UNIVERSITY OF CALIFORNIA, SAN DIEGO
Network Computing: Limits and Achievability

A dissertation submitted in partial satisfaction of the
requirements for the degree
Doctor of Philosophy

in
Electrical Engineering (Communication Theory and Systems)

by

Nikhil Karamchandani

Committee in charge:

Professor Massimo Franceschetti, Chair
Professor Ken Zeger, Co-Chair
Professor Young-Han Kim

Professor Alon Orlitsky

Professor Alexander Vardy

2011

Copyright
Nikhil Karamchandani, 2011
All rights reserved.

The dissertation of Nikhil Karamchandani is approved, and
it is acceptable in quality and form for publication on micro
film and electronically:

Co-Chair

Chair

University of California, San Diego

2011

TABLE OF CONTENTS

Signature Page iii
Tableof Contents iv
Listof Figures Vi
Listof Tables e Vii
Acknowledgements i vi
Vita . . e X
Abstract of the Dissertation Xi
Chapter 1 Introduction 1
Chapter 2 One-shot computation: Time and Energy Complexity. 4
2.1 Introduction 5
2.1.1 Statementofresults. 7
2.2 Problem Formulation 8
2.21 Preliminaries 10
2.3 Noiseless Grid Geometric Networks 11
2.4 Noisy Grid Geometric Networks 15
2.5 General Network Topologies 23
2.5.1 Computing symmetric functions in noiseless networlds 2
2.5.2 Computing symmetric functions in noisy networks . 25
2.5.3 A generalized lower bound for symmetric functions . 26
26 Conclusion 27
2.6.1 Targetfunctions. 27
2.6.2 Ontheroleofands 28
2.6.3 Networkmodels 29
2.1 Computing the arithmetic sum okt (n,1) 29
2.2 Completion of the proof of Theorem2.4.3 32
2.2.1 Proofof Lemma244 32
2.2.2 ProofofLemma245 34
2.3 Scheme for computing partial sums at cell-centers 37
Chapter 3 Function computation over linear channels 39
3.1 Introduction 40
3.2 Problem Formulation and Notation 41
3.3 Lowerbounds 45

Chapter 4

Chapter 5

Bibliography

3.4 Bounds for specificfunctions 50

3.4.1 T-threshold Function 51
3.42 MaximumFunction. 53
3.4.3 K-largest Values Function 54
3.5 Ageneral scheme for computation, 56
3.6 Conclusions 57
Repeated Computation: Network Coding for Computing . . . 59
4.1 Introduction 60
4.1.1 Network model and definitions 62
4.1.2 Classesoftargetfunctions 66
4.1.3 Contributions L. 69
4.2 Min-cut upper bound on computing capacity 69
4.3 Lower bounds on the computing capacity 70
4.4 On the tightness of the min-cut upper bound 79
45 Anexamplenetwork, 85
46 Conclusions 90
4.7 AppendiX 91
Linear Codes, Target Function Classes, and Networlp@omg
Capacity e 101
5.1 Introduction 102
5.1.1 Contributions 103
5.2 Network model and definitions 106
5.2.1 Targetfunctions. 106
5.2.2 Network computing and capacity 108
5.3 Linear coding over different ring alphabets 113
5.4 Linear network codes for computing target functions ... 117
5.4.1 Non-reducible target functions 117
5.4.2 Reducible targetfunctions 126
5.5 Computing linear target functions 131
5.6 Thereverse butterflynetwork 137
.................................... 142

Figure 2.1:
Figure 2.2:

Figure 2.3:
Figure 2.4:

Figure 2.5:
Figure 2.6:

Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 2.10:
Figure 2.11.:
Figure 2.12:

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 4.1:
Figure 4.2:

Figure 4.3:
Figure 4.4:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:
Figure 5.6:

Figure 5.7:

LIST OF FIGURES

Grid geometric network’ (n, 7). 6
Computation of the identity function in noisslegid geometric
networks. 11
Computation of the identity function in noisslegid geometric
Networks. 12
Computation of symmetric functions in noiselgas geometric
networks. 13

Scheduling of cells in noisy broadcast grid gewim networks. . . 16
Computation of the identity function in noisy adeast grid geo-

metric networks. 17
Thew-noisy starnetwork., 19
Computation of symmetric functions in noisy lcast grid geo-

metricnetworks. L 21

Computation of symmetric functions in arbitrapyseless networks. 25

Some notation with regardstoc<. 29
Partition of the network(n, 1) into smallercells. 30
Hierarchical scheme for computing the arittierg2im of input mes-

SAQES. . . . e e 31
Description of the network operation 42
A(1,1) code for thel'-threshold function 51
A(1,1) code forK-largest values function 55
An example of a multi-edge tree. 66
Description of the Reverse Butterfly netwﬂr’k and the I|ne net—

WOTK NG, o o e 78
Description of the netwoX¢,, 84
Description ofthenetwo\G. 86
Decomposition of the space of all target fumgimto various classes.103
Description ofthenetwo,. 113
Description of the netwoG 123
A network where there is no benefit to using linezding over

routing for computingf. Lo 128
The butterfly network and itsrevergg 137
The reverse butterfly network with a code thatmates the mog

sumtargetfunction. o Lo 139
The reverse butterfly network with a code that mates the arith-

metic sum target function. L. 141

Vi

Table 2.1:
Table 2.2:

Table 4.1:

Table 5.1:
Table 5.2:
Table 5.3:

LIST OF TABLES

Results for noiseless grid geometric networks.. 8
Results for noisy grid geometric networks. 8
Examples of target functions. 64

Summary of our main results for certain classearget functions. . 105
Definitions of some target functions. 107
Definition of thd-arymapf. 113

Vil

ACKNOWLEDGEMENTS

First and foremost, | would like to express my deepest grdgitowards Profes-
sor Massimo Franceschetti for his guidance and mentorehgughout the duration of
my graduate studies. He has always treated me as a colleadugvan me complete
freedom to find and explore areas of research that interestimbas been most instru-
mental in teaching me how to conduct scientific research aggkept complicated ideas
in an accessible manner. For all this and more, | will be fergrateful.

| have been fortunate to have Professor Ken Zeger as a memdaradlabora-
tor. His zeal for technical correctness and simple expms#ire extraordinary and have
greatly inspired me to pursue these virtues in all my futesearch. | gratefully ac-
knowledge the support of my undergraduate advisor Prof. @njihath, initial graduate
advisor Prof. Rene Cruz, and Ph.D. defense committee meniyvefessor Young-Han
Kim, Professor Alon Orlitsky, and Professor Alexander Wangdho have all been very
kind in devoting time to discuss research ideas wheneveved hpproached them. Fi-
nally, |1 thank Prof. Christina Fragouli for hosting me durimy summer internship,
providing a very stimulating research environment, andguglance during that period
and thereatfter.

It has been my good fortune to have known many wonderful aglies during
my stay here. In particular, | would like to acknowledge minteates Rathinakumar
Appuswamy, Ehsan Ardestanizadeh, Lorenzo Coviello, Paoteid, and colleagues
Jayadev Acharya, Abhijeet Bhorkar, Hirakendu Das, Arvineniyar, Lorenzo Keller,
Mohammad Naghshvar, Matthew Pugh for their warm friendsinigh patient ear in dis-
cussing various research problems. | would also like toktihe ECE department staff,
especially M’'Lissa Michelson, John Minan, and BernadetitaMz, for all their help
with administrative affairs.

Graduate life would not have been as pleasant without thgpaaanship and
support of my friends, especially Ankur Anchlia, Gaurav Dhan, Nitin Gupta, Samarth
Jain, Mayank Kabra, Uday Khankhoje, Himanshu Khatri, NebdHa, Vikram Mavala-
nkar, Gaurav Misra, Abhijeet Paul, Nikhil Rasiwasia, Vivekrar Singh, Ankit Sri-
vastava, Aneesh Subramaniam, and Neeraj Tripathi.

| owe the greatest debt to my family, especially my parents. Nfonita Karam-

viii

chandani and Mr. Prakash Karamchandani, and my brothent Kakamchandani, for
their unconditional love and support even during my longealee. Finally, a most spe-
cial thanks to my wife, Megha Gupta, for always being thermaking the worst days
seem a lot better.

Chapter 2, in part, has been submitted for publication of tagenal. The dis-
sertation author was the primary investigator and authdhisfpaper. Chapter 3, in
part, has been submitted for publication of the materiale @lissertation author was a
primary investigator and author of this paper. Chapter 4aim, is a reprint of the mate-
rial as it appears in R. Appuswamy, M. Franceschetti, N. Kateandani and K. Zeger,
“Network Coding for Computing: Cut-set bound$EEE Transactions on Information
Theory vol. 57, no. 2, February 2011. The dissertation author wasaary investiga-
tor and author of this paper. Chapter 5, in part, has been sigohfor publication of the
material. The dissertation author was a primary investigaimd author of this paper.

VITA

2005 B.Tech. in Electrical Engineering, Indian Institutðnology,
Mumbai.
2007 M.S. in Electrical Engineering (Communication Thearg &ys-

tems), University of California, San Diego.

2011 Ph.D. in Electrical Engineering (Communication Theorg Sys-
tems), University of California, San Diego.

PUBLICATIONS

R. Appuswamy, M. Franceschetti, N. Karamchandani and K. Zegénear Codes,
Target Function Classes, and Network Computing Capgcsiybmitted to the IEEE
Transactions on Information Theory, May 2011.

N. Karamchandani, R. Appuswamy, and M. Franceschdiitiné and energy complexity
of function computation over netwotksubmitted to the IEEE Transactions on Infor-
mation Theory, revised May 2011.

L. Keller, N. Karamchandani, C. Fragouli, and M. FrancesthéCombinatorial de-
signs for function computation over linear chanrieibmitted to the Elsevier Physical
Communication, Apr. 2011.

R. Appuswamy, M. Franceschetti, N. Karamchandani and K. Zégetwork Coding
for Computing: Cut-set bountidEEE Transactions on Information Theory, Feb. 2011.

N. Karamchandani and M. Franceschetticaling laws for delay sensitive traffic in
Rayleigh fading networksProceedings of the Royal Society, May 2008.

ABSTRACT OF THE DISSERTATION

Network Computing: Limits and Achievability

by

Nikhil Karamchandani
Doctor of Philosophy in Electrical Engineering (CommunigatTheory and Systems)
University of California, San Diego, 2011

Professor Massimo Franceschetti, Chair
Professor Ken Zeger, Co-Chair

Advancements in hardware technology have ushered in abigitolution, with
networks of thousands of small devices, each capable ofrggre®mputing, and com-
municating data, fast becoming a near reality. These n&siare envisioned to be used
for monitoring and controlling our transportation systemswer grids, and engineer-
ing structures. They are typically required to sample a fi¢lehterest, do ‘in-network’
computations, and then communicate a relevant summaryeodidka to a designated
sink node(s), most often a function of the raw sensor measemts. In this thesis, we
study such problems of network computing under various cameoation models. We
derive theoretical limits on the performance of computafwotocols as well as de-
sign efficient schemes which can match these limits. Firetbegin with the one-shot

Xi

computation problem where each node in a network is assign@tput bit and the ob-
jective is to compute a functiofi of the input messages at a designated receiver node.
We study the energy and latency costs of function computatiaer both wired and
wireless communication models. Next, we consider the cdmsethe network opera-
tion is fixed, and its end result is to convey a fixed lineargfarmation of the source
transmissions to the receiver. We design communicatiotopots that can compute
functions without modifying the network operation. This debis motivated by practi-
cal considerations since constantly adapting the nodeatipes according to changing
demands is not always feasible in real networks. Thereafemove on to the case of
repeated computation where source nodes in a network germoaks of independent
messages and a single receiver node computes a targebfurfidor each instance of
the source messages. The objective is to maximize the averagber of timeg can
be computed per network usage, i.e., toenputing capacity We provide a general-
izedmin-cutupper bound on the computing capacity and study its tigstferdifferent
classes of target functions and network topologies. Rinalé study the use of linear
codes for network computing and quantify the benefits of inm@ar coding vs linear
coding vs routing for computing different classes of tafgettions.

Xii

Chapter 1
Introduction

Advancements in hardware technology have ushered in abigitolution, with
networks of thousands of small devices, each capable ofrggrcomputing, and com-
municating data, fast becoming a near reality. These n&sare envisioned to be used
for monitoring and controlling our transportation systepwmwer grids, and engineering
structures. They are typically required to sample a fieldita#riest, do ‘in-network’ com-
putations, and then communicate a relevant summary of thdala designated node(s),
most often a function of the raw sensor measurements. Fon@gain environmental
monitoring a relevant function can be the average temperatua region. Another ex-
ample is an intrusion detection network, where a node se#ds message fromto 1
if it detects an intrusion and the function to be computetdésmhaximum of all the node
messages. The engineering problem in these scenariosesigndchemes for compu-
tation which are efficient with respect to relevant metrigshsas energy consumption
and latency.

This new class ofomputing networkeepresents a paradigm shift from the way
traditionalcommunication networksperate. While the goal in the latter is usually to
connect (multiple) source-destination pairs so that easkimation can recover the mes-
sages from its intended source(s), the former aim to mergentiormation from the
different sources to deliver useful summaries of the datéhéodestinations. Though
there is a huge body of literature on communication netwarlgthey have been stud-
ied extensively by both theorists and practitioners, camgunetworks are not as well

understood. As argued above, such networks are going torlaagdee in the future and
hence deserve close attention from the scientific community

In this thesis, we study such problems of network computimden various com-
munication models. We derive theoretical limits on the perfance of computation pro-
tocols as well as design efficient schemes which can matde thmits. The analysis
uses tools froncommunication complexitynformation theoryandnetwork coding

The thesis is organized as follows. In Chapter 2, we consigefdllowing one-
shot network computation problem:nodes are placed on\d@n x +/n grid, each node
is connected to every other node within distam¢e) of itself, and it is given an ar-
bitrary input bit. Nodes communicate with each other and sigieted receiver node
computes a target functiofi of the input bits, wher¢g' is either theidentity or asym-
metricfunction. We first consider a model where links are interieeeand noise-free,
suitable for modeling wired networks. We then consider a @haditable for wireless
networks. Due to interference, only nodes which do not shaighbors are allowed to
transmit simultaneously; and when a node transmits a bafdi$ neighbors receive an
independent noisy copy of the bit. We present lower boundheminimum number
of transmissions and the minimum number of time slots regitio computg’. We also
describe efficient schemes that match both of these lowerdsoup to a constant factor
and are thus jointly (near) optimal with respect to the nundféransmissions and the
number of time slots required for computation. Finally, wéeed results on symmetric
functions to more general network topologies, and obtaiorallary that answers an
open question posed by El Gamal in 1987 regarding computafitheparity function
over ring and tree networks.

In Chapter 3, we consider the case where the network opeiatfo®ed, and its
end result is to convey a fixed linear transformation of thers® transmissions to the
receiver. We design communication protocols that can caenjounctions without mod-
ifying the network operation, by appropriately selectihg todebook that the sources
employ to map their input messages to the symbols they tridoser the network. We
consider both the cases, when the linear transformationa®/i at the receiver and the
sources and when it is apriori unknown to all. The model gtddiiere is motivated by
practical considerations: implementing networking pcols is hard and it is desirable

to reuse the same network protocol to compute differenetdrmctions.

Chapter 4 considers the case of repeated computation whareesaodes in a
directed acyclic network generate blocks of independestsanges and a single receiver
node computes a target functigrfor each instance of the source messages. The objec-
tive is to maximize the average number of timfesan be computed per network usage,
i.e., thecomputing capacityThenetwork codingoroblem for a single-receiver network
is a special case of the network computing problem in whitbfahe source messages
must be reproduced at the receiver. For network coding wéimgle receiver, routing
is known to achieve the capacity by achieving the netwark-cutupper bound. We
extend the definition of min-cut to the network computinglpeon and show that the
min-cut is still an upper bound on the maximum achievable aad is tight for comput-
ing (using coding) any target function in multi-edge treéwweks and for computing
linear target functions in any network. We also study theratsitightness for different
classes of target functions suchdagisible andsymmetridunctions.

Finally, in Chapter 5 we study the use of linear codes for nekveomputing
in single-receiver networks with various classes of tafgettions of the source mes-
sages. Such classes inclugelucible injective semi-injectiveandlinear target func-
tions over finite fields. Computing capacity bounds and acligity are given with
respect to these target function classes for network co@deésise routing, linear coding,
or nonlinear coding.

Chapter 2

One-shot computation: Time and
Energy Complexity

We consider the following network computation problesmodes are placed on
a/n x y/n grid, each node is connected to every other node withinrlista(n) of
itself, and it is given an arbitrary input bit. Nodes comnuate with each other and a
designated sink node computes a functfoof the input bits, wher¢ is either thaden-
tity or asymmetriduction. We first consider a model where links are interfeesand
noise-free, suitable for modeling wired networks. Then,oeasider a model suitable
for wireless networks. Due to interference, only nodes ke not share neighbors are
allowed to transmit simultaneously; and when a node traissarbit all of its neighbors
receive an independent noisy copy of the bit. We presentrlbaends on the minimum
number of transmissions and the minimum number of time skxsired to compute
f. We also describe efficient schemes that match both of tloeger lbounds up to a
constant factor and are thus jointly (near) optimal wittpexg to the number of trans-
missions and the number of time slots required for companatiFinally, we extend
results on symmetric functions to more general network ltmgies, and obtain a corol-
lary that answers an open question posed by El Gamal in 19#fdieg computation
of the parity function over ring and tree networks.

2.1 Introduction

Network computation has been studied extensively in teeditire, under a wide
variety of models. In wired networks with point-to-pointiseless communication links,
computation has been traditionally studied in the contéxtoonmunication complex-
ity [1]. Wireless networks, on the other hand, have threédjsishing features: the
inherentbroadcastmedium, interference andnoise Due to the broadcast nature of
the medium, when a node transmits a message, all of its naigbceive it. Due to
noise, the received message is a noisy copy of the transihoitte. Due to interference,
simultaneous transmissions can lead to message collisions

A simpleprotocol modelntroduced in [2] allows only nodes which do not share
neighbors to transmit simultaneously to avoid interfeeenthe works in [3-5] study
computation restricted to the protocol model of operatioth @assuming noiseless trans-
missions. A noisy broadcast communication model over irddpnt binary symmetric
channels was proposed in [6] in which when a node transmiiss albof its neighbors
receive an independent noisy copy of the bit. Using this make works in [7—9] con-
sider computation in aomplete networkvhere each node is connected to every other
node and only one node is allowed to transmit at any given.tife alternative to
the complete network is thendom geometric netwoik whichn nodes are randomly
deployed in continuous space insidg/a x /n square and each node can commu-
nicate with all other nodes in a rangén). Computation in such networks under the
protocol model of operation and with noisy broadcast compation has been stud-
ied in [10-13]. In these works the connection radiys) is assumed to be of order
S} (\/@)1, which is the threshold required to obtain a connected nangeometric
network, see [14, Chapter 3].

We consider the class @rid geometric networksn which every node in a
Vi x /n grid is connected to every other node within distandeom it?, see Fig-

Throughout the thesis we use the following subset of the BachLandau notation for positive
functions of the natural numberg(n) = O(g(n)) asn — oo if Ik > 0,n¢ : Vn > ng f(n) < kg(n);
F(n) = Q(g(n)) asn — oo if g(n) = O(f(n)); f(n) = O(g(n)) asn — oo if f(n) = O(y(n)) and
f(n) = Q(g(n)). The intuition is thatf is asymptotically bounded up to constant factors from apove
below, or both, byy.

2The connection radius can be a function of., but we suppress this dependence in the notation for
ease of exposition.

Figure 2.1: Network A/ (n,r): each node is connected to all nodes within distance
The (red) node is the sink that has to compute a functipof the input.

ure 2.1. This construction has many useful features. By mgrihie connection radius
we can study a broad variety of networks with contrastingcstiral properties, ranging
from the sparsely connecteid network forr = 1 to the densely connected complete
network when- > v/2n. This provides intuition about how network properties like
average node degree impact the cost of computation and teadgural extension of
our schemes to more general network topologies. Wheny/2n, all nodes are con-
nected to each other and the network reduces to the compieteAbove the critical
connectivity radius for the random geometric netwerk- © (\/@) the grid geo-
metric network has structural properties similar to itsd@m geometric counterpart and
all the results in this paper also hold in that scenario. Thus study includes the two
network structures studied in previous works as speciasait the end of the paper,
we also present some extensions of our results to arbitegwyank topologies.

We consider both noiseless wired communication over bickaynnels and noisy
wireless communication over binary symmetric channelsgiiie protocol model. We
focus on computing two specific classes of functions witrabinnputs, and measure
the latency by the number of time slots it takes to computduhetion and the energy
cost by the total number of transmissions made in the netwidrkidentityfunction (i.e.
recover all source bits) is of interest because it can betassainpute any other function

and thus gives a baseline to compare with when considerhey fiinctions. The class
of symmetridunctions includes all functiong such that for any input € {0,1}" and
permutationr on{1,2,...,n},

oz, @o, 0 20) = F(@r@)s Tr()s - - s Ta(n)) -

In other words, the value of the function only depends on thraetic sum of the input
bits, i.e.,Y ", z;. Many functions which are useful in the context of sensowneks
are symmetric, for example tlarerage maximummeajority, andparity.

2.1.1 Statement of results

Under the communication models described above, and focangection ra-
diusr € [1,/2n], we prove lower bounds on the latency and on the number cérinin
sions required for computing the identity function. We tlusscribe a scheme which
matches these bounds up to a constant factor. Next, we @vribilclass of symmetric
functions. For a particular symmetric target function {(fyaunction), we provide lower
bounds on the latency and the number of transmissions fopating the function. We
then present a scheme which can compute any symmetric danetiile matching the
above bounds up to a constant factor. These results are sizathan Tables 2.1 and
2.2. They illustrate the effect of the average node degréé) on the cost of com-
putation under both communication models. By comparing éselts for the identity
function and symmetric functions, we can also quantify thag in performance that
can be achieved by using in-network aggregation for contjpmtarather than collect-
ing all the data and perform the computation at the sink nédeally, we extend our
schemes to computing symmetric functions in more genetalork topologies and ob-
tain a lower bound on the number of transmissions for amyitannected networks. A
corollary of this result answers an open question originptised by El Gamal in [6]
regarding the computation of the parity function over ring &ree networks.

We point out that most of previous work ignored the issue t&frlay and is only
concerned with minimizing the number of transmissions meglfor computation. Our
schemes are latency-optimal, in addition to being efficiarterms of the number of

Table 2.1: Results for noiseless grid geometric networks.

Function | No. of time slots| No. of transmissions
Identity O (n/r?)) (n3/2/7")
Symmetric O (v/n/r) O (n)

Table 2.2: Results for noisy grid geometric networks.

Function No. of time slots No. of transmissions
Identity max{0(n), © (r*loglogn)} max{© (n3/2/r),0 (nloglogn)}
Symmetric| max{© (y/n/r),O (r?loglogn)} | max{© (nlogn/r?),O (nloglogn)}

transmissions required. The works in [5, 11] consider thestjan of latency, but only
for the case of = © (y/logn).

The rest of the chapter is organized as follows. We formadiyadibe the problem
and mention some preliminary results in Section 2.2. Gridngetric networks with
noiseless links are considered in Section 2.3 and theiyraanterparts are studied in
Section 2.4. Extensions to general network topologies sgsgnted in Section 2.5. In
Section 2.6 we draw conclusions and mention some open pnsble

2.2 Problem Formulation

A network V' of n nodes is represented by an undirected graph. Nodes in the
network represent communication devices and edges reppressamunication links.
For each node, let N (i) denote its set of neighbors. Each nade assigned an input
bit z; € {0,1}. Letx denote the vector whos# component is;;. We refer tox as the
input to the network. The nodes communicate with each othéna a designated sink
nodev* can compute garget functionf of the input bits,

f:{0,1}" - B

whereB denotes the co-domain gf Time is divided into slots of unit duration. The
communication models are as follows.

¢ Noiseless point-to-point modelf a node: transmits a bit on an edde, j) in a
time slot, then nodg receives the bit without any error in the same slot. All the
edges in the network can be used simultaneously, i.e., the@interference.

e Noisy broadcast modellf a node: transmits a bit in time slott, then each
neighboring node itV () receives an independent noisy copy of the same slot.
More precisely, neighboj € N (i) receivesd & 7, ;» whered® denotes modula-
sum.n; ;+ is a bernoulli random variable that takes valueith probability e and
0 with probability 1 — e. The noise bits); ;, are independent ovér; andt. A
network in the noisy broadcast model with link error proligbil — ¢ is called an
e-noise network. We restrict to the protocol model of operathnamely two nodes
7 andj can transmit in the same time slot only if they do not have anyraon
neighbors, i.e.N(i) N N(j) = ¢. Thus, any node can receive at most one bit
in a time slot. In the protocol model originally introduced[R] communication
is reliable. In our case, even if bits do not collide at theereer because of the
protocol model of operation, there is still a probabilityesfore which models the
inherent noise in the wireless communication medium.

A scheme for computing a target functignspecifies the order in which nodes
in the network transmit and the procedure for each node taédeachat to transmit in
its turn. A scheme is defined by the total number of time slots its execution, and
for each slot € {1,2,...,T}, by a collection ofS; simultaneously transmitting nodes
{vi,v4,... v} } and corresponding encoding functiofis!, ¢5, ..., ¢% }. In any time
slott € {1,2,...,T}, nodev; computes the functiog’; : {0,1} x {0, 1}“”5' — {0,1} of
its input bit and they!, bits it received before timeand then transmits this value. In the
noiseless point-to-point case, nodes in thedisare repeated for each distinct edge on
which they transmit in a given slot. After tAérounds of communication, the sink node
p computes an estimatg of the value of the functiorf. The duratioril” of a scheme
and the total number of transmissioEsiT:1 S, are constants for all inputs € {0, 1}".

10

Our scheme definition has a number of desirable propertiest, Echemes are
obliviousin the sense that in any time slot, the node which transmidecsded ahead
of time and does not depend on a particular execution of themse. Without this
property, the noise in the network may lead to multiple nadassmitting at the same
time, thereby causing collisions and violating the protecodel. Second, the definition
rules out communication bsilence when it is a node’s turn to transmit, it must send
something.

We call a scheme &error scheme for computingif for any inputx € {0,1}",
Pr (f(x) # f(x)) < 4. For both the noiseless and noisy broadcast communication
models, our objective is to characterize the minimum nundbeime slots7' and the
minimum number of transmissions required by argrror scheme for computing a tar-
get functionf in a network\. We first focus on grid geometric networks of connection
radiusr, denoted byN (n,r), and then extend our results to more general network
topologies.

2.2.1 Preliminaries

We mention some known useful results.

Remark 2.2.1. For any connection radius < 1, every node in the grid geometric
network\ (n,) is isolated and hence computation is infeasible. On the digued, for
anyr > v/2n, the network\ (n,r) is fully connected. Thus the interesting regime is
when the connection radiusc [1, v/2n].

Remark 2.2.2.For any connection radiuse [1, v/2n], every node in the grid geometric
network A\ (n,r) has® (r?) neighbors.

Theorem 2.2.3.(Gallager’'s Coding Theorem) [10, Page 3, Theorem 2], [15]r Emy

~ > 0 and any integern > 1, there exists a code for sending antbit message over a
binary symmetric channel usir@(m) transmissions such that the message is received
correctly with probability at least — e,

11

N (n,r)
ioo—ioo—iooo
I I I

e e—e o—eo o o
I I I
ioo—%—oo—%—ooo
ioo—ioo—iooo
I I I

e e—e o—eo o o
I I I
ioo—%—oo—%—ooo
ioo—ioo—iooo
I I I

e e—e o—eo o o
I I I

I I I

I
I
I
I
I
1

[] *——e *——e [] []

| |
| |
° e o—o o—o o o

p e . - .
2r Vn/4

Figure 2.2: Each dashed (magenta) line represents a cut of netWofk,) which

separates at leas'4 nodes from the sink. Since the cuts are separated by a distance

of at leastr, the edges in any two cuts, denoted by the solid (blue) liaesdisjoint.

2.3 Noiseless Grid Geometric Networks

We begin by considering computation of the identity functioWe have the
following straightforward lower bound.

Theorem 2.3.1.Let f be the identity function, let € [0,1/2), and letr € [1,v/2n].
Any é-error scheme for computing over A (n, r) requires at leasf? (n/r?) time slots
and() (n*?/r) transmissions.

Proof. To compute the identity function the sink nodshould receive at least — 1)
bits. Sincep hasO (r?) neighbors and can receive at most one bit on each edge in a time
slot, it will require at leasf2 (n/r?) time slots to compute the identity function.

Let a cut be any set of edges separating at least one nodetimginky. It is
easy to verify that there exists a collection(df./n/r) disjoint cuts such that each cut
separate8(n) nodes from the sink, see Figure 2.2 for an example. Thus to ensure that
p can compute the identity function, there should be at I8&s} transmissions across
each cut. The lower bound on the total number of transmissieen follows. [

We now present a simple scheme for computing the identitgtian which is
order-optimal in both the latency and the number of transiois.

12

g
3
%

|
1

¥
¥
B

Figure 2.3: The scheme for computing the identity function works in éhphases: the
solid (blue) lines depict the first horizontal aggregatidrage, the dashed (magenta)
lines denote the second vertical aggregation phase, ardbtter (red) lines represent
the final phase of downloading data to the sink.

Theorem 2.3.2.Let f be the identity function and lete [1, v/2n]. There exists a zero-
error scheme for computing over A (n,) which requires at mosb (n/r?) time slots
andO (n®/?/r) transmissions.

Proof. Let ¢ = r/+/8. Consider a partition of the network” (n, r) into cells of size
¢ X ¢, see Figure 2.3. Note that each node is connected to all nodessown cell as
well as in any neighboring cell. The scheme works in threespbasee Figure 2.3. In the
first phase, bits are horizontally aggregated towards fiveriest column of cells along
parallel linear chains. In the second phase, the bits indftariost cells are vertically
aggregated towards the nodes in the cell containing thersidkp. In the final phase,
all the bits are collected at the sink node.

The first phase has bits aggregating aléhg,/nr) parallel linear chains each of
lengthO (y/n/r). By pipelining the transmissions, this phase requivgs/n/r) time
slots and a total 0D (\/nr x n/r?) transmissions in the network. Since each node in
the left-most column of cells ha® (y/n/r) bits and there ar® (r?) parallel chains
each of lengthO (y/n/r), the second phase us@gr* x \/n/r x n/r?) transmissions
andO (y/n/r x y/n/r) time slots. In the final phase, each of thér?) nodes in the cell
with p hasO (n/r?) bits and hence it requirg3(n) transmissions an@ (n/r?) slots to

13

N (n,r) N (n,r)

® o
® o
® o
® o
® o
® o
® o
\‘o °
e []
‘Q
S
o /9 O
4
o o
Spor
o /9 O
4
o o

i

&

) .0 o ‘/
soe e s
e o o M

\ ° o e o o /;/o

o e o5 o o0 e o 3" . oé‘o © o o0 o o 03"

v e o o0 o o ’/o o o ’/o o o Vi e oo o o0 o o0 o o

e o o e o/o o oo o o ° ‘9 oo o o/0 o o 0 o o

o o o9 e o % o o > o o Q&% S o o e|0 o o|lo o o

e o o0 o o ’/o o o ’/o o o ° \‘I‘\? e/ o o o0 o o 0 o o

e o o0 o o l\o e oo o o . .o oo o o/0 o o 0 o o

p./ ¢« oo e eTo e o o o po';‘o‘o © o o/ 0o o o |0 o o
CVE (@ e o)

Figure 2.4: Figures(a) and (b) represent the cases< /8logn andr > /8logn
respectively. The scheme for computing any symmetric fanavorks in two phases:
the solid (blue) lines indicate the first phase which is theesan both cases. The second
phase differs in the two cases. It is represented by the d4steggenta) lines in Figa)
and the dashed (red) lines in Fig@).

finish. Adding the costs, the scheme can compute the idéntittion withO (n*/?/r)
transmissions an@ (n/r?) time slots. [

Now we consider the computation of symmetric functions. \&eehthe follow-
ing straightforward lower bound:

Theorem 2.3.3.Letd € [0,1/2) and letr € [1,v/2n]. There exists a symmetric target
function f such that any-error scheme for computingover\ (n,) requires at least
Q (y/n/r) time slots andn — 1) transmissions.

Proof. Let f be the parity function. To compute this function, each nimk-80de in the
network should transmit at least once. Hence, at lgastl) transmissions are required.
Since the bit of the farthest node requires at I¢as{/n/r) time slots to reach, we
have the desired lower bound on the latency of any scheme. [|

Next, we present a matching upper bound.

14

Theorem 2.3.4.Let f be any symmetric function and letc [1,/2n]|. There exists a
zero-error scheme for computirfgover\ (n,) which requires at mosd (y/n/r) time
slots andO (n) transmissions.

Proof. We present a scheme which can compute the arithmetic suneohplut bits
overN (n,r) in at mostO (y/n/r) time slots and) (n) transmissions. This suffices to
prove the result sincé¢ is symmetric and thus its value only depends on the arittometi
sum of the input bits.

Again, consider a partition of the noiseless netwdfKn, r) into cells of size
¢ x ¢ with ¢ = r/+/8. For each cell, pick one node arbitrarily and call it the I'cel
center”. For the cell containing, choosep to be the cell center. The scheme works in
two phases, see Figure 2.4.

First phase: All the nodes in a cell transmit their input bits to the cedirter.
This phase requires only one time-slot anttansmissions and at the end of the phase
each cell-center knows the arithmetic sum of the input hiitsicell, which is an element
of {0,1,...,0 (r})}.

Second phasdn this phase, the bits at the cell-centers are aggregattthto
can compute the arithmetic sum of all the input bits in thewoek. There are two cases,
depending on the connection radius

e r < /8logn : Since each cell-center is connected to the other cell-cente
in its neighboring cells, this phase can be mapped to comgulie arithmetic sum
over the noiseless network” (© (n/r?),1) where each node observes a message in
{0,1,...,0(r*)}. See Figure 2) for an illustration. In Appendix 2.1 we present a
scheme to complete this phase usingn /r?) transmissions an@ (,/n/r) time slots.

e 7 > /8logn : The messages at cell-centers are aggregated towaldag a
tree, see Figure 2(4). The value at each cell-center can be viewed 8s@n |-length
binary vector. To transmit its vector to the parent (celteg) node in the tree, every
leaf node (in parallel) transmits each bit of the vector tastinct node in the parent
cell. In the next time slot, each of these intermediate noelays its received bit to the
corresponding cell-center. The parent cell-center can tbeonstruct the message and
aggregate it with its own value to form anothésg n |-length binary vector. Note that it
requires two time slots and (log n) transmissions by a cell-center to traverse one level

15

of depth in the aggregation tree. This step is performedatepidy (in succession) till
the sink nodep receives the sum of all the input bits in the network. Sineedbpth
of the aggregation tree @ (\/n/r), the phase require3 (,/n/r) time slots. There are
O (logn) transmissions in each cell of the network. Hence the phaperes a total of
O (n/r* x logn) = O (n) transmissions.

Adding the costs of the two phases, we conclude that it isiplesto compute
any symmetric function usin@(n) transmissions an@ (,/n/r) time slots. |

2.4 Noisy Grid Geometric Networks

We start by considering the computation of the identity fioxc We have the
following lower bound.

Theorem 2.4.1.Let f be the identity function. Lef € (0,1/2), lete € (0,1/2),
and letr € [1,v/2n]. Anyd-error scheme for computing over ane-noise grid geo-
metric networkN (n, r) requires at leasinax{n — 1,Q (r*loglogn)} time slots and
max{Q (n*?/r) ,Q (nloglogn)} transmissions.

Proof. The lower bound of2 (n*?/r) transmissions follows from the same argument
as in the proof of Theorem 2.3.1. The other lower bound 6f log log n) transmissions
follows from [8, Corollary 2].

We now turn to the number of time slots required. For comutire identity
function, the sink node should receive at leagt: — 1) bits. However, the sink can
receive at most one bit in any slot and hence any scheme fopuiimg the identity
function requires at leagh — 1) time slots. For the remaining lower bound, consider
a partition of the network\" (n,) into cells of sizec x ¢ with ¢ = r/4/8. Since the
total number of transmissions in the network is at l€ast loglogn) and there are
O (n/r?) cells, there is at least one cell where the number of trarssomis is at least
Q (r?loglog n). Since all nodes in a cell are connected to each other, atanesif them
can transmit in a slot. Thus any scheme for computing thetityenction requires at
least((72 log log n) time slots. |

16

N (n,r)

1 1

1 1

1 1 1

r/\/§ Oxr'/ﬁ>2r

Figure 2.5: Cells with the same number (and color) can be active in the sameeslot
and different numbers (colors) activate one after the otbach cell is active once D
slots.

Next, we present an efficient scheme for computing the idefuinction in noisy
broadcast networks, which matches the above bounds.

Theorem 2.4.2.Let f be the identity function. Let € (0,1/2), lete € (0,1/2), and
let € [1,v/2n]. There exists a-error scheme for computing over ane-noise grid
geometric networlV (n, r) which requires at most

max{O (n), O (r*loglogn)} time slots andnax{O (n*?/r), O (nloglogn)} trans-

missions.

Proof. Consider the usual partition of the netwokk(n, r) into cells of size: x ¢ with
¢ = r/+/8. By the protocol model of operation any two nodes are alloveetiansmit
in the same time slot only if they do not have any common neaghbCells are sched-
uled according to the scheme shown in Figure 2.5 to ensutaalh@ansmissions are
successful. Thus, each cell is scheduled once everyr time slots. Within a cell, at
most one node can transmit in any given time slot and nodesttaiks to transmit one
after the other. For each cell, pick one node arbitrarily ealtlit the “cell-center”. The
scheme works in three phases, see Figure 2.6.

First phase: There are two different cases, depending on the connediing

e r < ./n/logn: Inthis case, each node in its turn transmits its input bih

17

7/\/§

Figure 2.6: The scheme for computing the identity function in a noisyvoek involves
three phases: the solid (blue) lines indicate the first Ihaggregation phase, the dashed
(magenta) lines represent the second horizontal aggoegaitiase, and the dotted (red)
lines represent the final vertical aggregation phase.

corresponding cell-center using a codeword of ler@tfog n) such that the cell-center
decodes the message correctly with probability at least/n?. The existence of such a
code is guaranteed by Theorem 2.2.3. This phase requiressaOn-? log n) time slots
and at mos® (nlogn) transmissions in the network. Since there @re:/r?) cells in
the network, the probability that the computation fails iheast one cell is bounded by
O (1/n).

e r > y/n/logn: In this case, each cell uses the more sophisticated scheme
described in [8, Section 7] for recovering all the input naggs from the cell at the
cell-center. This scheme requires at mostr? loglogn) time slots and a total of at
mostO (n/r* x r?loglogn) transmissions in the network. At the end of the scheme,
a cell-center has all the input messages from its cell witbability of error at most
O(logn/n). Since there are at mosig® n cells in the network for this case, the proba-
bility that the computation fails in at least one cell is bdad byO(log® n/n).

Thus at the end of the first phase, all cell-centers in the ordtave the input
bits of the nodes in their cells with probability at least O(log® n/n).

Second phaseln this phase, the messages collected at the cell-centegar
gregated horizontally towards the left-most cells, seaiféd@.6. Note that there are

18

v/n/r horizontal chains and each cell-center liag-?) input messages. In each such
chain, the rightmost cell-center maps its set of messagesaircodeword of length
O (y/nr) and transmits it to the next cell-center in the horizontalich The receiving
cell-center decodes the incoming codeword, appends itsrgeut messages, re-encodes
it into a codeword of lengtl® (1/nr), and then transmits it to the next cell-center, and
so on. This phase requires at mast/nr x y/n/r) time slots and a total of at most
O (y/nr x n/r?) transmissions in the network. From Theorem 2.2.3, this stepbe
executed without error with probability at ledst- O (1/n).

Third phase:In the final phase, the messages at the cell-centers of thedesft
column are aggregated vertically towards the sink nodsee Figure 2.6. Each cell-
center maps its set of input messages into a codeword ofl€nhg{/nr) and transmits
it to the next cell-center in the chain. The receiving celiver decodes the incoming
message, re-encodes it, and then transmits it to the negt aod so on. By pipelining
the transmissions, this phase requires at mbsy/nr x /n/r) time slots and at most
O (y/nr x n/r?) transmissions in the network. This phase can also be exbuwiitfgout
error with probability at least — O (1/n).

It now follows that at the end of the three phases, the sinlenodan com-
pute the identity function with probability of error at moStlog® n/n). Thus for
n large enough, we have @error scheme for computing any symmetric function in
the network\ (n,r). Adding the costs of the phases, the scheme requires at most
max{O (n), O (r*loglogn)} time slots andnax{O (n*?/r),0 (nloglogn)} trans-
missions. [|

We now discuss the computation of symmetric functions isybroadcast net-
works. We begin with a lower bound on the latency and the nurab&ansmissions
required.

Theorem 2.4.3.Leté € (0,1/2), lete € (0,1/2), and letr € [1,n'/27#] for any
£ > 0. There exists a symmetric target functignsuch that anys-error scheme
for computingf over ane-noise grid geometric networl/ (n,r) requires at least
max{Q) (v/n/r),Q (r*loglogn)} time slots andnax{Q) (nlogn/r?),Q (nloglogn)}

transmissions.

19

X X2 €3 Tp—2 Tp—1 Tn

Figure 2.7: Then-noisy star network.

We briefly describe the idea of the proof before delving inetads. Let f
be the parity function. First, we notice that [12, Theorer, Jhage 1057] immedi-
ately implies that any-error scheme for computing over N (n, r) requires at least
Q2 (nloglogn) transmissions. So, we only need to establish that any suense also
requires() (n log n/r?) transmissions.

Suppose there existsyaerror schemé for computing the parity function in an
e-noise grid geometric network” (n, r) which requiresS transmissions. InLemma 2.4.5
we translate the given scherfeinto a new schem@; operating on a “noisy star” net-
work (see Figure 2.7) of noise parameter dependetstrépin, such that the probability
of error for the new schem®; is also at most. In Lemma 2.4.4 we derive a lower
bound on the probability of error of the scherRein terms of the noise parameter of
the noisy star network (which depends &r?/n). Combining these results we obtain
the desired lower bound on the number of transmisstngVe remark that while the
proof of the lower bound in [12, Theorem 1.1, page 1057] dgsra transformation to
a problem over “noisy decision trees”, here we need to taansthe problem into one
over a noisy star network. Hence, the two different tramsfdrons lead to different
lower bounds on the number of transmissions required forpcaation.

A n-noisy star networlconsists ofn input nodes and one auxiliary nodg'.
Each of then input nodes is connected directly # via a noisy link, see Figure 2.7.
We have the following result for any scheme which computesptrity function in an

n-noisy star network:

Lemma 2.4.4.Consider am-noisy star network of noise parameteand let the input
x be distributed uniformly ovef0, 1}". For any schemé; which computes the parity

20

function (onn bits) in the network and in which each input node transmitsnipait bit
only once, the probability of error is at leagt — (1 — 2¢)") /2.

Proof. See Appendix 2.2.1. [|

We have the following lemma relating the original netwavkn,) and a noisy
star network.

Lemma 2.4.5.Leta € (0,1). If there is ad-error schemeP for computing the parity
function (om: input bits) inA (n,) with S transmissions, then there isieerror scheme
P; for computing the parity function (amn input bits) in anan-noisy star network with
noise parametet®S7*/7 with each input node transmitting its input bit only once.

Proof. See in Appendix 2.2.2. [|
We are now ready to complete the proof of Theorem 2.4.3.

Proof (of Theorem 2.4.3)Let o € (0,1). If there is ad-error scheme for computing
the parity function in\ (n, r) which requiresS transmissions, then by combining the
Lemmas 2.4.5 and 2.4.4, the following inequalities mustihol

1 — <1 . 260(5r2/n)>an
6 >
- 2)
. (1 . 260(5T2/n)) > 1-9§
o(s72/n)\ ¢" (a)
= (2—26()> > 1-26

n (logn —loglog (1/(1 — 20)))
— s> a(log(1/¢))

(2.1)

where(a) follows since2~* > 1 — x for everyz > 0. Thus we have that anyerror
scheme for computing the parity function in amoise network\ (n,r) requires at
least(2 (nlogn/r?) transmissions.

We now consider the lower bound on the number of time slotsceSihe mes-
sage of the farthest node requires at l¢as{/n/r) time slots to reach, we have the
corresponding lower bound on the duration of a@rgrror scheme. The lower bound
of Q2 (r?1loglog n) time slots follows from the same argument as in the proof afoFh
rem2.4.1. |

21

Acellin N (n,r)

ooooooleub-cell

-O
[J
[J
O
[J
[J

re
[J
N

e
[J
[J
[J
<
[J
[J
[J

[J
o
[J
[J
[J
[N
[J
[J
[J

r/\/g

O <\/log n/ loglog n)
Figure 2.8: Each cell in the network\ (n,r) is divided into sub-cells of side

S (\/log n/loglog n> Each sub-cell has a “head”, denoted by a yellow node. The

sum of input messages from each sub-cell is obtained atéd hede, depicted by the
solid (blue) lines. These partial sums are then aggregatdek aell-center. The latter
step is represented by the dashed (magenta) lines.

We now present an efficient scheme for computing any symaeiniction in a
noisy broadcast network which matches the above lower ®und

Theorem 2.4.6.Let f be any symmetric function. Léte (0,1/2), lete € (0,1/2), and
let~ € [1,v/2n]. There exists a-error scheme for computing over ane-noise grid
geometric networlV (n,) which requires at most

max{O (y/n/r), O (r*loglogn)} time slots andnax{O (nlogn/r*), 0 (nloglogn)}
transmissions.

Proof. We present a scheme which can compute the arithmetic suneohplut bits
over N (n,r). Note that this suffices to prove the result sirfcs symmetric and thus
its value only depends on the arithmetic sum of the input bits

Consider the usual partition of the netwoXk(n, r) into cells of size: x ¢ with
¢ = r/+/8. For each cell, we pick one node arbitrarily and call it theltcenter”. As

22

before, cells are scheduled to prevent interference betsie@ultaneous transmissions
according to Figure 2.5. The scheme works in three phases.

First phase: The objective of the first phase is to ensure that each cetece
computes the arithmetic sum of the input messages from tihresponding cell. De-
pending on the connection radiugsthis is achieved using two different strategies.

e r < y/logn/loglogn: In Appendix 2.3, we describe a scheme which can
compute the partial sums at all cell-centers with probgbdt leastl — O(1/n) and
requiresO (n/r? x logn) total transmissions and (log n) time slots.

e 7 > /logn/loglogn: In this case, we first divide each cell into smaller
sub-cells with© (logn/loglogn) nodes each, see Figure 2.8. Each sub-cell has an
arbitrarily chosen “head” node. In each sub-cell, we uséritra-cell schemdrom [10,
Section Ill] to compute the sum of the input bits from the seli-at the corresponding
head node. This require3 (loglogn) transmissions from each node in the sub-cell.
Since there ar@® (r?) nodes in each cell and only one node in a cell can transmit in
a time slot, this step requirg3 (r* log log n) time slots and a total af (nloglogn)
transmissions in the network. The probability that the cotapon fails in at least one
sub-cell is bounded b§(1/n).

Next, each head node encodes the sum of the input bits frosalisell into a
codeword of lengtl) (log n) and transmits it to the corresponding cell-center. Thig ste
requires a total 0D (n log log n) transmissions in the network aad(r? log log n) time
slots and can be performed also with probability of error ast®(1/n).

The received values are aggregated so that at the end ofghpifase, all cell-
centers know the sum of their input bits in their cell with pability at least —O(1/n).
The phase require® (nloglogn) transmissions in the network art@ (r?loglogn)
time slots to complete.

Second phasdn this phase, the partial sums stored at the cell-centeraggre-
gated along a tree (see for example, Figure 2.6) so thatrikensidep can compute the
sum of all the input bits in the network. We have the followtag cases, depending on
the connection radius

o r > (\/ﬁlogn)l/?’ : For this regime, our aggregation scheme is similar to
the Inter-cell schemen [10, Section Ill]. Each cell-center encodes its messate &

23

codeword of lengtl® (logn). Each leaf node in the aggregation tree sends its codeword
to the parent node which decodes the message, sums it wathntenessage and then re-
encodes it into a codeword of length(log n). The process continues till the sink node

p receives the sum of all the input bits in the network. Fromadreen 2.2.3, this phase
carries a probability of error at moét(1/n). It requiresO (nlogn/r?) transmissions

in the network and (/n/r x logn) time slots.

o r < (Vnlogn)”? : In this regime, the above simple aggregation scheme
does not match the lower bound for the latency in Theoren32Atmore sophisticated
aggregation scheme is presented in [11, Section V], whiek ideas from [16] to effi-
ciently simulate a scheme for noiseless networks in noisywaorks. The phase carries
a probability of error at mosb(1/n). It requiresO (nlogn/r?) transmissions in the
network andD (y/n/r) time slots.

Combining the two phases, the above scheme can compute anyetgimfunc-
tion with probability of error at mosD(1/n). Thus forn large enough, we havejaerror
scheme for computing any symmetric function in the netwbtkn, r). It requires at
mostmax{O (v/n/r), O (r*loglogn)} time slots and
max{O (nlogn/r?),0 (nloglogn)} transmissions. |

2.5 General Network Topologies

In the previous sections, we focused on grid geometric ndsvior their suitable
regularity properties and for ease of exposition. The esitento random geometric net-
works in the continuum plane when= Q (y/log n) is immediate, and we focus here on
extensions to more general topologies. First, we discugnsions of our schemes for
computing symmetric functions and then present a genechl@ver bound on the num-
ber of transmissions required to compute symmetric funstio arbitrary connected
networks.

2.5.1 Computing symmetric functions in noiseless networks

One of the key components for efficiently computing symmgefinctions in
noiseless networks in Theorem 2.3.4 was the hierarchib@mse proposed for comput-

24

ing the arithmetic sum function in the grid geometric netwaf(n, 1). The main idea

behind the scheme was to consider successively coarsgiopsrof the network and at
any given level aggregate the partial sum of the input messsiggeach individual cell of

the partition using results from the finer partition in thepous level of the hierarchy.
Using this idea we extend the hierarchical scheme to anyesiad noiseless network
N and derive an upper bound on the number of transmissiongeedgor the scheme.

Let each node in the network start with an input bit and detiteset of nodes by.

The scheme is defined by the following parameters:
e The number of levels.

e For each level, a partitionIl; = {P!, P? ..., P’} of the set of nodes in the
network V) into s; disjoint cells such that each! = U, _,. P}, whereT! C
{1,2,...,s;_1}, i.e., each cell is composed of one or mZ)re cells from the next
lower level in the hierarchy. See Figure 2.9 for an illustnat Here, I, =
{{i} : ¢ € V} andll, = {V}.

e For each cellP’, a designated cell-centef ¢ P/. Letc}, be the designated sink

nodev*.

e For each cellP/, let S} denote a Steiner tree with the minimum number of edges
which connects the corresponding cell-center with all #ié@enters of its com-
ponent cellsPf |, i.e., the set of nodes, _,.c¥_, Uc/. Let denote the number

of edges ins’.

Using the above definitions, the hierarchical scheme fromofém 2.3.4 can now be
easily extended to general network topologies. We stalt thig first level in the hier-
archy and then proceed recursively. At any given level, wapmate the partial sums
of the input messages in each individual cell of the partitithe corresponding cell-
centers by aggregating the results from the previous ldeelgathe minimum Steiner
tree. It is easy to verify that after the final level in the stlee the sink node* pos-

sesses the arithmetic sum of all the input messages in thered/. The total number

25

1
P

Figure 2.9: Cell P, | is composed of P/'}{_, smaller cells from the previous level in
the hierarchy. Each of the cell-centefg(denoted by the green nodes) holds the sum of
the input bits in the corresponding célf. These partial sums are aggregated along the
minimum Steiner tre€/, ; (denoted by the brown bold lines) so that the cell-cedter
(denoted by the blue node) can compute the sum of all the bifin P, .

of transmissions made by the scheme is at most

h—1 St+1

Zzliﬁ -log (‘Ptj+1‘) .

t=0 j=1
Thus, we have a scheme for computing the arithmetic sumitimat any arbitrary
connected network. In the proof of Theorem 2.3.4, the aboumd is evaluated for the
grid geometric networkV (n, 1) with h = log /n, s, = n/2%, 1} < 4.2, |P/| = 2%,
and is shown to b&(n).

2.5.2 Computing symmetric functions in noisy networks

We generalize the scheme in Theorem 2.4.6 for computing stnoriunctions
in a noisy grid geometric netwotk/(n,) to a more general class of network topolo-
gies and derive a corresponding upper bound on the numbearsmnissions required.
The original scheme consists of two phases: an intra-cals@hvhere the network is

26

partitioned into smaller cells, each of which is a cliqued partial sums are computed
in each individual cell; and an inter-cell phase where théigdssums in cells are aggre-
gated to compute the arithmetic sum of all input messagdeeatihk node. We extend
the above idea to more general topologies. First, forany1, consider the following
definition:

Clique-cover property C(z): a network A" of n nodes is said to satisfy the
clique-cover property’(z) if the set of noded’ is covered by at mostn/z| cliques,
each of size at mo$bg n/ loglogn.

For example, a grid geometric netwokk(n, r) with r = O(y/log n/ loglogn)
satisfiesC(z) for = = O(r?). On the other hand, a tree network satisti#s) only for
z < 2. Note that any connected network satisfies propéfty). By regarding each dis-
joint clique in the network as a cell, we can easily extendathalysis in Theorem 2.4.6
to get the following result, whose proof is omitted.

Theorem 2.5.1.Leté € (0,3), ¢ € (0,1) and A/ be any connected network of
nodes withm > 2/4. For z > 1, if N satisfie<C(z), then there exists &error scheme
for computing any symmetric function ov&f which requires at mos©(nlogn/z)

transmissions.

2.5.3 A generalized lower bound for symmetric functions

The proof techniques that we use to obtain lower bounds aceagplicable to
more general network topologies. Recall thgt) denotes the set of neighbors for any
nodei. For any network, define the average degree as

>IN

d(n) _ % -

A slight modification to the proof of Theorem 2.4.3 leads te tbllowing result:

Theorem 2.5.2.Let§ € (O, %) and lete € (0, %) There exists a symmetric target

function f such that any-error scheme for computing over any connected network of

n nodes with average degreén), requires at leasf2 <"dlg’§)") transmissions.

27

Proof. Let f be the parity function. The only difficulty in adapting theopf of Theo-
rem 2.4.3 arises from the node degree not being necesdailaime for all the nodes.
We circumvent this problem as follows: in addition to decasipg the network into
the set of source nodesand auxiliary nodesd, such thato| = an for a € (0,1), as
in the proof of Lemma 2.4.5 (see Appendix 2.2.2); we alsoVergsource node with
degree more thaﬁ‘? be an auxiliary node. There can be at mgstof such nodes
in the network since the average degreé(is). Thus, we obtain a4, (1 — $)n)
decomposition of the network such that each source nodedupsal at mos@. The
rest of the proof then follows in the same way. [|

As an application of the above result, we have the followimgdr bound for
ring or tree networks.

Corollary 2.5.3. Let f be the parity function, lef € (0,1), and lete € (0,1). Any
o-error scheme for computing over any ring or tree network ot nodes requires at

least(2 (nlogn) transmissions.

The above result answers an open question, posed origmaly Gamal [6].

2.6 Conclusion

We conclude with some observations and directions for éuvork.

2.6.1 Target functions

We considered all symmetric functions as a single class aegkpted a worst-
case characterization (up to a constant) of the number n$rmesions and time slots
required for computing this class of functions. A naturaéspion to ask is whether it
is possible to obtain better performance if one restricts particular sub-class of sym-
metric functions. For example, two sub-classes of symmaétrictions are considered
in [3]: type-sensitivandtype-threshold Since the parity function is a type-sensitive
function, the characterization for noiseless networks medrems 2.3.3 and 2.3.4, as
well as noisy broadcast networks in Theorems 2.4.3 and 24 holds for the re-
stricted sub-class of type-sensitive functions. A simganeral characterization is not

28

possible for type-threshold functions since the triviaddtion (f (x) = 0 for all x) is also
in this class and it requires no transmissions and time sdotempute. The following
result, whose proof follows similar lines as the resultsrievpus sections and is omit-
ted, characterizes the number of transmissions and the euafliime slots required
for computing the maximum function, which is an example tjfpeeshold function.
This can be compared with the corresponding results for th@evclass of symmetric
functions in Theorems 2.4.3 and 2.4.6.

Theorem 2.6.1.Let f be the maximum function. Léte (0,1/2), ¢ € (0,1/2), and
r € [1,4/2n]. Anyé-error scheme for computing over ane-noise network\ (n, r)
requires at leastmax{Q (v/n/r),Q (r?)} time slots andnax{Q (nlogn/r?),Q(n)}
transmissions. Further, there existsiaerror scheme for computing which requires
at mostmax{O (y/n/r), O (r?*)} time slots andnax{O (nlogn/r?),O (n)} transmis-

sions.

2.6.2 Onthe role ofe and §

Throughout the paper, the channel error paramegerd the threshold on the
probability of error are taken to be given constants. Its@ahteresting to study how the
cost of computation depends on these parameters. The loaader might have noticed
that our proposed schemes work also when only an upper bautiteachannel error
parametet is considered, and always achieve a probability of efribrat is either zero
or tends to zero as — oo. It is also clear that the cost of computation should deereas
with smaller values ot and increase with smaller values @f Indeed, from (2.1) in
the proof of Theorem 2.4.3 we see that the lower bound on th#euof transmissions
required for computing the parity function dependseces 1/(— loge). On the other
hand, from the proof of Theorem 2.4.6 the upper bound on thebewu of transmissions
required to compute any symmetric function depends asil/ (— log(e(1 —¢))). The
two expressions are close for small values.of

29

2.6.3 Network models

We assumed that each node in the network has a single bit. v&lueresults
can be immediately adapted to obtain upper bounds on theclatend number of trans-
missions required for the more general scenario where eadéirobserves a block of
input messages,, 22, ..., z¥ with eachz’ € {0,1,...,q}, ¢ > 2. However, finding

matching lower bounds seems to be more challenging.

Appendix

2.1 Computing the arithmetic sum over\ (n, 1)

m
A

u(AM"), u <AW2) u

13

Figure 2.10: A" is a square cell of sizex x m. This figure illustrates some notation
with regards to4;".

Consider a noiseless netwalk (n, 1) where each nodehas an input message
x; € {0,1,...,g — 1}. We present a scheme which can compute the arithmetic sum
of the input messages over the networlCri\/n + log ¢ - log n) time slots and using
O (n + logq) transmissions. We briefly present the main idea of the scheefmre

30

2A:+1

Figure 2.11: This figure illustrates the partition of the netwalk(n, 1) into smaller
ceIIs{A?k“}?Q(l’?“), each of siz&k+! x 2k+1,

delving into details. Our scheme divides the network int@alicells and computes the
sum of the input messages in each individual cell at destghell-centers. We then
proceed recursively and in each iteration we double theditiee cells into which the
network is partitioned and compute the partial sums by agdneg the computed values
from the previous round. This process finally yields thehanitic sum of all the input
messages in the network.

Before we describe the scheme, we define some notation. Coaside x m
square cell in the network, see Figure 2.10. Denote thisogell!” and the node in the
lower-left corner ofA" by u (A[*). For anym which is a power o2, m > 2, A7 can
be divided into4 smaller cells, each of size /2 x m /2, see Figure 2.10. Denote these
cells by{AZ?/Q}jl.

Without loss of generality, let be a power oft. The scheme has the following
steps :

1. Letk =0.

2. Consider the partition of the network into ce{lﬁ?k+1 } Z* each of size@h ! x

=1

31

2k‘+l

ok ok
Ais Ai4

Figure 2.12: Step2 of the scheme for computing the sum of input messages. The net
work is divided into smaller cells, each of si2&™ x 2**1, For any such celd?""",

j € {1,2,3,4}, each corner node (A?;) has the sum of the input messages corre-
sponding to the nodes in the cﬂl}f. Then the sum of the input messages corresponding
to the cellA2""" is aggregated at (A?k“), along the tree shown in the figure.

2k+1 see Figure 2.11. Note that each cdf "' consists of exactly four cells
{A2k . ..,Aff}, see Figure 2.12. Each corner nadéA%f) .7 =1,2,3,4 pos-

71 7

sesses the sum of the input messages corresponding to the indtie cellA?f.

The partial sums stored at(Aff) .7 = 1,2,3,4 are aggregated at the node
u <A§k’+1>, along the tree shown in Figure 2.12. Each node in the treeesnak

at mostlog (22**)¢) transmissions.

At the end of this step, each corner nodéA?'““) has the sum of the input mes-
sages corresponding to the nodes in the4#il". By pipelining the transmissions
along the tree, this step takes at most

2 (2" +log (2°*g)) time slots.

32

The total number of transmissions in the network for thip $$eat most

n

4dn
4.9k, 2k41) 1) —
PRy 4.2% . log (2 q)

T 9k+1

(k+1+1logq).

3. Letk « k+ 1. If 281 <\ /n, return to ste, else terminate.

Note that at the end of the process, the nedan compute the sum of the input messages
forany inputx € {0,1,...,q — 1}". The total number of steps in the schembjs,/n.
The number of time slots that the scheme takes is at most

log v/n—1

Z 2 (2" + log (22+1)¢))
k=0

< O(logq-logn%—ﬁ).

The total number of transmissions made by the scheme is dt mos

logf_l dn(k 4+ 1+ logq)

2k+1

k=0
< O(n+loggq).

2.2 Completion of the proof of Theorem 2.4.3

2.2.1 Proof of Lemma 2.4.4

Forevery: € {1,2,...,n}, lety; be the noisy copy aof; that the auxiliary node
A* receives. Denote the received vectorjay The objective ofd* is to compute the
parity of the input bitse,, x,, . . ., z,,. Thus, the target functiofi is defined as

fX)=21 P12 ... DB xy.

Since the inpuk is uniformly distributed, we haver (f(x) =0) = Pr(f(x) =1) =
1/2. In the following, we first show that Maximum Likelihood estition is equivalent
to using the parity of the received bis v, . . ., y, i.€. f(y) as an estimate fof(x), and
then compute the corresponding probability of error. Fromdefinition of Maximum

33

Likelihood estimation, we have

X {1 if Pr(y|f(x) = 1) > Pr (y| f(x) = 0)

0 otherwise

Next,

Privlf(x)=1) = > Pr(x[f(x=1))-Pr(ylx)
x€{0,1}"™
s.tf(x)=1

@ > Pr(yla) Pr(yslza) .. Pr(ynlz,)

x€{0,1}"

s.tf(x)=1
wherex = 2=~ and (a) follows sincex is uniformly distributed ovef0, 1}" and
from the independence of the channels between the sourcetharauxiliary node.
Similarly,

Prylf(x)=0) =« Z Pr(yilz1) Pr(y2lx2) . .. Pr(yalzn) -

xe{0,1}"
s.tf(x)=0

Putting things together, we have

sl > TIPr(wilzd =" TIPriwle)

Pr(ylf(x) = 0) = Pr(ylf(x) = 1)

xe{0,1}" i=1 xe{0,1}" i=1
s.tf(x)=0 s.tf(x)=1
@ T
= ,@H (Pr(yilzi = 0) — Pr(y;|z; = 1))
=1
= k(=1 (1-2¢)", (2.2)

wheren, (y) is the number of componentsynwith valuel. The above equalitya) can
be verfied by noting that the product(im) produces a sum & monomials and that the
sign of each monomial is positive if the number of terms ofrti@nomial conditioned

34

onz; = 1is even, and negative otherwise. From (2.2), we now have

>0 if f(y)=0
<0 if f(y)=1.

Pr(y[f(x) =0) = Pr(ylf(x) =1)

Thus, we have shown that Maximum Likelihood estimation isiesjent to usingf(y)
as an estimate fof(x). The corresponding probability of error is given by

Pry. (Error) = Pr(f(y) # f(x))

Pr <Zycle9yZ =2j — 1)
i=1

Hence, for any schem®; which computes the parity functiofi in an n-noisy star
network, the probability of error is at least — (1 — 2¢)") /2.

2.2.2 Proof of Lemma 2.4.5

We borrow some notation from [8] and [12]. Consider the nodes network
and mark a subset of them as input nodes and the restas auxiliary nodes. Such a
decomposition of the network is called fa|, |.A|)-decomposition. An input value to
this network is an element df), 1}°!. Consider a schent® on such a network which
computes a functiorfi of the input. The scheme is said totebounded with respect to
an(|o|,|.A|)-decomposition if each node in makes at most. transmissions. Recall
from Section 2.2 that for any scheme in our model, the numbémaasmissions that
any node makes is fixed a priori and does not depend on a gartexecution of the
scheme. Following [8] and [12] we define themi-noisy networkn which whenever it
is the turn of an input node to transmit, it sends its inpuiAibse independemtnoisy
copies are received by its neighbors, while the transmrmssiade by auxiliary nodes are
not subject to any noise.

35

The proof now proceeds by combining three lemmas. Suppese #xists a-
error schemé for computing the parity function in arinoise network\ (n,) which
requiresS transmissions. We first show in Lemma 2.2.1 that this imghesexistence of
a suitable decomposition of the network angterror,O (S/n)-bounded schemg, for
computing the parity function in this decomposed networmima 2.2.2 translates the
schemeP, into a schemé&P, for computing in a semi-noisy network and Lemma 2.2.3
translatesP, into a scheméP; for computing in a noisy star network, while ensuring
that the probability of error does not increase at any inegliate step. The proof is
completed using the fact that the probability of error fagoral scheméP is at most.

Leta € (0,1). We have the following lemma.

Lemma 2.2.1.1f there is aj-error scheméP for computing the parity function (omin-
put bits) in\ (n,) with S transmissions, then there is &, (1 — «)n)-decomposition
of N (n,r) and ad-error, O (S/n)-bounded scheniB, for computing the parity func-
tion (onan bits) in this decomposed network.

Proof. If all nodes in the network maké (S/n) transmissions, then the lemma fol-
lows trivially. Otherwise, we decompose the network inte #et of input nodes and
auxiliary nodesA as follows. Consider the set of nodes which make more g?éfak)
transmissions each during the execution of the schnginceP requiresS transmis-
sions, there can be at magt — a)n of such nodes. We let these nodes be auxiliary
nodes and let their input & Thus, we have atun, (1 — a)n)-decomposition of the
network ' (n,). The scheme now reduces to computing the parity«{orbits) over
this decomposed network. By construction, each input nodessnat mos% trans-

(1-a)
missions and hence the schem@isS/n)-bounded. |

The following lemma is stated without proof, as it followsrimadiately from [8,
Section 6, page 1833], or [12, Lemma 5.1, page 1064].

Lemma 2.2.2. (FROM NOISY TO SEMI-NOIS¥pr any functionf : {0,1}*" — {0,1}
and anyd-error, O (S/n)-bounded schem®, for computingf in an (an, (1 — a)n)-
decomposition o\ (n, r), there exists arjan, n)-decomposed semi-noisy network of
(1 + «)n nodes such that each input node has at n@$t?) neighbors and a-error,

O (S/n)-bounded schentg, for computingf in the semi-noisy network.

36

We now present the final lemma needed to complete the proof.

Lemma 2.2.3. (FROM SEMI-NOISY TO NOISY STAR)r any functionf : {0,1}*" —
{0,1} and anyd-error, O (S/n)-bounded schem®, for computingf in an (an,n)-
decomposed semi-noisy network where each input node has atbniy neighbors,
there exists a-error scheméP; for computingf in an an-noisy star network with noise
parameter®(5*/") with each input node transmitting its input bit only once.

Proof. In a semi-noisy network, when it is the turn of an input nodé&amsmit during
the execution ofP,, it transmits its input bit. Since the bits sent by the inpotl@s do
not depend on bits that these nodes receive during the éxeaitthe scheme, we can
assume that the input nodes make their transmissions aketfierting of the scheme
an appropriate number of times, and after that only the mmyihodes communicate
without any noise. Further, since any input node in the, n)-decomposed network
has at mosp (r?) neighbors, at mosD (r?) auxiliary nodes receive independent
noisy copies of each such input bit. Singe is anO (S/n)-bounded scheme, each
input node makes at moét(.S/n) transmissions and hence the auxiliary nodes receive
a total of at mos® (Sr?/n) independent-noisy copies of each input bit.

Next, we use the schenfe, to construct a schem®; for computingf in an
an-noisy star network of noise paramet&f5~*/™ with each input node transmitting its
input bit only once. Lemma 2.2.4 shows that upon receiving’4fi*/™-noisy copy for
every input bit, the auxiliary nodd* in the noisy star network can generéléSr?/n)
independent-noisy copies for each input bit. Then onwards, the auyilieode A* can
simulate the schenB,. This is true since foP, only the auxiliary nodes operate after
the initial transmissions by the input nodes, and theirgnaissions are not subject to
any noise. [

Lemma 2.2.4. [8, Lemma 36, page 1834] Léte N, € € (0,1/2), andy = €'. There
is a randomized algorithm that takes as input a singlebla@ihd outputs a sequencetof
bits such that if the input is a-noisy copy of) (respectively ofl), then the output is a

sequence of independenhoisy copies of (respectively ot).

37

2.3 Scheme for computing partial sums at cell-centers

We describe an adaptation of the scheme in [10, SectionwHich requires at
mostO (%) transmissions an@ (logn) time slots. The scheme in [10, Section Il1]

is described for > \/logn and while the same ideas work for< /log n/ log log n,
the parameters need to be chosen carefully so that the sat@mmmpute efficiently
in the new regime.

Recall that the network is partitioned into cells of size ¢ wherec = r//8.
Consider any cell; in the network and denote its cell-center 4y The scheme has

the following steps:

1. Every node inA; takes a turn to transmit its input hit, § (1"%) times, where
A = —In (4¢(1 — €)). Thus, every node irl, receives (‘%) independent noisy

C

copies of the entire input. This step requires§ (10%) transmissions an@“;ﬁ
time slots.

2. Each node iM; forms an estimate for the input bits of the other noded jrby
taking themajority of the noisy bits that it received from each of them. It is easy
to compute the probability that a node has a wrong estimatafpgiven input bit
to be at most* - e*%, see for example Gallager’s book [15, page 125]. Each
node then computes the arithmetic sum of all the decodedahidsthus has an

estimate of the sum of all the input bits in the céll.

3. Each node iM; transmits its estimate to the cell-centgrusing a codeword of
Iength“ﬁ# such that: is a constant and the cell-center decodes the message with
probability of error at most™ <. The existence of such a code is guaranteed by
Theorem 2.2.3 and from the fact that the size of the estinmatéslog(c? + 1) <

logn/c?, sincec? = % < Sll‘gglg;n. At the end of this step;; hasc? independent

estimates for the sum of the input bits corresponding to ttkes inA;. The total

number of transmissions for this step is at rrmst’“;g" and it requires at most

klogn time slots.

4. The cell-center, takes thanodeof theser? values to make the final estimate for
the sum of the input bits inl;.

38

We can now bound the probability of error for the scheme devial.

logn logn logn logn c?
Pr(Error) < (4 (026—4 sl e—%) (1 (R 6—47%)))

a

_4logn CQ
< (4-906 c2>

® 1
< 3 for n large enough

—
=

where(a) follows since8c¢* = r? > 1; and(b) follows sincec? log ¢* < logn. Thus,
every cell-centep; can compute the sum of the input bits corresponding to thesod
in A; with probability of error at mostnl—Q. The total probability of error is then at most
4 . & < £, The total number of transmissions in the network for thsese is at most

(8 + k) - 282 ie. O (“9%%2) and it takes at mosS + &) - logn, i.e.,O (logn) time

C

slots.
Chapter 2, in part, has been submitted for publication of tagenal. The dis-

sertation author was the primary investigator and authtmisfpaper.

Chapter 3

Function computation over linear

channels

We consider multiple sources communicating over a netwmekdommon sink.
We assume that the network operation is fixed, and its endtresio convey a fixed
unkown linear transformation of the source data to the sfi.design communication
protocols that can perform computation without modifyihg hetwork operation, by
appropriately selecting the codebook that the sourcesmnpmap their measurements
to the data they send over the network. The model studiedsrcttapter is motivated
by practical considerations: since implementing netwagkprotocols is hard, there is a
strong incentive to reuse the same network protocol to ceenglifferent functions.

39

40

3.1 Introduction

In sensor networks, the need for energy efficiency has stiadiresearch efforts
towards in-network aggregation and function computatsa® for example [3,17, 18].
Recent work [19,20] has also pointed out the need to Bawplecoding schemes, since
“systems are hard to develop and debug”. They advocate a@oluhere most nodes
in the network perform the same operations regardless ditieion to be computed,
and the onus of guaranteeing successful computation is ew agecial nodes that are
allowed to vary their operation.

Motivated by the above considerations, we consider thel@nolof computing
functions in a network where multiple sources are connet@dsingle sink via relays.
The sources may have several different possible codebaaokiscan select which one
to employ depending on the function to be computed. Giverrtaicetarget function,
each source transmits a codeword corresponding to its wdbenessage. The relay
nodes, however, perform the same linear operations, fanpbearandomized network
coding (which is a practical and efficient way of transmgtigata in a network [21])
irrespective of the target function, i.e., the vectors itestby the sources are randomly
combined and forwarded towards the sink, using linear aeiffis that are unknown to
both the sources and the sink. The sink then proceeds toatgdhe target function of
the source messages.

Following [22—24], we use subspace coding for computingfioms in our net-
work model. Given a target function, we assume that eachceouses a codebook
consisting of subspaces. Each source message is mappeadbgpace in the codebook.
When a source generates a message, it injects the basissvettbe corresponding
subspace into the network. The network operation is alisttday assuming that the
sink collects enough linear combinations of these vectisdrn the joint span of the
injected subspaces. Given this information, the sink thmgts to compute the target
function of the source messages. Our objective is to desigalwooks which minimize
the number of symbols each source needs to transmit, whdeagteeing successful
function computation by the sink.

Thus, we envision a network architecture where intermediatwork nodes al-
ways perform the same operations for information transtdrch leads to a simple

41

implementation. At the same time, the sink has the flexybtlit utilize the network to
learn different functions of the source data by informing slource nodes to employ the
corresponding codebooks. Here we focus on non-coherentncmiation where we
have no knowledge about the network transformation; in y@5]ook at the case where
this transformation is fixed and known.

We note that a scheme which optimizes the intermediate npel@bons accord-
ing to the function to be computed might need fewer transomnss However, it would
be more complex to implement, would require topology knalgks and might be sen-
sitive to the employed communication protocol. In contraat approach is transparent
both to the topology and the employed communication prdtdbe only requirement
we impose is that we gather sufficient linear independentaoations. As a result, our
protocol would be very well suited to dynamically changiogdlogies, and could be
applied without change on top of very different communimatprotocols.

The chapter is organized as follows. Section 3.2 presentgribblem formu-
lation. In Section 3.3, we present various lower bounds enrthmber of symbols
each source needs to transmit to evaluate an arbitraryifumdn Section 3.4, we dis-
cuss various example target functions. In particular, vaige lower bounds as well
as near-optimal coding schemes for ttentity, 7-threshold maximumand K -largest
valuesfunctions. Finally, in Section 3.3, we present a constmecsicheme to evaluate
arbitrary functions.

3.2 Problem Formulation and Notation

We consider a set ofsourcesry, 09, . . ., 0, connected to a sink via a network
N. Each source; is either inactive or observes a message A, whereA is a finite
alphabet. For ease of notation, when a soutds inactive we will setr; = ¢. The sink
needs to computetarget functionf of the source messages, wheres of the form

[(Au{¢})” — B.

Some example target functions are defined below.

42

Network <=
N @ —o f(a:l,...,xs)
° Sink
. p

Figure 3.1: Description of the network operation

Definition 3.2.1.

e Theidentitytarget function ha$ = (A U {¢})® and is defined by

flzy, ... xs) = (x1,...,x) .

e Form > 1, the arithmetic sumtarget function hasd = {1,...,m}, B =
{0,1,...,ms}, and is defined by

fze,. o x) =m + a0+ + T
where “+' denotes ordinary integer summation. For ang A U {¢}, we set
a+¢=a.

e Let A be an ordered set. Theaximuntarget function hag = A and is defined
by

fxy,...,xs) = max{zy,...,xs}.
For anya € AU {¢}, we setmax{a, ¢} = a.

e Theparity target function hast = B = {0, 1}, and is defined by

frr,...,05) =21 D2 ® ... D ws

where® denotesnod-2 addition. Again, for anys € AU {¢} we seta & ¢ = a.

43
e Themajority target function hast = 5 = {0, 1}, and is defined by

1 if {e:a =1} > |{i:2; =0}

0 otherwise

We consider operation using subspace coding. We denotesaasti byr and
the union of two subspaces, , is defined asr; + m = {x +y : x € 1,y € m}.
The network operates as follows.

e At each source, every alphabet symbol is mapped to a suhsphitd serves as
the corresponding codeword. Thus, each sourdeas an associated codebook
Ci = {w{}jeA wherer! is ad-dimensional subspatef anl-dimensional vector
spachfl whered, [> 1 are design parameters. When the sourcis active and
observes a message € A, it injects into the networkV" a set ofd vectors from
IE‘fI which span the subspaeé’. When the source is; inactive, it does not make
any transmissions and hence weset= (.

e The sinkp receives from the network’ a set of vectors frorif, which span the
union of the input subspaceise., p observes ;_, 77"

e The sink uses the received information to compute the vélyg o, o, . . . , z;).

A (d, 1) feasible code for computingis a collection of codebooKg;, Cs, . . . ,Cs }
such that each’ in the codebooks is @dimensional subspace Bf, and the sink can
compute the value of (z1, zs, ..., z,) for any choice of input messages, o, . . . , =,
where each; € AU {¢}.

For a(d,!) feasible code for computing, each source transmits at makst [
symbols fromF,, and we thus consider the associatedtmsbed - I. Our code design
seeks to achieve

Emn(f)=inf{d-1:Ja(d,!) feasible code for computing} .

L Although restricting our code design to subspaces of eduatmsion may not always be optimal, it
significantly simplies the design, and is a standard approathe literature [22, 26].

2In practice, networks operate in rounds. The duration ofiadacan be chosen large enough to ensure
that the sink receives enough linear independent combimatb span the union of the input subspaces.

3In this work, the field size is considered to be fixed and hence not included in the cost.

44

We begin by showing that for the purpose of minimizing thetebs/, it suffices to
consider codes which use one-dimensional subspaces.

Theorem 3.2.2.Given any(d, [) feasible code for computing a target functignthere
also exists g1, d - 1) feasible code for computingy

Proof. Partition(AU {¢})® into Py, P,, ..., P So that eaclP; consists of all the input
vectors which result in the same function value. Then a rsaegsand sufficient condi-
tion for successful computation is that the sink shouldivecéifferent union subspaces
for any two input vectors andy if they belong to distinct partitions.

Let {n/ C F.:ie{l,...,s},j € A} denote the collection aof-dimensional
subspaces associated with the givén) feasible code for computing. The above
necessary condition implies that these subspaces satisfieation of inequalities, each

S Y (3.1)
i=1 i=1

where eacl;, b; € AU {¢}. Now corresponding to eachdimensional subspaa—é in

of the form

the above code, construct a one-dimensional subsﬁage Fg‘l by concatenating the
d basis vectors of into a single vector. It can be verified that the collectioroné-
dimensional subspacds’ : i € {1,...,s},j € A} constructed this way also satisfy
all the inequalities that the original code satisfied, ifé3.1) holds for somga;}, {b;},

Z% £ Z%b (3.2)
i=1 =1

Since (3.1) holds, there exists at least one basis vectpr,sa =", which is not in

then

7% which

i=1 "7

S ¢_, 7. This immediately implies that{' cannot be an element OF?
proves (3.2).

Thus the collection of one-dimensional subspages: i € {1,...,s},j € A}
ensures that for any two input vectors in distinct partsiothe sink receives different
union subspaces. Since this is sufficient for function caajoen, we have shown that

we can construct él, d - 1) feasible code from ani, () feasible code. |

In the sequel, we will only consider codes which use one-dsimal subspaces.
We will denote the dimension of any subspacey dim(). Also, for any vectok, the

45

j-th component will be denoted lfy);. Consider a set of indicds= (il, l9, ... ,z’m) -
{1,...,s}. Foranya = (a1, as,...,a;) € (Au{¢})I" and any vectok € (AU{¢})*,
letx(I,a) = (z1,x,...,2,) denote a vector which is obtained fraoby substituting
the components corresponding to the index setith values from the vectoa and
retaining all the other components. Thatis, foreaeh{1, ... |/}, (x(/,a)), = (a);
and for eachk ¢ I, (x(/,a)), = (x),. We conclude this section with a lemma that is
often used in the subsequent sections.

Lemma 3.2.3.If there exist one-dimensional subspaegsn,, ..., m7x C IFfJ and a
subspacer* C F! such that

mgr+ Y m Vie{l,... K} (3.3)

J<t
then! > K.

Proof. (3.3) implies that the basis vectors for ti& one-dimensional subspaces are
linearly independent. The result then follows. [|

3.3 Lower bounds

The number ofi-dimensional subspaces Eg foranyd < [,1 > 1is given by
the gaussian binomial coefficient

n (@ —1D)(g" =1)--- (¢4 —1)
[dL (@ =1D(gt=1) - (g—1) (3.4)

We have the following upper bound on the numbet-@imensional subspaces..

Lemma 3.3.1. The number ofi-dimensional subspaces Bf is at most4q?!~% [22,
Lemma 4].

Recall thatx(/, a) denotes a vector which is obtained frenty substituting the
components corresponding to the index/seith values from the vectat and retaining
all the other components. Consider a target function witlHdhewing property.

46

Function propertyP : There existg € {1,...,s} andx € (AU{¢})* such that
foranya,b € A,

f(x({k}, a)) # f(x({k},0)).

Examples The identity function and arithmetic sum function satipfgppertyP.
We have the following simple lower bound for functions whgatisfy property
P.

Lemma 3.3.2. For any target functiory which satisfies properti,

Ennl) = log, (|A] (¢ — 1)) + 1.

Proof. From the definition of propert¥?, there existg such that source, must assign
a distinct one-dimensional subspace to eaeh.A. From (3.4), we have

l
qg —1
> A
“o A

=1 >log, (|A](¢—1)) + 1.

Consider a target function with the following property.
Function propertyQ(k) : There existx € (AU {¢})® and a collection of:
distinctindices, is, . . . , i), such that for every € {1,2,..., k}, we havgx); # ¢ and

f & i b Ao 0h) # f (i, ion) {e, ., 0)) . (3.5)
Example 3.3.3.

e The identity function satisfies proper@(s) by choosing eackx); equal to any
element of the alphabet.

e The arithmetic sum function satisfies prope@ys) by choosing eaclx); equal
to some non-zero element of the alphaldet

e The parity function satisfies proper@(s) by choosing eacfx); equal tol.

47
e The majority function satisfies proper@(s) by choosing(x), equal tol if j is
even and) otherwise wher is even and vice-versa whens odd.

Lemma 3.3.4. For any target functiory which satisfies propert@ (%),
5min(f) Z k

Proof. Let

I1° = Z Wt(x)t .

tQ{il,iQ ’Lk}
From (3.5), any feasible code for computifighould satisfy for every € {1,2,... k}

k k
(x)i; (%)im c (%) i c

m=j+1 m=j+1

k
(%)i; (X)im, c
=, z Z PN o I

m=j+1
Then using Lemma 3.2.3 for the collectionkobne-dimensional subspac;q%‘)i1 e wf:)i"'
and the subspadé©, the result follows. [|

We borrow the following definition from [18].

Definition 3.3.5. For any target functiorf : (A U {¢})* — B, any index setl C
{1,2,...,s},and anya, b € (AU {¢})Vl, we writea = b if for everyx € (AU {¢})°,
we havef (x(7,a)) = f (x(I,b)).

It can be verified that= is an equivalence relatiéifior every f and].

Definition 3.3.6. For everyf and I, let R; ; denote the total number of equivalence
classes induced by and let

(Pfyf : (AU {¢})|]\ - {1a27"'7R17f}

4Wwitsenhausen [27] represented this equivalence relatiderins of the independent sets of a char-
acteristic graph and his representation has been usediousgrroblems related to function computa-
tion [28, 29]. Although= is defined with respect to a particular index getnd a functionf, we do not
make this dependence explicit — the valueg ahd f will be clear from the context.

48

be any function such that; ;(a) = ®; ¢(b) iff a = b.

That is,®; ; assigns a unique index to each equivalence class, and

Riy=|{®rs(a):ac (AU {p})"}].

The value ofRz; ; is independent of the choice &f; ;.
Example 3.3.7.

e Let f be the identity target function. Then for everyb € (A U {¢})!l we have
a = bifand only ifa = b. The number of distinct equivalence classes is

Rry = (|A] + .

e Let A = {1,...,m} for somem > 1 and letf be the arithmetic sum target
function. Fora, b € (AU {¢})"], we havea = b if and only if

1] 1

Y (@)= (b),

i=1 i=1

and the number of such possible sums is

Rl’f:m\IH—l.

Lemma 3.3.8. For any target functiory,

{ log, (Rry) logq(RI,f)}

Emn(f) > max max

I 3 T3

Proof. Consider any = {iy, iy, ..., }. Foranya,b € (AU {¢}) such that # b,
any feasible code should satisfy

DTS SR @9

Je{1,...|I|} je{1,...,[I|}

49

composed of the union of at modt one-dimensional subspaces. Then from Defini-
tion 4.1.4 and (3.6), there exist at ledst ; distinct subspaces, each with dimension at

most|/|. From Lemma 3.3.1, we have
min{l,| |}

4+ > ¢ > Ry (3.7)
j=1

This implies that

Sincelog, (41) < 21, we have

3[2 > logq(RI,f)

logq(RLf)
= > —3 .

From (3.7), we also have
1]

4. Z qj(l—j) > Ry
j=1

—41I| - qci(l—tf) > Ry Wwith d — argmax qj(lfj)
Je{L, 111}

= log, (4 |1]) + d(l — d)+ > log,(Ry).

50
Sincelog, (4 [1]) < 2|1 andd < |I|, we have
2111+ |11 > log,(Rr,f)

10g (R[f)
— > >
- 3|

Example 3.3.9.

e For the arithmetic sum target functigi we get

V1os (s[4 +1)
> .

5min(f) 3

Comment Note that when.A| > s, the bounds in the above examples are better
than the ones presented earlier in the section.

3.4 Bounds for specific functions

Any target function can be computed by first reconstructihtha source mes-
sages at the sink (i.e., computing the identity functfon,, zo, ..., xs) = (1,22, ..., z)
with eachx; € AU {¢}) and then deriving the function value. Hence, the following
lemma provides an upper bound on the cost for computing amgtifun f.

Lemma 3.4.1. There exists d1,1) feasible code for computing the identity function
such that

| = s+ [log, |Al].

Proof. It is easy to see that this can be achieved simply by usingngodectors of
lengths, where each souree when active uses the basis veatgas its coding vector
and appends this to the information packet that consisf®gf |.A|] symbols. |

In the previous section, we provided lower boundstqy(f) for arbitrary func-
tions. Functions for which the lower bound is of the same oedes + [log, |Al| are

51

e Let H be thel x s parity check matrix of g-ary
code with minimum distancé,,;,, = T + 1.

e Sourcer; useC; = {h;}, whereh; is a column ofH.

e If the dimension of the subspace that the sink receives
is less thar?’, it outputs0. Otherwise, it outputs.

Figure 3.2: A (1,1) code for ther'-threshold function

hard to compute in the sense that it is almost optimal (up torstant factor) to first
recover all the source messages and then compute the fundéior example, when
s > log, |Al, this is true for the arithmetic sum function, the parity ¢tion, and the
majority function. Next, we discuss some example targettions.

3.4.1 T-threshold Function

Let A = {1}. TheT-threshold function is defined as

1 faey+a+.. .+, >T

0 otherwise

Lemma 3.4.2.There exists &1, [) feasible code for computing tHethreshold function

with 7" < (1 — 1/q)s, such that
T
[<sH, (—)
S

whereH, is theg-ary entropy function defined as

H,y(x) = zlog, (qx—l) +(1—2)log, (ﬁ) Vae(0,1).

Proof. Consider the scheme in Figure 3.2. The scheme usessgparity check matrix
of a binary code with minimum distaneg,;,, = 7'+ 1. From the Gilbert-Varshamov

5The function computes whether the number of active souscasleast” or not.

52

bound [30, 31], there exists such a matrix with
T
[<sH, (—) .
S

Comment For a constarit’, O (sH, (£)) = O (T'log, s). Thus, while comput-

ing the identity function requires the cost to grow lineasligh the number of sources
s, the T-threshold function requires only logarithmic growth. Wavh the following
matching lower bound.

Lemma 3.4.3.For the T'-threshold functiory with 7" < s/2,

S T
Emn(f) = 5Hq <g) :

Proof. Consider two possible input vecto(s,, zs, ..., xs) and (y1,ys, - . ., ys) such
that

r;=1Vie{l,2,...,T}andz; = ¢ otherwise
y; = 1Vie{2,3,...,T} andy; = ¢ otherwise.

Note that
1 :f(.Tl,ﬁL'Q,...,l's) %f(ylay%"'vys) =0

and hence it is necessary for any feasible code for compifitthgt

T T T
1 1 1 1 1
7T1+E7ri7ég7ri:>7rlgg7ri.

The same argument can be extended to get the following reagessndition. For any
subset(iy, iy, ..., i) Of {1,2,..., s},

1 1 .
m Y wl foreveryje {1,2,....T}.
o

Denote a basis vector for! by v;. From the necessary condition on the subspaces

53

w1, 7, ..., wl, any collection ofl" vectors fromvy, vs, . . ., v, are linearly independent.

Y s

Thel x s matrix with the vectors/, va, ..., vs as columns corresponds to the parity
check matrix of ag-ary linear code of lengtlh and minimum distance at least+ 1.
Using the bounds in [30, 31], faF < s/2 we have

T 1 T

The result then follows since

%logq (4T (1 - %)) < qu (%) : (3.8)

Fors < 11, (3.8) can be verified numerically. Let> 12. Then (3.8) holds if we show
that for everyl <7 < s/2,

T 2 .
s+—1In (%) > In(47) or equivalently,

TIn (?) —2In(4T) > 0. (3.9)

ForT = 1, (3.9) holds since > 8. Differentiating the left-hand side of (3.9) with
respect tdl’, we get

2
In(2s) —In(T) — 1 — =
n(2s) = In(T) ~ 1 - -
which is greater than zero sinee> 12 and7 < s/2. Thus, (3.9) is true for every
1 < T < s/2 and thus (3.8) holds. [

3.4.2 Maximum Function

Lemma 3.4.4. There exists 41, /) feasible code for computing the maximum function
such that

[< min{|A] ;5 + [log, |AH)}

Proof. Consider the following two schemes for computing the maxinfiunction.
e A(1,|A|) schemelLetvy,va, ..., v 4 be linearly independent vectors of lengi|
each. For every soureg, letC; = (Vl,vz, . ,v|A|). This scheme has= |A|.

54

e A (1,5 + [log,|A[]) scheme We can compute the identity function with= s +
[log, |A|] and hence can compute the maximum function also. This scisenseful if
A > s. [|

Comment Thus when|A| < s, the first scheme is much more efficient than
reconstructing all the source messages.

Lemma 3.4.5. For the maximum target functiofy
Eminlf) = minf| A, s}.

Proof. Let A = (al, as, . .. ,a|A|) be an ordered set (in decreasing order) anddet
min{|.A|, s}. Consider an input vectot such that

(x); =a;Vie{l,...,M}and(x); = ¢ otherwise

and a collection of\/ indicesi,, i, ..., 75 such that each; = j. Then from (3.5), it
can be easily verified that the maximum target functfosatisfies propert@ (/). The
result then follows from Lemma 3.3.4. [|

3.4.3 K-largest Values Function

Let A = (a1, aq,...,a14) be an ordered set (in increasing order). For any given
input vector(xy, zs, ..., x,), let (1, 2, ..., Zs) denote the vector which is a permuta-
tion of the input vector and satisfies > 1;,, for eachi. Then theK-largest values
function is given by

A

f(.’lfl,l’z,...,.’lfs) = (j?l,i'g,...?.IK).

Lemma 3.4.6. There exists d1,[) feasible code for computing th€-largest values
function withK < N/2, such that

1< |Al-sH, <£> |

55

e Let H be the(l/ | A|) x s parity check matrix of a
binary code with minimum distanc& + 1.

e If sourceo; takes value:; from the alphabet, then it
transmits a vector which is all zero except the
(j—1)x(/|A])+1toj x (I/|A]) elements,
which take values from theth column ofH.

e Each vector in the union subspddehat the sink
receives is parsed intod| sub-vectors of lengthy | A|.

oletll; C qu/‘A‘ denote the subspace spanned by
collecting thej-th sub-vector of each vector im.

e Thus by calculatinglim (11} 4)), dim (I 4—1) ...,
the sink can compute th& largest values.

Figure 3.3: A (1,1) code forK-largest values function

Proof. Consider the scheme in Figure 3.3.
Again from [30, 31], there exists a parity check matrix suwd t

[K
— < sH ([— .
\|—8q(2s)
[|

Comment Again, for constantA| and K, the cost only grows logarithmically
with the number of sources

Lemma 3.4.7.For the K-largest values target functiofiwith K" < s/2,

S K
gmin(f) > §Hq (2_8) :

Proof. If the receiver can correctly compute thelargest values, then it can also deduce
if the number of active sources is greater thidnor not. Thus, it can also compute
the T-threshold function with the threshold = K. The result then follows from
Lemma 3.4.3. |

56

3.5 A general scheme for computation

We now present a general method to compute functions unden&work
model. We will illustrate the method for boolean functiorfsttte form f : A* —
{0,1}. For a general function, the output can be considered asng sif bits and the
above scheme can be used separately to compute each bitonftfu.

Sincef has boolean output, it can be written as

f(!tl,ﬂfg,...,l's) = ZHBU

i=1 j=1

wheres is some integer such that< s < | A

*; {B;} are boolean variables such that
the value ofB3;; depends only or;; and the sum and product represent boolean OR and
AND. By taking the complement, we have

f(l’l,ZEQ,...,(L’S) :HZBZ]

i=1 j=1

Given any inputz;, source;j creates a vectar; of lengths such that-th component is
B;;. Each sourcg then sends the corresponding veatpinto the network and the sink
collects linear combinations of these vectors. If#tite component of any of the vectors
in the union subspace at the sinkijghen a boolean variablé; is assigned the valuke
This implies that

j=1

and hence,

f(l'l,l'g,...,l's) :HAZ

Thus, we have &l, s) scheme to compute any functigrwith binary output.

Comment Since the cost associated with the above codetise above scheme
is efficient when the number of input vectors for which thedtion value isl (or 0) is
much smaller than the total number of possible input vectors

We now present an example to illustrate the above method.

57

Example 3.5.1.Let B = {1,2,..., K} and let the source alphahdtbe the power set
of B, i.e, A = 28. Then the set cover function is defined as

1 fBg|)
=1
0 otherwise.

In words, each source observes a subs& and the sink needs to compute if the union
of the source messages covBrsDefine the boolean variable, as follows.

1 if Aistrue
14 =
0 otherwise.

Then the functiory’ can be rewritten as

K s

f ('rlu Ly - 7'TS) = Z H]l{zg,r]}
i=1 j=1
Then using the scheme described in this section, the set frovaion can be computed
using a(1, K') code withd - [= log, |A| = K. This scheme is in-fact optimal in terms
of the smallest possible cost for any feasible code.

3.6 Conclusions

In this chapter we investigated function computation in awvoek where inter-
mediate nodes perform randomized network coding, thropginogriate choice of the
subspace codebooks at the source nodes. Unlike tradifiometion computation, that
requires intermediate nodes to be aware of the function tmbguted, our designs are
transparent to the intermediate node operations. Futurk imoludes finding tighter
bounds for general functions as well as designing more effidchemes. Another di-
rection of research would be to relax our assumption thasthle is able to observe
the joint span of the injected subspaces and allow it to adyr some subspace of the
union.

58

Chapter 3, in part, has been submitted for publication of tagenal. The dis-
sertation author was a primary investigator and authorisfgaper.

Chapter 4

Repeated Computation: Network

Coding for Computing

The following network computingroblem is considered. Source nodes in a di-
rected acyclic network generate independent messagessangl@areceiver node com-
putes a target functioyi of the messages. The objective is to maximize the average
number of timesf can be computed per network usage, i.e., the “computingcdgpa
The network codingoroblem for a single-receiver network is a special case @fnigt-
work computing problem in which all of the source messagestrha reproduced at
the receiver. For network coding with a single receivertirguis known to achieve
the capacity by achieving the netwamkin-cutupper bound. We extend the definition
of min-cut to the network computing problem and show thatrttie-cut is still an up-
per bound on the maximum achievable rate and is tight for emimg (using coding)
any target function in multi-edge tree networks and for cotmg linear target func-
tions in any network. We also study the bound’s tightnessliiberent classes of target

functions.

59

60

4.1 Introduction

We consider networks where source nodes generate indegandssages and
a single receiver node computes a target funcfiai these messages. The objective is
to characterize the maximum rate of computation, that isrtaeimum number of times
f can be computed per network usage.

Giridhar and Kumar [3] have recently stated:

“In its most general form, computing a function in a netwarkalves com-
municating possibly correlated messages, to a specifimdésn, at a de-
sired fidelity with respect to a joint distortion criterioregendent on the
given function of interest. This combines the complexitysotirce coding
of correlated sources, with rate distortion, differentgloke network collab-
orative strategies for computing and communication, aadrtapplicability
of the separation theorem demarcating source and chansiecb

The overwhelming complexity of network computing suggekts simplifications be
examined in order to obtain some understanding of the field.

We present a natural model of network computing that is tyasgated to the
network coding model of Ahlswede, Cai, Li, and Yeung [32, 3Sgtwork coding is a
widely studied communication mechanism in the context afvoek information the-
ory. In network coding, some nodes in the network are labatesources and some as
receivers. Each receiver needs to reproduce a subset ofdbsages generated by the
source nodes, and all nodes can act as relays and encodétinegition they receive on
in-edges, together with the information they generateaythre sources, into codewords
which are sent on their out-edges. In existing computer okdsy the encoding opera-
tions are purely routing: at each node, the codeword semtaoveut-edge consists of a
symbol either received by the node, or generated by it ifa $urce. It is known that
allowing more complex encoding than routing can in geneeadvantageous in terms
of communication rate [32, 34, 35]. Network coding with agéareceiver is equiva-
lent to a special case of our function computing problem, eélgiwhen the function to
be computed is the identity, that is when the receiver wamteproduce all the mes-
sages generated by the sources. In this chapter, we stuglgrketomputation for target

functions different than the identity.

61

Some other approaches to network computation have als@aaggpi the litera-
ture. In [28,29,36-39] network computing was considereahesxtension of distributed
source coding, allowing the sources to have a joint distidioLand requiring that a func-
tion be computed with small error probability. For exampB&] considered a network
where two correlated uniform binary sources are both caeddo the receiver and de-
termine the maximum rate of computing the parity of the mgssayenerated by the
two sources. A rate-distortion approach to the problem e tstudied in [40-42].
However, the complexity of network computing has restdgigor work to the analysis
of elementary networks. Networks with noisy links were gddn [6-8,10,12,43-46].
For example, [6] considered broadcast networks where angitnission by a node is re-
ceived by each of its neighbors via an independent binaryrsstmc channel. Random-
ized gossip algorithms [47] have been proposed as pracitedmes for information
dissemination in large unreliable networks and were stuidi¢ghe context of distributed
computation in [47-52].

In the present chapter, our approach is somewhat (tantghtielated to the
field of communication complexity [1, 53] which studies thenimum number of mes-
sages that two nodes need to exchange in order to computetzofunf their inputs
with zero error. Other studies of computing in networks haeen considered in [3, 4],
but these were restricted to the wireless communicatiotopob model of Gupta and
Kumar [2].

In contrast, our approach is more closely associated witedunetworks with
independent noiseless links. Our work is closest in smrthe recent work of [54-57]
on computing the sum (over a finite field) of source messagestimorks. We note that
in independent work, Kowshik and Kumar [58] obtain the astotip maximum rate of
computation in tree networks and present bounds for cortipatia networks where all
nodes are sources.

Our main contributions are summarized in Section 4.1.&rdtirmally intro-
ducing the network model.

62

4.1.1 Network model and definitions

In this chapter, anetwork A/ consists of a finite, directed acyclic multigraph
G = (V,§), asetofsource node$ = {oy,...,0:s} C V, and areceiverp € V. Such
a network is denoted b = (G, S, p). We will assume that ¢ S and that the gragh
G contains a directed path from every nodé/ito the receivep. For each node € V,
let & (u) and&,(u) denote the set of in-edges and out-edges adspectively. We will
also assume (without loss of generality) that if a networdenbas no in-edges, then it
is a source node.

An alphabetA is a finite set of size at least two. For any positive integeany
vectorz € A™, and anyi € {1,2,...,m}, letz; denote the-th component of:. For
any index sef = {iy,4,...,7,} C {1,2,...,m}withi; < iy <... <1, letz; denote
the vector(z;,, zi,, . .., x;,) € Al

The network computingroblem consists of a network” and atarget function
f of the form

f:A— B

(see Table 4.1 for some examples). We will also assume tlyataaget function de-
pends on all network sources (i.e. they cannot be constantifuns of any one of their
arguments). Let andn be positive integers. Given a netwokk with source sef and
alphabet4, amessage generat@s any mapping

a: S — A

For eachi, a(o;) is called anessage vectand its components(c;), , ..., a(o;), are
calledmessage$

Definition 4.1.1. A (k,n) network coddor computing a target functiofi in a network
N consists of the following:

Throughout the chapter, we will use “graph” to mean a direteyclic multigraph, and “network”
to mean a single-receiver network. We may sometimes W(it¢) to denote the edges of grapgh

2For simplicity, we assume that each source has exactly ossage vector associated with it, but all
of the results in this chapter can readily be extended to the meneral case.

63

(i) Forany nodev € V — p and any out-edge € &,(v), anencoding function

4
H A" | x A¥ — A" if vis a source node

hle) . ee&i(v)

H A" — A" otherwise.

\ ect; (’U)

(i) A decoding function
1€ (p)|

E H A" — BF.
j=1

Given a(k,n) network code, every edgee £ carries a vectorz, of at most
n alphabet symbotfs which is obtained by evaluating the encoding functién on the
set of vectors carried by the in-edges to the node and thesowssage vector if it
is a source. The objective of the receiver is to compute thgeetdunctionf of the
source messages, for any arbitrary message generatvlore precisely, the receiver
constructs a vector df alphabet symbols such that for eack {1,2,...,k}, thei-
th component of the receiver's computed vector equals theevat the desired target
function f applied to the-th components of the source message vectors, for any choice
of message generator Letey, ez, . . ., ¢g,(,) denote the in-edges of the receiver.

Definition 4.1.2. A (k,n) network code is calle@d solution for computingf in A/
(or simply a (k,n) solution) if the decoding function) is such that for each €
{1,2,...,k} and for every message generaigmwe have

0 (zel, e 7ze|5i(9>>]‘ =f (a(al)j Lo ,a(as)j) . 4.1)

If there exists gk, n) solution, we say the rational numbkefn is anachievable com-
puting rate

In the network coding literature, one definition of tbeding capacityof a net-
work is the supremum of all achievable coding rates [59, 60 adopt an analogous
definition for computing capacity.

3By default, we will assume that edges carry exagtlsymbols.

64

Table 4.1: Examples of target functions.

Target functionf H AlphabetA \ flxy,. .. xs) \ Comments
identity arbitrary (T1,...,2s)
arithmetic sum || {0,...,¢ — 1} T+ e+ T ‘+'is ordinary integer addition
modr sum {0,...,¢—1} T1D... P @ is mod r addition
histogram {0,...,¢q—1} (coy---5Cq-1) ci={jriz;=1i}|Vie A
linear finite field a1z1 + ...+ asxs | arithmetic performed in the field
maximum ordered set | max{xi,...,zs}

Definition 4.1.3. Thecomputing capacitgf a network\" with respect to target function
fis

k
n

CoodN, f) = Sup{ . 3 (k,n) network code for computing in N})

Thus, the computing capacity is the supremum of all achievamputing rates
for a given networkN and a target functiorf. Some example target functions are
defined in Table 4.1.

Definition 4.1.4. For any target functiorf : A° — B, any indexsef C {1,2,...,s},
and anya,b ¢ Al, we writea = b if for every z,y € A*, we havef(z) = f(y)
wheneverr; = a,y; = b, andz; = y; forall j & 1.

It can be verified that is an equivalence relatiérior every f and /.

Definition 4.1.5. For every f and/, let R; ; denote the total number of equivalence
classes induced by and let

(I)[,f : .Am I {1,2,. . .,R[’f}

4witsenhausen [27] represented this equivalence relatiterims of the independent sets of a char-
acteristic graph and his representation has been usediousgroblems related to function computa-
tion [28, 29, 37]. Althoughe is defined with respect to a particular index $etnd a functionf, we do
not make this dependence explicit — the value$ ahd f will be clear from the context.

65

be any function such that; ;(a) = ®; ;(b) iff a = b.

That is,®; ; assigns a unique index to each equivalence class, and
RI,f = ‘{@[J(CL) a e Alll}‘ .

The value ofR; ; is independent of the choice &f ;. We call R; ; the footprint size
of f with respect td.

Remark 4.1.6. Let I¢ = {1,2,...,s} — I. The footprint sizeR; ; has the following
interpretation. Suppose a network has two nodégndY’, and both are sources. A
single directed edge connecisto Y. Let X generater € Al andY generatey €
Al X communicates a function(z) of its input, toY so thatY” can computef(a)
wherea € A°, a; = z, anda;e = y. Then for anyz, & € Al such thatr # &, we
needg(z) # g(&). Thus|g (A")| > R, ;, which implies a lower bound on a certain
amount of “information” thatX needs to send t& to ensure that it can compute the
function f. Note thatg = ®; ; achieves the lower bound. We will use this intuition to
establish a cut-based upper bound on the computing cagagityv’, /) of any network
N with respect to any target functiofy and to devise a capacity-achieving scheme for
computing any target function in multi-edge tree networks.

Definition 4.1.7. A set of edges” C £ in network \V is said toseparatesources
Tmys-- - 0m, from the receiver, if for eachi € {1,2,...,d}, every directed path
from o,,,, 10 p contains at least one edgedh The setC' is said to be autin N if it
separates at least one source from the receiver. For anpriety defineA(N) to be
the collection of all cuts ioV. For any cutC' € A(N) and any target functioifi, define

Ic = {i : C separates; from the receivey

Recy = Ry ¢ (4.2)

Since target functions depend on all sources, we liaye > 2 for any cutC
and any target functiori. The footprint sizes?. ; for some example target functions
are computed below.

66

A multi-edge trees a graph such that for every nodes V), there exists a node
such that all the out-edgesofre in-edges to, i.e.,&,((u) (e.g. see Figure 4.1).

\

Figure 4.1: An example of a multi-edge tree.

4.1.2 Classes of target functions

We study the following four classes of target functions: ditjsible, (2) sym-
metric, (3)\-exponential, (4\-bounded.

Definition 4.1.8. A target functionf : A° — B is divisible if for every index set
I C{1,...,s}, there exists a finite sé; and a functionf’ : Al — B; such that the

following hold:

@) [(AN] < [f (A

(3) For every partitiod [, ..., I, } of I, there exists a function
g: Br, x --- x By, — By such that for every: € A, we have

fl(x> =49 (fh(wfl)v"'7f17(x1v))'

Examples of divisible target functions include the idgntihaximum,mod r
sum, and arithmetic sum.

Divisible functions have been studied previodsby Giridhar and Kumar [3]
and Subramanian, Gupta, and Shakkottai [4]. Divisiblegtfgnctions can be com-
puted in networks in a divide-and-conquer fashion as falokor any arbitrary partition

5The definitions in [3, 4] are similar to ours but slightly maestrictive.

67

{L1,...,1,} of the source indice$§l, . .., s}, the receivep can evaluate the target func-
tion f by combining evaluations of’t, ..., fi. Furthermore, for every = 1,...,~,
the target functiorf’ can be evaluated similarly by partitionidgand this process can
be repeated until the function value is obtained.

Definition 4.1.9. A target functionf : A* — B is symmetriaf for any permutationr

of {1,2,...,s} and any vector: € A°,

[y, 20, .. 05) = f(Tra), Trg), - Tr(s))-

That is, the value of a symmetric target function is invariaith respect to the
order of its arguments and hence, it suffices to evaluateishegnam target function for
computing any symmetric target function. Examples of symnimé&inctions include the
arithmetic sum, maximum, andod » sum. Symmetric functions have been studied in
the context of computing in networks by Giridhar and Kumgr Sibramanian, Gupta,
and Shakkottai [4], Ying, Srikant, and Dullerud [10], an@]4

Definition 4.1.10. Let A € (0,1]. A target functionf : A* — B is said to be\-
exponentialf its footprint size satisfies

Ry ;> |AM foreveryl C {1,2,...,s}.

Let A € (0,00). Atarget functionf : 4° — B is said to be\-boundedf its footprint
size satisfies
Ry < |A|* foreveryl C {1,2,...,s}.

Example 4.1.11.The following facts are easy to verify:
e The identity function id-exponential.
e Let. A be an ordered set. The maximum (or minimum) functioi-unded.

o Let A = {0,1,...,¢ — 1} whereq > 2. Themod r sum target function with
g>r>2is log, r-bounded.

68

Remark 4.1.12.Giridhar and Kumar [3] defined two classes of functiotype-threshold
andtype-sensitivéunctions. Both are sub-classes of symmetric functions.dttteon,
type-threshold functions are also divisible artiounded, for some constanthat is
independent of the network size. However, [3] uses a modelteiference for simulta-
neous transmissions and their results do not directly coenpdh ours.

Following the notation in Leighton and Rao [61], timn-cutof any network\
with unit-capacity edges is

: . C
min-cut V') = min Tl (4.3)

A more general version of the network min-cut plays a fundasadeole in the field of

multi-commaodity flow [61,62]. The min-cut provides an uppeund on the maximum
flow for any multi-commodity flow problem. The min-cut is alseferred to as “spar-
sity” by some authors, such as Harvey, Kleinberg, and Lehj@&hand Vazirani [62].

We next generalize the definition in (4.3) to the network catimy problem.

Definition 4.1.13. If N is a network and is a target function, then define

min-cut\V, f) = min &
CeA(N) IOg‘A‘ RCJ

(4.4)
Example 4.1.14.

e If fis the identity target function, then

| . |C|
min- - [Ic]
in-CutN', f) = min. 7o)

Thus for the identity function, the definition of min-cut #h.8) and (4.4) coincide.

o LetA={0,1,...,q— 1}. If fisthe arithmetic sum target function, then

min-cut\V, f) = min C]

. 4.5
ceaw) log, ((q —1) [Ic| + 1) (45)

69
e Let. 4 be an ordered set. |f is the maximum target function, then

min-cut\V, f) = cérki(% |C].

4.1.3 Contributions

The main results of this chapter are as follows. In Secti@nwe show (Theo-
rem 4.2.1) that for any network” and any target functiofi, the quantity min-cut\, f)
is an upper bound on the computing capacity(N, f). In Section 4.3, we note that
the computing capacity for any network with respect to thentdy target function is
equal to the min-cut upper bound (Theorem 4.3.1). We shotitlleamin-cut bound on
computing capacity can also be achieved for all networkb Vinmear target functions
over finite fields (Theorem 5.5.6) and for all multi-edge treworks with any target
function (Theorem 4.3.3). For any network and any targettion, a lower bound on
the computing capacity is given in terms of the Steiner traekimng number (Theo-
rem 4.3.5). Another lower bound is given for networks witimsgetric target functions
(Theorem 4.3.7). In Section 4.4, the tightness of the almgationed bounds is ana-
lyzed for divisible (Theorem 4.4.2), symmetric (Theorem.d), \-exponential (Theo-
rem 4.4.4), and\-bounded (Theorem 4.4.5) target functions. Regxponential target
functions, the computing capacity is at leagimes the min-cut. If every non-receiver
node in a network is a source, then febounded target functions the computing capac-
ity is at least a constant times the min-cut divided\byt is also shown, with an example
target function, that there are networks for which the cotmgucapacity is less than an
arbitrarily small fraction of the min-cut bound (Theore Z). In Section 4.5, we dis-
cuss an example network and target function in detail tatitate the above bounds. In
Section 4.6, conclusions are given and various lemmas avepiin the Appendix.

4.2 Min-cut upper bound on computing capacity

The following shows that the maximum rate of computing agafgnctionf in
a network\ is at most min-cut\, f).

70
Theorem 4.2.1.1f N is a network with target functioff, then
CeodN, f) < min-cut\, f).

Proof. Let the network alphabet hd and consider anyk, n) solution for computing
fin N. LetC be a cut and for eache {1,2,...,k}, leta® v ¢ Allel. Suppose
j € {1,2,... k} is such thats") # bV, where= is the equivalence relation from
Definition 4.1.4. Then there existy € A° satsifying: f(z) # f(y), 1. = a9,
Y. = bYW, andz; = y; for everyi & I..

The receiverp can compute the target functighonly if, for every such pair
{a®,. .. ,a®}and{pM, ... b*™} corresponding to the message vectors generated by
the sources i, the edges in cut’ carry distinct vectors. Since the total number of
equivalence classes for the relatisrequals the footprint siz&. ;, the edges in cut’
should carry at leastR ;)" distinct vectors. Thus, we have

AN > (Rep)"

and hence for any cut,

k]
— S -
n 10g|./4\ RC’J

Since the cuC' is arbitrary, the result follows from Definition 5.2.6 and4% [

The min-cut upper bound has the following intuition. GiveryautC' € A(N),
at leastlog 4 Rc s units of information need to be sent across the cut to suftdss
compute a target functiori. In subsequent sections, we study the tightness of this
bound for different classes of functions and networks.

4.3 Lower bounds on the computing capacity

The following result shows that the computing capacity of aatwork " with
respect to the identity target function equals the codinmacdy for ordinary network
coding.

71
Theorem 4.3.1.1f A is a network with the identity target functigf then
Cood(N, f) = min-cut\V, f) = min-cut\').

Proof. Rasala Lehman and Lehman [63, p.6, Theorem 4.2] showed thanhyosingle-
receiver network, the conventional coding capacity (wieréceiver demands the mes-
sages generated by all the sources) always equals the mtiki-cuSince the target func-
tion f is the identity, the computing capacity is the coding cayamnd min-cut\, f)

= min-cuf V), so the result follows. |

Theorem 4.3.2.1f N is a network with a finite field alphabet and with a linear target
function f, then
Ceod(N, f) = min-cut V| f).

Proof. The proof of this result is relegated to Section 5.5. It alsiofvs from [56,
Theorem 2]. [|

Theorems 4.3.1 and 5.5.6 demonstrate the achievabilitheofin-cut bound
for arbitrary networks with particular target functions. dontrast, the following result
demonstrates the achievability of the min-cut bound forteaty target functions and a
particular class of networks. The following theorem consanulti-edge tree networks,
which were defined in Section 4.1.1.

Theorem 4.3.3.1f N is a multi-edge tree network with target functignthen
Ceod(N, f) = min-cut V| f).

Proof. Let A be the network alphabet. From Theorem 4.2.1, it suffices tovghat
Ceod(N, f) > min-cut V, f). Since&,(v) is a cut for node) € V — p, and using (4.2),

we have

min-cut\V, f) < min 230]

G . 4.6
vEV—p log|A| REo(v%f ()

72

Consider any positive integeksn such that

[€o(v)]

k
—< min ————. 4.7
n -~ veV-p lOg|A| R[EO(U)J ()
Then we have
A > Ry for every nodey € V — p. (4.8)

We outline a(k, n) solution for computingf in the multi-edge tree netwotk’. Each
sources; € S generates a message vecidr;) € A*. Denote the vector of-th
components of the source messages by

0~ (alor) - a(o))

Every nodey € V — {p} sends out a unique index (as guaranteed by (4.8)).4\Ve)!"
corresponding to the set of equivalence classes

q)[Eo(v)’f(x(flg)o(w) for I € {17 e 7k} (49)

If v has no in-edges, then by assumption, it is a source node;;sdhe set of
equivalence classes in (4.9) is a function of its own message), for [€ {1,... k}.
On the other hand if has in-edges, then let, us, - - - ,u; be the nodes with out-edges
tov. For eachi € {1,2,--- 5}, using the uniqueness of the index received from
nodev recovers the equivalence classes

QISO(ui),f(x(IQOM) for € {1,--- k}. (4.10)

Furthermore, the equivalence classes in (4.9) can be fabehiby v from the equivalance
classes in (4.10) (and(v) if v is a source node) using the fact that for a multi-edge tree
network ', we have a disjoint union

j
Ie,) = U Le, (u;)-
=1

If each node follows the above steps, then the receivean identify the equiv-

73

alence classes;, («”) fori € {1,...,k}. The receiver can evaluagx")) for
eachl/ from these equivalence classes. The above solution ashgevemputing rate of
k/n. From (4.7), it follows that

Cood(N, f) > min (0]l (4.11)

v e V—p logw Rfso(v):f
[|

We next establish a general lower bound on the computingcttgidar arbitrary
target functions (Theorem 4.3.5) and then another lowen8apecifically for symmet-
ric target functions (Theorem 4.3.7).

For any network\" = (G, S, p) with G = (V, £), define aSteiner treé of A to
be a minimal (with respect to nodes and edges) subgraphaaointainingS andp such
that every source iy has a directed path to the receiyeiNote that every non-receiver
node in a Steiner tree has exactly one out-edge.7L@{) denote the collection of all
Steiner trees ioV. For each edge € £(G), letJ. = {i : t, € T(N)ande € E(t;)}.
Thefractional Steiner tree packing numbEB(\) is defined as the linear program

u; >0 Vi, e TN,
du<1 Vee&(G)

I(N) =max Y u; subjectto
t;€T(N)

(4.12)

Note thatlT(A') > 1 for any network\/, and the maximum value of the sum in (4.12)
is attained at one or more vertices of the closed polytopeesponding to the linear

constraints. Since all coefficients in the constraints atmmal, the maximum value

in (4.12) can be attained with rationa)’s. The following theorem provides a lower
bound on the computing capacity for any netwokk with respect to a target function

f and uses the quantifif (). In the context of computing functions; in the above

6Steiner trees are well known in the literature for undirdageaphs. For directed graphs a “Steiner
tree problem” has been studied and our definition is corgisti#h such work (e.g., see [64]).

"In order to compute the lower bound, the fractional Steineg packing numbei (A\’) can be eval-
uated using linear programming. Also note that if we corgttiiereverse multicast netwony letting
each source in the original netwaiK become a receiver, letting the receiver in fkiebecome the only
source, and reversing the direction of each edge, then ibearerified that the routing capacity for the
reverse multicast network is equalfig\).

74

linear program indicates the fraction of the time the edgeseiet; are used to compute
the desired function. The fact that every edge in the netwaskunit capacity implies

Zie.le up < 1.

Lemma 4.3.4.For any Steiner tre€:’ of a network\/, let N/ = (G, S, p). LetC’ be a
cutin . Then there exists a catin NV such thatl/ = .

(Note that/. is the set indices of sources separatedVinby C’. The setl:
may differ from the indices of sources separated/imy C".)

Proof. Define the cut
C= | &lon). (4.13)

i/EIc/

C'is the collection of out-edges N of a set of sources disconnected by the@uin
N'.If i € Io, then, by (4.13)C disconnects; from p in A/, and thusl» C I.

Let o; be a source. such thate I and LetP be a path fronv; to p in NV.
From (4.13), it follows that there existsc I such thatP contains at least one edge in
E,(ay). If P also lies in\” and does not contain any edgedty theno;, has a path to
p in A/ that does not contain any edgedh, thus contradicting the fact that € I...
Therefore, eithe” does not lie in\/’ or P contains an edge it’. Thuso; € I, i.e.,
Ic C I [|

Theorem 4.3.5.1f ' is a network with alphabetl and target functiory, then

1
C > 11 : n
cod(Na f) = (N> CIEI/l\l(Ifl\f) 10g|A| RC,f

Proof. SupposeN = (G, S, p). Consider a Steiner tre@ = (V',£’) of NV, and let
N'= (G, S, p). From Lemma 4.3.4 (taking” to be&,(v) in N”), we have

VveV —p, 3C € AN) suchthatl) = Ic. (4.14)

Now we lower bound the computing capacity for the netwafrkwith respect to target

75

function f.
Ccod(Nl> f)
= min-cuf\’, f) [from Theorem 4.3]3 (4.15)
= min v [from Theorem 4.2.1, (4.6), (4.11)
veV—p 10g|A| Rléo(v)’f
> ! [from (4.14]). (4.16)

mn ———
T CeAWN) 10g|A| RICJ

The lower bound in (4.16) is the same for every Steiner tre& ofWe will use this
uniform bound to lower bound the computing capacity f6mwith respect tof. Denote
the Steiner trees ol by ¢,,...,t7. Lete > 0 and letr denote the quantity on the
right hand side of (4.16). On every Steiner ttgea computing rate of at least— ¢ is
achievable by (4.16). Using standard arguments for tinaehst between the different
Steiner trees of the netwoyX, it follows that a computing rate of at legst—¢) - TI(\)

is achievable inV/, and by lettinge — 0, the result follows. [|

The lower bound in Theorem 4.3.5 can be readily computed sisdmetimes
tight. The procedure used in the proof of Theorem 4.3.5 magm@lly be improved
by maximizing the sum

Y ui<1 Vee&(G)

i€ Je

Z u;r; subjectto
t,€T(N)

(4.17)

wherer; is any achievable ratefor computing f in the Steiner tree network/; =
(ti, S, p).

We now obtain a different lower bound on the computing capagcithe special
case when the target function is the arithmetic sum. Thigftdwund is then used to give
an alternative lower bound (in Theorem 4.3.7) on the comgutapacity for the class of
symmetric target functions. The bound obtained in Theoredrv4s sometimes better
than that of Theorem 4.3.5, and sometimes worse (Exampl8 dliBstrates instances

8From Theorem 4.3.3;; can be arbitrarily close to min-cit, f).

76

of both cases).

Theorem 4.3.6.1f \ is a network with alphabetl = {0,1,...,¢ — 1} and the arith-
metic sum target functiofi, then

: C]
C >
AN 1) 2 2R Tog, P

whereP, ; denotes the smallest prime number greater th@n— 1).

Proof. Letp = P, , and let\’ denote the same network &5but whose alphabet [§,,
the finite field of ordep.

Lete > 0. From Theorem 5.5.6, there existélan) solution for computing the
IF,-sum of the source messages\ifi with an achievable computing rate satisfying

% = Crerll\i(rfl\/) €l —e
This (k,n) solution can be repeated to derivéd, cn) solution for any integee > 1
(note that edges in the netwaMK carry symbols from the alphabgt = {0,1,...,¢ —
1}, while those in the network/” carry symbols from a larger alphabgt). Any
(ck, cn) solution for computing thé,-sum in A" can be ‘simulated’ in the network
N by a(ck, [enlog, p]) code (e.g. see [65]). Furthermore, since s(¢ — 1) + 1 and
the source alphabet {9, 1,...,¢ — 1}, theF,-sum of the source messages in network
N is equal to their arithmetic sum. Thus, by choosinlarge enough, the arithmetic
sum target function is computed.id with an achievable computing rate of at least
ot ¢

— 2e.
log, p

Sincee is arbitrary, the result follows. [|

Theorem 4.3.7.1f N is a network with alphabett = {0, 1,...,¢— 1} and a symmetric
target functionf, then

min_|C|
CeAN)

(g —1) -log, P(s)

C'cod<-/\/) f) >

77

whereP(s) is the smallest prime numbegreater thans.

Proof. From Definition 4.1.9, it suffices to evaluate the histogranget functionf for
computingf. For any set of source messages, z», ..., zs) € A°, we have

A

f(xy,... xs) = (co,Cry-v s Cy1)

wherec; = |{j : x; = i}| for eachi € A. Consider the network/” = (G, S, p) with
alphabet4d’ = {0,1}. Then for each € A, ¢; can be evaluated by computing the
arithmetic sum target function ik’ where every source node is assigned the message
1if 2; = 4, and0 otherwise. Since we know that

—_

q—

I
o

the histogram target functiofican be evaluated by computing the arithmetic sum target
functiong — 1 times in the networkV” with alphabet4d’ = {0,1}. Lete > 0. From The-
orem 4.3.6 in the Appendix, there exist$an) solution for computing the arithmetic
sum target function it with an achievable computing rate of at least

by ol

n — log, P(s) '
The above(k,n) solution can be repeated to derive(@&:, cn) solution for any in-
tegerc > 1. Note that edges in the network’ carry symbols from the alphabet
A=1{0,1,...,q— 1}, while those in the network/” carry symbols from4’ = {0, 1}.
Any (ck,cn) code for computing the arithmetic sum functionAfi can be simulated
in the network\" by a(ck, [¢nlog, 2]) code®. Thus by choosing large enough, the
above-mentioned code can be simulated in the netwobtk derive a solution for com-

9From Bertrand’s Postulate [66, p.343], we ha¥gs) < 2s.
10To see details of such a simulation, we refer the interestadar to [65].

78

puting the histogram target functighwith an achievable computing ratef at least

in |C
1 Lo |_2€
(g—1) log,2 log, P(s) '
Sincee is arbitrary, the result follows. [|
a1 a9
o1
a2
a3
y y
P
P
M No

Figure 4.2: The Reverse Butterfly Network/; has two binary source§r;, 0.} and
network\; has three binary sourcés;, 0o, 03}, each with4 = {0, 1}. Each network’s
receiverp computes the arithmetic sum of the source messages.

Example 4.3.8.Consider networkd/; and N, in Figure 4.2, each with alphabet =
{0,1} and the (symmetric) arithmetic sum target functipnTheorem 4.3.7 provides
a larger lower bound on the computing capacityy(N, f) than Theorem 4.3.5, but a
smaller lower bound 064(N2, f)-

e For networkV\; (in Figure 4.2), we havemax Rc; = 3and min [C| = 2,
CeA(NY) CeA(M)
both of which occur, for example, whefti consists of the two in-edges to the

receiverp. Also, (¢ — 1) log, P(s,q) = log, 3 andII(N;) = 3/2, so

Ceod(N1,) > (3/2)/log, 3 [from Theorem 4.35
Ceod(N1, f) > 2/ log, 3 [from Theorem 4.3]7 (4.18)

"Theorem 4.3.7 provides a uniform lower bound on the achievedmputing rate for any symmetric
function. Better lower bounds can be found by consideriraggje functions; for example Theorem 4.3.6
gives a better bound for the arithmetic sum target function.

79

In fact, we get the upper bouritoq(N7, f) < 2/log, 3 from Theorem 4.2.1, and
thus from (4.18)Ccod(N7, f) = 2/ log, 3.

e For network\>, we have max Rc; = 4 and min)|(J| = 1, both of which

CeA(N2) CeA(N>
occur whenC' = {(o3, p)}. Also, (¢ — 1)log, P(s,q) = log, 5 andII(N3) = 1,
SO
Ceod(N2,) > 1/log, 4 [from Theorem 4.3)5
Ceod(Na,) > 1/log, 5 [from Theorem 4.3]7

From Theorem 4.3.3, we hadg,q(Na, f) = 1/ log, 4.

Remark 4.3.9. An open question, pointed out in [59], is whether the codiagacity

of a network can be irrational. Like the coding capacity, tbenputing capacity is the
supremum of ratiog /n for which a(k, n) solution exists. Example 4.3.8 demonstrates
that the computing capacity of a network (e.g/;) with unit capacity links can be
irrational when the target function is the arithmetic sumdiion.

4.4 On the tightness of the min-cut upper bound

In the previous section, Theorems 4.3.1 - 4.3.3 demonsitthtee special in-
stances for which the min-oquY’, /) upper bound is tight. In this section, we use The-
orem 4.3.5 and Theorem 4.3.7 to establish further resulth@nightness of the min-
cut(V, f) upper bound for different classes of target functions.

The following lemma provides a bound on the footprint stze; for any divisi-
ble target functiory.

Lemma 4.4.1. For any divisible target functiorf : . A° — B and any index sef C
{1,2,..., s}, the footprint size satisfies

Ryp <|f(A%)].

Proof. From the definition of a divisible target function, for ahyC {1,2,..., s}, there

80

exist mapsf?!, fI°, andg such that

flx)=g (fj(l“l), flc(:lfzc)) Vo e A

wherel¢ = {1,2,...,s} — I. From the definition of the equivalence relatien(see
Definition 4.1.4), it follows that,, b € A/l belong to the same equivalence class when-
ever f/(a) = f!(b). This fact implies that?; ; < |f’ (Al)]. We need ' (A)| <

|f (A®)| to complete the proof which follows from Definition 4.1.8(2) [

Theorem 4.4.2.1f N is a network with a divisible target functigfy then

T\
Ei(p)]

where&;(p) denotes the set of in-edges of the recejpver

Ccod(N s f) >

- min-cut | f)

Proof. Let A be the network alphabet. From Theorem 4.3.5,

. 1
Ceod N,) > TI(N) - o log.y Roy
1
> TI(N) - W [from Lemma 4.4.1 (4.19)

On the other hand, for any netwaf, the set of edges;(p) is a cut that separates the
set of sources$ from p. Thus,

min-cut \V, f)
< &)l [from (4.4)
10g|.4 Re (o)1
= &)l [from I¢,,) = S and Definition 4.1.5 (4.20)
log) 4 [f (A%)]
Combining (4.19) and (4.20) completes the proof. [|

Theorem 4.4.3.1f N is a network with alphabetl = {0,1,...,¢ — 1} and symmetric

81

target functionf, then

CCOd(N7 f) >

- min-cut\V/, f)
S
whereP(s) is the smallest prime number greater thaand

R, = min Ry,
T sy

Proof. The result follows immediately from Theorem 4.3.7 and sifozeany network
N and any target functioff,

min-cut\V, f) <

1 - -
— - min_|C] [from (4.4) and the definition oR;|.
log, Ry CEAN)

The following results provide bounds on the gap betweendhgaiting capacity
and the min-cut foi-exponential and-bounded functions (see Definition 4.1.10).

Theorem 4.4.4.1f X € (0,1] and \V is a network with a\-exponential target function
f,then
Ceod N, f) > X - min-cut\, f).

Proof. We have

min-cut\V, f)
CeA(N) lOg|A| RCJ
. IC| : :
< -
< Cg{{l(rjlv) NI [from f being\-exponentidl
= % - min-cut \V) [from (4.3).

12From our assumptionz ; > 2 for any target functiory.

82

Therefore,

min-cut\V, f)
Ccod(Na f)

min-cut \)

1
< .
—A Ccod(Naf)

1
< —
— A
where the last inequality follows because a computing raein-cut(\) is achievable
for the identity target function from Theorem 4.3.1, and¢benputing capacity for any
target functionf is lower bounded by the computing capacity for the identiggét
function (since any target function can be computed fromidleatity function), i.e.,

Theorem 4.4.5.Let A > 0. If MV is a network with alphabe#l and a\-bounded target
function f, and all non-receiver nodes in the netwoykare sources, then

logy R

Ccod(N v) > \

-min-cuf\V, f)

where

R, = min Ry,
S I

Proof. For any network\ such that all non-receiver nodes are sources, it follows fro
Edmond’s Theorem [67, p.405, Theorem 8.4.20] that

II(N) = min_ |C].

CeAN)
Then,

CeodN, f)

> CIEIE(I/I\/) |C| - CIerzlxi(lfl\f) m [from Theorem 4.36

> min 1] [from f beingA\-boundedl (4.21)

T CeAN) A

83
On the other hand,

min-cut ', f)

S %
CeA(N) lOg|A| RCJ

< min |C‘

< — [from the definition offz,]. (4.22)
CeAN) IOg‘A‘ Rf

Combining (4.21) and (4.22) gives

min-cut \V, f) . |C

min = .
Ceod N, f) ~ CeAV) log 4 R in <l
oA . 5) Bty min IS

B A
lOg|A| ﬁf

Since the maximum and minimum functions arbounded, and?f = |A| for
each, we get the following corollary.

Corollary 4.4.6. Let A be any ordered alphabet and laf be any network such that
all non-receiver nodes in the network are sources. If thedafgnctionf is either the
maximum or the minimum function, then

Ceod(N, f) = min-cuf N, f).

Theorems 4.4.2 - 4.4.5 study the tightness of the mifA¢uf) upper bound
for different classes of target functions. In particulag show that for\-exponential
(respectively\-bounded) target functions, the computing capaCity(N, f) is at least
a constant fraction of the min-qu’, /) for any constanf\ and any network\ (re-
spectively, any networkV" where all non-receiver nodes are sources). The following
theorem shows by means of an example target fungtiand a network\/, that the min-
cut(V, f) upper bound cannot always approximate the computing dapagi(N, f)
up to a constant fraction. Similar results are known in nektwanding as well as in

84

a1 a2 OM—1 oM

p

M Sources

Figure 4.3: Network \V,,, hasM binary sourceqoy, 09, ...,0u5}, wWith A = {0,1},
connected to the receiver nogevia a relayo,. Each bold edge denotds parallel
capacity-one edgeg.computes the arithmetic sum of the source messages.

multicommodity flow. It was shown in [61] that whensource nodes communicate in-
dependently with the same number of receiver nodes, théserestworks whose max-
imum multicommodity flow isO(1/log s) times a well known cut-based upper bound.

It was shown in [68] that with network coding there exist netks whose maximum
throughput isO(1/ log s) times the best known cut bound (i.e. meagerness). Whereas
these results do not hold for single-receiver networks (lgorem 4.3.1), the following
similar bound holds for network computing in single-reegimetworks. The proof of
Theorem 4.4.7 uses Lemma 4.7.1 which is presented in therppe

Theorem 4.4.7.For anye > 0, there exists a network/ such that for the arithmetic

sum target functiorf,
1 .
CCOd(N7 f) =0 <W> . mln-CUt(N, f)

Proof. Consider the networly/,, , depicted in Figure 4.3 with alphabdt= {0,1} and
the arithmetic sum target functigh Then we have

mln'cut(N]pij, f) — mln ’C|

_ from (4.5).
CEA(/\/']\,LL) 10g2 (’[C’ + 1) [(j

Let m be the number of sources disconnected from the receimr a cutC' in the

85

network\,, .. For each such souree the cutC' must contain the edge, p) as well as
either theL parallel edge$o, o) or the L parallel edgesoy, p). Thus,

min-cutV,,,, f) = min {H—m} (4.23)

1<m<M | logy(m + 1)

Let m* attain the minimum in (4.23) and defiag= min-cut\,, ., f). Then,

m+1
eme> min, { i) (4.24)

. X . x
2m1n{—}>m1n > 1,
z>2 Ulnx e>2 (x—1

L=c"logy,(m"+1)—m" [from (4.23)

c c*
<clogy [—) — - .
< " log, (1n2) (1n2 1) (4.25)

where (4.25) follows since the functiofilog, (z + 1) — z attains its maximum value
over(0,00) atx = (¢*/In2) — 1. Let us choosd, = [(log M)'~(</2)]. We have

L=
O(min-cut N, ., f) log,(min-cut N, ., f))) [from (4.25}, (4.26)
min-cut Ny, ., f) = Q((log M)*~) [from (4.26), (4.27)
Ccod(NM,L; f)
=0(1) [from Lemma 4.7.1

1 ,
= O(W) -min-cut N, ., f) [from (4.27).

4.5 An example network

In this section, we evaluate the computing capacity for amgde network and
a target function (which is divisible and symmetric) andwtibat the min-cut bound
is not tight. In addition, the example demonstrates thaldher bounds discussed in

86

g3

o1 02

14

Figure 4.4: Network N3 has three binary sources,, 0,, andos with A = {0,1} and
the receivep computes the arithmetic sum of the source messages.

Section 4.3 are not always tight and illustrates the contbiral nature of the computing

problem.

Theorem 4.5.1. The computing capacity of netwafé; with respect to the arithmetic

sum target functiorf is
2

Ceod(N3, f) = T4log,3

Proof. For any(k, n) solution for computingf, letw™ w® w® € {0, 1}* denote the
message vectors generated by sourge®,, o3, respectively, and let;, z, € {0,1}"
be the vectors carried by edges, p) and(os, p), respectively.

Consider any positive integeksn such that: is even and

b 2 (4.28)
n — 1+log,3

Then we have
on > 3k/29k/2, (4.29)

We will describe a(k,n) network code for computing in the network3;. Define

87

vectorsy™M, 42 € {0, 1}* by:

O { w +w® 1< < k)2

w if k/2<i<k

@) w? if 1 <i<k/2
Yi = .

wl@) + wgg) if k/2<i<k.

The firstk /2 components of/") can take on the valués 1, 2, and the last:/2 compo-
nents can take on the valuesl, so there are a total 8f/22%/2 possible values fog'"),
and similarly fory®). From (4.29), there exists a mapping that assigns uniquesab
2, for each different possible value ¢f", and similarly forz, andy®. This induces a
solution forA; as summarized below.

The sourcer; sends its full message vectof®) (k < n) to each of the two nodes
it is connected to. Sourceg, (respectivelys,) computes the vectay!) (respectively,
y®), then computes the vectey (respectivelyz,), and finally sends; (respectively,
2,) on its out-edge. The receiverdetermineg/!) andy® from z; andz,, respectively,
and then computeg + 4, whosei-th component isv!" + w'® + w®, i.e., the
arithmetic sum target functiofi. The above solution achieves a computing ratg of.
From (4.28), it follows that

2
> .
Ccod(N3> f) =15 10g2 3 (4 30)

We now prove a matching upper bound on the computing cap@gidy\s, f).
Consider anyk, n) solution for computing the arithmetic sum target functjom net-
work A3. Foranyp € {0,1,2,3}%, let

A, ={(21,2) : w +w® +w® =p).

That is, each element of, is a possible pair of input edge-vectors to the receiver when
the function value equajs

Letj denote the number of componentgahat are eithed or 3. Without loss of
generality, suppose the firstomponents of belong to{0, 3} and definei® < {0, 1}*

88

' 1 ifp; € {2,3).
Let

and notice that
{(z1,2) : (wM, w?) e T,w® = u?(?’)} C A, (4.31)

If w® +w®@ + B = p, then:

f = 0 implies f
(i) pi—@® = 2impliesw!” =
(

9 = 1implies (w!”, w®) = (0,1) or (1,0).

’L

Thus, the elements @f consist ofk-bit vector pairs(w®, w?) whose firstj compo-
nents are fixed and equal (i.e., both areshenp, = 0 and both ard whenp, = 3),
and whose remaining — 5 components can each be chosen from two possibilities (i.e.,
either(0, 1) or (1,0), whenp; € {1,2}). This observation implies that

IT| = 2", (4.32)

Notice that if onlyw(") changes, then the sumi") +w® +w® changes, and sq must
change (since, is not a function ofv")) in order for the receiver to compute the target
function. Thus, ifw(changes and® does not change, then must still change, re-
gardless of whether® changes or not. More generally, if the pair"), w(®) changes,
then the pair 2y, z3) must change. Thus,

H(zl,zg) (W, w?) e T, w® }! > |T (4.33)

89

and therefore

|Ap]

> H(zl,zz) : (w(l),w(z)) eT,w® = 71}(3)}‘ [from (4.31)

> |7 [from (4.33)

= 2k=J, [from (4.32) (4.34)

We have the following inequalities:

4n 2 H(Zlv 22) : w(l),w(2)7w(3) € {O? 1}k}|
— Z A, (4.35)

p6{0717273}k
k

= 4]

J=0 pe{0,1,2,3}F
[{i:p;€{0,3}}=3

M-

<
I
o

> 2k [from (4.34)

pe{0,1,2,3}"
[{i:pi€{0,3} }=y

k
()2
— M

k (4.36)

I
.

I
o

where (4.35) follows since thé,’s must be disjoint in order for the receiver to compute
the target function. Taking logarithms of both sides of 63, 8jives

k 2
B G
n — 1+log,3

which holds for allk andn, and therefore

2
< — .
CCOd(N37 f) =15 10g2 3 (4 37)

Combining (4.30) and (4.37) concludes the proof. [|

90
Corollary 4.5.2. For the network\3 with the arithmetic sum target functiofy
Ccod(N3> f) < min'CUt(N?n f)

Proof. Consider the networl/; depicted in Figure 4.4 with the arithmetic sum target
function f. It can be shown that the footprint siZz&. ; = || + 1 for any cutC, and
thus

min-cut s, f) = 1 [from (4.5).

The result then follows immediately from Theorem 4.5.1. [

Remark 4.5.3. In light of Theorem 4.5.1, we compare the various lower beunathe
computing capacity of the network(; derived in Section 4.3 with the exact computing
capacity. It can be shown thak(\3) = 1. If f is the arithmetic sum target function,
then

Ceod(N3,) > 1/2 [from Theorem 4.35
Ceod(N3, f) > 1/log, 5 [from Theorem 4.3]7
Ceod(N3, f) > 1/2 [from Theorem 4.4 2

Thus, this example demonstrates that the lower boundsnalotan Section 4.3 are not
always tight and illustrates the combinatorial nature efphoblem.

4.6 Conclusions

We examined the problem of network computing. The netwodkrap problem
is a special case when the function to be computed is theitgeYe have focused on
the case when a single receiver node computes a functiorefarce messages and
have shown that while for the identity function the min-coubd is known to be tight
for all networks, a much richer set of cases arises when congparbitrary functions, as
the min-cut bound can range from being tight to arbitraigde. One key contribution
of the chapter is to show the theoretical breadth of the dened topic, which we hope

91

will lead to further research. This work identifies targehdtions (most notably, the

arithmetic sum function) for which the min-cut bound is nbtays tight (even up to a

constant factor) and future work includes deriving morehssiirated bounds for these
scenarios. Extensions to computing with multiple receivedes, each computing a
(possibly different) function of the source messages, angterest.

4.7 Appendix

Define the function

M
Q : [J{o.1}F —{o0,1,..., M}
=1

as follows. For every = (aV,a®, ... a™)) such that each®” < {0, 1}*,
M '
Q(a), = Z“E‘Z) foreveryj € {1,2,... k}. (4.38)
=1

M
We extend?) for X C] [{0, 1}* by defining@(X) = {Q(a) : a € X}.

=1
We now present Lemma 4.7.1. The proof uses Lemma 4.7.2, ujplesented
thereafter. We define the following function which is usethia next lemma. Let

y(z) =H! (% (1 — é)) N [0, ﬂ forz > 1 (4.39)

whereH ! denotes the inverse of the binary entropy funcftéfx) = —zlog, v — (1 —
x)log,(1 — x). Note thaty(x) is an increasing function of.

Lemma4.7.1.1f lim
M—o0 10g,

Proof. For anyM and L, a solution with computing raté is obtained by having each

— 0, then]\}im CCOd('/\/’]W,Lj f) — 1.

sourceo; send its message directly toon the edgéo;, p). HenceCeos(Ny vz, f) > 1.
Now suppose thal/,, , has ak, n) solution with computing raté/»n > 1 and for each
ie{1,2,..., M}, let

g : {0,1}" — {0,1}"

92

be the corresponding encoding function on the ddgey). Then foranyA;, A, ..., Ay
C {0, 1}*, we have

(H 9 (AQ\) 2mh > Q(H Az-) ‘ : (4.40)

Each A; represents a set of possible message vectors of seurcéhe left-hand side

of (4.40) is the maximum number of different possible ingtions of the information
carried by the in-edges to the receiye(i.e., |g; (A4;)| possible vectors on each edge
(0, p) and 2" possible vectors on the parallel edgesoy, p)). The right-hand side
of (4.40) is the number of distinct sum vectors that the remeneeds to discriminate,
using the information carried by its in-edges.
Foreachi € {1,2,..., M}, letz; € {0,1}" be such thatg; " (z;)| > 2¢~" and
M

choosed,; = g;! () for eachi. Also, letU*) = HAi' Then we have
=1

QUM | < 2nt [from |g; (A;)| = 1 and (4.40). (4.41)

Thus (4.41) is a necessary condition for the existence(bfa) solution for computing
f in the networkV\,, .. Lemma 4.7.2 shows tht

QUMDY | > (M + 1)7¢/mk (4.42)

where the functiony is defined in (4.39). Combining (4.41) and (4.42), diyn)
solution for computing’ in the networkV\,,, with rater = k/n > 1 must satisfy

(1) logy(M +1) < %logQ QUM | < L. (4.43)

From (4.43), we have

L

= logy(M + 1) (4.44)

ry(r)

130ne can compare this lower bound to the upper bdgh@ *?))| < (M + 1)* which follows from
(4.38).

93

The quantityr~(r) is monotonic increasing froito co on the intervall, co) and the
right hand side of (4.44) goes to zero sk — oo. Thus, the rate- can be forced to
be arbitrarily close ta by making M sufficiently large, i.e.Ceod(Nyiz, f) < 1. In
summary,

Mlinm CCOd(NM,La f) =L

Lemma 4.7.2.Letk, n, M be positive integers, with > n. For eachi € {1,..., M},
M

let A; C {0, 1}* be such that4,| > 2" and letU*) = HAi' Then,

=1

’Q(U(M))‘ > (M + 1)7(k/n)k‘

Proof. The result follows from Lemmas 4.7.4 and 4.7.7. [|

The remainder of this Appendix is devoted to the proofs ofrfexs used in the
proof of Lemma 4.7.2. Before we proceed, we need to define soone notation. For
everyj € {1,2,...,k}, define the map

AY - {0,1,..., MY — {0,1,..., M}

by

(h(j)(p))) max {0,p; =1} ifi=3j (4.45)
' D otherwise.

That is, the mag) subtracts one from thgth component of the input vector (as long
as the result is non-negative) and leaves all the other coemis the same. For every
je{1,2,...,k}, define the map

60 20087 % {0, 13F — {0, 1}"

94

() if h9(q
<;§<J>(A,a){h (@) 1t i) ¢ A (4.46)

a otherwise
for everyA C {0,1}* anda € {0, 1}*. Define

QS(J) : 2{071}k — 2{071}k

by
o) (A) = {g?)(j)(A,a) a e A}. (4.47)

Note that
|0V (A)] = |A|. (4.48)

A set A is said to benvariant under the ma if the set is unchanged whe#’) is
applied to it, in which case from (4.46) and (4.47) we wouldehtnat for eacla € A,

h9(a) € A. (4.49)

Lemma 4.7.3.For any A C {0, 1}* and all integersn and¢ such thatl < m <t <k,
the setp® (¢ (... ¢V (A))) is invariant under the map™.

Proof. For anyA’ C {0, 1}*, we have
dD (D (AN) = D (A Vie{l,2,... k}. (4.50)

The proof of the lemma is by induction enFor the base case= 1, the proof
is clear sincesV (¢(V(A)) = ¢(V(A) from (4.50). Now suppose the lemma is true for
allt < 7 (wherer > 2). Now supposé = 7. Let B = ¢ (¢7=2 (... (D (A))).
Since¢ (¢ (B)) = ¢ (B) from (4.50), the lemma is true when = ¢t = 7. In
the following arguments, we take < 7. From the induction hypothesi, is invariant
under the map™, i.e.,
#"™(B) = B. (4.51)

95

Consider any vectar € ¢(™(B). From (4.49), we need to show thdt (c) € ¢ (B).
We have the following cases.

=1
c,h(c)e B [frome, =1, c € ¢ (B)] (4.52)
™ (c) € B [from (4.51), (4.52) (4.53)
K (R (e)) = ™ () (c)) € B [from (4.51), (4.52) (4.54)
h™(c) € ¢(B) [from (4.53), (4.54)

e, =0 :
Jbe Bwithn(b) =c¢ [frome, =0, c € ¢ (B)] (4.55)
h'™ (b) € B [from (4.51), (4.55) (4.56)
A (R (b)) = A (R'™ (b)) € ¢(B) [from (4.56) (4.57)
h™ (¢) € ¢(B) [from (4.55), (4.57)
Thus, the lemma is true far= 7 and the induction argument is complete. [|

Let A, Ay, ..., Ay C {0,1}* be such that4;| > 2+ for eachi. Let U™) =

M
H A; and extend the definition @f") in (4.47) to products by

i=1
M
(b(j)(U(M)) _ H ¢(j)(Az‘)~

i=1

UM) is said to benvariant undere) if
S0 (D) = gD

It can be verifed thalt/ (™) s invariant under?) iff each 4, is invariant undetr)?). For
eachi € {1,2,..., M}, let

B; = oM (p* V(... oW (4))))

and from (4.48) note that
|B;| = |A;| > 2.

Let
M

VD = &) (pk=D (oMUY = HBi

=1

and recall the definition of the functiaip (4.38).

Lemma 4.7.4.
Q)| = [Q(VH)].
Proof. We begin by showing that

QUM = Qs W)
Foreveryp € {0,1,..., M}* 1 let

plp) = {reQU™): (ry, - 1) =p}
801(27) = {3 € Q<¢(1)(U(M)>) : (527"' 7S/€) :p}

and note that

QUM = U e
pe{0,1,...,M}k-1
Qs (UM)) = U b

pe{0,1,.. . M}k—1

where the unions are disjoint. We show that for every {0, 1,..., M }*~1,

()] > le1(p)]

which by (4.60) and (4.61) implies (4.59).

If |p1(p)| = 0, then (4.62) is trivial. Now consider any< {0,1,..

such thaty, (p)| > 1 and let

K, =max{i : (i,p1, - ,pr—1) € v1(p)}.

96

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

. M}k—l

97

Then we have
lp1(p)] < K + 1. (4.63)
Since(K,,p1,- -+ ,pr_1) € ¢1(p), there existgaV, a? ... o) € UM such that
M
D 6 (A,d") = (K1 prea). (4.64)

i=1

Then from the definition of(!) in (4.46), there arés,, of thea(?'s from among
{a®, ..., a™} such that!” = 1 and$® (4;,a?) = a®. Letl = {iy,... ix,}
C {1,2,..., M} be the index set for these vectors anddét = rV)(a")) for eachi
€ I. Then for each € I, we have

a® = (1, al’, ... ,a,(f)) cA;

a@:(o, MO ,ag’)) € A; [from ¢W(A;, a®) = o, (4.46).
Let

M . . N .
, b € {a®,a} foriecl,
R=4> b0 , _ C o(p). (4.65)

From (4.64) and (4.65), for everye R we have

7“16{0,1,...,’[”7
ri=p; Vie{2,3,...,k}

and thus
IR =|I|+1=K,+1. (4.66)
Hence, we have
lo(p)| > |R| [from (4.65)

=K,+1 [from (4.66)
> |o1(p)] [from (4.63)

98

and then from (4.60) and (4.61), it follows that

For anyA C {0,1}" and anyj € {1,2,...,k}, we know that|¢\")(A4)| C {0,1}".
Thus, the same arguments as above can be repeated to show that

1Q (M (UPD))] > Q@ (M (UD)))|
> Q¢ (6@ (s (UM))))]

For anys, r € Z*, we say that < rif s, < r, foreveryl € {1,2,...,k}.
Lemmad4.7.5.Letp € Q(VIM)). If¢ € {0,1,...,M}*andg < p, theng € Q(VI)).

Proof. Sinceq < p, it can be obtained by iteratively subtractihdrom the components
of p, i.e., there exist > 0 andiy, is, ..., € {1,2,..., k} such that

g = (i) (h(iz) (.. (h(it)(p))))]

Consider any € {1,2,...,k}. We show that:)(p) € Q(V*™), which implies by
induction thaty € Q (V™). If p; = 0, thenh") (p) = p and we are done. Suppose that
pi > 0. Sincep € Q(VM), there existd\?) € B; for everyj € {1,2,..., M} such
that

andb™ = 1 for somem € {1,2,..., M}. From Lemma 4.7.3y ™) is invariant under

99

¢ and thus from (4.49%,@ (b)) € B,, and

m—1 M
h9 (p) = Z b+ RO (B Z p)
j=1 j=m+1
is an element of) (V™). [|

The lemma below is presented in [44] without proof, as thepi®straightfor-

ward.

Lemma 4.7.6. For all positive integers:, n, M, andj € (0,1),

k
min (@ +m) > (M+1)" (4.67)

0<m; <M, -
Sk mg > oMk =1
For anya € {0,1}*, let |a|,; denote the Hamming weight of i.e., the number
of non-zero components af The next lemma uses the functigrdefined in (4.39).

Lemma4.7.7.
|Q(V(M))| > (M + 1)7(’6/71)16'

Proof. Let 6 = ~(k/n). The number of distinct elements {0, 1}* with Hamming
weight at most ok | equals

[0k

Z (k) < 9FH() [from [69, p.15, Theorem 1]

=0

= ok=n)/2 [from (4.39).

For eachi € {1,2,..., M}, |B;| > 2" from (4.58) and hence there exi$t§ c B;
such thafb® |, > dk. Let

M
p=>Y bt eQv™).
=1

100

It follows thatp; € {0,1,2,..., M} foreveryj € {1,2,...,k}, and

k M
> = |09, = 6Mk. (4.68)
j=1 i=1

k
The number of vectorg in {0,1,..., M}* such thaty < p equaIsH (14 p,), and
j=1
from Lemma 4.7.5, each such vector is alsg)it’*"). Therefore,

QAN =][(1+p))

7=1

=

k
(M + 1) [from (4.68) and Lemma 4.7.6

Y

Sinced = v(k/n), the result follows. |

Chapter 4, in part, is a reprint of the material as it appeaR.iAppuswamy,
M. Franceschetti, N. Karamchandani and K. Zeger, “Networki@g for Computing:
Cut-set bounds”|EEE Transactions on Information Theoryol. 57, no. 2, February
2011. The dissertation author was a primary investigatdraarthor of this paper.

Chapter 5

Linear Codes, Target Function Classes,
and Network Computing Capacity

We study the use of linear codes for network computing inlekngceiver net-
works with various classes of target functions of the sounessages. Such classes
include reducible, injective, semi-injective, and linéanget functions over finite fields.
Computing capacity bounds and achievability are given vaipect to these target func-
tion classes for network codes that use routing, lineammpdir nonlinear coding.

101

102

5.1 Introduction

Network codingconcerns networks where each receiver demands a subset of
messages generated by the source nodes and the objectveaissty the receiver de-
mands at the maximum possible throughput rate. Accordirrglsearch efforts have
studied coding gains over routing [32, 34, 68], whetherdimeodes are sufficient to
achieve the capacity [70-73], and cut-set upper boundsenapacity and the tight-
ness of such bounds [34,63, 68].

Network computingon the other hand, considers a more general problem in
which each receiver node demands a target function of thesooessages [17,45,54,
56, 58, 74]. Most problems in network coding are applicablegtwork computing as
well. Network computing problems arise in various netwankduding sensor networks
and vehicular networks.

In [74], a network computing model was proposed where theortis modeled
by a directed, acyclic graph with independent, noiseledssli The sources generate
independent messages and a single receiver node compatge@ftinctionf of these
messages. The objective is to characterize the maximunofatemputation, that is,
the maximum number of timeg can be computed per network usage. Each node in
the network sends out symbols on its out-edges which argampibut fixed, functions
of the symbols received on its in-edges and any messagesatgshat the node. In
linear network computing, this encoding is restricted tdibear operations. EXxisting
techniques for computing in networks use routing, wherectiweword sent out by a
node consists of symbols either received by that node, argéed by the node ifitis a
source (e.g. [75]).

In network coding, it is known that linear codes are suffitterachieve the cod-
ing capacity for multicast networks [32], but they are ndfisient in general to achieve
the coding capacity for non-multicast networks [71]. Invm&tk computing, it is known
that when multiple receiver nodes demand a scalar linegetdunction of the source
messages, linear network codes may not be sufficient in gefaersolvability [76].
However, it has been shown that for single-receiver netaiditkear coding is sufficient
for solvability when computing a scalar linear target fumit [56, 65]. Analogous to
the coding capacity for network coding, the notion of conmpyitapacity was defined

103

All target functions

Reducible T Semi-injective

Figure 5.1: Decomposition of the space of all target functions intomasiclasses.

for network computing in [17] and is the supremum of achi¢vahtes of computing
the network’s target function.

One fundamental objective in the present chapter is to gtaled the perfor-
mance of linear network codes for computing different typigsirget functions. Specif-
ically, we compare the linear computing capacity with thiathe (nonlinear) comput-
ing capacity and the routing computing capacity for varidifferent classes of target
functions in single-receiver networks. Such classes aeleducible, injective, semi-
injective, and linear target functions over finite fieldsformally, a target function is
semi-injective if it uniquely maps at least one of its inpuasd a target function is
reducible if it can be computed using a linear transfornmafmlowed by a function
whose domain has a reduced dimension. Computing capacityds@and achievability
are given with respect to the target function classes siuidienetwork codes that use
routing, linear coding, or nonlinear coding.

Our specific contributions will be summarized next.

5.1.1 Contributions

Section 5.2 gives many of the formal definitions used in thegotdr (e.g. target
function classes and computing capacity types). We showahbiéing messages through
the intermediate nodes in a network forces the receiver taimkll the messages even

104

though only a function of the messages is required (Theor2m@®), and we bound the
computing capacity gain of using nonlinear versus routiodes (Theorem 5.2.12).

In Section 5.3, we demonstrate that the performance of @ptimear codes
may depend on how ‘linearity’ is defined (Theorem 5.3.2). cfpmlly, we show that
the linear computing capacity of a network varies dependmgvhich ring linearity is
defined over on the source alphabet.

In Sections 5.4 and 5.5, we study the computing capacity ghirsing linear
coding over routing, and nonlinear coding over linear cgdiin particular, we study
various classes of target functions, including injectisemi-injective, reducible, and
linear. The relationships between these classes is dltestrin Figure 5.1.

Section 5.4 studies linear coding for network computing.siaw that if a target
function is not reducible, then the linear computing cajyaand routing computing
capacity are equal whenever the source alphabet is a finlide(Tieeorem 5.4.8); the
same result also holds for semi-injective target functioves rings. We also show that
whenever a target function is injective, routing obtains fihll computing capacity of
a network (Theorem 5.4.9), although whenever a target immas neither reducible
nor injective, there exists a network such that the compgutapacity is larger than the
linear computing capacity (Theorem 5.4.11). Thus for ngedtive target functions
that are not reducible, any computing capacity gain of usgjng over routing must
be obtained through nonlinear coding. This result is tighthie sense that if a target
function is reducible, then there always exists a networkenathe linear computing
capacity is larger than the routing capacity (Theorem 2}4.We also show that there
exists a reducible target function and a network whose caoimgpeapacity is strictly
greater than its linear computing capacity, which in turstigtly greater than its routing
computing capacity. (Theorem 5.4.14).

Section 5.5 focuses on computing linear target functiores @inite fields. We
characterize the linear computing capacity for lineargafgnctions over finite fields in
arbitrary networks (Theorem 5.5.6). We show that linearesoare sufficient for linear
target functions and we upper bound the computing capaeity of coding (linear or
nonlinear) over routing (Theorem 5.5.7). This upper boumnsghown to be achievable
for every linear target function and an associated netwonkhich case the computing

105

Table 5.1: Summary of our main results for certain classes of targettions. The
quantitieCeod(N, f), Cin(N, f), andCrou(N, f) denote the computing capacity, linear
computing capacity, and routing computing capacity, retpely, for a network\” with

s sources and target functigh The columns labeled and.A indicate contraints on the
target functionf and the source alphahdt respectively.

Result f A Location
Vf YN CinN £) = CroutN, f) ron-reducible | 19 | theorem 5.4.8
semi-injective | ring

VYN Cood N, f) = Crout(N, f) injective Theorem 5.4.9

Vf AN Ceod N £) > Cin(N,) non-njective & | field | Theorem 5.4.11

Vf AN Cin(N, f) > Crout(N, f) reducible ring | Theorem 5.4.12

Af AN Cood N,) > Ciin(N, f) > Crout(N, f) reducible Theorem 5.4.14
VYN Ceod N, f) = Cin(N, f) < 5 Crout(N, f) linear field | Theorem 5.5.7
VAN Cin(N, f) = s Crout(N, f) linear field | Theorem 5.5.8

Af IN Ceod(N, f) isirrational arithmetic sum Theorem 5.6.3

capacity is equal to the routing computing capacity timesimber of network sources
(Theorem 5.5.8).

Finally, Section 5.6 studies an illustrative example far tomputing problem,
namely the reverse butterfly network — obtained by revergiiegdirection of all the
edges in the multicast butterfly network (the butterfly netwstudied in [32] illus-
trated the capacity gain of network coding over routing).r #os network and the
arithmetic sum target function, we evaluate the routing lmelar computing capac-
ity (Theorem 5.6.1) and the computing capacity (Theorem3%.6We show that the
latter is strictly larger than the first two, which are equaétich other. No network with
such properties is presently known for network coding. Agother things, the reverse
butterfly network also illustrates that the computing céyacan be a function of the
coding alphabet (i.e. the domain of the target functignin contrast, for network cod-
ing, the coding capacity and routing capacity are known tmdependent of the coding
alphabet used [59].

Our main results are summarized in Table 5.1.

106

5.2 Network model and definitions

In this chapter, aetwork A" = (G, S, p) consists of a finite, directed acyclic
multigraphG = (V, &), a setS = {oy,...,0:} C V of s distinct source nodesind
a singlereceiverp € V. We assume that ¢ S, and that the graphG contains a
directed path from every node ¥ to the receivep. For each node € V, let &;(u)
and&,(u) denote the in-edges and out-edges:.akespectively. We assume (without
loss of generality) that if a network node has no in-edges this a source node. If
e = (u,v) € £, we will use the notatiohead¢) = « andtail(e) = v.

An alphabetis a finite set of size at least two. Throughout this chapdewill
denote asource alphabednd5 will denote areceiver alphabetFor any positive integer

m, any vectorr € A™, and anyi € {1,2,...,m}, letz; denote the-th component of
x. For any index sef = {i,is,...,i,} C {1,2,....m}withi; < iy < ... <1, let
x; denote the vectof;, , z4,, ..., x;,) € Al Sometimes we viewd as an algebraic

structure such as a ring, i.e., with multiplication and &ddi Throughout this chapter,
vectors will always be taken to be row vectors. Eetdenote a finite field of order. A
superscript will denote the transpose for vectors and matrices.

5.2.1 Target functions

For a given network\" = (G, S, p), we uses throughout the chapter to denote
the numbetS| of receivers in\V. For given networkV/, atarget functionis a mapping

fA—B.

The goal in network computing is to compufeat the receivep, as a function of the
source messages. We will assume that all target functiopsndkeon all the network
sources (i.e. a target function cannot be a constant funofiany one of its arguments).
Some example target functions that will be referenced atediin Table 5.2.

Definition 5.2.1. Let alphabet4 be a ring. A target functiorf : .A* — B is said to be
reducibleif there exists an integex satisfying\ < s, ans x A matrix T with elements

! Throughout the remainder of the chapter, we use “graph” tamaemultigraph, and in the context of
network computing we use “network” to mean a single-reaaiatwork.

Table 5.2: Definitions of some target functions.

107

Target functionf AlphabetA fz,. .., xs) Comments
identity arbitrary (x1,...,2s) B=A*
arithmetic sum || {0,...,¢ — 1} x4+ as ‘4’ is ordinary integer addition
B={0,1,---,s(q— 1)}
modr sum {0,...,q—1} 1P ... P s @ is mod r addition, B = A
linear ring a1x1 + ...+ asxs | arithmeticinthe ring,5 = A
maximum ordered set | max{x1,...,zs} B=A

in A, and a mag : A* — B such that for all: € A?,

9(aT) = f(x).

(5.1)

Reducible target functions are not injective, since, fomepke, if andy are

distinct elements of the null-space’Bf then

f(x) = g(xT) = g(0) = g(yT) = f(y).

Example 5.2.2.Suppose the alphabetis = F, and the target function is

where

Then, by choosing = 2,

f: Fg — {0, 1},

108

andg(yi,y2) = y1y2, we get

g(2T) = g(x1 + w2, 73)
= (21 + x2)x3
= f().
Thus the target functioyfi is reducible.

Example 5.2.3.The notion of reducibility requires that for a target fuoctif : 4° —

B, the setA must be a ring. If we impose any ring structure to the domainthe
identity, arithmetic sum, maximum, and minimum target fimts, then these can be
shown (via our Example 5.4.2 and Lemma 5.4.3) to be non-ibkiuc

5.2.2 Network computing and capacity

Let £ andn be positive integers. Given a netwak with source setS and
alphabet4, amessage generat@s any mapping

a: S — A
For each source; € S, a(0;) is called anessage vectand its components
aloi);,...,a(04),

are callednessage’s
Definition 5.2.4. A (k,n) network code in a network’ consists of the following:

(i) Encoding function(©), for every out-edge € &,(v) of every nodey € V — p,

2For simplicity we assume each source has associated wikadtlg one message vector, but all of
the results in this chapter can readily be extended to the igemneral case.

109

of the form:

e . H A" | x A¥ — A™ if vis a source node

éee&i(v)

he . H A" — A" otherwise.

éeé‘i(v)

(i) A decoding function) of the form:

(I H A" — B,

ee&i(v)

Furthermore, given &, n) network code, every edgec £ carries a vectot, of
at mostn alphabet symbofswhich is obtained by evaluating the encoding functign
on the set of vectors carried by the in-edges to the node a&ddtie’s message vector
if the node is a source. The objective of the receiver is topuamthe target function
f of the source messages, for any arbitrary message generaldore precisely, the
receiver constructs a vector bfalphabet symbols, such that for each {1,2,...,k},
the i-th component of the receiver’s computed vector equals #heevof the desired
target functionf, applied to the-th components of the source message vectors, for any
choice of message generatar

Definition 5.2.5. Suppose in a network/, the in-edges op areey, es, ..., €. A
(k,n) network code is said tccomputef in A if for eachj € {1,2,...,k}, and for
each message generatgrthe decoding function satisfies

0 (20000 ,zem(p))j = f((a(01);, -+ alo,),)) - (5.2)

If there exists dk,n) code that computeg in NV, then the rational numbér/n is said
to be anachievable computing rate

In the network coding literature, one definition of tbeding capacityof a net-
work is the supremum of all achievable coding rates [59]. Wean analogous defini-

3By default, we assume that edges carry exactiymbols.

110

tion for the computing capacity.

Definition 5.2.6. Thecomputing capacitpf a network\ with respect to a target func-
tion f is

Ceod(N, f) = sup {% : 3 (k,n) network code that computgsin ./\/}.

The notion of linear codes in networks is most often studigh vespect to finite
fields. Here we will sometimes use more general ring strestur

Definition 5.2.7. Let alphabetA4 be a ring. A(k,n) network code in a network/ is
said to be dinear network code (oveH) if the encoding functions are linear ovdr

Definition 5.2.8. Thelinear computing capacitgf a network/\ with respect to target
function f is

Cin(N, f) = sup {S : 3 (k,n) linear network code that computgsn /\/}.

The routing computing capacitg,o. (N, f) is defined similarly by restricting
the encoding functions to routing. We call the quantitys(N, f) — Cin(NV, f) the
computing capacity gaiof using nonlinear coding over linear coding. Similar “g&lin
such asCeod(N, f) — Crowt(N, f) @andCin (N, f) — Crou(N, f) are defined.

Note that Definition 5.2.7 allows linear codes to have n@dindecoding func-
tions. In fact, since the receiver alphaliheed not have any algebraic structure to it,
linear decoding functions would not make sense in general.ddy however, examine
a special case whei® = 4 and the target function is linear, in which case we show
that linear codes with linear decoders can be just as goadess Icodes with nonlinear
decoders (Theorem 5.5.7).

Definition 5.2.9. A set of edges” C £ in network \V is said toseparatesources
Tmys-- - 0m, from the receiver, if for eachi € {1,2,...,d}, every directed path
from o,,, to p contains at least one edgedh Define

Ic = {i : C separates; from the receivey.

111

The setC is said to be @utin \ if it separates at least one source from the receiver (i.e.
|Ic| > 1). We denote byA(N) the collection of all cuts inV.

Sincel is the number of sources disconnected’bgnd there are sources, we
have

o] < s. (5.3)

For network coding with a single receiver node and multigarses (where
the receiver demands all the source messages), routingowrkio be optimal [63].
Let Crout(NV) denote the routing capacity of the netwovk or equivalently the routing
computing capacity for computing the identity target fumiet It was observed in [63,
Theorem 4.2] that for any single-receiver netwgrk

Crout(N) - mln ﬂ

. 54
ceaN) |I¢| (5.4)

The following theorem shows that if the intermediate nodes network are restricted
to perform routing, then in order to compute a target functioe receiver is forced to
obtain all the source messages. This fact motivates the fuseding for computing
functions in networks.

Theorem 5.2.10.If AV is a network with target functior, then
Crout(Na f) = Crout(N) .

Proof. Since any routing code that computes the identity targettian can be used to
compute any target functiofy, we have

Crout(Na f) > Crout(N> .

Conversely, it is easy to see that every component of evericeauessage must be
received byp in order to comput¢, so

Crout(Na f) < Crout(N) .

112

Theorem 5.2.12 below gives a general upper bound on how nargerl the
computing capacity can be relative to the routing computiagacity. It will be shown
later, in Theorem 5.5.7, that for linear target functiongrofinite fields, the bound in
Theorem 5.2.12 can be tightened by removing the logaritiim.te

Lemma 5.2.11.If V is network with a target functiorfi : A* — B, then

Ccod(-/\/a f) < (10g2 ‘AD cg}\i(r/{/’) ’C‘ :

Proof. Using [74, Theorem I1.1], one finds the term min-c\it /) defined in [74, Equa-
tion (3)] in terms of a quantity?,_ ;, which in turn is defined in [74, Definition 1.5].
Since target functions are restricted to not being constenttions of any of their argu-
ments, we havér;, ; > 2, from which the result follows. |

Theorem 5.2.12.1f AV is network with a target functiorfi : A* — B, then
CeodN, f) < s (logy |A]) Crow(N, f)
Proof.

< i 2.
Ceod N, f) < (log, |A]) min ' [C] [from Lemma 5.2.11

< s (logy |A]) Crowt(N, f) . [from (5.3), (5.4), and Theorem 5.2.10

113

5.3 Linear coding over different ring alphabets

Whereas the size of a finite field characterizes the field, #éwerdn general, dif-
ferent rings of the same size, so one must address whetherdhecomputing capacity
of a network might depend on which ring is chosen for the ddehaln this section, we
illustrate this possibility with a specific computing prebi.

Let A = {ao, a1, as,a3} and letf : A2 — {0, 1,2} be as defined in Table 5.3.

We consider different ring® of size4 for .A and evaluate the linear computing capacity

Table 5.3: Definition of the4-ary mapf.

J |l ao|a|a]|as
ag || O | 1 | 1] 2
ar || 1 10| 2|1
as || 12101
as | 21|10

of the network\/, shown in Figure 5.2 with respect to the target functiorspecifically,
we let R be either the rindZ, of integers modulal or the product ringZ, x Z, of 2-

dimensional binary vectors. Denote the linear computingacay here by

Cin(N) = sup {% : 3 (k,n) R-linear code that computesin N}.

The received vector at p can be viewed as a function of the source vectors generated

@ -@® -®

01 02 1Y

Figure 5.2: Network \; has two sources; ando, and a receivep.

ato; ando,. For any(k,n) R-linear code, there exigt x n matrices)M; and M, such

thatz can be written as

z(a(oy),aoz)) = a(or) My + a(og) Ms. (5.5)

114

Letm,,,--- ,m,, denote the row vectors di/;, fori € {1,2}.

Lemma 5.3.1.Let A be the ringZ, and letf : A> — {0, 1,2} be the target function
shown in Table 5.3, where = i, for eachi. If a (k, n) linear code ovetd computesf

in Ay and p receives a zero vector, ther{o,) = a(os) € {0,2}.

Proof. If a(o1) = a(oz) = 0, thenp receives & by (5.5) and must decode(asince
f((0,0)) = 0 (from Table 5.3). Thusp always decodes @ upon receiving &. But
f((z1,29)) = 0ifand only if x; = 25 (from Table 5.3), so wheneverreceives &, the
source messages satisfyo;) = a(o2).

Now suppose, contrary to the lemma’s assertion, that theseraessages(o)
anda(oy) such that:(a(o1) , a(o2)) = 0 anda(oy); ¢ {0,2} for somej € {1,... k}.
Sincea(ay); is invertible inZ, (it is eitherl or 3), we have from (5.5) that

k k
my; = Z —a(al);l a(or), mi; + Z —oz(ol)j_l a(og); ma (5.6)
1=1 i=1
i#]

= y(l)Ml + y(Q)Mz (5.7)

wherey") andy® arek-dimensional vectors defined by

S _ —a(oy); aloy), i)
l 0 if i —

@ _ _

y, = —alo1); " a(ow),. (5.8)

Also, define theé:-dimensional vector: by
0 ifi#£j
i = 7 (5.9)
1 ifi=j.

We have from (5.5) that(z, 0) = m, ; and from (5.5) and (5.7) thaty™"), y@) = m, ;.

Thus, in order for the code to compufe we must havef(z;,0) = f(y\",4'”). But

115

(
= (0, —a(o1); " alo1);) [from a(oy) = a(o2)]
= f(Oa _1)
= f(0,3) [from3 = —1inZ,]
=2 [from Table 5.3
a contradiction. Thusy(a,) € {0,2}*. u

Theorem 5.3.2.The networkV; in Figure 5.2 with alphabe#d = {ag, a1, a2, a3} and
target functionf : A> — {0, 1,2} shown in Table 5.3, satisfies

Cin(No,)™ <
Cin(Ny, f)277 =

= Wl N

(For A = Z,, we identifya; = i, for eachi, and for A = Z, x Z,, we identify eaclu;
with the2-bit binary representation af)

Proof. Consider ak,n) Zy x Zs-linear code that compute& From (5.5), we have
z(z,0) = 0 wheneverzM; = 0. Sincef((0,0)) # f((z;,0)) (Wheneverz; # 0), it
must therefore be the case thdt/; = 0 only whenx = 0, or in other words, the rows
of M; must be independent, s0> k. Thus,

Ciin (N, f)Z2><Z2 <1 (5.10)

Now suppose thatl is the ringZ, x Z, where,aq = (0,0), a; = (0,1), ay = (1,0),
andas = (1,1) and let® denote the addition oved. For anyz € A2, the value
f(zx), as defined in Table 5.3, is seen to be the Hamming distaneebpt:; andx,. If
k =n=1andM; = M, = [a3] (i.e., thel x 1 identity matrix), therp receivese; @ x
from which f can be computed by summing its components. Thus, a compatie @f

116

k/n = 1is achievable. From (5.10), it then follows that
Cin (N,)77 = 1.

We now prove tha€, (N, f)Z‘* < 2/3. Let A denote the ring, wherea; = i
for 0 < < 3. For a givenk, n) linear code over that computeg, then-dimensional
vector received by can be written as in (5.5). L&t denote the collection of all message
vector pairg a(oy) , «a(oy)) such that(a(oy) , a(oz)) = 0. Define the2k x n matrix

-]

and notice thak = {y € A% : yM = 0}. Then,

4= Al
> {yM :y € AM}| [fromy € A% = yM € A"
‘A|2k 1 2 2k 1 2 1 2
ZW [fromy™® 42 € A% yWM = y@O M = ¢y — y@ € K]
|A|2k
> o [from Lemma 5.3.1L
— 43k/2, [from |A| = 4]

Thus,k/n < 2/3, s0Cin (N4,)™ < 2. |

117

5.4 Linear network codes for computing target functions

Theorem 5.2.10 showed that if intermediate network nodesasting, then a
network’s receiver learns all the source messages irrégpearf the target function it
demands. In Section 5.4.1, we prove a similar result whenntieemediate nodes use
linear network coding. It is shown that whenever a targetfiom is not reducible the
linear computing capacity coincides with the routing cagyaand the receiver must
learn all the source messages. We also show that there axmgtvork such that the
computing capacity is larger than the routing capacity velven the target function is
non-injective. Hence, if the target function is not redlejlsuch capacity gain must be
obtained from nonlinear coding. Section 5.4.2 shows timeali codes may provide a
computing capacity gain over routing for reducible targeictions and that linear codes
may not suffice to obtain the full computing capacity gainraegiting.

5.4.1 Non-reducible target functions

Verifying whether or not a given target function is redueilshay not be easy.
We now define a class of target functions that are easily stiownt be reducible.

Definition 5.4.1. A target functionf : A®* — B is said to besemi-injectivef there
existsz € A* such thatf ' ({f(z)}) = {z}.

Note that injective functions are semi-injective.

Example 5.4.2.If f is the arithmetic sum target function, théims semi-injective (since
f(z) = 0 impliesz = 0) but not injective (sinceg (0,1) = f(1,0) = 1). Other exam-
ples of semi-injective target functions include the idgntmaximum, and minimum
functions.

Lemma 5.4.3.1f alphabetA is a ring, then semi-injective target functions are not re-
ducible.

Proof. Suppose that a target functighis reducible. Then there exists an integer
satisfying\ < s, matrixT' € A***, and mapy : A* — B such that

g(xT) = f(zx) foreachr € A°. (5.11)

118
Since\ < s, there exists a non-zertbe A° such that/T' = 0. Then for eachr € A%,
fld+z)=g((d+2)T) = g(2T) = f(z) (5.12)

SO f is not semi-injective. [|

Definition 5.4.4. Let A be a finite field and let be a subspace of the vector spate
over the scalar fieldd. Let

Mt={ye A :zy' =0forallz € M}

and letdim(,M) denote the dimension 0¥1 over A.

Lemma 5.4.5.% If A is a finite field andM is a subspace of vector spack, then
(M) =M.

Lemma 5.4.6 will be used in Theorem 5.4.8. The lemma statedtamative
characterization of reducible target functions when the&@® alphabet is a finite field
and of semi-injective target functions when the sourceathehis a group.

Lemma 5.4.6.Let V' be a network with target functiofi: A* — B and alphabetA.
() Let.A be a finite field.f is reducible if and only if there exists a non-zefe .A4°
such that for eacln € A and eachr € A°,

flad+) = f(a).

(i) Let A be a group.f is semi-injective if and only if there existse A° such that
for every non-zerd € A%,

fld+z) # f(z).

4This lemma is a standard result in coding theory regardirad codes over finite fields, even though
the operatiorry! is not an inner product (e.g. [77, Theorem 7.5] or [78, Camyll3.2.3]). An analogous
result for orthogonal complements over inner product spacevell known in linear algebra (e.g. [79,
Theorem 5 on pg. 286]).

119

(The arithmetic irud+x andd+z is performed component-wise over the corresponding
A.)

Proof. (i) If f is reducible, then there exists an integesatisfyingA < s, matrix
T € A>*, and mapy : A — B such that

g(xT) = f(z) foreachr € A°. (5.13)

Since)\ < s, there exists a non-zerbe A* such that!T’ = 0. Then for eacly € A and
eachr € A3,

flad+z) = g((ad + 2)T) = g(zT) = f(x). (5.14)

Conversely, suppose that there exists a non-Zerech that (5.14) holds for evetye A
and everyr € A° and letM be the one-dimensional subspacedsfspanned by. Then

ft+x)= f(x) foreveryt € M,z € A°. (5.15)

Note thatdim(M*) = s — 1. Let A = s — 1, letT € A*** be a matrix such that its
columns form a basis fak1+, and letR; denote the row space @f. Define the map

9: Ry — f(A%)
as follows. For any, € R+ such thaty = 2T for z € A®, let

9(y) = g(2T) = f(z). (5.16)

120
Note that ify = 27T = 27T for (M £ 22, then

(2 — 2T =0

e — 2@ e (M*H)+ [from construction off]
2 — 2@ e M [from Lemma 5.4.5
flaW) = (@D —2®) +2®)
= f(z?). [from (5.15)

Thusg is well defined. Then from (5.16) and Definition 5.2f1is reducible.

(ii) Since f is semi-injective, there existsiac A° suchthafz} = f~1({f(2)}),
which in turn is true if and only if for each non-zetlos A*, we havef(d + =) # f(x).
|

The following example shows that if the alphabékts not a finite field, then the
assertion in Lemma 5.4.6(i) may not be true.

Example 5.4.7.Let A = Z,, let f : A — A be the target function defined kfyfx) =
2z, and letd = 2. Then, for alla € A,

f(2a+x)=2(2a+x)
=2z [from4 = 0in Z4]
= f(z)

but, f is not reducible, since = 1.

Theorem 5.4.8 establishes for a network with a finite fieldhalget, whenever
the target function is not reducible, linear computing @yas equal to the routing
computing capacity, and therefore if a linear network cadaded, the receiver ends
up learning all the source messages even though it only ddsmarfiunction of these
messages.

For network coding (i.e. whelf is the identity function), many multi-receiver
networks have a larger linear capacity than their routingacey. However, all single-
receiver networks are known to achieve their coding capawith routing [63]. For

121

network computing, the next theorem shows that with nomcdale target functions
there is no advantage to using linear coding over rotting.

Theorem 5.4.8.Let N be a network with target functiofi : A — B and alphabet
A. If Ais a finite field andf is not reducible, orA is a ring with identity andf is
semi-injective, then

Cin(N, f) = CoouN,, f) .

Proof. Since any routing code is in particular a linear code,
Clin (N7 f) Z C'rout(-/\/’a f) .

Now consider gk, n) linear code that computes the target functjom N and letC
be a cut. We will show that for any two collections of sourcessages, if the messages
agree at sources not separated frofoy C' and the vectors agree on edge<inthen
there exist two other source message collections withréifiietarget function values,
such that the receiver cannot distinguish this difference. In other words, theshesr
cannot properly compute the target function in the network.

For eacte € C, there exist: xn matricesM (e)q, ..., M(e)s such that the vector

carried ore is

S

Z alo;) M(e);.

=1
For any matrix}, denote itsj-th column by M), Letw andy be differentk x s
matrices overd, whosej-th columns agree for ajl ¢ 1.
Let us suppose that the vectors carried on the edgés when the the column
vectors ofw are the source messages, are the same as when the the cotiors uéy
are the source messages. Then, foe @l C,

i wDM(e); = i y DM (e);. (5.17)

We will show that this leads to a contradiction, namely fhatnnot computg. Letm
be an integer such that if denotes then-th row of w — y, thend # 0. For the case

°As a reminder, “network” here refers to single-receivemmaks in the context of computing.

122

where A is a field andf is not reducible, by Lemma 5.4.6(i), there exise A and
x € A® such thaud # 0 and

flad+) # f(x). (5.18)

In the case whergl is a ring with identity andf is semi-injective, we obtain (5.18) from
Lemma 5.4.6(ii) in the special case®f= 1.

Letu be anyk x s matrix over4 whosem-th row isz and letv = u+ a(w —y).
From (5.18), the target functiofidiffers on them-th rows ofu andv. Thus, the vectors
on the in-edges of the receiveimust differ between two cases: (1) when the sources
messages are the columnswgfand (2) when the sources messages are the columns
of v. The vector carried by any in-edge of the receiver is a fanctf each of the
message vectors(c;), for j ¢ I, and the vectors carried by the edges in the@ut
Furthermore, thg-th columns ofu andv agree ifj ¢ Io. Thus, at least one of the
vectors on an edge ifi must change when the set of source message vectors changes
fromwu to v. However this is contradicted by the fact that forea#t C', the vector carried
on e when the columns af are the source messages is

ZS: u@M(e); = Z uM(e)i +a i(w‘“ —y))M(e); [from (5.17)
— i oD M (e); (5.19)

which is also the vector carried @when the columns af are the source messages.

Hence, for any two different matrices andy whosej-th columns agree for all
j ¢ Ic, at least one vector carried by an edge in the(¢utas to differ in value in the
case where the source messages are the columndrof the case where the source
messages are the columnsgofThis fact implies that

(A = (1A

123

and thus

Taking the supremum over dlt, n) linear network codes that compufan N, we get

Cin(N, f) < CrouWN, f) -

[|
g1 [p] Os—1 Os
.\\.//.
®
P
Figure 5.3: Network N; ; has sources, 09, . .., 05, €ach connected to the relayy

an edge and is connected to the receiver by an edge.

Theorem 5.4.8 showed that if a network’s target functionasreducible (e.qg.
semi-injective target functions) then there can be no cdimgwapacity gain of using
linear coding over routing. The following theorem showst tifighe target function is
injective, then there cannot even be any nonlinear comguj@in over routing.

Note that if the identity target function is used in Theoreh. %, then the result

124

states that there is no coding gain over routing for ordimatyvork coding. This is con-
sistent since our stated assumption in Section 5.2 is tHgtsomgle-receiver networks
are considered here (for some networks with two or morevecsiit is well known that
linear coding may provide network coding gain over netwankting).

Theorem 5.4.9.1f A is a network with an injective target functigh then

Ccod(N> f) = CI’OUI(N7 f) :

Proof. It follows from [63, Theorem 4.2] that for any single-reagivnetwork \/ and
the identity target functiorf, we haveCeoq(N, /) = Crow(N, f). This can be straight-
forwardly extended to injective target functions for netkvoomputing. [|

Theorem 5.4.8 showed that there cannot be linear compuéimgfgr networks
whose target functions are not reducible, and Theorem SHo%ed that the same is
true for target functions that are injective. However, Tie®o 5.4.11 will show via an
example network that nonlinear codes may provide a capgaityover linear codes if
the target function is not injective. This reveals a limaatof linear codes compared to
nonlinear ones for non-injective target functions thatrasereducible. For simplicity,
in Theorem 5.4.11 we only consider the case when there aretwwre sources. We
need the following lemma first.

Lemma 5.4.10.The computing capacity of the netwoXk . shown in Figure 5.3, with
respect to a target functiofi : A° — B, satisfies

1
CoodNss, f) 2 min 4 1, 3o o
d(Ns,s, f) = min {1 log 4 | f (A%)] }

Proof. Suppose
Let k. = n = 1 and assume that each source node sends its message ta hetle

g:f(A)— A

125

be any injective map (which exists by (5.20)). Then the noedan compute and send
it to the receiver. The receiver can compute the valug wbm the value ofy and thus
arate ofl is achievable, SGcod(Ns s, f) > 1.

Now suppose

logy 4 | f (A7) > 1. (5.21)

Choose integers andn such that

1 k 1
—e<

I 5.22
g g 17 ()] =0 = Tog g 17 (A7) (5.22)

Now choose an arbitrary injective map (which exists by (.22
g (f(A%))F — Am.

Sincen > k (by (5.21) and (5.22)), we can still assume that each sowcdssitsk-
length message vector to node Nodev computesf for each of thet sets of source
messages, encodes those values inte-fngth vector overd using the injective map
¢ and transmits it to the receiver. The existence of a decaingtion which satisfies
(5.2) is then obvious from the fact thatis injective. From (5.22), the above code

achieves a computing rate of

Sincee was arbitrary, it follows that the computing capacilyq(Ns s, f) is at least
1/log 4 |f (A%)]. L

Theorem 5.4.11.Let A be a finite field alphabet. Let > 2 and let f be a target
function that is neither injective nor reducible. Then #hexists a network/ such that

Ccod(Na f) > Clin(N>f)-

126

Proof. If A is the network\; ; shown in Figure 5.3 with alphabet, then

Cin(N, f)=1/s [from Theorem 5.4.8 and (5}4)
. 1 s s
<m1n{l, m} [fr0m822and‘f(./4)|<‘A|]

< Ceod(N, f) . [from Lemma 5.4.10

The same proof of Theorem 5.4.11 shows that it also holdeiéthhabei is a
ring with identity and the target functiofiis semi-injective but not injective.

5.4.2 Reducible target functions

In Theorem 5.4.12, we prove a converse to Theorem 5.4.8 byispdhat if a
target function is reducible, then there exists a netwonklich the linear computing
capacity is larger than the routing computing capacity. ofem 5.4.14 shows that,
even if the target function is reducible, linear codes mayacbhieve the full (nonlinear)

computing capacity of a network.

Theorem 5.4.12.Let A be aring. If a target functiorf : A° — B is reducible, then
there exists a network’ such that

Ciin (N, f) > Crout(N7 f) .

Proof. Since f is reducible, there exist < s, a matrixT € A***, and a map :
AN — f(A*®) such that

g(aT) = f(x) foreveryz € A°. [from Definition 5.2.1 (5.23)

Let NV denote the networl/; ; with alphabet4 and target functiorf. Letk = 1,n = A
and let the decoding function he = ¢g. Sincen > 1, we assume that all the source

127

nodes transmit their messages to nod€or each source vector

v = (a(01),a(0z),...,a(0,))

nodev computesr?’ and sends it to the receiver. Having receivedth@imensional
vectorxT', the receiver computes

(T) = g(aT) [from ¢ = g]
= f(x). [from (5.23)

Thus there exists a linear code that compyt@s A\ with an achievable computing rate

of
ko1
n o\
>1/s [from A <s—1]
which is sufficient to establish the claim. [|

For target functions that are not reducible, any improveamearmachievable rate
of computing using coding must be provided by nonlinear sdghy Theorem 5.4.8).
However, within the class of reducible target functionguins out that there are tar-
get functions for which linear codes are optimal (i.e., @tyaachieving) as shown in
Theorem 5.5.7, while for certain other reducible targetfioms, nonlinear codes might
provide a strictly larger achievable computing rate coragdo linear codes.

Remark 5.4.13.1t is possible for a networ/ to have a reducible target functigirbut
satisfy Cin (N, f) = Cou(N, f) since the network topology may not allow coding to
exploit the structure of the target function to obtain a catyagain. For example, the
3-node network in Figure 5.4 witfi(z, x2) = x1 + 25 and finite field alphabetl has

Clin(N, f) - Crout(/\/7 f) = 1.

128

® -0 o

o1 P 02

Figure 5.4: A network where there is no benefit to using linear coding owating for
computingf.

Theorem 5.4.11 demonstrates that for every non-injective;reducible target
function, some network has a nonlinear computing gain aaeal coding, and Theo-
rem 5.4.12 shows that for every reducible (hence non-ingctarget function, some
network has a linear computing gain over routing. The foilmptheorem shows that
for some reducible target function, some network has bothede linear and nonlinear
computing gains.

Theorem 5.4.14.There exists a network” and a reducible target functiofi such that:
Ccod(N> f) > Ciin (Nv f) > Crout<Nv f) :

Proof. Let A/ denote the networl/; 3 shown in Figure 5.3 witls = 3, alphabet4 =
F,, and letf be the target function in Example 5.2.2. The routing cagasigiven by

Crout(N, f) = 1/3. [from (5.4) (5.24)

Letk = n = 1. Assume that the sources send their respective messageddo.nrhe
target functionf can then be computed atand sent to the receiver. Henégn = 1 is
an achievable computing rate and thus

Ccod(Nv f) > L. (5-25)

Now consider anyk, n) linear code that computesin A/. Such a linear code imme-
diately implies &k, n) linear code that computes the target functigm,, z2) = x;x9
in network N5 » as follows. From thék, n) linear code that computesin N, we get a

129

3k x n matrix M such that the nodein network A" computes

(a(er) afo2) alon)) M

and the decoding function computggrom the resulting vector. Now, inV;», we let
the nodev compute

(oz(al) 0 a(og)) M

and send it to the receiver. The receiver can compute theifumg from the received
n-dimensional vector using the relatigtw;, x2) = f(z1,0, z2). Using the fact that the
function g is not reducible (in fact, it is semi-injective),

k
— < Cin(Ns2,9)
n
= Crout(Ns.2,9) [from Theorem 5.48
=1/2. [from (5.4)
Consequently,
Cin(N, f) <1/2. (5.26)

Now we will construct &1, 2) linear code that computesin V. Letk = 1,n = 2 and

Let the sources send their respective messagesvtile v computes

(ale) alon) alos) M

and transmits the result to the receiver from whjcls computable. Since the above

130
code achieves a computing ratelg®, combined with (5.26), we get
Cin(N, f) =1/2. (5.27)

The claim of the theorem now follows from (5.24), (5.25), 46®27). [|

131

5.5 Computing linear target functions

We have previously shown that for reducible target funditirere may be a
computing capacity gain for using linear codes over routilmgthis section, we show
that for a special subclass of reducible target functioasely linear target functiofis
over finite fields, linear network codes achieve the full (m@ar) computing capac-
ity. We now describe a special class of linear codes overefiinds that suffice for
computing linear target functions over finite fields at theximaum possible rate.

Throughout this section, let/ be a network and lek, n, andc be positive
integers such thdt/n = c. Eachk symbol message vector generated by a soureeS
can be viewed as@adimensional vector

a(o) = (a(o);,a(0)y,...,a(0),) € Fp

wherea(o), € F, for eachi. Likewise, the decodep generates a vector éfsymbols
fromIF,, which can be viewed ascadimensional vector of symbols froiffy,.. For each
e € &, the edge vector, is viewed as an element 6.

For every node: € V — p, and every out-edgec &,(u), we choose an encoding
functionh(®) whose output is:

Z)2 + Zﬁj(-e)&(u)j if ues
=1

ec&i(u)

Z 2 2, otherwise

ée&;(u)

(5.28)

for someyée), ﬁj(.e) e F,» and we use a decoding functianwhosej-th component
outputz); is:

> 61z forallje{1,2,...,c} (5.29)

e€&;(p)

for certaind\” € F,.. Here we view each(® as a function of the in-edges toand

5The definition of “linear target function” was given in Talfe2.

132

the source messages generated:and we viewy) as a function of the inputs to the
receiver. The chosen encoder and decoder are seen to he linea

Let us denote the edgesdnby e;, e, . . ., ¢c. FOr each source and each edge
e; € E(0), letz\™) . 2 be variables, and for each € &(p), letw!™, ... w!?
be variables. For every, e; € £ such thaheadg;) = tail(e;), let yéfj) be a variable.
Letz, y, w be vectors containing all the variableSj), yéfj), andwgeﬂ'), respectively. We
will use the short hand notatidf[y| to mean the ring of polynomialS]- - - ,yﬁf"), o]
and similarly forF [z, y, w].

Next, we define matriced, (z), F(y), andB(w).

(i) Foreachr € {1,2,---,s}, let A.(z) be ac x |€| matrix A, (z), given by

29 it e € E,(0y)
(AT(x))i,j = (5.30)

0 otherwise
(i) Let F(y) be al&| x |€] matrix, given by

() -
ye,” if e;,e; € £ andheadg;) = tail(e;)

(F(y))ij = ! ! (5.31)
0 otherwise

(iii) Let B(w) be ac x |E| matrix, given by

wgej) if e; € &E(p)

(B(w)); = (5.32)
0 otherwise

Consider ar{nc, n) linear code of the form in (5.28)—(5.29).

Since the graply associated with the network is acyclic, we can assume tkat th
edges, eo, ... are ordered such that the matiixis strictly upper-triangular, and thus
we can apply Lemma 5.5.1. Létdenote the identity matrix of suitable dimension.

Lemma 5.5.1. (Koetter-Medard [73, Lemma 2]) The matrik— F'(y) is invertible over
the ringF, [y].

133

Lemma 5.5.2. (Koetter-Medard [73, Theorem 3]) Fos = 1 and for all+ € {1,..., s},
the decoder ir{5.29)satisfies

v =alo1) A (B)(I — F(y)) "' B(9)".

Lemma 5.5.3. (Alon [80, Theorem 1.2]) Lef be an arbitrary field, and ley =
g(x1,...,z,) be a polynomial inF[zy,...,x,]. Suppose the degrekg(g) of g is
> t;, where each; is a nonnegative integer, and suppose the coefficieqf8f, =’
in g is nonzero. Then, ifSy, ..., S,, are subsets off with |S;| > t;, there ares; € S,

S9 € .So,...,8n, € S, SO that

g(s1,...,8m) # 0.
For eachr € {1,2,..., s}, define the: x ¢ matrix
M, (2,y,w) = A, (2)(T — F(y))” B(w)' (5.33)

where the components éf.(z, y, w) are viewed as lying if¥, [z, y, w].

Lemma5.5.4.1f forall 7 € {1,2,...,s},
det (M, (z,y,w)) # 0

in the ring F, [z, y, w], then there exists an integer > 0 and vectorss3, v, 6 overF .
such thatfor allr € {1,2,..., s} the matrix\.(/3,,d) is invertible in the ring of: x ¢

matrices with components If),».

Proof. The quantity

det (H M, (x,y, w))

T=1

is a nonzero polynomial i, [z, y, w] and therefore also ifi,-[z, y, w] for anyn > 1.
Therefore, we can chooselarge enough such that the degree of this polynomial is
less tharny™. For such am, Lemma 5.5.3 implies there exist vectg¥sy, o (whose

134

components correspond to the components of the vectoblesia y, w) overF,» such
that

det (H M, (8,7, 5)) £ 0. (5.34)
=1
and therefore, for alt € {1,2,..., s}

det (M, (8,7,0)) # 0.

Thus, eachV/,.(53,~, d) is invertible.
|

The following lemma improves upon the upper bound of Lemn2ali. in the
special case where the target function is linear over a fiiale.

Lemma 5.5.5.1f AV is network with a linear target functiofi over a finite field, then

< 1 .
CCOd(Na f) > cg/l\l(rjl\/) |C|

Proof. The same argument is used as in the proof of Lemma 5.2.11pexstead of
usingR;. s > 2, we use the fact thak,_ ; = |.A] for linear target functions. |

Theorem 5.5.6.If N is a network with a linear target functiofi over finite fieldF,,
then
Cin(N, f) = min : IC|.

CeAN
Proof. We have

Clin (Na f) S CCOd(Na f)
< min |C]. [from Lemma 5.5.5
CeA(N)
For a lower bound, we will show that there exists an integand an(n.c, n) linear code
that computeg with a computing rate of = min |C/.
CeA(N)
From Lemma 5.5.1, the matrix- F'(y) in invertible over the rind, [x, y, w] and

therefore also ovef - [z, y, w]. Since any minimum cut between the sousceand the

135

receiverp has at least edges, it follows from [73, Theorem2hatdet (M, (x,y, w)) #
0 for everyr € {1,2,...,s}. From Lemma 5.5.4, there exists an integer 0 and
vectors(, v, 0 overF,» such that\/, (3, ~,d) is invertible for everyr € {1,2,...,s}.
Sincef is linear, we can write

flug, ... us) = aqug + -+ - + asus.

Foreachr € {1,2,...,s}, let

~

AL(B) = ar (M(8,7,8)) " A, (D). (5.35)

If a linear code corresponding to the matricks3), B(8), andF'(v) is used in network
N, then thec-dimensional vector ovelf,» computed by the receiveris

Y = Z alo.) A(B)(I — F(7)) ' B(6) [from Lemma 5.5.2
=Y a(or) ar (M(53,7,6)) " A-(8)(I = F(7))"'B(6)" [from (5.35)

= zs: a, a(gT) [frOm (533}

= (flalo1)ys.--,(05),) .-, flalor),, ..., a(os),))

which proves that the linear code achieves a computing fate o [|

Theorem 5.5.7 below proves the optimality of linear codes@mputing linear
target functions in a single-receiver network. It also shdlat the computing capacity
of a network for a given target function cannot be larger ttrenumber of network
sources times the routing computing capacity for the sangetdunction. This bound
tightens the general bound given in Theorem 5.2.12 for tleeigpcase of linear target
functions over finite fields. Theorem 5.5.8 shows that thigeupound can be tight.

Theorem 5.5.7.1f AV is network withs sources and linear target functiofover finite

"Using the implication(1) = (3) in [73, Theorem 2].

136

fieldF,, then
Clin(Na f) - Ccod(Ny f) <s Crout(Na f) :
Proof.
s Crowt(NV, f) > CH/l\i(rjl\/) IC| [from (5.4) and Theorem 5.2.1.0
S
> CeodN, f) [from Lemma 5.5.b
> Cin(N, f)
= min [C]. [from Theorem 5.5.6
CeAN)

We note that the inequality in Theorem 5.5.7 can be shown pdydp certain
target functions other than linear functions over finitedgelsuch as the minimum, max-

imum, and arithmetic sum target functions.

Theorem 5.5.8.For everys, if a target functionf : A> — A is linear over finite field

IF,, then there exists a netwosX with s sources, such that
Clin(N7 f) =S CI’OUI(N7 f) .

Proof. Let \V denote the network/; ; shown in Figure 5.3. Then

Cin(WNV, f) =1 [from Theorem 5.5]6
Crout(N, f) = Crout(N) [from Theorem 5.2.10
=1/s. [from (5.4)

137

5.6 The reverse butterfly network

In this section we study an example network which illussatarious concepts
discussed previously in this chapter and also provides sa@esting additional results

for network computing.

Source o1 o9

Receiverl Receiver P

(a) The butterfly network (b) The reverse-butterfly network

Figure 5.5: The butterfly network and its reveraé;.

The networkN;s shown in Figure 5.5(b) is called threverse butterfly network
It hasS = {0y, 0.}, receiver node, and is obtained by reversing the direction of all the

edges of the multicast butterfly network shown in Figure&).5(

Theorem 5.6.1. The routing and linear computing capacities of the reverstdofly
network Ns with alphabet4 = {0,1,...,¢ — 1} and arithmetic sum target function
f:A* —{0,1,...,2(¢— 1)} are

Crout(/\/’ﬁu f) = Clin (Nﬁa f) =1L
Proof. We have

Ciin(Ns, f) = Crou(Ns) [from Theorem 5.4.8
= 1. [from (5.4)

138

Remark 5.6.2. The arithmetic sum target function can be computed in thersevbut-
terfly network at a computing rate @fusing only routing (by sending, down the left
side andr, down the right side of the graph). Combined with Theorem 5i6f@llows

that the routing computing capacity is equalltior all ¢ > 2.

Theorem 5.6.3.The computing capacity of the reverse butterfly netwdrkvith alpha-
betA = {0,1,...,¢—1} and arithmetic sum target functioh: .A?> — {0,1,...,2(q—

1)}is
2

log, (2 — 1)

Remark 5.6.4.The computing capacit..q(Ns, f) obtained in Theorem 5.6.3 is a func-

CCOd(-/\/éa f)

tion of the coding alphabed (i.e. the domain of the target functigf). In contrast, for
ordinary network coding (i.e. when the target function is tentity map), the cod-
ing capacity and routing capacity are known to be indepenaktine coding alphabet
used [59]. For the reverse butterfly network, if, for example- 2, thenCeoq(Ns, f) is
approximately equal td.26 and increases asymptotically2@asq — oc.

Remark 5.6.5. The ratio of the coding capacity to the routing capacity fer tnulticast
butterfly network with two messages was computed in [59] tolfe (i.e. coding
provides a gain of abodB%). The corresponding ratio for the reverse butterfly network
increases as a function gffrom approximatelyl.26 (i.e. 26%) wheng = 2 to 2 (i.e.
100%) wheng = co. Furthermore, in contrast to the multicast butterfly netwyarhere
the coding capacity is equal to the linear coding capaditthe reverse butterfly network
the computing capacity is strictly greater than the lineanputing capacity.

Remark 5.6.6. Recall that capacity is defined as the supremum of a set ofgdtio
numbersk /n such that ak,n) code that computes a target function exists. It was
pointed out in [59] that it remains an open question whetherdoding capacity of a
network can be irrational. Our Theorem 5.6.3 demonstratgshe computing capacity
of a network (e.g. the reverse butterfly network) with ungaeity links can be irrational
when the target function to be computed is the arithmetic sanget function of the

source messages.

139

Figure 5.6: The reverse butterfly network with a code that computes thd qmsum
target function.

The following lemma is used to prove Theorem 5.6.3.

Lemma 5.6.7. The computing capacity of the reverse butterfly netwggkwith A =
{0,1,...,¢ — 1} and the mod; sum target functioryf is

CeodNs, f) = 2.

Proof. The upper bound daf on Ceoq(Ns, f) follows from [74, Theorem I1.1]. To es-
tablish the achievability part, lét = 2 andn = 1. Consider the code shown in Fig-
ure 5.6, wheredy’ indicates themod ¢ sum. The receiver nodegetsa (o), ® a(o2),
anda(oy), ® a(o2); ® alo), ® a(oz), on its in-edges, from which it can compute
a(o1), @ afo2),. This code achieves a rate of 2. |

Proof of Theorem 5.6.3We have

CeodNs, f) < 2/log,(2q — 1). [from [74, Theorem I1.1]]

140

To establish the lower bound, we use the fact the that artikream of two elements
from A = {0,1,...,¢ — 1} is equal to theimod 2¢ — 1 sum. Let the reverse butterfly
network have alphabet = {0,1,...,2(¢—1)}. From Lemma 5.6.7 (with alphabgt),
the mod 2¢ — 1 sum target function can be computedNf at rate2. Indeed for every
n > 1, there exists &n, n) network code that computes the md- 1 sum target func-
tion at rate2. So for the remainder of this proof, Iet= 2n. Furthermore, every such
code usingA can be “simulated” using! by a corresponding2n, [nlog, (2¢ — 1)])
code for computing the mazly — 1 sum target function, as follows. Let be the small-
estinteger such that’ > (2¢ — 1), i.e.,n’ = [nlog, (2¢ — 1)]. Letg : A* — A" be
an injection (which exists sinag’ > (2¢ — 1)) and let the functio ! denote the in-
verse ofg on it's imageg(A). Letz(®), (2 denote the first and last, respectively, halves
of the message vectar(o;) € A*", where we view:() andz® as lying in A" (since
A C A). The corresponding vectogs”, y@ for the sourcer, are similarly defined.

Figure 5.7 illustrates &2n,n’) code for networkNs using alphabetd where
‘@’ denotes themod 2¢ — 1 sum. Each of the nodes i¥; converts each of the received
vectors overA into a vector ovetd using the functiony—!, then performs coding in
Figure 5.6 overd, and finally converts the result back.to Similarly, the receiver node
T computes the component-wise arithmetic sum of the sourcesage vectora (o)
anda(o,) using

a(or) + afo2)
= (g7 (g(xW @ 2P @y @ y@)) o g7 (g(2? @ y?)),
g ' (g(=® @ y?)))

For anyn > 1, the above code computes the arithmetic sum target function

N at a rate of
k 2n

no (nlogq (2q — 1)} '

Thus for anye > 0, by choosing: large enough we obtain a code that computes the

141

Figure 5.7: The reverse butterfly network with a code that computes tiienaetic sum
target function. &’ denotesmod 2¢g — 1 addition.

arithmetic sum target function, and which achieves a comguate of at least

2
log, (2¢ — 1)

— €.

Chapter 5, in part, has been submitted for publication of tagenal. The dis-
sertation author was a primary investigator and authorisfgaper.

Bibliography

[1] E. Kushilevitz and N. NisanCommunication ComplexityCambridge University
Press, 1997.

[2] P. Gupta and P. R. Kumar. The capacity of wireless netwdiEE Transactions
on Information Theory46(2):388—404, March 2000.

[3] A. Giridhar and P. R. Kumar. Computing and communicatingctions over sensor
networks. IEEE Journal on Selected Areas in CommunicatigB(4):755-764,
April 2005.

[4] S. Subramanian, P. Gupta, and S. Shakkottai. Scalingdsfor function compu-
tation over large networks. IRroceedings of the IEEE International Symposium
on Information Theorypages 136—140, 2007.

[5] N. Khude, A. Kumar, and A. Karnik. Time and energy comppigxf distributed
computation in wireless sensor networksPhoceedings of the IEEE International
Conference on Computer Communications (INFOCQOpdpes 2625-2637, 2005.

[6] A. El Gamal. Reliable communication of highly distribdteaformation. In T. M.
Cover and B. Gopinath, editor®pen Problems in Communication and Computa-
tion, pages 60-62. Springer-Verlag, 1987.

[7] R. G. Gallager. Finding parity in a simple broadcast nekwdEEE Transactions
on Information Theory34(2):176-180, March 1988.

[8] N. Goyal, G. Kindler, and M. Saks. Lower bounds for thesydbroadcast problem.
SIAM Journal on Computing7(6):1806—-1841, March 2008.

[9] C.Li, H.Dai, and H. Li. Finding the k largest metrics in aisppbroadcast network.
In Proceedings of the Annual Allerton Conference on CommuwicatControl,
and Computingpages 1184-1190, 2008.

[10] L. Ying, R. Srikant, and G. E. Dullerud. Distributed syratnc function computa-
tion in noisy wireless sensor networkEEE Transactions on Information Theory
53(12):4826-4833, December 2007.

142

143

[11] Y. Kanoria and D. Manjunath. On distributed computatio noisy random planar
networks. InProceedings of the IEEE International Symposium on Infaiona
Theory pages 626—630, 2007.

[12] C. Dutta, Y. Kanoria, D. Manjunath, and J. Radhakrishiatight lower bound for
parity in noisy communication networks. Rroceedings of the nineteenth annual
ACM-SIAM symposium on Discrete Algorithrpages 1056—-1065, 2008.

[13] C. Li and H. Dai. Towards efficient designs for in-netwadmputing with noisy
wireless channels. IRroceedings of the IEEE International Conference on Com-
puter Communications (INFOCOMpages 1-8, 2010.

[14] M. Franceschetti and R. Meester. Random networks for conmication. Cam-
bridge University pres2007.

[15] R. G. Gallagerinformation Theory and Reliable Communicatidohn Wiley and
Sons, New York, 1968.

[16] S.Rajagopalan and L. J. Schulman. A coding theorem &iriduted computation.
In Proceedings of the Annual ACM Symposium on Theory of Comp(8hQC)
pages 790-799, 1994.

[17] A. Giridhar and P. R. Kumar. Toward a theory of in-netwodmputation in wire-
less sensor networkiEEE Communications Magaziy4(4):98-107, April 2006.

[18] R. Appuswamy, M. Franceschetti, N. Karamchandani, an@é&ger. Network
coding for computing: Cut-set bound&EE Transactions on Information Theory
57(2):1015-1030, February 2011.

[19] Jeongyeup Paek, Ben Greenstein, Omprakash Gnawalipltig Jang, August
Joki, Marcos Vieira, John Hicks, Deborah Estrin, Ramesh @Giam, and Eddie
Kohler. The tenet architecture for tiered sensor netwoAGM Transactions on
Sensor Networks (TOSND:34:1-34:44, July 2010.

[20] O. Gnawali, K. Jang, J. Paek, Marcos Vieira, Ramesh GtannBen Greenstein,
August Joki, Deborah Estrin, and Eddie Kohler. The tenehitecture for tiered
sensor networks. IRroceedings of the ACM Conference on Embedded Networked
Sensor Systems (SenSysiges 153-166. ACM, Oct 2006.

[21] T. Ho, M. Medard, R. Koetter, D. R Karger, M. Effros, J. Shnhd B. Leong.
A random linear network coding approach to multicalEEE Transactions on
Information Theory52(10):4413-4430, October 2006.

[22] R. Koetter and F. R. Kschischang. Coding for errors andueeasin random net-
work coding. IEEE Transactions on Information Theory4(8):3579-3591, Aug
2008.

144

[23] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi. Ndmee@nt multisource net-
work coding. InProceedings of the IEEE International Symposium on Infdiona
Theory (ISIT) pages 817-821. IEEE, Jul 2008.

[24] C. Fragouli, M. Jafari Siavoshani, S. Mohajer, and S.daig. On the capacity of
non-coherent network coding. FProceedings of the IEEE International Sympo-
sium on Information Theory (ISITpages 273-277. IEEE, Jun 2009.

[25] L. Keller, N. Karamchandani, and C. Fragouli. Functiammputation over lin-

ear channels. IfProceedings of the IEEE International Symposium on Network

Coding (NetCod)IEEE, 2010.

[26] D. Silva, F. R. Kschischang, and R. Koetter. A rank-me#&pproach to error
control in random network codinglEEE Transactions on Information Theogry
54(9):3951-3967, Sep 2008.

[27] H. Witsenhausen. The zero-error side information foband chromatic num-
bers.IEEE Transactions on Information TheqB2(5):592-593, September 1976.

[28] V. Doshi, D. Shah, M. Medard, and S. Jaggi. Graph cotpand conditional graph
entropy. InProceedings of the Fortieth Asilomar Conference on Sigr&stems
and Computerspages 2137-2141, 2006.

[29] A. Orlitsky and J. R. Roche. Coding for computingEE Transactions on Infor-
mation Theory47(3):903-917, March 2001.

[30] F. J. MacWilliams and N. J. A. Sloanélhe Theory of Error-Correcting Codes
North-Holland Mathematical Library, 1977.

[31] L. Keller, M.J. Siavoshani, C. Fragouli, K. Argyraki, @rs. Diggavi. ldentity

aware sensor networks. Iroceedings of the IEEE Conference on Computer

Communications (INFOCOM)EEE, April 2009.

[32] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network imf@tion flow.
IEEE Transactions on Information Theo#6(4):1204-1216, July 2000.

[33] R. W. Yeung.A First Course in Information theorySpringer, 2002.

[34] N. J. A. Harvey, R. Kleinberg, and A. R. Lehman. On the céyaaf information
networks. IEEE Transactions on Information Theory & IEEE/ACM Transaics
on Networking (joint issuep2(6):2345—-2364, June 2006.

[35] C. K. Ngai and R. W. Yeung. Network coding gain of combionatnetworks. In
Proceedings of the IEEE Information Theory Workshmgges 283287, 2004.

[36] J. Korner and K. Marton. How to encode the modulo-two sum of lyirsaurces.
IEEE Transactions on Information Thei35(2):29-221, March 1979.

145

[37] V. Doshi, D. Shah, M. Medard, and S. Jaggi. Distributeddtional compression
through graph coloring. IfProceedings of the Data Compression Conference
pages 93-102, 2007.

[38] N. Ma and P. Ishwar. Two-terminal distributed sourceliog with alternating
messages for function computation. Rmoceedings of the IEEE International
Symposium on Information Thegppages 51-55, 2008.

[39] P. Cuff, H. Su, and A. El Gamal. Cascade multiterminal sewoding. IfProceed-
ings of the IEEE International Symposium on Information drgepages 1199—
1203, 2009.

[40] H. Yamamoto. Wyner - ziv theory for a general functiortioé correlated sources.
IEEE Transactions on Information Theq38(5):803—-807, September 1982.

[41] H. Feng, M. Effros, and S. Savari. Functional sourceirngdor networks with
receiver side information. IRroceedings of the forty-second Allerton Conference
on Computation, Communication and Contieages 1419-1427, 2004.

[42] V. Doshi, D. Shah, and M. Medard. Source coding withatisbn through graph
coloring. InProceedings of the IEEE International Symposium on Infdiona
Theory pages 1501-1505, 2007.

[43] N. Karamchandani, R. Appuswamy, and M. Franceschetistributed compu-
tation of symmetric functions with binary inputs. Proceedings of the IEEE
Information Theory Workshgpages 76—-80, 2009.

[44] O. Ayaso, D. Shah, and M. Dahleh. Lower bounds on infdiomarates for dis-
tributed computation via noisy channels.Rroceedings of the forty-fifth Allerton
Conference on Computation, Communication and Con2@07.

[45] B. Nazer and M. Gastpar. Computing over multiple-accéssinelsIEEE Trans-
actions on Information Theorp3(10):3498-3516, October 2007.

[46] N. Ma, P. Ishwar, and P. Gupta. Information-theoretaids for multiround func-
tion computation in collocated networks. Pnoceedings of the IEEE International
Symposium on Information Thegopages 2306-2310, 2009.

[47] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomizesigakorithms.
IEEE Transactions on Information Theg®2(6):2508—2530, June 2006.

[48] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based cortipaotaf aggregate in-
formation. InProceedings of the forty-fourth annual IEEE Symposium amFo
dations of Computer Sciengeages 482—491, 2003.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

146

D. Mosk-Aoyama and D. Shah. Fast distributed algorghor computing separa-
ble functions.|IEEE Transactions on Information Theory4(7):2997-3007, July
2008.

O. Ayaso, D. Shah, and M. Dahleh. Counting bits for dmstted function com-
putation. InProceedings of the IEEE International Symposium on Infdiona
Theory pages 652—-656, 2008.

A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright. Geaghic gossip: effi-
cient aggregation for sensor networks. Rroceedings of the fifth international
conference on Information Processing in Sensor Netw@&ges 69—-76, 2006.

F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Ggs along the way:
Order-optimal consensus through randomized path aveyagmProceedings of
the forty-fifth Allerton Conference on Computation, Commuiocsand Contro}
2007.

A. C. Yao. Some complexity questions related to distn@icomputing. InPro-
ceedings of the eleventh annual ACM Symposium on Theory of @iogpages
209-213, 1979.

A. Ramamoorthy. Communicating the sum of sources ovetwark. In Proceed-
ings of the IEEE International Symposium on Information drgepages 1646—
1650, 2008.

M. Langberg and A. Ramamoorthy. Communicating the sumoofees in a 3-
sources/3-terminals network. Rroceedings of the IEEE International Symposium
on Information Theorypages 2121-2125, 2009.

B. K. Rai, B. K. Dey, and S. Shenvi. Some bounds on the capatitommuni-
cating the sum of sources. IMW 2010, Cairg 2010.

B. K. Rai and B. K. Dey. Feasible alphabets for communiggtire sum of sources
over a network. IrProceedings of the IEEE International Symposium on Inferma
tion Theory pages 1353-1357, 20009.

H. Kowshik and P. R. Kumar. Zero-error function compigatin sensor networks.
In Proceedings of the IEEE Conference on Decision and Canpagjes 3787—
3792, 2009.

J. Cannons, R. Dougherty, C. Freiling, and K. Zeger. Nekwouting capacity.
IEEE Transactions on Information Theg®?2(3):777—788, March 2006.

R. Dougherty, C. Freiling, and K. Zeger. Unachievabilifynetwork coding ca-
pacity. IEEE Transactions on Information Theory & IEEE/ACM Transaias on
Networking (joint issug)s2(6):2365—-2372, June 2006.

147

[61] T. Leighton and S. Rao. Multicommodity max-flow min-chebrems and their
use in designing approximation algorithm¥ournal of the ACM46(6):787-832,
November 1999.

[62] V. V. Vazirani. Approximation AlgorithmsSpringer, first edition, 2004.

[63] A. R. Lehman and E. Lehman. Complexity classification dinoek information
flow problems. InProceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithmspages 142-150, 2003.

[64] K.Jain, M. Mahdian, and M. R. Salavatipour. Packingreteirees. IiProceedings
of the fourteenth annual ACM-SIAM symposium on Discreterdlgos pages
266—-274, 2003.

[65] R. Appuswamy, M. Franceschetti, N. Karamchandani, andé&ger. Network
computing capacity for the reverse butterfly network Ploceedings of the IEEE
International Symposium on Information Thegpages 259-262, 2009.

[66] G. H. Hardy and E. M. WrightAn Introduction to the Theory of Numbe@xford
University Press, fifth edition, 1979.

[67] D. B. West.Introduction to Graph TheoryPrentice-Hall, 2001.

[68] N. J. A. Harvey, R. D. Kleinberg, and A. R. Lehman. Compamegwork coding
with multicommodity flow for the k-pairs communication ptem. M.L.T. LCS,
Tech. Rep. 962004.

[69] W. Hoeffding. Probability inequalities for sums of buwiled random variables.
Journal of the American Statistical Associatj@8(301):13—-30, March 1963.

[70] S.-Y.R.Li, R. W. Yeung, and N. Cai. Linear network codingEE Transactions
on Information Theory49(2):371-381, February 2003.

[71] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency ioiar coding in network
information flow. IEEE Transactions on Information Theoryl(8):2745-2759,
August 2005.

[72] R. Dougherty, C. Freiling, and K. Zeger. Linear networldes and systems of
polynomial equations.IEEE Transactions on Information Theor§4(5):2303—
2316, May 2008.

[73] R. Koetter and M. Medard. An algebraic approach to nekveading. IEEE/ACM
Transactions on Networking 1(5):782—795, October 2003.

[74] R. Appuswamy, M. Franceschetti, N. Karamchandani, an&&ger. Network
coding for computing: cut-set bound&EE Transactions on Information Theory
57(2):1015-1030, February 2011.

148

[75] J. Paek, B. Greenstein, O. Gnawali, K. Jang, A. Joki, Mind, J. Hicks, D. Estrin,
R. Govindan, and E. Kohler. The tenet architecture for tiesedsor networks.
ACM Transactions on Sensor Netwaqrg¢4), July 2010.

[76] B. K. Rai and B. K. Dey. Sum-networks: System of polynomigiiations, un-
achievability of coding capacity, reversibility, insuféocy of linear network cod-
ing. 20009.

[77] R. Hill. A First Course in Coding TheoryOxford University Press, 1990.

[78] G. Nebe, E. M. Rains, and N. J. A. Sloargelf-Dual Codes and Invariant Theory
Springer, 2006.

[79] K. M. Hoffman and R. KunzeLinear Algebra Prentice Hall, 1971.

[80] N. Alon. Combinatorial nullstellensatZombinatorics, Probability, and Comput-
ing, 8(1):7-29, 1999.

