · ·φ(1)(Ai)))

and from (2.47) note that

|Bi| = |Ai| ≥ 2k−n. (2.57)

Let

V (M) = φ(k)(φ(k−1)(· · ·φ(1)(U (M)))) =
M
∏

i=1

Bi

and recall the definition of the function Q (2.37).

Lemma 2.7.4.
∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥
∣

∣

∣Q
(

V (M)
)∣

∣

∣ .

Proof. We begin by showing that
∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥
∣

∣

∣Q
(

φ(1)(U (M))
)∣

∣

∣ . (2.58)

For every p ∈ {0, 1, . . . ,M}k−1, let

ϕ(p) =
{

r ∈ Q
(

U (M)
)

: (r2, · · · , rk) = p
}

ϕ1(p) =
{

s ∈ Q
(

φ(1)(U (M))
)

: (s2, · · · , sk) = p
}

and note that

Q
(

U (M)
)

=
⋃

p∈{0,1,...,M}k−1

ϕ(p) (2.59)

Q
(

φ(1)(U (M))
)

=
⋃

p∈{0,1,...,M}k−1

ϕ1(p) (2.60)
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where the two unions are in fact disjoint unions. We show that for every p ∈ {0, 1, . . . ,M}k−1,

|ϕ(p)| ≥ |ϕ1(p)| (2.61)

which by (2.59) and (2.60) implies (2.58).

If |ϕ1(p)| = 0, then (2.61) is trivial. Now consider any p ∈ {0, 1, . . . ,M}k−1 such that

|ϕ1(p)| ≥ 1 and let

Kp = max {i : (i, p1, · · · , pk−1) ∈ ϕ1(p)} .

Then we have

|ϕ1(p)| ≤ Kp + 1. (2.62)

Since (Kp, p1, · · · , pk−1) ∈ ϕ1(p), there exists (a(1), a(2), . . . , a(M)) ∈ U (M) such that

M
∑

i=1

φ̂(1)
(

Ai, a
(i)
)

= (Kp, p1, · · · , pk−1). (2.63)

Then from the definition of the map φ̂(1) in (2.45), there are Kp of the a(i)’s from amongst

{a(1), a(2), . . . , a(M)} such that a(i)
1 = 1 and φ̂(1)

(

Ai, a
(i)
)

= a(i). Let I = {i1, i2, . . . , iKp
} ⊆

{1, 2, . . . ,M} be the index set for these vectors and let â(i) = h(1)(a(i)) for each i ∈ I. Then

for each i ∈ I, we have

a(i) =
(

1, a(i)
2 , . . . , a

(i)
k

)

∈ Ai

â(i) =
(

0, a(i)
2 , . . . , a

(i)
k

)

∈ Ai [from φ̂(1)
(

Ai, a
(i)
)

= a(i) and (2.45)].

Let

R =

{

M
∑

i=1

b(i) :
b(i) ∈ {a(i), â(i)} for i ∈ I,

b(i) = a(i) for i /∈ I

}

⊆ ϕ(p). (2.64)

From (2.63) and (2.64), for every r ∈ R we have

r1 ∈ {0, 1, . . . , |I|} ,

ri = pi ∀ i ∈ {2, 3, . . . , k}

and thus

|R| = |I| + 1 = Kp + 1. (2.65)

Hence, we have

|ϕ(p)| ≥ |R| [from (2.64)]

= Kp + 1 [from (2.65)]

≥ |ϕ1(p)| [from (2.62)]

and then from (2.59) and (2.60), it follows that
∣

∣

∣
Q
(

U (M)
)∣

∣

∣
≥
∣

∣

∣
Q
(

φ(1)(U (M))
)∣

∣

∣
.
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For any A ⊆ {0, 1}k and any j ∈ {1, 2, . . . , k}, we know that
∣

∣φ(j)(A)
∣

∣ ⊆ {0, 1}k. Thus, the

same arguments as above can be repeated to show that
∣

∣

∣Q
(

φ(1)(U (M))
)∣

∣

∣ ≥
∣

∣

∣Q
(

φ(2)(φ(1)(U (M)))
)∣

∣

∣

≥
∣

∣

∣
Q
(

φ(3)(φ(2)(φ(1)(U (M))))
)∣

∣

∣

...

≥
∣

∣

∣Q
(

φ(k)(φ(k−1)(· · ·φ(1)(U (M))))
)∣

∣

∣

=
∣

∣

∣
Q
(

V (M)
)∣

∣

∣
.

For any s, r ∈ Z
k, we say that s ≤ r if sl ≤ rl for every l ∈ {1, 2, . . . , k}.

Lemma 2.7.5. Let p ∈ Q
(

V (M)
)

. If q ∈ {0, 1, . . . ,M}k and q ≤ p, then q ∈ Q
(

V (M)
)

.

Proof. Since q ≤ p, it can be obtained by iteratively subtracting 1 from the components of p,

i.e., there exist t ≥ 0 and i1, i2, . . . , it ∈ {1, 2, . . . , k} such that

q = h(i1)
(

h(i2)
(

· · ·
(

h(it)(p)
)))

.

Consider any i ∈ {1, 2, . . . , k}. We show that h(i)(p) ∈ Q
(

V (M)
)

, which implies by induction

that q ∈ Q
(

V (M)
)

. If pi = 0, then h(i)(p) = p and we are done. Suppose that pi > 0. Since

p ∈ Q
(

V (M)
)

, there exists b(j) ∈ Bj for every j ∈ {1, 2, . . . ,M} such that

p =
M
∑

j=1

b(j)

and b(m)
i = 1 for some m ∈ {1, 2, . . . ,M}. From Lemma 2.7.3, V (M) is invariant under φ(i) and

thus from (2.48), h(i)(b(m)) ∈ Bm and

h(i)(p) =
m−1
∑

j=1

b(j) + h(i)(b(m)) +
M
∑

j=m+1

b(j)

is an element of Q
(

V (M)
)

.

The lemma below is presented in [Ayaso 07] without proof, as the proof is straightfor-

ward.

Lemma 2.7.6. For all positive integers k, n,M , and δ ∈ (0, 1),

min
0 ≤ mi ≤ M,
∑

k

i=1
mi ≥ δMk

k
∏

i=1

(1 +mi) ≥ (M + 1)δk
. (2.66)

For any a ∈ {0, 1}k, let |a|H denote the Hamming weight of a, i.e., the number of

non-zero components of a. The next lemma uses the function γ defined in (2.38).



33

Lemma 2.7.7.
∣

∣

∣Q
(

V (M)
)∣

∣

∣ ≥ (M + 1)γ(k/n)k.

Proof. Let δ = γ(k/n). The number of distinct elements in {0, 1}k with Hamming weight at

most ⌊δk⌋ equals

⌊δk⌋
∑

j=0

(

k

j

)

≤ 2kH(δ) [from [Hoeffding 63, p.15, Theorem 1]]

= 2(k−n)/2 [from (2.38)].

For each i ∈ {1, 2, . . . ,M}, |Bi| ≥ 2k−n from (2.57) and hence there exists b(i) ∈ Bi such that
∣

∣b(i)
∣

∣

H
≥ δk. Let

p =
M
∑

i=1

b(i) ∈ Q
(

V (M)
)

.

It follows that pj ∈ {0, 1, 2, . . . ,M} for every j ∈ {1, 2, . . . , k}, and

k
∑

j=1

pj =
M
∑

i=1

∣

∣

∣
b(i)
∣

∣

∣

H
≥ δMk. (2.67)

The number of vectors q in {0, 1, . . . ,M}k such that q � p equals
k
∏

j=1

(1 + pj), and from

Lemma 2.7.5, each such vector is also in Q
(

V (M)
)

. Therefore,

∣

∣

∣
Q
(

V (M)
)∣

∣

∣
≥

k
∏

j=1

(1 + pj)

≥ (M + 1)δk [from (2.67) and Lemma 2.7.6].

Since δ = γ(k/n), the result follows.

This chapter, in full, is a reprint of the material as it appears in: R. Appuswamy,

M. Franceschetti, N. Karamchandani, and K. Zeger, “Network coding for computing: cut-set

bounds,” IEEE Transactions on Information Theory, vol. 57 (2), pp. 1015-1030, Feb. 2011.

The dissertation author was the primary investigator of this paper.



Chapter 3

Linear Codes, Target Function

Classes, and Network Computing

Capacity

3.1 Introduction

Network coding concerns networks where each receiver demands a subset of messages

generated by the source nodes and the objective is to satisfy the receiver demands at the

maximum possible throughput rate. Accordingly, research efforts have studied coding gains

over routing [Ahlswede 00, Harvey 06, Harvey 04], whether linear codes are sufficient to achieve

the capacity [Li 03, Dougherty 05, Dougherty 08, Koetter 03], and cut-set upper bounds on

the capacity and the tightness of such bounds [Harvey 06, Harvey 04, Lehman 03].

Network computing, on the other hand, considers a more general problem in which each

receiver node demands a target function of the source messages [Giridhar 05, Appuswamy 11c,

Kowshik 09, Rai 09, Ramamoorthy 08, Nazer 07]. Most problems in network coding are appli-

cable to network computing as well. Network computing problems arise in various networks

including sensor networks and vehicular networks.

In [Appuswamy 11c], a network computing model was proposed where the network is

modeled by a directed, acyclic graph with independent, noiseless links. The sources generate

independent messages and a single receiver node computes a target function f of these messages.

The objective is to characterize the maximum rate of computation, that is, the maximum

number of times f can be computed per network usage. Each node in the network sends out

symbols on its out-edges which are arbitrary, but fixed, functions of the symbols received on its

in-edges and any messages generated at the node. In linear network computing, this encoding

34
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is restricted to be linear operations. Existing techniques for computing in networks use routing,

where the codeword sent out by a node consists of symbols either received by that node, or

generated by the node if it is a source (e.g. [Paek 09]).

In network coding, it is known that linear codes are sufficient to achieve the coding ca-

pacity for multicast networks [Ahlswede 00], but they are not sufficient in general to achieve the

coding capacity for non-multicast networks [Dougherty 05]. In network computing, it is known

that when multiple receiver nodes demand a scalar linear target function of the source messages,

linear network codes may not be sufficient in general for solvability [Rai 10a]. However, it has

been shown that for single-receiver networks, linear coding is sufficient for solvability when com-

puting a scalar linear target function [Rai 09]. Analogous to the coding capacity for network

coding, the notion of computing capacity was defined for network computing in [Giridhar 05]

and is the supremum of achievable rates of computing the network’s target function.

One fundamental objective in the present paper is to understand the performance of

linear network codes for computing different types of target functions. Specifically, we compare

the linear computing capacity with that of the (nonlinear) computing capacity and the routing

computing capacity for various different classes of target functions in single-receiver networks.

Such classes include reducible, injective, semi-injective, and linear target functions over finite

fields. Informally, a target function is semi-injective if it uniquely maps at least one of its

inputs, and a target function is reducible if it can be computed using a linear transformation

followed by a function whose domain has a reduced dimension. Computing capacity bounds

and achievability are given with respect to the target function classes studied for network codes

that use routing, linear coding, or nonlinear coding.

Our specific contributions will be summarized next.

3.1.1 Contributions

Section 3.2 gives many of the formal definitions used in the paper (e.g. target function

classes and computing capacity types). We show that routing messages through the interme-

diate nodes in a network forces the receiver to obtain all the messages even though only a

function of the messages is required (Theorem 3.2.10), and we bound the computing capacity

gain of using nonlinear versus routing codes (Theorem 3.2.12).

In Section 3.3, we demonstrate that the performance of optimal linear codes may

depend on how ‘linearity’ is defined (Theorem 3.3.2). Specifically, we show that the linear

computing capacity of a network varies depending on which ring linearity is defined over on the

source alphabet.

In Sections 3.4 and 3.5, we study the computing capacity gain of using linear coding

over routing, and nonlinear coding over linear coding. In particular, we study various classes

of target functions, including injective, semi-injective, reducible, and linear. The relationships

between these classes is illustrated in Figure 3.1.
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Section 3.4 studies linear coding for network computing. We show that if a target

function is not reducible, then the linear computing capacity and routing computing capacity

are equal whenever the source alphabet is a finite field (Theorem 3.4.8); the same result also

holds for semi-injective target functions over rings. We also show that whenever a target

function is injective, routing obtains the full computing capacity of a network (Theorem 3.4.9),

although whenever a target function is neither reducible nor injective, there exists a network

such that the computing capacity is larger than the linear computing capacity (Theorem 3.4.11).

Thus for non-injective target functions that are not reducible, any computing capacity gain of

using coding over routing must be obtained through nonlinear coding. This result is tight in the

sense that if a target function is reducible, then there always exists a network where the linear

computing capacity is larger than the routing capacity (Theorem 3.4.12). We also show that

there exists a reducible target function and a network whose computing capacity is strictly

greater than its linear computing capacity, which in turn is strictly greater than its routing

computing capacity. (Theorem 3.4.14).

Section 3.5 focuses on computing linear target functions over finite fields. We char-

acterize the linear computing capacity for linear target functions over finite fields in arbitrary

networks (Theorem 3.5.6). We show that linear codes are sufficient for linear target functions

and we upper bound the computing capacity gain of coding (linear or nonlinear) over routing

(Theorem 3.5.7). This upper bound is shown to be achievable for every linear target func-

tion and an associated network, in which case the computing capacity is equal to the routing

computing capacity times the number of network sources (Theorem 3.5.8).

Finally, Section 3.6 studies an illustrative example for the computing problem, namely

the reverse butterfly network – obtained by reversing the direction of all the edges in the

multicast butterfly network (the butterfly network studied in [Ahlswede 00] illustrated the

capacity gain of network coding over routing). For this network and the arithmetic sum target

function, we evaluate the routing and linear computing capacity (Theorem 3.6.1) and the

computing capacity (Theorem 3.6.3). We show that the latter is strictly larger than the first

two, which are equal to each other. No network with such properties is presently known for

network coding. Among other things, the reverse butterfly network also illustrates that the

computing capacity can be a function of the coding alphabet (i.e. the domain of the target

function f). In contrast, for network coding, the coding capacity and routing capacity are

known to be independent of the coding alphabet used [Cannons 06].

Our main results are summarized in Table 3.1.
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Semi−injective

Linear Injective

All target functions

Reducible

Figure 3.1: Decomposition of the space of all target functions into various classes.

Table 3.1: Summary of our main results for certain classes of target functions. The quantities

Ccod(N , f), Clin(N , f), and Crout(N , f) denote the computing capacity, linear computing capacity,

and routing computing capacity, respectively, for a network N with s sources and target function f .

The columns labeled f and A indicate contraints on the target function f and the source alphabet A,

respectively.

Result f A Location

∀f ∀N Clin(N , f) = Crout(N , f)
non-reducible field

Theorem 3.4.8
semi-injective ring

∀f ∀N Ccod(N , f) = Crout(N , f) injective Theorem 3.4.9

∀f ∃N Ccod(N , f) > Clin(N , f) non-injective & field Theorem 3.4.11
non-reducible

∀f ∃N Clin(N , f) > Crout(N , f) reducible ring Theorem 3.4.12

∃f ∃N Ccod(N , f) > Clin(N , f) > Crout(N , f) reducible Theorem 3.4.14

∀f ∀N Ccod(N , f) = Clin(N , f) ≤ s Crout(N , f) linear field Theorem 3.5.7

∀f ∃N Clin(N , f) = s Crout(N , f) linear field Theorem 3.5.8

∃f ∃N Ccod(N , f) is irrational arithmetic sum Theorem 3.6.3
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3.2 Network model and definitions

In this paper, a network N = (G,S, ρ) consists of a finite, directed acyclic multigraph

G = (V, E), a set S = {σ1, . . . , σs} ⊆ V of s distinct source nodes and a single receiver ρ ∈ V.

We assume that ρ /∈ S, and that the graph1 G contains a directed path from every node in V to

the receiver ρ. For each node u ∈ V, let Ei(u) and Eo(u) denote the in-edges and out-edges of

u respectively. We assume (without loss of generality) that if a network node has no in-edges,

then it is a source node. If e = (u, v) ∈ E , we will use the notation head(e) = u and tail(e) = v.

An alphabet is a finite set of size at least two. Throughout this paper, A will denote

a source alphabet and B will denote a receiver alphabet. For any positive integer m, any vector

x ∈ Am, and any i ∈ {1, 2, . . . ,m}, let xi denote the i-th component of x. For any index

set I = {i1, i2, . . . , iq} ⊆ {1, 2, . . . ,m} with i1 < i2 < . . . < iq, let xI denote the vector

(xi1
, xi2

, . . . , xiq
) ∈ A|I|. Sometimes we view A as an algebraic structure such as a ring, i.e.,

with multiplication and addition. Throughout this paper, vectors will always be taken to be

row vectors. Let denote a finite field of order q. A superscript t will denote the transpose for

vectors and matrices.

3.2.1 Target functions

For a given network N = (G,S, ρ), we use s throughout the paper to denote the number

|S| of receivers in N . For given network N , a target function is a mapping

f : As −→ B.

The goal in network computing is to compute f at the receiver ρ, as a function of the source

messages. We will assume that all target functions depend on all the network sources (i.e. a

target function cannot be a constant function of any one of its arguments). Some example

target functions that will be referenced are listed in Table 3.2.

Table 3.2: Definitions of some target functions.

Target function f Alphabet A f (x1, . . . , xs) Comments

identity arbitrary (x1, . . . , xs) B = As

arithmetic sum {0, 1, . . . , q − 1} x1 + x2 + · · · + xs ‘+’ is integer addition,
B = {0, 1, · · · , s(q − 1)}

mod r sum {0, 1, . . . , q − 1} x1 ⊕ x2 ⊕ . . .⊕ xs ⊕ is mod r addition, B = A

linear any ring a1x1 + a2x2 + . . .+ asxs arithmetic in ring, B = A

maximum any ordered set max {x1, . . . , xs} B = A

1Throughout the remainder of the paper, we use “graph” to mean a multigraph, and in the context of network
computing we use “network” to mean a single-receiver network.
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Definition 3.2.1. Let alphabet A be a ring. A target function f : As −→ B is said to be

reducible if there exists an integer λ satisfying λ < s, an s × λ matrix T with elements in A,

and a map g : Aλ −→ B such that for all x ∈ As,

g(xT ) = f(x). (3.1)

Reducible target functions are not injective, since, for example, if x and y are distinct

elements of the null-space of T , then

f(x) = g(xT ) = g(0) = g(yT ) = f(y).

Example 3.2.2. Suppose the alphabet is A = and the target function is

f :3−→ {0, 1},

where

f(x) = (x1 + x2)x3.

Then, by choosing λ = 2,

T =









1 0

1 0

0 1









,

and g(y1, y2) = y1y2, we get

g(xT ) = g(x1 + x2, x3)

= (x1 + x2)x3

= f(x).

Thus the target function f is reducible.

Example 3.2.3. The notion of reducibility requires that for a target function f : As −→ B,

the set A must be a ring. If we impose any ring structure to the domains of the identity,

arithmetic sum, maximum, and minimum target functions, then these can be shown (via our

Example 3.4.2 and Lemma 3.4.3) to be non-reducible.

3.2.2 Network computing and capacity

Let k and n be positive integers. Given a network N with source set S and alphabet

A, a message generator is any mapping

α : S −→ Ak.

For each source σi ∈ S, α(σi) is called a message vector and its components

α(σi)1 , . . . , α(σi)k
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are called messages2.

Definition 3.2.4. A (k, n) network code in a network N consists of the following:

(i) Encoding functions h(e), for every out-edge e ∈ Eo(v) of every node v ∈ V −ρ, of the form:

h(e) :





∏

ê∈Ei(v)

An



× Ak −→ An if v is a source node

h(e) :
∏

ê∈Ei(v)

An −→ An otherwise.

(ii) A decoding function ψ of the form:

ψ :
∏

ê∈Ei(v)

An −→ Bk.

Furthermore, given a (k, n) network code, every edge e ∈ E carries a vector ze of at

most n alphabet symbols3, which is obtained by evaluating the encoding function h(e) on the

set of vectors carried by the in-edges to the node and the node’s message vector if the node

is a source. The objective of the receiver is to compute the target function f of the source

messages, for any arbitrary message generator α. More precisely, the receiver constructs a

vector of k alphabet symbols, such that for each i ∈ {1, 2, . . . , k}, the i-th component of the

receiver’s computed vector equals the value of the desired target function f , applied to the i-th

components of the source message vectors, for any choice of message generator α.

Definition 3.2.5. Suppose in a network N , the in-edges of the receiver are e1, e2, . . . , e|Ei(ρ)|.

A (k, n) network code is said to compute f in N if for each j ∈ {1, 2, . . . , k}, and for each

message generator α, the decoding function satisfies

ψ
(

ze1
, · · · , ze|Ei(ρ)|

)

j
= f

(

(α(σ1)j , · · · , α(σs)j)
)

. (3.2)

If there exists a (k, n) code that computes f in N , then the rational number k/n is said to be

an achievable computing rate.

In the network coding literature, one definition of the coding capacity of a network is

the supremum of all achievable coding rates [Cannons 06]. We use an analogous definition for

the computing capacity.

Definition 3.2.6. The computing capacity of a network N with respect to a target function f

is

Ccod(N , f) = sup
{k

n
: ∃ (k, n) network code that computes f in N

}

.

2 For simplicity we assume each source has associated with it exactly one message vector, but all of the
results in this paper can readily be extended to the more general case.

3By default, we assume that edges carry exactly n symbols.
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The notion of linear codes in networks is most often studied with respect to finite fields.

Here we will sometimes use more general ring structures.

Definition 3.2.7. Let alphabet A be a ring. A (k, n) network code in a network N is said to

be a linear network code (over A) if the encoding functions are linear over A.

Definition 3.2.8. The linear computing capacity of a network N with respect to target function

f is

Clin(N , f) = sup
{k

n
: ∃ (k, n) linear network code that computes f in N

}

.

The routing computing capacity Crout(N , f) is defined similarly by restricting the en-

coding functions to routing. We call the quantity Ccod(N , f) − Clin(N , f) the computing capac-

ity gain of using nonlinear coding over linear coding. Similar “gains”, such as, Ccod(N , f) −

Crout(N , f) and Clin(N , f) − Crout(N , f) are defined.

Note that Definition 3.2.7 allows linear codes to have nonlinear decoding functions. In

fact, since the receiver alphabet B need not have any algebraic structure to it, linear decoding

functions would not make sense in general. We do, however, examine a special case where

B = A and the target function is linear, in which case we show that linear codes with linear

decoders can be just as good as linear codes with nonlinear decoders (Theorem 3.5.7).

Definition 3.2.9. A set of edges C ⊆ E in network N is said to separate sources σm1
, . . . , σmd

from the receiver ρ, if for each i ∈ {1, 2, . . . , d}, every directed path from σmi
to ρ contains at

least one edge in C. Define

IC = {i : C separates σi from the receiver} .

The set C is said to be a cut in N if it separates at least one source from the receiver (i.e.

|IC | ≥ 1). We denote by Λ(N ) the collection of all cuts in N .

Since IC is the number of sources disconnected by C and there are s sources, we have

|IC | ≤ s. (3.3)

For network coding with a single receiver node and multiple sources (where the receiver

demands all the source messages), routing is known to be optimal [Lehman 03]. Let Crout(N )

denote the routing capacity of the network N , or equivalently the routing computing capacity

for computing the identity target function. It was observed in [Lehman 03, Theorem 4.2] that

for any single-receiver network N ,

Crout(N ) = min
C∈Λ(N )

|C|

|IC |
. (3.4)

The following theorem shows that if the intermediate nodes in a network are restricted to

perform routing, then in order to compute a target function the receiver is forced to obtain all

the source messages. This fact motivates the use of coding for computing functions in networks.
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Theorem 3.2.10. If N is a network with target function f , then

Crout(N , f) = Crout(N ) .

Proof. Since any routing code that computes the identity target function can be used to com-

pute any target function f , we have

Crout(N , f) ≥ Crout(N ) .

Conversely, it is easy to see that every component of every source message must be received by

ρ in order to compute f , so

Crout(N , f) ≤ Crout(N ) .

Theorem 3.2.12 below gives a general upper bound on how much larger the computing

capacity can be relative to the routing computing capacity. It will be shown later, in Theo-

rem 3.5.7, that for linear target functions over finite fields, the bound in Theorem 3.2.12 can

be tightened by removing the logarithm term.

Lemma 3.2.11. If N is network with a target function f : As −→ B, then

Ccod(N , f) ≤ (log2 |A|) min
C∈Λ(N )

|C| .

Proof. Using [Appuswamy 11c, Theorem II.1], one finds the term min-cut(N , f) defined in [Appuswamy 11c,

Equation (3)] in terms of a quantity RIC ,f , which in turn is defined in [Appuswamy 11c, Defi-

nition 1.5]. Since target functions are restricted to not being constant functions of any of their

arguments, we have RIC ,f ≥ 2, from which the result follows.

Theorem 3.2.12. If N is network with a target function f : As −→ B, then

Ccod(N , f) ≤ s (log2 |A|) Crout(N , f)

Proof.

Ccod(N , f) ≤ (log2 |A|) min
C∈Λ(N )

|C| [from Lemma 3.2.11]

≤ s (log2 |A|) Crout(N , f) . [from (3.3), (3.4), and Theorem 3.2.10 ]
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3.3 Linear coding over different ring alphabets

Whereas the size of a finite field characterizes the field, there are, in general, different

rings of the same size, so one must address whether the linear computing capacity of a network

might depend on which ring is chosen for the alphabet. In this section, we illustrate this

possibility with a specific computing problem.

Let A = {a0, a1, a2, a3} and let f : A2 −→ {0, 1, 2} be as defined in Table 3.3. We

Table 3.3: Definition of the 4-ary map f .

f a0 a1 a2 a3

a0 0 1 1 2

a1 1 0 2 1

a2 1 2 0 1

a3 2 1 1 0

consider different rings R of size 4 for A and evaluate the linear computing capacity of the

network N1 shown in Figure 3.2 with respect to the target function f . Specifically, we let R

be either the ring Z4 of integers modulo 4 or the product ring Z2 ×Z2 of 2-dimensional binary

vectors. Denote the linear computing capacity here by

Clin(N1)R = sup
{k

n
: ∃ (k, n) R-linear code that computes f in N

}

.

The received vector z at ρ can be viewed as a function of the source vectors generated at σ1

σ1 σ2 ρ

Figure 3.2: Network N1 has two sources σ1 and σ2 and a receiver ρ.

and σ2. For any (k, n) R-linear code, there exist k×n matrices M1 and M2 such that z can be

written as

z(α(σ1) , α(σ2)) = α(σ1)M1 + α(σ2)M2. (3.5)

Let mi,1, · · · ,mi,k denote the row vectors of Mi, for i ∈ {1, 2}.

Lemma 3.3.1. Let A be the ring Z4 and let f : A2 −→ {0, 1, 2} be the target function shown

in Table 3.3, where ai = i, for each i. If a (k, n) linear code over A computes f in N1 and ρ

receives a zero vector, then α(σ1) = α(σ2) ∈ {0, 2}k.
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Proof. If α(σ1) = α(σ2) = 0, then ρ receives a 0 by (3.5) and must decode a 0 since f((0, 0)) = 0

(from Table 3.3). Thus, ρ always decodes a 0 upon receiving a 0. But f((x1, x2)) = 0 if and

only if x1 = x2 (from Table 3.3), so whenever ρ receives a 0, the source messages satisfy

α(σ1) = α(σ2).

Now suppose, contrary to the lemma’s assertion, that there exist messages α(σ1) and

α(σ2) such that z(α(σ1) , α(σ2)) = 0 and α(σ1)j 6∈ {0, 2} for some j ∈ {1, 2, · · · , k}. Since

α(σ1)j is invertible in Z4 (it is either 1 or 3), we have from (3.5) that

m1,j =
k
∑

i=1

i6=j

−α(σ1)−1
j α(σ1)i m1,i +

k
∑

i=1

−α(σ1)−1
j α(σ2)i m2,i (3.6)

= y(1)M1 + y(2)M2 (3.7)

where y(1) and y(2) are k-dimensional vectors defined by

y
(1)
i =







−α(σ1)−1
j α(σ1)i if i 6= j

0 if i = j

y
(2)
i = −α(σ1)−1

j α(σ2)i . (3.8)

Also, define the k-dimensional vector x by

xi =







0 if i 6= j

1 if i = j.
(3.9)

We have from (3.5) that z(x, 0) = m1,j and from (3.5) and (3.7) that z(y(1), y(2)) = m1,j .

Thus, in order for the code to compute f , we must have f(xj , 0) = f(y(1)
j , y

(2)
j ). But f(xj , 0) =

f(1, 0) = 1 and

f(y(1)
j , y

(2)
j ) = f(0,−α(σ1)−1

j α(σ2)j)

= f(0,−α(σ1)−1
j α(σ1)j) [from α(σ1) = α(σ2)]

= f(0,−1)

= f(0, 3) [from 3 = −1 in Z4]

= 2 [from Table 3.3],

a contradiction. Thus, α(σ1) ∈ {0, 2}k.

Theorem 3.3.2. The network N1 in Figure 3.2 with alphabet A = {a0, a1, a2, a3} and target

function f : A2 −→ {0, 1, 2} shown in Table 3.3, satisfies

Clin(N1, f)Z4 ≤
2
3

Clin(N1, f)Z2×Z2 = 1.

(For A = Z4, we identify ai = i, for each i, and for A = Z2 × Z2, we identify each ai with the

2-bit binary representation of i.)
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Proof. Consider a (k, n) Z2 ×Z2-linear code that computes f . From (3.5), we have z(x, 0) = 0

whenever xM1 = 0. Since f((0, 0)) 6= f((xi, 0)) (whenever xi 6= 0), it must therefore be the

case that xM1 = 0 only when x = 0, or in other words, the rows of M1 must be independent,

so n ≥ k. Thus,

Clin(N , f)Z2×Z2 ≤ 1. (3.10)

Now suppose that A is the ring Z2 × Z2 where, a0 = (0, 0), a1 = (0, 1), a2 = (1, 0), and

a3 = (1, 1) and let ⊕ denote the addition over A. For any x ∈ A2, the value f(x), as defined

in Table 3.3, is seen to be the Hamming distance between x1 and x2. If k = n = 1 and

M1 = M2 = [a3] (i.e., the 1 × 1 identity matrix), then ρ receives x1 ⊕ x2 from which f can be

computed by summing its components. Thus, a computing rate of k/n = 1 is achievable. From

(3.10), it then follows that

Clin(N , f)Z2×Z2 = 1.

We now prove that Clin(N , f)Z4 ≤ 2/3. Let A denote the ring Z4 where ai = i for

0 ≤ i ≤ 3. For a given (k, n) linear code over A that computes f , the n-dimensional vector

received by ρ can be written as in (3.5). Let K denote the collection of all message vector pairs

(α(σ1) , α(σ2)) such that z(α(σ1) , α(σ2)) = 0. Define the 2k × n matrix

M =

[

M1

M2

]

and notice that K = {y ∈ A2k : yM = 0}. Then,

4n = |A|n

≥
∣

∣{yM : y ∈ A2k}
∣

∣ [from y ∈ A2k =⇒ yM ∈ An]

≥
|A|2k

|K|
[from y(1), y(2) ∈ A2k and y(1)M = y(2)M =⇒ y(1) − y(2) ∈ K]

≥
|A|2k

2k
[from Lemma 3.3.1]

= 43k/2. [from |A| = 4]

Thus, k/n ≤ 2/3, so Clin(N1, f)Z4 ≤ 2
3 .
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3.4 Linear network codes for computing target functions

Theorem 3.2.10 showed that if intermediate network nodes use routing, then a net-

work’s receiver learns all the source messages irrespective of the target function it demands. In

Section 3.4.1, we prove a similar result when the intermediate nodes use linear network coding.

It is shown that whenever a target function is not reducible the linear computing capacity co-

incides with the routing capacity and the receiver must learn all the source messages. We also

show that there exists a network such that the computing capacity is larger than the routing

capacity whenever the target function is non-injective. Hence, if the target function is not

reducible, such capacity gain must be obtained from nonlinear coding. Section 3.4.2 shows that

linear codes may provide a computing capacity gain over routing for reducible target functions

and that linear codes may not suffice to obtain the full computing capacity gain over routing.

3.4.1 Non-reducible target functions

Verifying whether or not a given target function is reducible may not be easy. We now

define a class of target functions that are easily shown to not be reducible.

Definition 3.4.1. A target function f : As −→ B is said to be semi-injective if there exists

x ∈ As such that f−1({f(x)}) = {x}.

Note that injective functions are semi-injective.

Example 3.4.2. If f is the arithmetic sum target function, then f is semi-injective (since

f(x) = 0 implies x = 0) but not injective (since f(0, 1) = f(1, 0) = 1). Other examples of

semi-injective target functions include the identity, maximum, and minimum functions.

Lemma 3.4.3. If alphabet A is a ring, then semi-injective target functions are not reducible.

Proof. Suppose that a target function f is reducible. Then there exists an integer λ satisfying

λ < s, matrix T ∈ As×λ, and map g : Aλ −→ B such that

g(xT ) = f(x) for each x ∈ As. (3.11)

Since λ < s, there exists a non-zero d ∈ As such that dT = 0. Then for each x ∈ As,

f(d+ x) = g((d+ x)T ) = g(xT ) = f(x) (3.12)

so f is not semi-injective.

Definition 3.4.4. Let A be a finite field and let M be a subspace of the vector space As over

the scalar field A. Let

M⊥ =
{

y ∈ As : xyt = 0 for all x ∈ M
}

and let dim(M) denote the dimension of M over A.
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Lemma 3.4.5. 4 If A is a finite field and M is a subspace of vector space As, then (M⊥)⊥

= M.

Lemma 3.4.6 will be used in Theorem 3.4.8. The lemma states an alternative char-

acterization of reducible target functions when the source alphabet is a finite field and of

semi-injective target functions when the source alphabet is a group.

Lemma 3.4.6. Let N be a network with target function f : As −→ B and alphabet A.

(i) Let A be a finite field. f is reducible if and only if there exists a non-zero d ∈ As such

that for each a ∈ A and each x ∈ As,

f(ad+ x) = f(x).

(ii) Let A be a group. f is semi-injective if and only if there exists x ∈ As such that for every

non-zero d ∈ As,

f(d+ x) 6= f(x).

(The arithmetic in ad+ x and d+ x is performed component-wise over the corresponding A.)

Proof. (i) If f is reducible, then there exists an integer λ satisfying λ < s, matrix T ∈ As×λ,

and map g : Aλ −→ B such that

g(xT ) = f(x) for each x ∈ As. (3.13)

Since λ < s, there exists a non-zero d ∈ As such that dT = 0. Then for each a ∈ A and each

x ∈ As,

f(ad+ x) = g((ad+ x)T ) = g(xT ) = f(x). (3.14)

Conversely, suppose that there exists a non-zero d such that (3.14) holds for every a ∈ A and

every x ∈ As and let M be the one-dimensional subspace of As spanned by d. Then

f(t+ x) = f(x) for every t ∈ M, x ∈ As. (3.15)

Note that dim(M⊥) = s − 1. Let λ = s − 1, let T ∈ As×λ be a matrix such that its columns

form a basis for M⊥, and let RT denote the row space of T . Define the map

g : RT −→ f(As)

as follows. For any y ∈ RT such that y = xT for x ∈ As, let

g(y) = g(xT ) = f(x). (3.16)

4 This lemma is a standard result in coding theory regarding dual codes over finite fields, even though the
operation xyt is not an inner product (e.g. [Hill 90, Theorem 7.5] or [Nebe 06, Corollary 3.2.3]). An analogous
result for orthogonal complements over inner product spaces is well known in linear algebra (e.g. [Hoffman 71,
Theorem 5 on pg. 286]).
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Note that if y = x(1)T = x(2)T for x(1) 6= x(2), then

(x(1) − x(2))T = 0

x(1) − x(2) ∈ (M⊥)⊥ [from construction of T ]

x(1) − x(2) ∈ M [from Lemma 3.4.5]

f(x(1)) = f((x(1) − x(2)) + x(2))

= f(x(2)). [from (3.15)]

Thus g is well defined. Then from (3.16) and Definition 3.2.1, f is reducible.

(ii) Since f is semi-injective, there exists a x ∈ As such that {x} = f−1({f(x)}), which

in turn is true if and only if for each non-zero d ∈ As, we have f(d+ x) 6= f(x).

The following example shows that if the alphabet A is not a finite field, then the

assertion in Lemma 3.4.6(i) may not be true.

Example 3.4.7. Let A = Z4, let f : A −→ A be the target function defined by f(x) = 2x,

and let d = 2. Then, for all a ∈ A,

f(2a+ x) = 2(2a+ x)

= 2x [from 4 = 0 in Z4]

= f(x)

but, f is not reducible, since s = 1.

Theorem 3.4.8 establishes for a network with a finite field alphabet, whenever the

target function is not reducible, linear computing capacity is equal to the routing computing

capacity, and therefore if a linear network code is used, the receiver ends up learning all the

source messages even though it only demands a function of these messages.

For network coding (i.e. when f is the identity function), many multi-receiver networks

have a larger linear capacity than their routing capacity. However, all single-receiver networks

are known to achieve their coding capacity with routing [Lehman 03]. For network computing,

the next theorem shows that with non-reducible target functions there is no advantage to using

linear coding over routing.5

Theorem 3.4.8. Let N be a network with target function f : As −→ B and alphabet A. If A

is a finite field and f is not reducible, or A is a ring with identity and f is semi-injective, then

Clin(N , f) = Crout(N , f) .

5 As a reminder, “network” here refers to single-receiver networks in the context of computing.
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Proof. Since any routing code is in particular a linear code,

Clin(N , f) ≥ Crout(N , f) .

Now consider a (k, n) linear code that computes the target function f in N and let C be a

cut. We will show that for any two collections of source messages, if the messages agree at

sources not separated from ρ by C and the vectors agree on edges in C, then there exist two

other source message collections with different target function values, such that the receiver ρ

cannot distinguish this difference. In other words, the receiver cannot properly compute the

target function in the network.

For each e ∈ C, there exist k × n matrices M(e)1, . . . ,M(e)s such that the vector

carried on e is
s
∑

i=1

α(σi)M(e)i.

For any matrix M , denote its j-th column by M (j). Let w and y be different k × s matrices

over A, whose j-th columns agree for all j /∈ IC .

Let us suppose that the vectors carried on the edges of C, when the the column vectors

of w are the source messages, are the same as when the the column vectors of y are the source

messages. Then, for all e ∈ C,

s
∑

i=1

w(i)M(e)i =
s
∑

i=1

y(i)M(e)i. (3.17)

We will show that this leads to a contradiction, namely that ρ cannot compute f . Let m be

an integer such that if d denotes the m-th row of w− y, then d 6= 0. For the case where A is a

field and f is not reducible, by Lemma 3.4.6(i), there exist a ∈ A and x ∈ As such that ad 6= 0

and

f(ad+ x) 6= f(x). (3.18)

In the case where A is a ring with identity and f is semi-injective, we obtain (3.18) from

Lemma 3.4.6(ii) in the special case of a = 1.

Let u be any k× s matrix over A whose m-th row is x and let v = u+ a(w− y). From

(3.18), the target function f differs on the m-th rows of u and v. Thus, the vectors on the

in-edges of the receiver ρ must differ between two cases: (1) when the sources messages are

the columns of u, and (2) when the sources messages are the columns of v. The vector carried

by any in-edge of the receiver is a function of each of the message vectors α(σj), for j /∈ IC ,

and the vectors carried by the edges in the cut C. Furthermore, the j-th columns of u and v

agree if j /∈ IC . Thus, at least one of the vectors on an edge in C must change when the set of

source message vectors changes from u to v. However this is contradicted by the fact that for
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all e ∈ C, the vector carried on e when the columns of u are the source messages is

s
∑

i=1

u(i)M(e)i =
s
∑

i=1

u(i)M(e)i + a
s
∑

i=1

(w(i) − y(i)))M(e)i [from (3.17)]

=
s
∑

i=1

v(i)M(e)i (3.19)

which is also the vector carried on e when the columns of v are the source messages.

Hence, for any two different matrices w and y whose j-th columns agree for all j /∈ IC ,

at least one vector carried by an edge in the cut C has to differ in value in the case where the

source messages are the columns of w from the case where the source messages are the columns

of y. This fact implies that

(|A|n)|C| ≥ (|A|k)|IC |

and thus

k

n
≤

|C|

|IC |
.

Since the cut C is arbitrary, we conclude (using (3.4)) that

k

n
≤ min

C∈Λ(N )

|C|

|IC |
= Crout(N , f) .

Taking the supremum over all (k, n) linear network codes that compute f in N , we get

Clin(N , f) ≤ Crout(N , f) .

Theorem 3.4.8 showed that if a network’s target function is not reducible (e.g. semi-

injective target functions) then there can be no computing capacity gain of using linear coding

over routing. The following theorem shows that if the target function is injective, then there

cannot even be any nonlinear computing gain over routing.

Note that if the identity target function is used in Theorem 3.4.9, then the result states

that there is no coding gain over routing for ordinary network coding. This is consistent since

our stated assumption in Section 3.2 is that only single-receiver networks are considered here

(for some networks with two or more receivers, it is well known that linear coding may provide

network coding gain over network routing).

Theorem 3.4.9. If N is a network with an injective target function f , then

Ccod(N , f) = Crout(N , f) .

Proof. It follows from [Lehman 03, Theorem 4.2] that for any single-receiver network N and

the identity target function f , we have Ccod(N , f) = Crout(N , f). This can be straightforwardly

extended to injective target functions for network computing.
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v

σ1 σ2 σs−1 σs

ρ

Figure 3.3: Network N2,s has sources σ1, σ2, . . . , σs, each connected to the relay v by an edge

and v is connected to the receiver by an edge.

Theorem 3.4.8 showed that there cannot be linear computing gain for networks whose

target functions are not reducible, and Theorem 3.4.9 showed that the same is true for target

functions that are injective. However, Theorem 3.4.11 will show via an example network that

nonlinear codes may provide a capacity gain over linear codes if the target function is not

injective. This reveals a limitation of linear codes compared to nonlinear ones for non-injective

target functions that are not reducible. For simplicity, in Theorem 3.4.11 we only consider the

case when there are two or more sources. We need the following lemma first.

Lemma 3.4.10. The computing capacity of the network N2,s shown in Figure 3.3, with respect

to a target function f : As −→ B, satisfies

Ccod(N2,s, f) ≥ min

{

1,
1

log|A| |f (As)|

}

.

Proof. Suppose

log|A| |f (As)| < 1. (3.20)

Let k = n = 1 and assume that each source node sends its message to node v. Let

g : f (As) −→ A

be any injective map (which exists by (3.20)). Then the node v can compute g and send it to

the receiver. The receiver can compute the value of f from the value of g and thus a rate of 1

is achievable, so Ccod(N2,s, f) ≥ 1.
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Now suppose

log|A| |f (As)| ≥ 1. (3.21)

Choose integers k and n such that

1
log|A| |f (As)|

− ǫ ≤
k

n
≤

1
log|A| |f (As)|

. (3.22)

Now choose an arbitrary injective map (which exists by (3.22))

g : (f (As))k −→ An.

Since n ≥ k (by (3.21) and (3.22)), we can still assume that each source sends its k-length

message vector to node v. Node v computes f for each of the k sets of source messages, encodes

those values into an n-length vector over A using the injective map g and transmits it to the

receiver. The existence of a decoding function which satisfies (3.2) is then obvious from the

fact that g is injective. From (3.22), the above code achieves a computing rate of

k

n
≥

1
log|A| |f (As)|

− ǫ.

Since ǫ was arbitrary, it follows that the computing capacity Ccod(N2,s, f) is at least

1/ log|A| |f (As)|.

Theorem 3.4.11. Let A be a finite field alphabet. Let s ≥ 2 and let f be a target function that

is neither injective nor reducible. Then there exists a network N such that

Ccod(N , f) > Clin(N , f) .

Proof. If N is the network N2,s shown in Figure 3.3 with alphabet A, then

Clin(N , f) = 1/s [from Theorem 3.4.8 and (3.4)]

< min

{

1,
1

log|A| |f (As)|

}

[from s ≥ 2 and |f (As)| < |A|s]

≤ Ccod(N , f) . [from Lemma 3.4.10]

The same proof of Theorem 3.4.11 shows that it also holds if the alphabet A is a ring

with identity and the target function f is semi-injective but not injective.

3.4.2 Reducible target functions

In Theorem 3.4.12, we prove a converse to Theorem 3.4.8 by showing that if a target

function is reducible, then there exists a network in which the linear computing capacity is

larger than the routing computing capacity. Theorem 3.4.14 shows that, even if the target

function is reducible, linear codes may not achieve the full (nonlinear) computing capacity of a

network.
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Theorem 3.4.12. Let A be a ring. If a target function f : As −→ B is reducible, then there

exists a network N such that

Clin(N , f) > Crout(N , f) .

Proof. Since f is reducible, there exist λ < s, a matrix T ∈ As×λ, and a map g : Aλ −→ f(As)

such that

g(xT ) = f(x) for every x ∈ As. [from Definition 3.2.1] (3.23)

Let N denote the network N2,s with alphabet A and target function f . Let k = 1, n = λ and

let the decoding function be ψ = g. Since n ≥ 1, we assume that all the source nodes transmit

their messages to node v. For each source vector

x = (α(σ1) , α(σ2) , . . . , α(σs))

node v computes xT and sends it to the receiver. Having received the n-dimensional vector

xT , the receiver computes

ψ(xT ) = g(xT ) [from ψ = g]

= f(x). [from (3.23)]

Thus there exists a linear code that computes f in N with an achievable computing rate of

k

n
=

1
λ

> 1/s [from λ ≤ s− 1]

= Crout(N ) [from (3.4)]

which is sufficient to establish the claim.

For target functions that are not reducible, any improvement on achievable rate of

computing using coding must be provided by nonlinear codes (by Theorem 3.4.8). However,

within the class of reducible target functions, it turns out that there are target functions for

which linear codes are optimal (i.e., capacity achieving) as shown in Theorem 3.5.7, while

for certain other reducible target functions, nonlinear codes might provide a strictly larger

achievable computing rate compared to linear codes.

Remark 3.4.13. It is possible for a network N to have a reducible target function f but

satisfy Clin(N , f) = Crout(N , f) since the network topology may not allow coding to exploit the

structure of the target function to obtain a capacity gain. For example, the 3-node network in

Figure 3.4 with f(x1, x2) = x1 + x2 and finite field alphabet A has

Clin(N , f) = Crout(N , f) = 1.



54

σ1 σ2ρ

Figure 3.4: A network where there is no benefit to using linear coding over routing for

computing f .

Theorem 3.4.11 shows that for every non-injective, non-reducible target function, some

network has a nonlinear computing gain over linear coding, and Theorem 3.4.12 shows that

for every reducible (hence non-injective) target function, some network has a linear computing

gain over routing. The following theorem shows that for some reducible target function, some

network has both of these linear and nonlinear computing gains.

Theorem 3.4.14. There exists a network N and a reducible target function f such that:

Ccod(N , f) > Clin(N , f) > Crout(N , f) .

Proof. Let N denote the network N2,3 shown in Figure 3.3 with s = 3, alphabet A =, and let

f be the target function in Example 3.2.2. The routing capacity is given by

Crout(N , f) = 1/3. [from (3.4)] (3.24)

Let k = n = 1. Assume that the sources send their respective messages to node v. The target

function f can then be computed at v and sent to the receiver. Hence, k/n = 1 is an achievable

computing rate and thus

Ccod(N , f) ≥ 1. (3.25)

Now consider any (k, n) linear code that computes f in N . Such a linear code immediately

implies a (k, n) linear code that computes the target function g(x1, x2) = x1x2 in network N2,2

as follows. From the (k, n) linear code that computes f in N , we get a 3k × n matrix M such

that the node v in network N computes
(

α(σ1) α(σ2) α(σ3)
)

M

and the decoding function computes f from the resulting vector. Now, in N2,2, we let the node

v compute
(

α(σ1) 0 α(σ2)
)

M

and send it to the receiver. The receiver can compute the function g from the received n-

dimensional vector using the relation g(x1, x2) = f(x1, 0, x2). Using the fact that the function

g is not reducible (in fact, it is semi-injective),

k

n
≤ Clin(N2,2, g)

= Crout(N2,2, g) [from Theorem 3.4.8]

= 1/2. [from (3.4)]
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Consequently,

Clin(N , f) ≤ 1/2. (3.26)

Now we will construct a (1, 2) linear code that computes f in N . Let k = 1, n = 2 and

M =









1 0

1 0

0 1









.

Let the sources send their respective messages to v while v computes

(

α(σ1) α(σ2) α(σ3)
)

M

and transmits the result to the receiver from which f is computable. Since the above code

achieves a computing rate of 1/2, combined with (3.26), we get

Clin(N , f) = 1/2. (3.27)

The claim of the theorem now follows from (3.24), (3.25), and (3.27).
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3.5 Computing linear target functions

We have previously shown that for reducible target functions there may be a computing

capacity gain for using linear codes over routing. In this section, we show that for a special

subclass of reducible target functions, namely linear target functions6 over finite fields, linear

network codes achieve the full (nonlinear) computing capacity. We now describe a special class

of linear codes over finite fields that suffice for computing linear target functions over finite

fields at the maximum possible rate.

Throughout this section, let N be a network and let k, n, and c be positive integers

such that k/n = c. Each k symbol message vector generated by a source σ ∈ S can be viewed

as a c-dimensional vector

α(σ) = (α(σ)1 , α(σ)2 , . . . , α(σ)c) ∈

where α(σ)i ∈ for each i. Likewise, the decoder ψ generates a vector of k symbols from , which

can be viewed as a c-dimensional vector of symbols from . For each e ∈ E , the edge vector ze

is viewed as an element of .

For every node u ∈ V −ρ, and every out-edge e ∈ Eo(u), we choose an encoding function

h(e) whose output is:






















∑

ê∈Ei(u)

γ
(e)
ê zê +

c
∑

j=1

β
(e)
j α(u)j if u ∈ S

∑

ê∈Ei(u)

γ
(e)
ê zê otherwise

(3.28)

for some γ(e)
ê , β

(e)
j ∈ and we use a decoding function ψ whose j-th component output ψj is:

∑

e∈Ei(ρ)

δ
(e)
j ze for all j ∈ {1, 2, . . . , c} (3.29)

for certain δ
(e)
j ∈. Here we view each h(e) as a function of the in-edges to e and the source

messages generated by u and we view ψ as a function of the inputs to the receiver. The chosen

encoder and decoder are seen to be linear.

Let us denote the edges in E by e1, e2, . . . , e|E|. For each source σ and each edge

ej ∈ Eo(σ), let x(ej)
1 , . . . , x

(ej)
c be variables, and for each ej ∈ Ei(ρ), let w(ej)

1 , . . . , w
(ej)
c be

variables. For every ei, ej ∈ E such that head(ei) = tail(ej), let y(ej)
ei be a variable. Let x, y, w

be vectors containing all the variables x(ej)
i , y(ej)

ei , and w(ej)
i , respectively. We will use the short

hand notation [y] to mean the ring of polynomials [· · · , y
(ej)
ei , · · · ] and similarly for [x, y, w].

Next, we define matrices Aτ (x), F (y), and B(w).

6The definition of “linear target function” was given in Table 3.2.
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(i) For each τ ∈ {1, 2, · · · , s}, let Aτ (x) be a c× |E| matrix Aτ (x), given by

(Aτ (x))i,j =







x
(ej)
i if ej ∈ Eo(στ )

0 otherwise
(3.30)

(ii) Let F (y) be a |E| × |E| matrix, given by

(F (y))i,j =







y
(ej)
ei if ei, ej ∈ E and head(ei) = tail(ej)

0 otherwise
(3.31)

(iii) Let B(w) be a c× |E| matrix, given by

(B(w))i,j =







w
(ej)
i if ej ∈ Ei(ρ)

0 otherwise.
(3.32)

Consider an (nc, n) linear code of the form in (3.28)–(3.29).

Since the graph G associated with the network is acyclic, we can assume that the edges

e1, e2, . . . are ordered such that the matrix F is strictly upper-triangular, and thus we can apply

Lemma 3.5.1. Let I denote the identity matrix of suitable dimension.

Lemma 3.5.1. (Koetter-Médard [Koetter 03, Lemma 2]) The matrix I−F (y) is invertible over

the ring [y].

Lemma 3.5.2. (Koetter-Médard[Koetter 03, Theorem 3]) For s = 1 and for all τ ∈ {1, . . . , s},

the decoder in (3.29) satisfies

ψ = α(σ1)Aτ (β)(I − F (γ))−1B(δ)t.

Lemma 3.5.3. (Alon[Alon 99, Theorem 1.2]) Let be an arbitrary field, and let g = g(x1, . . . , xm)

be a polynomial in [x1, . . . , xm]. Suppose the degree deg(g) of g is
∑m

i=1 ti, where each ti

is a nonnegative integer, and suppose the coefficient of
∏m

i=1 x
ti

i in g is nonzero. Then, if

S1, . . . , Sm are subsets of with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sm ∈ Sm so that

g(s1, . . . , sm) 6= 0.

For each τ ∈ {1, 2, . . . , s}, define the c× c matrix

Mτ (x, y, w) = Aτ (x)(I − F (y))−1B(w)t (3.33)

where the components of Mτ (x, y, w) are viewed as lying in [x, y, w].

Lemma 3.5.4. If for all τ ∈ {1, 2, . . . , s},

det (Mτ (x, y, w)) 6= 0

in the ring [x, y, w], then there exists an integer n > 0 and vectors β, γ, δ over such that for all

τ ∈ {1, 2, . . . , s} the matrix Mτ (β, γ, δ) is invertible in the ring of c×c matrices with components

in .
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Proof. The quantity

det

(

s
∏

τ=1

Mτ (x, y, w)

)

is a nonzero polynomial in [x, y, w] and therefore also in [x, y, w] for any n ≥ 1. Therefore, we

can choose n large enough such that the degree of this polynomial is less than qn. For such

an n, Lemma 3.5.3 implies there exist vectors β, γ, δ (whose components correspond to the

components of the vector variables x, y, w) over such that

det

(

s
∏

τ=1

Mτ (β, γ, δ)

)

6= 0. (3.34)

and therefore, for all τ ∈ {1, 2, . . . , s}

det (Mτ (β, γ, δ)) 6= 0.

Thus, each Mτ (β, γ, δ) is invertible.

The following lemma improves upon the upper bound of Lemma 3.2.11 in the special

case where the target function is linear over a finite field.

Lemma 3.5.5. If N is network with a linear target function f over a finite field, then

Ccod(N , f) ≤ min
C∈Λ(N )

|C| .

Proof. The same argument is used as in the proof of Lemma 3.2.11, except instead of using

RIC ,f ≥ 2, we use the fact that RIC ,f = |A| for linear target functions.

Theorem 3.5.6. If N is a network with a linear target function f over finite field , then

Clin(N , f) = min
C∈Λ(N )

|C| .

Proof. We have

Clin(N , f) ≤ Ccod(N , f)

≤ min
C∈Λ(N )

|C| . [from Lemma 3.5.5]

For a lower bound, we will show that there exists an integer n and an (nc, n) linear code that

computes f with a computing rate of c = min
C∈Λ(N )

|C|.

From Lemma 3.5.1, the matrix I−F (y) in invertible over the ring[x, y, w] and therefore

also over [x, y, w]. Since any minimum cut between the source στ and the receiver ρ has at

least c edges, it follows from [Koetter 03, Theorem 2]7 that det (Mτ (x, y, w)) 6= 0 for every

7Using the implication (1) =⇒ (3) in [Koetter 03, Theorem 2].
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τ ∈ {1, 2, . . . , s}. From Lemma 3.5.4, there exists an integer n > 0 and vectors β, γ, δ over

such that Mτ (β, γ, δ) is invertible for every τ ∈ {1, 2, . . . , s}. Since f is linear, we can write

f(u1, . . . , us) = a1u1 + · · · + asus.

For each τ ∈ {1, 2, . . . , s}, let

Âτ (β) = aτ (Mτ (β, γ, δ))−1
Aτ (β). (3.35)

If a linear code corresponding to the matrices Âτ (β), B(δ), and F (γ) is used in network N ,

then the c-dimensional vector over computed by the receiver ρ is

ψ =
s
∑

τ=1

α(στ ) Âτ (β)(I − F (γ))−1B(δ)t [from Lemma 3.5.2 and linearity]

=
s
∑

τ=1

α(στ ) aτ (Mτ (β, γ, δ))−1
Aτ (β)(I − F (γ))−1B(δ)t [from (3.35)]

=
s
∑

τ=1

aτ α(στ ) [from (3.33)]

= (f(α(σ1)1 , . . . , α(σs)1) , . . . , f(α(σ1)c , . . . , α(σs)c))

which proves that the linear code achieves a computing rate of c.

Theorem 3.5.7 below proves the optimality of linear codes for computing linear target

functions in a single-receiver network. It also shows that the computing capacity of a network

for a given target function cannot be larger than the number of network sources times the

routing computing capacity for the same target function. This bound tightens the general

bound given in Theorem 3.2.12 for the special case of linear target functions over finite fields.

Theorem 3.5.8 shows that this upper bound can be tight.

Theorem 3.5.7. If N is network with s sources and linear target function f over finite field ,

then

Clin(N , f) = Ccod(N , f) ≤ s Crout(N , f) .

Proof.

s Crout(N , f) ≥ min
C∈Λ(N )

|C| [from (3.4) and Theorem 3.2.10]

≥ Ccod(N , f) [from Lemma 3.5.5]

≥ Clin(N , f)

= min
C∈Λ(N )

|C| . [from Theorem 3.5.6]

We note that the inequality in Theorem 3.5.7 can be shown to apply to certain target

functions other than linear functions over finite fields, such as the minimum, maximum, and

arithmetic sum target functions.
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Theorem 3.5.8. For every s, if a target function f : As −→ A is linear over finite field , then

there exists a network N with s sources, such that

Clin(N , f) = s Crout(N , f) .

Proof. Let N denote the network N2,s shown in Figure 3.3. Then

Clin(N , f) = 1 [from Theorem 3.5.6]

Crout(N , f) = Crout(N ) [from Theorem 3.2.10]

= 1/s. [from (3.4)]
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3.6 The reverse butterfly network

In this section we study an example network which illustrates various concepts dis-

cussed previously in this paper and also provides some interesting additional results for network

computing.

Source

Receiver 1 Receiver 2

σ1 σ2

ρ

(a) The butterfly network (b) The reverse-butterfly network

Figure 3.5: The butterfly network and its reverse N3.

The network N3 shown in Figure 3.5(b) is called the reverse butterfly network. It has

S = {σ1, σ2}, receiver node ρ, and is obtained by reversing the direction of all the edges of the

multicast butterfly network shown in Figure 3.5(a).

Theorem 3.6.1. The routing and linear computing capacities of the reverse butterfly net-

work N3 with alphabet A = {0, 1, . . . , q − 1} and arithmetic sum target function f : A2 −→

{0, 1, . . . , 2(q − 1)} are

Crout(N3, f) = Clin(N3, f) = 1.

Proof. We have

Clin(N3, f) = Crout(N3) [from Theorem 3.4.8]

= 1. [from (3.4)]

Remark 3.6.2. The arithmetic sum target function can be computed in the reverse butterfly

network at a computing rate of 1 using only routing (by sending σ1 down the left side and σ2

down the right side of the graph). Combined with Theorem 3.6.1, it follows that the routing

computing capacity is equal to 1 for all q ≥ 2.
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Theorem 3.6.3. The computing capacity of the reverse butterfly network N3 with alphabet

A = {0, 1, . . . , q − 1} and arithmetic sum target function f : A2 −→ {0, 1, . . . , 2(q − 1)} is

Ccod(N3, f) =
2

logq (2q − 1)
.

Remark 3.6.4. The computing capacity Ccod(N3, f) obtained in Theorem 3.6.3 is a function

of the coding alphabet A (i.e. the domain of the target function f). In contrast, for ordinary

network coding (i.e. when the target function is the identity map), the coding capacity and

routing capacity are known to be independent of the coding alphabet used [Cannons 06]. For

the reverse butterfly network, if, for example, q = 2, then Ccod(N3, f) is approximately equal

to 1.26 and increases asymptotically to 2 as q → ∞.

Remark 3.6.5. The ratio of the coding capacity to the routing capacity for the multicast

butterfly network with two messages was computed in [Cannons 06] to be 4/3 (i.e. coding

provides a gain of about 33%). The corresponding ratio for the reverse butterfly network

increases as a function of q from approximately 1.26 (i.e. 26%) when q = 2 to 2 (i.e. 100%)

when q = ∞. Furthermore, in contrast to the multicast butterfly network, where the coding

capacity is equal to the linear coding capacity, in the reverse butterfly network the computing

capacity is strictly greater than the linear computing capacity.

Remark 3.6.6. Recall that capacity is defined as the supremum of a set of rational num-

bers k/n such that a (k, n) code that computes a target function exists. It was pointed out

in [Cannons 06] that it remains an open question whether the coding capacity of a network

can be irrational. Our Theorem 3.6.3 demonstrates that the computing capacity of a network

(e.g. the reverse butterfly network) with unit capacity links can be irrational when the target

function to be computed is the arithmetic sum target function of the source messages.

The following lemma is used to prove Theorem 3.6.3.

Lemma 3.6.7. The computing capacity of the reverse butterfly network N3 with A = {0, 1, . . . , q−

1} and the mod q sum target function f is

Ccod(N3, f) = 2.

Proof. The upper bound of 2 on Ccod(N3, f) follows from [Appuswamy 11c, Theorem II.1]. To

establish the achievability part, let k = 2 and n = 1. Consider the code shown in Figure 3.6,

where ‘⊕’ indicates the mod q sum. The receiver node ρ gets α(σ1)1 ⊕ α(σ2)1 and α(σ1)1 ⊕

α(σ2)1 ⊕ α(σ1)2 ⊕ α(σ2)2 on its in-edges, from which it can compute α(σ1)2 ⊕ α(σ2)2. This

code achieves a rate of 2.

Proof of Theorem 3.6.3: We have

Ccod(N , f) ≤ 2/ logq(2q − 1). [from [Appuswamy 11c, Theorem II.1]]
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σ1 σ2

ρ

x
1 ⊕

x
2

y 2

x
1

⊕
x

2
⊕

y
2

x
1

y
1

x 1
⊕

x 2
⊕

y 1
⊕

y 2
x
2 ⊕

y2

Figure 3.6: The reverse butterfly network with a code that computes the mod q sum target

function.

To establish the lower bound, we use the fact the that arithmetic sum of two elements from

A = {0, 1, . . . , q − 1} is equal to their mod 2q − 1 sum. Let the reverse butterfly network have

alphabet Â = {0, 1, . . . , 2(q − 1)}. From Lemma 3.6.7 (with alphabet Â), the mod 2q − 1 sum

target function can be computed in N at rate 2. Indeed for every n ≥ 1, there exists a (2n, n)

network code that computes the mod 2q−1 sum target function at rate 2. So for the remainder

of this proof, let k = 2n. Furthermore, every such code using Â can be “simulated” using A by

a corresponding (2n,
⌈

n logq (2q − 1)
⌉

) code for computing the mod 2q− 1 sum target function,

as follows. Let n′ be the smallest integer such that qn′

≥ (2q − 1)n, i.e., n′ =
⌈

n logq (2q − 1)
⌉

.

Let g : Ân → An′

be an injection (which exists since qn′

≥ (2q − 1)n) and let the function g−1

denote the inverse of g on it’s image g(Â). Let x(1), x(2) denote the first and last, respectively,

halves of the message vector α(σ1) ∈ A2n, where we view x(1) and x(2) as lying in Ân (since

A ⊆ Â). The corresponding vectors y(1), y(2) for the source σ2 are similarly defined.

Figure 3.7 illustrates a (2n, n′) code for network N using alphabet A where ‘⊕’ denotes

the mod 2q− 1 sum. Each of the nodes in N converts each of the received vectors over A into

a vector over Â using the function g−1, then performs coding in Figure 3.6 over Â, and finally

converts the result back to A. Similarly, the receiver node T computes the component-wise
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arithmetic sum of the source message vectors α(σ1) and α(σ2) using

α(σ1) + α(σ2)

=
(

g−1(g(x(1) ⊕ x(2) ⊕ y(1) ⊕ y(2))) ⊖ g−1(g(x(2) ⊕ y(2))),

g−1(g(x(2) ⊕ y(2)))
)

= (x(1) ⊕ y(1), x(2) ⊕ y(2)).

σ1 σ2

ρ

g(x (1)
⊕

x (2)) g(
y
(2

) )
g
(x

(1
) )

g
(x

(1
)
⊕

x
(2

)
⊕

y
(2

) )

g
(y

(1
) )

g(x (2)
⊕

y (2))
g(

x
(1

) ⊕
x
(2

) ⊕
y
(1

) ⊕
y
(2

) )

Figure 3.7: The reverse butterfly network with a code that computes the arithmetic sum

target function. ‘⊕’ denotes mod 2q − 1 addition.

For any n ≥ 1, the above code computes the arithmetic sum target function in N at a

rate of
k

n′
=

2n
⌈

n logq (2q − 1)
⌉ .

Thus for any ǫ > 0, by choosing n large enough we obtain a code that computes the arithmetic

sum target function, and which achieves a computing rate of at least

2
logq (2q − 1)

− ǫ.

This chapter, in full, is a reprint of the material as it appears in: R. Appuswamy, M.

Franceschetti, N. Karamchandani, and K. Zeger, “Linear Codes, Target Function Classes, and
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Network Computing Capacity,” submitted to the IEEE Transactions on Information Theory,

May 2011. The dissertation author was the primary investigator of this paper.



Chapter 4

Computing linear functions by

linear coding over networks

4.1 Introduction

In many practical networks, including sensor networks and vehicular networks, receivers

demand a function of the messages generated by the sources that are distributed across the

network rather than the generated messages. This situation is studied in the framework of

network computing [Appuswamy 11c, Ramamoorthy 08, Rai 09, Ma 08, Nazer 07]. The classi-

cal network coding model of Ahlswede, Cai, Li, and Yeung [Ahlswede 00] can be viewed as a

the special case of network computing in which the function to be computed at the receivers

corresponds to a subset of the source messages and communication occurs over a network with

noiseless links.

In the same noiseless set up of [Ahlswede 00], we consider the scenario in which a set

of source nodes generate messages over a finite field and a single receiver node computes a

linear function of these messages. We ask whether this linear function can be computed by

performing linear coding operations at the intermediate nodes.

In multiple-receiver networks, if each receiver node demands a subset of the source

messages (which is an example of a linear function), then Dougherty, Freiling, and Zeger

[Dougherty 05] showed that linear codes are not sufficient to recover the source messages. Sim-

ilarly, if each receiver node demands the sum of the source messages, then Ray and Dei [Rai 09]

showed that linear codes are also not sufficient to recover the source messages. In contrast, in

single-receiver networks linear codes are sufficient for both the above problems and a simple

cut-based condition can be used to test whether a linear solution exists.

Our contribution is as follows. We extend above results investigating if a similar cut-

based condition guarantees the existence of a linear solution when the receiver node demands

66
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an arbitrary linear function of the source messages. We identify two classes of functions, one

for which the cut-based condition is sufficient for solvability and the other for which it is not.

These classes are complements of each other when the source messages are over the binary

field. Along the way, we develop an algebraic framework to study linear codes and provide an

algebraic condition to test whether a linear solution exists, similar to the one given by Koetter

and Médard [Koetter 03] for classical network coding.

The paper is organized as follows. We formally introduce the network computation

model in Section 4.1.1. In Section 4.2 we develop the necessary algebraic tools to study linear

codes and introduce the cut-based condition. In Section 4.3, we show the main results for the

two classes of functions.

4.1.1 Network model and preliminaries

In this paper, a network N consists of a finite, directed acyclic multigraph G = (V, E),

a set of source nodes S = {σ1, . . . , σs} ⊆ V, and a receiver ρ ∈ V. Such a network is denoted

by N = (G,S, ρ). We use the word “graph" to mean a multigraph, and “network" to mean a

single-receiver network. We assume that ρ /∈ S, and that the graph G contains a directed path

from every node in V to the receiver ρ. For each node u ∈ V, let Ei(u) and Eo(u) denote the

in-edges and out-edges of u respectively. We also assume (without loss of generality) that if

a network node has no in-edges, then it is a source node. We use s to denote the number of

sources |S| in the network.

An alphabet A is a nonzero finite field. For any positive integer m, any vector x ∈ Am,

and any i, let xi denote the i-th component of x. For any index set K = {i1, i2, . . . , iq} ⊆

{1, 2, . . . ,m} with i1 < i2 < . . . < iq, let xK denote the vector (xi1
, xi2

, . . . , xiq
) ∈ A|K|.

The network computing problem consists of a network N , a source alphabet A, and a

target function

f : As −→ B

where B is the decoding alphabet. A target function f is linear if there exists a matrix T over

A such that

f(x) = Txt, ∀ x ∈ As

where ‘t’ denotes matrix transposition. For linear target functions the decoding alphabet is of

the form Al, with 1 ≤ l ≤ s. Without loss of generality, we assume that T is full rank (over

A) and has no zero columns. For example, if T is the s × s identity matrix, then the receiver

demands the complete set of source messages, and this corresponds to the classical network

coding problem. On the other hand, if T is the row vector of 1’s, then the receiver demands a

sum (over A) of the source values. Let n be a positive integer. Given a network N with source

set S and alphabet A, a message generator is a mapping

α : S −→ An.
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For each source σi ∈ S, α(σi) is called a message vector and it can be viewed as an element of

Fqn (rather than as a vector).

Definition 4.1.1. A linear network code in a network N consists of the following:

(i) Every edge e ∈ E carries an element of Fqn and this element is denoted by ze. For

any node v ∈ V − ρ and any out-edge e ∈ Eo(v), the network code specifies an encoding

function h(e) of the form:

h(e) =



















x1,eα(u) +
∑

ê∈Ei(u)

xê,ezê if u ∈ S

∑

ê∈Ei(u)

xê,ezê otherwise
(4.1)

where xê,e, x1,e ∈ Fqn for all ê ∈ Ei(u).

(ii) The decoding function ψ outputs a vector of length l whose j-th component is of the form:

∑

e∈Ei(ρ)

xe,jze (4.2)

where xe,j ∈ Fqn for all e ∈ Ei(ρ). The arithmetic in (4.1) and (4.2) is performed over

Fqn .

In this paper, by a network code, we always mean a linear network code. In the

literature, the class of network codes we define here is referred to as scalar linear codes. These

codes were introduced and studied in [Koetter 03]. A more general class of linear codes over

Fqn were defined and studied in [Dougherty 05, Dougherty 08].

Depending on the context, we may view ze as a vector of length-n over Fq or as an

element of Fqn . Without explicit mention, we use the fact that the addition of a, b ∈ Fqn

as elements of a finite field coincides with their sum as elements of a vector space over Fq.

Furthermore, we also view Fq as a subfield of Fqn without explicitly stating the inclusion map.

Let ze1
, ze2

, . . . , ze|Ei(ρ)|
denote the vectors carried by the in-edges of the receiver.

Definition 4.1.2. A linear network code over Fqn is called a linear solution for computing f in

N (or simply a linear solution if f and N are clear from the context) if the decoding function

ψ is such that for every message generator α,

ψ
(

ze1
, · · · , ze|Ei(ρ)|

)

j
= f

(

α(σ1)j , · · · , α(σs)j

)

for all j ∈ {1, 2, . . . , n}. (4.3)

Remark 4.1.3. Each source generates n symbols over Fq (viewing Fqn as a vector space over

Fq) and the decoder computes the target function f for each set of source symbols.

A set of edges C ⊆ E is said to separate sources σm1
, . . . , σmd

from the receiver ρ, if for

each i ∈ {1, 2, . . . , d}, every path from σmi
to ρ contains at least one edge in C. A set C ∈ E is
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said to be a cut if it separates at least one source from the receiver. Let Λ(N ) denote the set

of all cuts in network N .

For any matrix T ∈ F
l×s
q , let Ti denote its i-th column. For an index set K ∈

{1, 2, . . . , s}, let TK denote the l × |K| submatrix of T obtained by choosing the columns

of T indexed by K. If C is a cut in a network N , we define the set

KC = {i ∈ S : C disconnects σi from ρ}.

Finally, for any network N and matrix T , we define

min-cut(N , T ) = min
C∈Λ(N )

|C|

rank(TKC
)
. (4.4)

4.2 Algebraic framework

4.2.1 An algebraic test for the existence of a linear solution

Linear solvability for the classical network coding problem was shown to be equivalent

to the existence of a non-empty algebraic variety in [Koetter 03]. In the following, we present

an analogous characterization for computing linear functions, providing an algebraic test to

determine whether a linear solution for computing a linear function exists. The reverse problem

of constructing a multiple-receiver network coding (respectively, network computing) problem

given an arbitrary set of polynomials, which is solvable if and only if the corresponding set of

polynomials is simultaneously solvable is considered in reference [Dougherty 08] (respectively,

[Rai 09]).

We begin by giving some definitions and stating a technical lemma, followed by the

main theorem below.

For any edge e = (u, v) ∈ E , let head(e) = v and tail(e) = u. Associated with a linear

code over Fqn , we define the following three types of matrices:

• For each source στ ∈ S, define the 1 × |E| matrix Aτ as follows:

(Aτ )1,j =







x1,ej
if ej ∈ Eo(σt)

0 otherwise.
(4.5)

• Similarly define the l × |E| matrix B as follows:

Bi,j =







xej ,i if ej ∈ Ei(ρ)

0 otherwise.
(4.6)

• Define the |E| × |E| matrix F as follows:

Fi,j =







xei,ej
if head(ei) = tail(ej)

0 otherwise.
(4.7)



70

Since the graph G associated with the network is acyclic, we can assume that the edges e1, e2, . . .

are ordered such that the matrix F is strictly upper-triangular. Let I denote the identity matrix

of suitable dimension. Consider a network N with alphabet Fq and consider a linear code over

Fqn with associated matrices A1, A2, . . . , As, B and F . For every τ ∈ {1, 2, . . . , s}, define the

1 × l matrix

Mτ = Aτ (I − F )−1Bt. (4.8)

Now let xA be a vector containing all the non-zero entries of the matrices Aτ , τ = 1, 2, · · · , s,

and let xB (respectively, xF ) be a vector containing all the non-zero entries of the matrix B

(respectively, F ).

By abusing notation, depending on the context we may view xei,ej
, xi,ej

, xei,j as

elements of Fqn or as indeterminates. Thus, each of the matrices defined above may either be a

matrix over Fqn or a matrix over the polynomial ring R = Fqn [xA, xF , xB ]. The context should

make it clear which of these two notions is being referred to at any given point.

Lemma 4.2.1. The following two statements hold:

1. The matrix I − F has a polynomial inverse with coefficients in Fqn [xF ], the ring of poly-

nomials in the variables constituting xF .

2. The decoding function can be written as

s
∑

τ=1

α(στ )Aτ (I − F )−1Bt

Proof. The first assertion is a restatement of [Koetter 03, Lemma 2] and the second assertion

follows from [Koetter 03, Theorem 3].

Definition 4.2.2. Let R be a polynomial ring. The ideal generated by a subset X ⊂ R and

denoted by 〈X〉 is the smallest ideal in R containing X.

Let N be a network with alphabet Fq. Let R = Fq[xA, xF , xB ] and T ∈ F
l×s
q . Consider

a linear network code for computing the linear function corresponding to T in N and the

associated matrices Mτ , τ = 1, 2, . . . , s over R and define

Zτ = (Tτ )t −Mτ for τ = 1, 2, . . . , s.

Let J denote the ideal generated by the elements of Zτ ∈ R1×l, τ = 1, 2, . . . , s in the ring R.

More formally, let

J = 〈{{(Zτ )1 , (Zτ )2 , . . . , (Zτ )l} : τ = 1, 2, . . . , s}〉 .

The polynomials (Zi)j are referred to as the generating polynomials of the ideal J . We de-

note the Groböner basis of an ideal generated by subset X ⊂ R of a polynomial ring R by

G(X). The following theorem is a consequence of Hilbert Nullstellensatz (see [Hungerford 97,

Lemma VIII.7.2] and the remark after [Hungerford 97, Proposition VIII.7.4]).
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Theorem 4.2.3. Consider a network N with alphabet Fq and the linear target function f

corresponding to a matrix T ∈ Al×s. There exists an n > 0 and a linear solution over Fqn for

computing f in N if and only if G(J) 6= {1}.

Proof. From Lemma 4.2.1, the vector computed at the receiver can be written as

ψ
(

ze1
, · · · , ze|Ei(ρ)|

)

=
(

M t
1 M t

2 · · · M t
s

)















α(σ1)

α(σ2)
...

α(σs)















. (4.9)

On the other hand, to compute the linear function corresponding to T , the decoding function

must satisfy

ψ
(

ze1
, · · · , ze|Ei(ρ)|

)

= T















α(σ1)

α(σ2)
...

α(σs)















. [from (4.3)] (4.10)

It follows that the encoding coefficients in a linear solution must be such that

(Tτ )t −Mτ = 0 for τ = 1, 2, . . . , s. [from (4.9) and (4.10)] (4.11)

If we view the coding coefficients as variables, then it follows that a solution must simulta-

neously solve the generating polynomials of the corresponding ideal J . By [Hungerford 97,

Lemma VIII.7.2], such a solution exists over the algebraic closure F̄q of Fq if and only if

J 6= Fq[xA, xF , xB ]. Furthermore, J 6= Fq[xA, xF , xB ] if and only if G(J) 6= {1}. Moreover, a

solution exists over the algebraic closure F̄q of Fq if and only if it exists over some extension

field Fqn of Fq and the proof is now complete.

4.2.2 Minimum cut condition

It is clear that the set of linear functions that can be solved in a network depends on the

network topology. It is easily seen that a linear solution for computing a linear target function

corresponding to T ∈ F
l×s
q exists only if the network N is such that for every C ∈ Λ(N ), the

value of the cut |C| is at least the rank of the submatrix TKC
(recall that KC is the index set of

the sources separated by the cut C). This observation is stated in the following lemma which

is an immediate consequence of the cut-based bound in [Appuswamy 11c, Theorem 2.1].

Lemma 4.2.4. For a network N , a necessary condition for the existence of a linear solution

for computing the target function corresponding to T ∈ F
l×s
q is

min-cut(N , T ) ≥ 1.
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We now consider two special cases. First, consider the case in which the receiver

demands all the source messages. The corresponding T is given by the s× s identity matrix I

and the condition min-cut(N , T ) ≥ 1 reduces to

|C|

|KC |
≥ 1 ∀ C ∈ Λ(N )

i.e., the number of edges in the cut be at least equal to the number of sources separated by the

cut. Second, consider the case in which the receiver demands the sum of the source messages.

The corresponding matrix T is an 1×s row vector and the requirement that min-cut(N , T ) ≥ 1

reduces to

|C| ≥ 1 ∀ C ∈ Λ(N )

i.e., all the sources have a directed path to the receiver. For both of the above cases, the cut

condition in Lemma 4.2.4 is also sufficient for the existence of a solution. This is shown in

[Appuswamy 11c, Theorem 3.1 and Theorem 3.2] and is reported in the following Lemma:

Lemma 4.2.5. Let l ∈ {1, s}. For a network N with the linear target function f corresponding

to a matrix T ∈ Al×s, a linear solution exists if and only if min-cut(N , T ) ≥ 1.

The focus in the rest of the paper is to extend above results to the case l /∈ {1, s} by

using the algebraic test of Theorem 4.2.3.

4.3 Computing linear functions

In the following, we first define an equivalence relation among matrices and then use it

to identify a set of functions that are linearly solvable in every network satisfying the condition

min-cut(N , T ) ≥ 1. We then construct a linear function outside this set, and a corresponding

network with min-cut(N , T ) ≥ 1, on which such a function cannot be computed with linear

codes. Finally, we use this example as a building block to identify a set of linear functions for

which there exist networks satisfying the min-cut condition and on which these functions are

not solvable.

Notice that for a linear function with matrix T ∈ F
l×s
q , each column of T corresponds to

a single source node. Hence, for every s× s permutation matrix Π, computing Tx is equivalent

to computing TΠx after appropriately renaming the source nodes. Furthermore, for every l× l

full rank matrix Q over Fq, computing Tx is equivalent to computing QTx. These observations

motivate the following definition:

Definition 4.3.1. Let T ∈ F
l×s
2 and T ′ ∈ F

l×s
2 . We say T ∼ T ′ if there exist an invertible

matrix Q of size l × l and a permutation matrix Π of size s × s such that T = QT ′Π, and

T ≁ T ′ if such Q and Π do not exist.
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Since T is assumed to be a full rank matrix, Π can be chosen such that the first l

columns of TΠ are linearly independent. Let T̂ denote the first l columns of TΠ. By choosing

Q = T̂−1, we have T ∼ QTΠ = (I P ) where P is an l × s − l matrix. So for an arbitrary

linear target function f and an associated matrix T , there exists an l × s − l matrix P such

that T ∼ (I P ). Without loss of generality, we assume that each column of T associated with

a target function is non-zero.

Theorem 4.3.2. Consider a network N with a linear target function corresponding to a matrix

T ∈ F
(s−1)×s
q (i.e., l = s− 1). If

T ∼ (I u)

where u is a column vector of units, then a necessary and sufficient condition for the existence

of a linear solution is min-cut(N , T ) ≥ 1.

Proof. Let T = (I u). The ‘necessary’ part is clear from Lemma 4.2.4. We now focus on the

‘sufficiency’ part. Notice that for each τ = 1, 2, . . . , s, the matrix Mτ (computed as in (4.8))

is a row vector of length s − 1. Stack these s row vectors to form an s × (s − 1) matrix M as

follows,

M =















M1

M2

...

Ms















.

Let M(i) denote the (s− 1) × (s− 1) submatrix of M obtained by deleting its i-th row.

Claim 1: The matrix
s
∏

i=1

M(i)

has a non-zero determinant over the ring R = Fq[xA, xF , xB ].

Claim 2: For each i = 1, 2, . . . , s− 1, we have
(

As(I − F )−1BtM−1
(s)

)

i
6= 0.

By Claim 1 and the sparse zeros lemma [Koetter 03], [Schwartz 80], it follows that that there

exists some n > 0 such that the variables xe′,e, xe,l can be assigned values over Fqn so that the

s× (s− 1) matrix

M =















A1(I − F )−1Bt

A2(I − F )−1Bt

...

As(I − F )−1Bt















is such that any of its (s − 1) × (s − 1) submatrices M(i), i = 1, 2, . . . , s obtained by deleting

the i-th row in M , is full rank over Fqn . Define two s − 1 × s − 1 diagonal matrices U and D

such that for i ∈ {1, 2, · · · , s− 1}

Ui,i = ui

Di,i =
(

As(I − F )−1BtM−1
(s)

)

i
. (4.12)
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Now define the following matrices over Fqn :

B̄ = D−1U(M t
(s))

−1B

Āi = u−1
i

(

As(I − F )−1B̄t
)

i
Ai i = 1, 2, . . . , s− 1 (4.13)

Ās = As.

By by Claim 2 it follows that D−1 exists. If the matrices Āτ , F , and B̄ define a linear network

code, then by Lemma 4.2.1, the vector received by ρ can be written as,

M̄ t















α(σ1)

α(σ2)
...

α(σs)















(4.14)

where,

M̄ =















Ā1(I − F )−1B̄t

Ā2(I − F )−1B̄t

...

Ās(I − F )−1B̄t















. (4.15)
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We have














A1(I − F )−1B̄t

A2(I − F )−1B̄t

...

As(I − F )−1B̄t















=















A1(I − F )−1(D−1U(M t
(s))

−1B)t

A2(I − F )−1(D−1U(M t
(s))

−1B)t

...

As(I − F )−1(D−1U(M t
(s))

−1B)t















[from B̄ = D−1U(M t
(s))

−1B]

=















A1(I − F )−1BtM−1
(s)

A2(I − F )−1BtM−1
(s)

...

As(I − F )−1BtM−1
(s)















D−1U [from
(

(M t
(s))

−1
)t

= M−1
(s) ]

=

(

I

As(I − F )−1BtM−1
(s)

)

D−1U [from construction of M(s)]

(4.16)














Ā1(I − F )−1B̄t

Ā2(I − F )−1B̄t

...

Ās(I − F )−1B̄t















=

(

U−1D

As(I − F )−1BtM−1
(s)

)

D−1U [from (4.13) and (4.16) ]

=

(

U−1

1t

)

U [from (4.12)]

=

(

I

1tU

)

=

(

I

ut

)

(4.17)

M̄ t =
(

I u
)

. [from (4.15) and (4.17)] (4.18)

By substituting (4.18) in (4.14), we conclude that the receiver computes the desired linear

function by employing the network code defined by the encoding matrices {Āi, i = 1, 2, . . . , s},

B̄, and F .

The proof of the theorem is now complete for the case when T = (I u). If T ∼ (I u),

then there exists a full-rank matrix Q and a column vector u′ of non-zero elements over Fq such

that

T = Q (I u′). [from From Lemma 4.4.1 in the Appendix]

Since a full-rank linear operator preserves linear-independence among vectors, for every such

full-rank matrix Q, we have

rank(TKC
) = rank

(

(Q−1T )KC

)

∀ C ∈ Λ(N ). (4.19)



76

Equation (4.19) implies that min-cut(N , T ) = min-cut
(

N , Q−1T
)

. Since Q−1T = (I u′), from

the first part of the proof, there exist an n > 0 and coding matrices Aτ , τ = 1, 2, · · · , s, F ,

and B over Fqn such that the receiver can compute the linear target function corresponding

to (I u′) if and only if min-cut(N , T ) ≥ 1. It immediately follows that by utilizing a code

corresponding to the coding matrices Aτ , τ = 1, 2, · · · , s, F , and QB, the receiver can compute

the target function corresponding to Q(I u′) = T .

All that remains to be done is to provide proofs of claims 1 and 2.

Proof of Claim 1: If a cut C is such that |KC | ≤ s− 1, then

|C| ≥ rank(TKC
) [from min-cut(N , T ) ≥ 1 and (4.4)]

= |KC | . [from T = (I u)]

Thus by [Appuswamy 11c, Theorem 3.1], there exists a routing solution to compute the identity

function of the sources {σi, i ∈ KC} at the receiver. Let |KC | = s−1 and let KC = {1, 2, . . . , j−

1, j+1, . . . , s} for some (arbitrary) j. By Lemma 4.2.1, after fixing α(σj) = 0, the vector received

by ρ can be written as

M t
(j)

































α(σ1)

α(σ2)
...

α(σj−1)

α(σj+1)
...

α(σs)

































.

The existence of a routing solution for computing the identity function guarantees that there

exist xe′,e, xe,l ∈ {0, 1} such that the matrix M(j) has a non-zero determinant over Fq. It

follows that the determinant of M(j) is non-zero over Fq[xA, xF , xB ]. Since j ∈ {1, 2, . . . , s} was

arbitrary in the above argument, it follows that the determinant of each M(j), j = 1, 2, . . . , s is

non-zero over Fq[xA, xF , xB ] and the claim follows.

Proof of Claim 2: We have

M M−1
(s) =















A1(I − F )−1Bt

A2(I − F )−1Bt

...

As(I − F )−1Bt















M−1
(s)

(a)
=

(

I

As(I − F )−1BtM−1
(s)

)

(4.20)

where, (a) follows from the definition of M−1
(s) . By contraction, assume that there exists an
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i ∈ {1, 2, . . . , s− 1} such that
(

As(I − F )−1B̄t
)

i
= 0. It then follows that

As(I − F )−1BtM−1
(s) =

s−2
∑

j=1

(

As(I − F )−1BtM−1
(s)

)

ij

(Aij
(I − F )−1BtM−1

(s) ) [from (4.20)]

(4.21)

for some choice of ij ∈ {1, 2, . . . , s− 1}, j = 1, 2, . . . , s− 2 and

(

As(I − F )−1Bt −
s−2
∑

j=1

(

As(I − F )−1BtM−1
(s)

)

ij

(Aij
(I − F )−1B)t

)

M−1
(s) = 0 [from (4.21)]

(

As(I − F )−1Bt −
s−2
∑

j=1

(

As(I − F )−1BtM−1
(s)

)

ij

(Aij
(I − F )−1B)t

)

= 0. (4.22)

Equation (4.22) implies a linear dependence among s−1 rows of the matrix M . This contradicts

the fact that for each i = 1, 2, . . . , s, M(i) is full rank. Thus
(

As(I − F )−1BtM−1
(s)

)

i
6= 0 for

i = 1, 2, . . . , s− 1 and the claim follows.

Remark 4.3.3. We provide the following communication-theoretic interpretation of our method

of proof above. We may view the computation problem as a MIMO (multiple input multiple

output) channel where the multiple input is given by the vector of symbols generated by the

sources, the output is the vector decoded by the receiver, and the channel is given by the net-

work topology and the network code. Our objective is to choose a channel to guarantee the

desired output, by way of code design subject to the constraints imposed by network topology.

The channel gain from source σi to the receiver is given by the vector Mi of length s− 1. The

first part of the proof utilizes the sparse zeros lemma to establish that there exists a choice of

channels such that the channel between every set of s− 1 sources and the receiver is invertible.

This is similar to the proof of the multicast theorem in [Koetter 03]. In the second part of

the proof, we recognize that the interference from different sources must also be “aligned” at

the output for the receiver to be able to compute the desired function. Accordingly, we have

modified the code construction to provide such alignment.

We now show the existence of a linear function that cannot be computed on a network

satisfying the min-cut condition. This network will then be used as a building block to show

an analogous result for a larger class of functions. Let T1 denote the matrix
(

1 0 1

0 1 0

)

(4.23)

and let f1 denote the corresponding linear function. It is possible to show with some algebra

that T1 6∼ (I u), for any column vector u of units, so that the conclusion of Theorem 4.3.2

does not hold. Indeed, for the function f1 the opposite conclusion is true, namely f1 cannot be

computed over N1 using linear codes. This is shown by the following Lemma.
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Lemma 4.3.4. Let N1 be the network shown in Figure 4.1 with alphabet Fq. We have

1. min-cut(N1, T1) = 1.

2. There does not exist a linear solution for computing f1 in N1.

σ2

σ1 σ3

ρ

e1 e2

e3 e4

Figure 4.1: Network on which there is no linear solution for computing f1.

Proof. That min-cut(N1, T1) = 1 is easily verified by considering the cut C = {e3, e4} which

attains the minimum. We now proceed to show, using Theorem 4.2.3, that a linear solution

does not exist.

We may assume, without loss of generality, that the node σ2 sends its message directly

to nodes σ1 and σ3 (i.e., x1,e1
= x1,e2

= 1). The matrices Z1, Z2, and Z3 over R can then be

written as

(T1)t −M1 =
(

(1 − x1,e3
xe3,1) (0 − x1,e3

xe3,2)
)

(T2)t −M2 =

(

0 − xe1,e3
xe3,1 − xe2,e4

xe4,1

1 − xe1,e3
xe3,2 − xe2,e4

xe4,2

)t

(T3)t −M3 =
(

(1 − x1,e4
xe4,1) (0 − x1,e4

xe4,2)
)

.

Consequently, the ideal J is given by

J =
〈

(1 − x1,e3
xe3,1), (0 − x1,e3

xe3,2),

(0 − xe1,e3
xe3,1 − xe2,e4

xe4,1),

(1 − xe1,e3
xe3,2 − xe2,e4

xe4,2),

(1 − x1,e4
xe4,1), (0 − x1,e4

xe4,2)
〉

.
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We have

1 = (1 − xe1,e3
xe3,2 − xe2,e4

xe4,2)

+ xe1,e3
xe3,2(1 − x1,e3

xe3,1)

− xe1,e3
xe3,1(0 − x1,e3

xe3,2)

+ xe2,e4
xe4,2(1 − x1,e4

xe4,1)

− xe2,e4
xe4,1(0 − x1,e4

xe4,2) ∈ J.

Thus, it follows that G(J) = {1}. By Theorem 4.2.3, a linear solution does not exist for

computing f1 in N1.

We now identify a much larger class of linear functions for which there exist networks

satisfying the min-cut condition but for which linear solutions do not exist. Let P be an l×s− l

matrix with at least one zero element and T ∼ (I P ). For each T in this equivalence class we

show that there exist a network N that does not have a solution for computing the linear target

function corresponding to T but satisfies the cut condition in Lemma 4.2.4. The main idea of

the proof is to establish that a solution for computing such a function in network N implies a

solution for computing the function corresponding to T1 in N1, and then to use Lemma 4.3.4.

Theorem 4.3.5. Consider a linear target function f corresponding to a matrix T ∈ F
l×s
q . If

T ∼ (I P ) such that at least one element of P is zero, then there exists a network N such that

1. min-cut(N , T ) = 1.

2. There does not exist a linear solution for computing f in N .

Proof. Let T̂ = (I P ) and let f̂ denote the corresponding linear target function. It is enough

to show that there exists a network NP such that min-cut(NP , f) = 1 but NP does not have

a linear solution for computing f̂ . This is because a network N that does not have a solution

for computing T is easily obtained by renaming the sources in NP as follows: Since T ∼ (I P ),

there exist Q and Π such that T = Q(I P )Π. Let κ denote the permutation function on the

set {1, 2, . . . , s} defined by the permutation matrix Π−1. Obtain the network N by relabeling

source σi in NP as σκ(i). To see that there does not exist a solution for computing f in N ,

assume to the contrary that a solution exists. By using the same network code in NP , the

receiver computes

Q(I P )Π (xκ(1), xκ(2), . . . , xκ(s))
t = Q(I P ) (x1, x2, . . . , xs)t.

Thus the receiver in NP can compute T̂ xt, which is a contradiction.

Now we construct the network NP as claimed. Since P has at least once zero element,

there exists a τ ∈ {l + 1, l + 2, . . . , s} such that T̂ has a zero in τ -th column. Define

K =
{

i ∈ {1, 2, . . . , l} : T̂i,τ = 1
}
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Denote the elements of K by
{

j1, j2, . . . , j|K|

}

.

Let p be an element of {1, 2, . . . , l} − K (such a p exists from the fact that the τ -th column

contains at least one zero) and define

K̄ = {1, 2, . . . , s} −K − {τ, p}

and denote the elements of K̄ by

{

j|K|+1, j|K|+2, . . . , js−|K|−2

}

.

Since T̂ does not contain an all-zero column, |K| > 0. Now, let NP denote the network shown

in Figure 4.2 where, v denotes a relay node. It follows from the construction that

σp στ

σj1
σj2

σj|K|−2 σj|K|−1

σj|K|

σj|K|+1
σj|K|+2

σjs−|K|−3
σjs−|K|−2

v

ρ

Figure 4.2: Network NP with min-cut 1 that does not have an Fq-linear solution for

computing (I P ).

(

T̂j1,j1
T̂j1,p T̂j1,τ

T̂p,j1
T̂p,p T̂p,τ

)

=

(

1 0 1

0 1 0

)

(4.24)

which is equal to the transfer matrix T1 defined in (4.23).

Notice that in the special case when K = {j1} and
∣

∣K̄
∣

∣ = 0, the network shown in

Figure 4.2 reduces to the network shown in Figure 4.3 which is equivalent to the network N1
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in Figure 4.1 with target function f1. Since N1 does not have a solution for computing f1 by

Lemma 4.3.4, we conclude that N1 cannot have a solution either.

Similarly, we now show that in the general case, if the network NP has a solution

for computing f̂ , then such a solution induces a solution for computing f1 in network N1,

contradicting Lemma 4.3.4. Let there exist an n > 0 for which there is a linear solution for

computing f̂ over NP using an alphabet over Fqn . In any such solution, for each j ∈ K − {j1},

the encoding function on the edge (σj , ρ) must be of the form

β1,jα(σj) + β2,jα(στ ) (4.25)

for some β1,j , β2,j ∈ Fqn . Since (σj , ρ) is the only path from source σj to the receiver, it is

obvious that β1,j 6= 0.

We define the map α as follows. Let α(σj1
) , α(σp) , α(στ ) be arbitrary elements of Fqn

and let

α(σj) =







0 for j ∈ K̄

−(β1,j)−1β2,jα(στ ) for j ∈ K − {j1}.
(4.26)

Note that α has been chosen such that for any choice of α(σj1
) , α(σp), and α(στ ), every edge

e ∈ Ei(ρ) − {(σi1
, ρ), (v, ρ)} carries the zero vector. Furthermore, for the above choice of α, the

target function associated with T̂ reduces to
(

α(σ1) + T̂1,τα(στ ) , α(σ2) + T̂2,τα(στ ) , . . . , α(σl) + T̂l,τα(στ )
)

. (4.27)

Substituting T̂j1,τ = 1 and T̂p,τ = 0 in (4.27), it follows that the receiver can compute

(α(σj1
) + α(στ ) , α(σp))

from the vectors received on edges (σi1
, ρ) and (v, ρ). Consequently, it follows that there exist

a linear solution over Fqn for computing the linear target function associated with the transfer

matrix
(

T̂j1,j1
T̂j1,p T̂j1,τ

T̂p,j1
T̂p,p T̂p,τ

)

in the network shown in Figure 4.3. It is easy to see that the existence of such a code implies

a scalar linear solution for computing f1 in N1. This establishes the desired contradiction.

Finally, we show that min-cut(N , T ) = 1. Let C ∈ Λ(N ) be a cut such that KC ⊂

K ∪ {p, τ} (i.e, C separates sources from only the top and middle rows in the network NP ).

We have the following two cases:

1. If στ /∈ KC , then it is easy to see that |C| ≥ |KC |. Similarly, if στ ∈ KC and σp /∈ KC ,

then again |C| ≥ |KC |. Consequently, we have

|C|

rank(TKC
)

≥
|C|

|KC |
[from rank(TKC

) ≤ |KC |]

≥ 1. [from |C| ≥ |KC |] (4.28)
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σp στ

σj1
v

ρ

Figure 4.3: Subnetwork of NP used to show the equivalence between solving network NP and

solving network N1.

2. If στ ∈ KC and σp ∈ KC , then from Figure 4.3, |C| = |K| + 1 and KC = K ∪ {p, τ}.

Moreover, the index set K was constructed such that

T̂τ =
∑

i∈K

T̂i,τ T̂i. (4.29)

Consequently, we have

rank(TKC
) = rank

(

TK∪{p,τ}

)

[from KC = K ∪ {p, τ}]

≤ |K| + 1 [from (4.29)]

= |C| . (4.30)

From (4.28) and (4.30), we conclude that if KC ⊂ K ∪ {p, τ}, then

|C|

rank(TKC
)

≥ 1. (4.31)

For an arbitrary cut C ∈ Λ(N ), let cK̄ denote the number of sources in K̄ that are separated

from the receiver by C (i.e, cK̄ =
∣

∣KC ∩ K̄
∣

∣). We have

|C|

rank(TKC
)

=
|C| − cK̄ + cK̄

rank(TKC
)

≥
|C| − cK̄ + cK̄

rank
(

TKC−K̄

)

+ cK̄

(4.32)

Since each source in K̄ is directly connected to the receiver, |C| − cK̄ is equal to the number of

edges in C separating the sources in KC − K̄ from the receiver. Consequently, from (4.31), it

follows that

|C| − cK̄

rank
(

TKC−K̄

) ≥ 1. (4.33)
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Substituting (4.33) in (4.32), we conclude that for all C ∈ Λ(N )

min-cut(N , T ) ≥ 1.

Since the edge (σj|K|+1
, ρ) disconnects the source σj|K|+1

from the receiver, min-cut(N , T ) ≤ 1

is immediate and the proof of the theorem is now complete.

We now consider the case in which the source alphabet is over the binary field. In

this case, we have that the two function classes identified by Theorems 4.3.2 and 4.3.5 are

complements of each other, namely either T ∼ (I 1) or T ∼ (I P ) with P containing at least

one zero element.

Theorem 4.3.6. Let l /∈ {1, s} and let T ∈ F
l×s
2 . If T ≁ (I 1), then there exists an l× (s− l)

matrix P such that P has at least one zero element and T ∼ (I P ).

Proof. Since T is assumed to have a full row rank, T ∼ (I P̄ ) for some l × (s − l) matrix

(I P̄ ) over F2. If P̄ has 0’s, then we are done. Assume to the contrary that P̄ is a matrix of

non-zero elements. We only need to consider the case when (s− l) > 1 (since T ≁ (I 1)). For

i = 1, 2, . . . , l − 1, let φ(i) denote the i-th column vector of the l × l identity matrix. Define

Q = (φ(1)φ(2) · · ·φ(l−1) 1) and let Π be a permutation matrix that interchanges the l-th and

(l + 1)-th columns and leaves the remaining columns unchanged. It is now easy to verify that

Q (I P̄ ) Π = (Q QP̄ ) Π

= (I P ) (4.34)

where P is an l × s− l matrix with at least one 0 element: for i ∈ {1, 2, · · · , l − 1}

Pi,2 = (QP̄ )i,2

= (Q1)i

= 1 + 1

= 0.

Thus, (I P̄ ) ∼ (I P ) and by transitivity we conclude that T ∼ (I P ) which proves the claim.

4.4 Appendix

Lemma 4.4.1. Let T ∈ F
l×s
q . If u ∈ F

s−1
q is a column vector of non-zero elements and

T ∼ (I u), then there exists a full rank matrix Q and a column vector u′ of non-zero elements

over Fq such that T = Q (I u′).

Proof. Let Q denote the matrix obtained by collecting the first (s− 1) columns of T . We will

first show that the matrix Q is full-rank. After factoring out Q, we then prove that the last

column must have non-zero entries.
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Since T ∼ (I u), there exists a full-rank matrix Q̄ and a permutation matrix Π̄ such

that

T = Q̄ (I u) Π̄

= (Q̄ Q̄u) Π̄. (4.35)

From (4.35), the columns of Q are constituted by the columns of Q̄ in which case Q is full-rank,

or columns of Q contains (s− 2) columns of Q̄ and Q̄u. We will now show that the vector Q̄u

cannot be written as a linear combination of any set of s− 2 column vectors of Q̄. Assume to

the contrary that there exist aj ∈ Fq for j ∈ {1, 2, s− 2} such that

Q̄u =

s−2
∑

j=1

ajQ̄j (4.36)

where Q̄j denotes the j-th column of Q̄. Let a denote the vector such that aj = aj , j =

1, 2, . . . s− 2, and as−1 = 0. We have

u− a 6= 0 [from us−1 6= 0 and as−1 = 0]

Q̄(u− a) = 0 [from (4.36)]. (4.37)

(4.37) contradicts the fact that Q̄ is full-rank. Hence ai’s satisfying (4.36) do not exist and

consequently, Q is a full-rank matrix. We now have

T = Q(I u′)

where u′ = Q−1Ts and hence T ∼ (I u′). Furthermore, T ∼ (I u) and T ∼ (I u′) implies that

(I u) ∼ (I u′). Thus, there exists a full-rank matrix P and a permutation matrix Π such that

(I u) = P (I u′) Π

= (P Pu′) Π. (4.38)

Let φ(i) denote the i-th column of I. It follows from (4.38) that either (a) Pu′ = u and P itself is

an (s−1)×(s−1) permutation matrix, or (b) For some j ∈ {1, 2, . . . , s−1}, j-th column of P is u,

and the remaining columns must constitute the s−2 columns φ(1), φ(2), . . . , φ(τ−1), φ(τ+1), φ(s−1)

of I for some τ . If (a) is true, then u′ = P−1u and the elements of u′ are non-zero since P−1

is another permutation matrix. If (b) is true, then Pu′ = φ(τ) and it must be that u′
j 6= 0 (if

u′
j = 0, then (Pu′)τ = 0 which contradicts Pu′ = φ(τ)). Let L = {i : i 6= j, and u′

i 6= 0}. We

must have

φ(τ) = u′
ju+

∑

i∈D

u′
i φ

(ji). (4.39)
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If we denote the number of non-zero entries in a vector u by |u|, then we have

1 =
∣

∣

∣φ(τ)
∣

∣

∣

≥
∣

∣u′
ju
∣

∣− |D| [from (4.39)]

= (s− 1) − |D|

≥ 1 [from |D| ≤ s− 2] (4.40)

From (4.40), it follows that |D| = s− 2 and consequently that every element of u′ is non-zero.

The proof of the lemma is now complete.

This chapter, in full, is a reprint of the material as it appears in: R.Appuswamy, and

M.Franceschetti, “Computing linear functions by linear coding over networks,” submitted to

the IEEE Transactions on Information Theory, Feb. 2011. The dissertation author was the

primary investigator of this paper.
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