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A spherical code is a finite set of points on the surface of a multidimensional unit radius
sphere. This thesis gives two constructions for large spherical codes that may be used for chan-
nel coding and for source coding. The first construction “wraps” a finite subset of any sphere
packing onto the unit sphere in one higher dimension. The second construction is analogous
to the recursive construction of laminated lattices. Both constructions result in codes that are
asymptotically optimal with respect to minimum distance, and the first construction can be
efficiently used as part of a vector quantizer for a memoryless Gaussian source. Both construc-
tions are structured so that codepoints may be identified without having to store the entire
codebook. For several different rates, the distortion performance of the proposed quantizer is
superior than previously published results of quantizers with equivalent complexities.

The construction techniques are motivated by the relationship between asymptotically large
spherical codes and sphere packings in one lower dimension. It is shown that the asymptot-
ically maximum density of a k-dimensional spherical code equals the maximum density of a
sphere packing in R¥~!. Similar relationships hold for the quantization coefficient and covering
thickness. Previously published upper and lower bounds on the size of spherical codes of given
minimum distances are analyzed and shown to be loose for asymptotically small minimum

distances.
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CHAPTER 1

INTRODUCTION

This thesis concerns the design of spherical codes. A spherical code is a finite set of points on
the surface of a multidimensional unit radius sphere. For a given code size, one may position the
points on the sphere so as to maximize or minimize one of a number of parameters, including
the minimum distance between points, the quantization coefficient, the covering radius, the
probability of error, the integration error, the kissing number, and the indexing complexity. The
choice of parameter to optimize depends on the application. Some examples include signaling on
a Gaussian channel [30,49]; spherical vector quantization [2]; efficient searches of k-dimensional
space [3]; numerical evaluation of integrals on spheres [64]; and the computation of the minimum
energy configuration of point charges on a sphere, for chemistry and physics applications [65].

Most spherical code research has concentrated on maximizing the minimum distance be-
tween codepoints, given the code size (or equivalently, maximizing the number of points that
maintain a given minimum distance). This problem is sometimes referred to as Tammes’s Prob-
lem, after the Dutch botanist who demonstrated experimentally that the pores on the spher-
ical pollen grains of flowers were often located at the vertices of certain Platonic solids [86].
Since that time, much work has been done to find the best spherical codes, using mappings
from binary codes [19-21], shells of lattices [1, 12, 81], permutations of a set of initial vec-
tors [8, 80], simulated annealing or repulsion-energy methods [18, 51, 65], concatenations of
lower dimensional codes [98], projections of lower dimensional objects [18,95,97], and other
means [29, 30, 33-35,49, 85]. Each of these codes provides a lower bound on the largest pos-
sible spherical code having a given minimum distance. Many upper bounds have also been

found [5, 16, 17, 23, 48, 54, 55, 70, 74]. The problem of determining the maximum number of



equal-sized nonoverlapping spheres that can simultaneously touch a central sphere—the kissing
number problem—is a special case of designing spherical codes.

The methods mentioned above have produced the best (largest) known spherical codes for
a given minimum distance. However, none of the spherical coding methods above performs
well in a fixed dimension as the minimum distance decreases. That is, the ratio of the largest
code size provided by the methods above to the tightest upper bound on the code size does not
approach one in the limit as the minimum distance approaches zero. This is unfortunate, since
large code sizes become more practical as the speed and memory of computers increase.

This thesis makes four main contributions. The first, given in Chapter 3, is a charac-
terization of asymptotically optimal k-dimensional spherical codes designed with respect to
minimum distance. This characterization equates the asymptotically optimal k-dimensional
spherical code density to the optimal sphere packing density in k — 1 dimensions. Previously
known bounds on the size of spherical codes are recast in terms of the new characterization,
which highlights the strength and weakness of each bound, asymptotically. Analogous charac-
terizations of asymptotically optimal k-dimensional spherical codes with respect to quantization
coefficient and covering thickness are included in Appendix B.

The second and third contributions, presented in Chapters 4 and 5, are two different designs
of structured spherical codes that are asymptotically optimal with respect to the minimum

distance parameter:

1. Wrapped spherical codes. A finite subset of any sphere packing in R¥~! is mapped to the
k-dimensional unit sphere in such a way that much of the structure of the sphere packing

is preserved.

2. Laminated spherical codes. Techniques used to construct a laminated lattice in R¥~! are
exploited to construct codes on the k-dimensional sphere. The resulting spherical codes

have much of the structure of laminated lattices.

Both wrapped and laminated spherical codes produce asymptotically optimal codes with respect
to the minimum distance parameter. Each method has distinct advantages over the other,
making neither method better than the other in all cases. This represents work previously

published [38-42].



The fourth contribution of the thesis, presented in Chapter 6, is the demonstration that
wrapped spherical codes make excellent quantizers. A scalar memoryless Gaussian source is
blocked into k-dimensional vectors and encoded by a shape-gain vector quantizer. The shape
codebook is the wrapped spherical code from Chapter 4. The gain codebook is iteratively
generated by the Lloyd algorithm. In particular, the 24-dimensional Leech lattice is wrapped
to R? to obtain the best performance known for quantizers of similar complexity at rates of

3 bits/sample or higher.



CHAPTER 2

PRELIMINARIES

This chapter reviews basic terminology and results regarding lattices, quantization, and
spherical codes. Lattices are one of the fundamental building blocks of the spherical code
constructions presented in Chapters 4 and 5. A basic understanding of quantization is necessary
for the quantizer described in Chapter 6. There is little in this chapter that cannot be found in
other sources; the definitions and summary of results contained in this chapter are included to
make the thesis self-contained. The lattice and spherical code review closely follows the notation
of [14], which has become a standard reference in this field. The review of quantization will

follow the notation of [31].

2.1 Lattices

The definitions and summary of results in this section are extensively used in Chapters 4 to

6. The notation of [14] is followed closely.

2.1.1 Lattice definition, generator matrices, and fundamental parallelotopes

A lattice is the closure of a finite set of basis vectors v1,... ,v, € R under integer vector
addition. The elements of a lattice are called lattice points. For example, the hexagonal lattice,

denoted Ao, can be defined as the set of vectors

{z’(l,O) +3j (% ?) 14,5 € Z},

and (3,1/3) is a lattice point of Ay. In this case, v; = (1,0) and ve = (1/2,1/3/2) are basis

vectors of the two-dimensional lattice. The lattice contains an infinite number of lattice points;
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Figure 2.1 Parameters of two lattices. (a) The Ay lattice. (b) The Z2 lattice.

a finite subset of this lattice is shown in Figure 2.1(a). If a subset of a lattice is itself a lattice
(possibly of a lower dimension), then the subset is said to be a sublattice. For example, Z is a
sublattice of Ay. The basis vectors may be placed in the rows of a matrix, called a generator
matriz, so that when a row vector with integer coordinates premultiplies the matrix, the result

is a lattice point. Thus, a generator matrix for As is

1
M =

s ©

1

2

and if s = (4,j) € Z2, then sM is a point of As. A lattice does not have a unique generator

matrix. For example, the negation of a generator matrix is another generator matrix for the
same lattice.

The minimum distance dy of a lattice A is the smallest Euclidean distance between two

distinct lattice points. If vectors vi,... ,v; are a set of basis vectors for the lattice, then the
set of points

{t11}1+---+tk1}k10§ti<1}

is a fundamental parallelotope of the lattice. Since there is no unique set of basis vectors
for a lattice, there is no unique fundamental parallelotope of the lattice. Nonetheless, every
fundamental parallelotope tiles the span of the basis vectors over the real field. That is, a
fundamental parallelotope repeated infinitely fills the whole space. A fundamental parallelotope

also contains exactly one lattice point. If M is a generator matrix for a lattice, then from linear



algebra, det(M M7) is the square of the volume of a fundamental parallelotope; this squared
volume is independent of the basis vectors used to construct the generator matrix M.
Altering the scale or orientation of a lattice leaves many of its properties unchanged. Conse-
quently, two lattices are equivalent if one can be obtained from the other by a rotation and scale
change. Because of this equivalence class, any lattice may be embedded in a higher-dimensional

space. For example, the hexagonal lattice is also described by the generator matrix

With this generator matrix, a point of the hexagonal lattice is an element of Z3. If (z,y, z) is a
lattice point, then x + y + z = 0; thus, using M', the hexagonal lattice is contained in a plane
of R3. Also, the minimum distance between lattice points is two, while if M is used as defined
above, the minimum distance is one. As a result, the squared volume of the fundamental region
is also different. Although the lattices constructed by M and M’ are equivalent, it will be
important in the remainder of the thesis to fix a particular minimum distance for each lattice

used, which will also fix the volume of a fundamental parallelotope.

2.1.2 The root lattices A;, Dy, Es, and Z*

The definitions and basic properties of some well-known lattices are given here. The lattices
Ay, Dy, Ej, and Z* are called root lattices because of an association with the root systems of
certain Lie algebras. An explanation of this association is not necessary to define these lattices,

however, and is beyond the scope of this thesis. One way to define these lattices is by

Zk = {(Xy,...,X}): X, €Z}

A = {(X1,..., Xpq1) €Z¥M X -+ Xy = 0}

Dy = {(Xiy,...,X;) €Z*: Xy + .- + X} is even}

Es = {(Xy,...,Xg):all X; €Zorall X; €Z+1/2, X, is even}.

The A; lattice is called the hexagonal lattice for k = 2, the face-centered cubic lattice for k = 3,
and in general, the zero-sum root lattice. The Aj lattice is called the body-centered cubic lattice,
and is described in Section 2.1.7. The Dj, lattice is called the k-dimensional checkerboard lattice.

When k = 3, this lattice is equivalent to the face-centered cubic lattice. The Eg lattice is called



the Gosset lattice. The properties of each of these lattices and their duals are included in
Table 2.1. For completeness, the generator matrices for these important lattices are included

in Appendix A.

2.1.3 Spheres in k£ dimensions, packings, and density

The surface of the unit radius k-dimensional Euclidean sphere is denoted by*

k
QkE{(xl,...,:ck)ERk:fozl}.
i=1

The k-dimensional content, or “volume”, of € is defined by

/ ax.
XERF:|X| <1
an/2

It has been known at least since the 19th century [79] that Vj = (=) where T’ is the usual
2

Vi

Gamma function defined by ['(z) = [ e~*¢*~! d¢. This may be rewritten as

v k2 B omk/2 B —(71272;, if k£ even
CUD(ER) Rr() | ZeSlE0mt g oad,

The last form avoids the use of the Gamma function. From the definition of Vj, it follows that a
k-dimensional sphere of radius r has volume V;r*. The (k — 1)-dimensional content, or “surface
area,” of € is given by

Sk E/ dXZk‘Vk.
Qf

Because the “volume” of an object in R¥ may be deemed the “surface area” of an object in
RF+1 these terms are potentially confusing and will be avoided wherever possible; instead, the
“k-dimensional content” of an object will be used.

A sphere packing (or simply packing) is a set of mutually disjoint, equal radius, open spheres.
A packing is a lattice packing if the centers of the spheres form a lattice. Hence, every lattice
gives rise to a lattice packing and vice versa. The packing radius is the radius of the spheres in
a packing; it is normally assumed that the packing radius is as large as possible such that the
definition of packing is satisfied, i.e., such that there are tangent spheres in the packing but no

overlapping spheres. As defined in [75], a packing is said to have density A if the ratio of the

'The notation for the surface of the unit k-dimensional sphere varies somewhat in the literature, and €
[5,14,17,19,21,69,81], Si [96], and S*~' [11,48,52] have all been used.
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Figure 2.2 Part of the A, lattice packing.

volume of the part of a hypercube covered by the spheres of the packing to the volume of the
whole hypercube tends to the limit A, as the side of the hypercube tends to infinity. That is,
the density is the fraction of space occupied by the spheres of the packing. In two dimensions,
a hypercube is a square; the density of the hexagonal lattice is illustrated in Figure 2.2. If the
limit in the definition of density does not exist, then the density of the packing is not defined;
such packings appear to be of limited interest and have not been extensively studied.

Every lattice packing has a density and this density can be calculated from its generator
matrix, as follows. Suppose a lattice A has generator matrix M. Recall that a fundamental
parallelotope tiles the space occupied by the lattice and it contains one lattice point. Hence,
the density of the lattice packing— which is also referred to as the density of the lattice— is
equal to the ratio of the volume of one sphere in the packing to the volume of the fundamental
parallelotope. If the packing radius is 7, then the volume of a sphere in the packing is Vjr*.

The volume of a fundamental parallelotope is \/det(MMT), or in the case of a square generator



matrix, | det(M)|. Hence, the density of the lattice is

Vir# Vg
Vdet(MMT) | det(M)|’

where the last form may be used if M is a square matrix.

2.1.4 Covering radius and covering thickness

If the radius of the spheres in a packing in R* is increased above the packing radius, then
the spheres in the packing overlap. If the new radius is sufficiently large, every point in R¥
will be inside at least one sphere. This is called a cover of R¥, and the smallest radius that
results in a cover of R is the covering radius of the packing. The density of this covering,
called the covering thickness, may be calculated as before except that the sphere packing radius
is replaced by the covering radius. An important geometrical problem is to find the minimum

covering thickness among all covers of RF.

2.1.5 Theta series

Associated with lattice A is a theta series, which indicates the number of lattice points at

fixed distances from the origin. This can be written as a power series
o0
OA(2) = D ¢ =" Nong™,
XeA m=0

where ¢ = e™* and where N,, is the number of points in A at a squared distance of m from the
origin. In this thesis, ©p can be thought of as a formal power series in an indeterminate g; in
Tz

deeper investigations one must take ¢ = €™*, where z is a complex variable. Since Z has one

lattice point at the origin and two points at every integral distance from the origin,

oo
Oz= Y ¢ =1+2+2" +2 +24'5+ -

m=—oo
It is beyond the scope of this thesis to derive the theta functions for other lattices used in the

thesis. See [14,81].

2.1.6 Voronoi regions, holes, and Delaunay cells

Given a set of points P C R¥, a nearest neighbor to X € RF is a point of P closest to X. A

Voronoi region, or Voronoi cell, of a point Z € P is the set II of all points in R* for which Z is

10



a nearest neighbor. For certain pathological definitions of P, it is possible for a point X € R*
to have no nearest neighbor. For example, if P = {27 : i € Z}, which is a subset of R, then
X = —1 has no nearest neighbor in P. This thesis will not consider such cases. When P is finite
or forms a lattice, every point of R¥ has a nearest neighbor; thus, the union of all of the Voronoi
regions is R¥. A point that has more than one nearest neighbor belongs to more than one
Voronoi region. Sometimes it is desirable to define the Voronoi regions so that they are disjoint
and form a partition of the space. To do this, the definition is altered so that points that have
more than one nearest neighbor in P are assigned to exactly one Voronoi region. Such points
are often inconsequential for various applications, and in those cases the exact specification of
the Voronoi regions can be arbitrary (i.e., left vague). If fp(X) = mingcp || X — Z||, then a
point X € R* is a hole if fp(X) is a local maximum and it is a deep hole if fp(X) is a global
maximum. Note that the distance from a deep hole to the nearest point of P is equal to the
covering radius of P. Also, every deep hole is a vertex of a Voronoi cell, although the converse
is not always true. Each vertex of a Voronoi cell has an associated Delaunay cell, which consists

of the convex hull of the points of P closest to that point. See Figure 2.1.

2.1.7 Dual lattices
If A is a lattice in R, then the dual lattice of A is
AM={XeR:X-UcZforall UecA},

where X - U is the dot product of X and U. The asterisk will be used to indicate the dual,
e.g., A} is the dual of the Ay lattice. If M is a square generator matrix for a lattice A, then

(M_l)T is a generator matrix for A*; thus,
det ((M—l)TM—l) — det (MM7)™") = (det(MMT))~".

Hence, given the density of a lattice, as computed by Ay = Vkirk, the density of the dual
det(MMT)

lattice is Apx = Vi(r*)¥+/det(MMT), where r* is the covering radius of the dual lattice.

11



2.1.8 Normalized second moment

The normalized second moment of a k-dimensional lattice A with Voronoi region II is defined

by
e Ju XX dx

V(e

where V(II) is the k-dimensional content, or “volume” of II. The Voronoi regions of the A, and

G(II) =

7. lattices are shown in Figure 2.1. The normalized second moment of A is 5/(36v/3) ~ 0.080,
while it is 1/12 ~ 0.083 for Z2. The normalization factor in the definition above ensures that

G(II) remains unchanged under any scaling of A.

2.1.9 Laminated lattices

The laminated lattices are useful for the code construction in Chapter 5. The one-dimensional

laminated lattice is defined by

AN =Z.

The notation Ay denotes the k-dimensional laminated lattice. Before giving the formal definition
of Ay for k£ > 1, an informal construction technique is discussed.

In two dimensions, Ay is constructed by stacking copies of Ay, as shown in Figure 2.3. In
order to produce the densest lattice, the layers are stacked so that a lattice point of one layer
is directly above a hole of the previous layer. Because A; is a lattice, if one lattice point in a
layer is directly above a hole of the previous layer, then all lattice points of that layer are above
holes of the previous layer. Note that the second, fourth, sixth, etc. layers above a given layer
are translations of the given layer along the last coordinate only. Thus, the layer number of Aq
is said to be two.

Similarly, A3 is constructed by stacking up layers of As. Without loss of generality, the
orientation of the lattice may be fixed so every point in a given layer has an identical last
(third) coordinate. Again, the lattice points of one layer are placed opposite to— that is,
directly over, or differing in the last coordinate only— holes of the previous layer. In order
to maintain the lattice property, namely, that the points of A3 are closed under integer vector
addition, the layer number of A3 must be three. That is, the third, sixth, ninth, etc. layers are

directly over the zeroth layer, i.e., a translation only in the last coordinate.

12



()

Figure 2.3 The first layer used to construct A,. It is a translation of A;. (b) The first two
layers of Ag. A point of the second layer is directly above a hole of the first layer. (c) The first
three layers of As.
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This procedure can be repeated indefinitely. In each new dimension, layers of Ay 1 are
stacked as closely together as possible. More formally, For & > 2, a k-dimensional laminated
lattice Ag, is a lattice whose minimum distance is one, whose sublattices include a (k — 1)-
dimensional laminated lattice, and whose density is the highest possible under these conditions.

Thus, A can be decomposed as
l
A= | Al

l=—o0
where A,(sl)_1 is the Ith layer of Ay i.e., a translation of Ay_1. Somewhat surprisingly, Ay is not
unique for all k£, although the density of Ay is unique.

In general,

I Emin{z’ > 0: (o,... [0,i4/1 —ci_l) c Ak} (2.1)

denotes the layer number of Ag. The layer number is the smallest number of consecutive layers
of Ay 1 stacked within Ay such that the top layer is “directly over” the bottom layer, i.e.,
differing in the last coordinate only. For example, I = 2, I3 = 3, and 4 = 2.

In Ay and Ag, the points of one component layer are opposite deep holes of adjacent layers.
Since the covering radius 7 of a layer is the distance from a deep hole to a lattice point, adjacent
layers can be placed at a distance v/1 — r2 from each other to maintain a minimum distance of
one between all points. Unfortunately, it is not a simple matter to show from the definition of
laminated lattice that layers are separated by v/1 — 2 for higher dimensional laminated lattices.
While this seems intuitively true, this question remains unproven for every k > 12, except 16,
24, 25, 26, and 32. As a result, the notion of subcovering radius is used. The subcovering radius
ck—1 of Ag_q is defined such that /1 — ci_l is the distance between layers of A;. Note that
¢ is a lower bound on the covering radius of Ag. The values of ¢, are known for & < 47, and
are tabulated in [14, p. 158] for laminated lattices that are scaled by a factor of two. Since
adjacent layers of Ay are separated by /1 — cz_l and the distance between distinct points of

Ay is at least 1, it follows that lx4/1 — ci_l > 1.
1)

Corresponding to each point X = (z1,... ,25_1) € A;”, is an associated unique hole h(X)

whose distance from X is ¢;_1 and that is opposite a lattice point in A;clfll )

the number of points of A,(cl)_1 which are nearest lattice points of h(X), and let n(X) denote

the lattice point of A,(Cljll ) which is opposite h(X). That is, h(X) has ng_1 nearest neighbors

. Let nj_; denote

in A,(cl)_l, regardless of the choice of X (one of these nearest neighbors is X). These nearest
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neighbor lattice points are denoted by D(X)i,...,D(X),,_,, and the convex hull of these

points forms a Delaunay cell. For any finite set of points P C R¥, define

H(P)=arg max min|X -Y|,
YECHULL(P) X€P

where it is understood that if there is not a unique argument Y which maximizes the expression
above, any Y may be chosen. H(P) is a hole of P that lies within the convex hull of P, and
for each X € P,

h(X) =H{D(X)1,--. , D(X)n;_, })-

2.2 Quantization

The definitions and summary of results in this section are extensively used in Chapter 6.

The material in this section may be found in [31].
2.2.1 Vector quantization
A wector quantizer (VQ) is a mapping from R into a set C of output points
Q:RF -,

where C = {Y1,...,Yy} and Y; € R* for 1 < i < M. In the quantization literature, elements
of R¥ are referred to both as points and as vectors. The set C is a codebook, and each element
of C is a codevector or a codepoint. A vector quantizer may be decomposed into two mappings,
an encoder £ : R¥ — {1,... , M} that maps the vectors of R¥ to distinct indices, and a decoder

D:{1,... ,M} — C, where D(i) =Y;. Thus,
Q=DoE.

Associated with every k-dimensional vector quantizer is a partition of R* into disjoint encoder

cells Ry, ... , Ry, where for each i € {1,... ,M},
Ri={z e R : £(x) = i}.

Figure 2.4 shows the operation of a quantizer in a digital communications system. This thesis

will assume that the channel is error-free.
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X i [ Q(X)

Figure 2.4 A quantizer in a digital communications system.

IR

— th

Figure 2.5 Output vs. input of a scalar quantizer.

A vector quantizer for which k = 1 is called a scalar quantizer, and is a function from R to
a finite subset of R. Such a quantizer can be thought of as an analog to digital converter in
which individual analog inputs are converted to one of M possible indexed output levels. See
Figure 2.5.

A distortion function 6 : RF x R¥ — R is a measurable function that assigns to each pair of
vectors in R¥ a nonnegative number describing the distortion between the two vectors. Given a
random vector X € R¥, the average distortion D is defined as the expected distortion between

X and its associated codevector Q(X):
D = E[§(X, Q(X))].

The function ¢ is often chosen as the squared Euclidean distance measure, normalized by the
dimension, so that D = +E [||[ X — Q(X)||?], although other distortion measures are sometimes
used. In the remainder of the thesis, the distortion will be defined as the mean squared error
per dimension.

Shannon’s theorem for source coding with respect to a fidelity criterion [28] implies that

for any source there is a fundamental lower bound on the mean squared error of an M-point
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quantizer. This lower bound is expressed by the distortion-rate function D(R), where R =
(1/k)log, M is the rate of the vector quantizer, i.e., the average number of bits used to quantize
each sample from the source. For example, for the Gaussian source, D(R) = 02272, That is,
if X ~ N(0,0?), then any M-point vector quantizer for X must have a distortion of at least
02272k — 52)f—2/k_ The distortion-rate function for most other sources is not known explicitly,
although numerical algorithms exist to calculate D(R) [9].

The primary goal in designing an M-point vector quantizer is to choose the codebook C
and an associated partition of R¥ such that the average distortion D is as small as possible.
By Shannon’s theorem, the distortion must be at least as much as the distortion-rate function.
Conversely, a vector quantizer can have distortion as close to the distortion-rate function as
desired, provided the dimension of the vector quantizer is sufficiently large. Unfortunately, the
proof of this latter fact uses a nonconstructive random coding argument. Furthermore, even an
explicit construction of a vector quantizer is not useful if the complexity of its implementation
is prohibitive. To effectively implement a vector quantizer, the operation of the encoder and
decoder must have reasonable computational and storage complexities. Hence, suboptimal
vector quantizers are useful if they are efficiently implementable and have good distortion
performance. Chapter 6 presents a suboptimal vector quantizer that both performs well and is

computationally efficient.

2.2.2 Properties of optimal vector quantizers

Two basic results in the theory of quantization lead to a remarkably simple and effective
method for quantizer design. The first result states that, given a fixed codebook Yi,... , Y,

the optimal partition cells satisfy
R, C{X:0(X,Y;) <é(X,Y;) forj=1,... ,M},

for all + = 1,...,M. That is, Q(X) = Y; only if 6(X,Y;) < 6(X,Yj;), for all j. When
§(X,Y) = || X — Y||?, a quantizer of this type satisfies the nearest neighbor condition. The

second result states that, given a fixed partition Ry,... , Rjs, the optimal codevectors satisfy
Y; = E[X|X € R;],

fori=1,...,M. That is, for each 7, Y; is the centroid of R;. A quantizer for which this holds

satisfies the centroid condition.
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The optimality conditions above may be used to design a quantizer for any source distribu-

tion. The algorithm consists of repeating the following two steps.

1. Fix the codebook Y7, ... ,Yas. Use the nearest neighbor condition to define a new partition
Ry,...,Rp.

2. Fix the partition Ri,...,Rp. Use the centroid condition to define a new codebook
Yi,..., Yy

For scalar quantizer design, this algorithm is called the Lloyd-Maz algorithm [58,63]. For vector
quantizer design, it is called the generalized Lloyd algorithm. In both cases, the distortion is
reduced or remains unchanged after each step. After many iterations, the distortion of the
quantizer generally stops improving significantly, and the algorithm may be terminated. There
is no guarantee that a codebook designed by this algorithm is optimal or near-optimal, because
the centroid and nearest neighbor conditions are necessary but not sufficient conditions for
optimal quantization. For the scalar quantization case, the two conditions can be shown to be
sufficient if the probability density function of the source is log-concave, and in that case the
Lloyd algorithm converges to the globally optimal scalar quantizer [27,87]. A major drawback
of the design approach is not its performance, which can be very good in some cases, but the
implementation complexity of the resulting quantizer. The codebook is unstructured, and for
fixed rate transmission systems, the complexity of encoding grows exponentially in the vector

dimension.

2.2.3 Index assignment

In vector quantization, the encoder & takes as input a vector X € R¥ and its output is a
binary string representing a codevector. This binary string is transmitted across a channel. An
efficient method is needed to map a codevector to a unique index and to map an index back to

the original codevector.

2.2.4 Lattice quantization

Points of a k-dimensional lattice A are uniformly spread throughout R¥, and thus a finite
subset of A can be a good k-dimensional vector quantizer for a uniform source [32]. The primary

advantage of the lattice quantizer is that source vectors can often be encoded by performing
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a small constant number of operations, which allows both encoding and storage complexity to
be very low. Although lattices have been previously proposed for quantization of nonuniform
sources [47,76], they have been usually reserved for uniform sources only.

If the size of the codebook is very large, the quantized output Q(X) will be very close to the
input X. This situation is termed high resolution quantization. In high resolution each encoder
cell R; is very small, and within the cell, the distribution of the source is approximately uniform.
This approximation, called the high resolution approxzimation, leads to easy estimates for the
distortion of some high resolution quantizers. For example, recall that G(II) is the normalized
second moment of a Voronoi region of a (k — 1)-dimensional lattice A, given by
2 [p X - XdX

G(II) =
(I V(H)H—%

The mean-squared error (MSE) obtained when the unscaled lattice A is used for quantization

under high resolution is given by

BIIXIPIX €11 = [ 28 do = (k= 1) G- V(mP/h,

When A is scaled to have minimum distance d, i.e., scaled by d/ds, the MSE is scaled by
(d/da)?. Hence, the MSE of the scaled lattice is

(k—1)-G() - VAD¥* V- (d/dy)*. (2.2)

This will be useful in the analysis of the distortion of the quantizer developed in Chapter 6.

2.3 Spherical Codes

A k-dimensional spherical code is a finite set of points in R* that lie on the surface of the
k-dimensional unit radius sphere ;. The minimum distance of a k-dimensional spherical code
C C Qy is defined as

d= min || X-Y],
X,yec
X2y

where || X — Y| is the Euclidean distance in R¥ between codepoints X and Y. The minimum
distance of a spherical code is directly related to the “quality” of the code in many channel
coding applications. For channel codes, one generally desires to maximize the minimum distance

for a given number of codepoints.
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Figure 2.6 The relationship between minimum distance d and minimum separating angle 6.

As this thesis concentrates on asymptotically small d, it is important to clarify some nota-
tion. For a function g(d), let O(g(d)) denote any function f(d) for which there exists positive
constants ¢ and dy such that 0 < f(d) < cg(d) for all d € (0,dp). Note that with this definition
there are two inequalities involved, so that f(d) = O(g(d)) and f(d) = —O(g(d)) cannot both
be true. The dimension k£ will be regarded as a constant in the asymptotic analysis.

The angular separation between two points (vectors) X,Y € € is cos™!(X -Y). The

minimum angular separation of spherical code C (see Figure 2.6) is defined as

6 = 2sin"'(d/2) (2.3)
3
= d+ ;l—4 + O(d®). (2.4)

The set of points on € whose angular separation from a fixed point X € €y is less than ¢ is

called a spherical cap centered at X with angular radius ¢ and is denoted by
cx (k) ={Y €Qp: X Y >coso}.

When the center X of a spherical cap is not relevant, the notation may be abbreviated as
c(k,¢). If two spherical caps of angular radius 0/2 are centered at different codepoints of a

spherical code with minimum distance d and minimum angular separation @, then the caps are
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disjoint. The (k — 1)-dimensional content of ¢(k,0/2) is given by
9/2
S(c(k,0/2)) = Skl/ sin* 2 z dz
0

9/2
= Sk_l/ (x—23/6 + O(®)F 2 du
0

0/2 -9
- Skl/ (P2 — h g z* + O(2*1?)) da
0

= S (O - S O £06Y)  (29)
= Vi 1(8/2)F 1 — 0% (2.6)
k—

where (2.7) follows by using (2.4).

The density Ac of a spherical code C C Qy with minimum distance d is the ratio of the total
(k—1)-dimensional content of |C| disjoint spherical caps centered at the codepoints and with an-
gular radius /2, to the (k — 1)-dimensional content of Qy; that is, A¢ = |C| - S(c(k,0/2))/Sk-
This definition is analogous to the definition of the density of a sphere packing. See Fig-
ure 2.7(b). Let M(k,d) be the maximum cardinality of a k-dimensional spherical code with
minimum distance d, and let A(k, d) be the maximum density among all k-dimensional spherical
codes with minimum distance d. Then,

M(k,d)S(c(k,0/2))

A(k,d) = S

. (2.8)

The value of M(k,d) is easy to compute for all d when k£ = 2: the maximum number of
points on the unit circle with angular separation 6 is [27” = [WJ However, M (k,d) is
unknown for all £ > 3 except for a handful of values of d, although a number of bounds have
been given [5,12,16-20,23, 35,48, 74,95,97,98]. For asymptotically small d, the tightest known
upper bound on M (k, d) is given in [23] for kK = 3 and in [16] for k£ > 4, and a code construction
in [18] provides the tightest known lower bound. However, there exists a nonvanishing gap
between these upper and lower bounds as d — 0.

A family of codes {C(k,d)} is asymptotically optimal if |C(k,d)|/M(k,d) — 1 as d — 0,
or equivalently, if Ac( q)/A(k,d) — 1 as d — 0. It will be shown that limg_,q A¢(x,q) cannot

exceed the density of the densest (k — 1)-dimensional sphere packing. It will also be shown

that this density is achieved by using the new constructions presented in this thesis. Hence,
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Figure 2.7 Sphere packing density and spherical code density. (a) The sphere packing density
is the percentage of the square that is shaded, as the length of the side of the square goes to
infinity. (b) The spherical code density is the percentage of the unit sphere that is shaded.

given a densest packing in R¥—!  asymptotically optimal k-dimensional spherical codes can be
constructed from it. Figure 2.8 shows the asymptotic densities of the best spherical codes for
up to 49 dimensions. For each dimension, the limiting density of spherical codes constructed by
the various methods is computed. To emphasize the comparison to wrapped spherical codes,
this limiting density is divided by the asymptotic density achieved by the wrapped spherical
codes. Hence, in Figure 2.8, the wrapped code is identically 1, while any code whose asymptotic
density is worse than the wrapped code is less than 1.

One way to construct a spherical code is to use the set of points of a lattice at a given radius
r from the origin, normalized to the unit sphere: C = S N (%A) That is, the codebook is a
shell of the lattice A. As an example of constructing a spherical code from a lattice, consider
the points of D, at distance r = v/6 from the origin. These is the set of 96 permutations of
(£2,+1,+1,0). The minimum distance between two points in this shell is the same as the
minimum distance of Dy, v/2, as can be seen from ||(2,1,1,0)—(2,1,0,1)|| = v/2. After scaling
each coordinate by 1/r = 1//6, the minimum distance of the spherical code is determined to

be v2/v/6 = 1/4/3 ~ 0.577.
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Recall that the number of lattice points on a shell of a lattice is determined by the theta
function [14] of the lattice. The theta functions for a number of important lattices— including
Ay, Dy, Eg, the Leech lattice Aoy, and their duals— are known and can be used to perform
this count.

Although several authors have described how to obtain spherical codes from lattices and
provided information about the number of points lying on each shell of various lattices, most
notably [81], thus far there has been no formal theory for the resulting minimum distances
between points on these shells. As a result, it is not known which shell of a lattice will result
in the best spherical code. Indeed, it is not even known for which lattice it is best to begin
searching shells. Clearly, the minimum distance between points on a shell of a lattice is no less
than the minimum distance of the entire lattice, but the accuracy of this bound varies wildly.
For example, the A3 lattice has a minimum distance of d4, = v/2. On the first shell, of radius
r = /2, there are 12 points and a minimum distance of 1, in agreement with d4,/r. On the
second shell, of radius 2, there are 6 points at radius r = 2 and a minimum distance of v/2,
whereas d 4, /r = 1/v/2. For the comparisons made in Chapter 3, the ezact minimum distances
are computed for the first 1000 shells of the Ay, Dy, Es, and ZF lattices.

For the quantization problem, shells of the cubic lattice [24], Gosset lattice [78], and Leech
lattice [1] have been proposed as quantizers. The encoding complexity has been shown to be
reasonable for certain cases, but the choice of the rate at which to operate is limited. It has
been reported in [1] that 11 different rates between 0.733 and 2.106 bits/sample are possible by
using the first 16 shells of the Leech lattice. It is unclear, however, whether the complexity of
the encoding will be small when larger shells of the Leech lattice are used.

As is the case for minimum distance calculations, there is little formal theory about the
performance of shells of lattices when used as vector quantizers for sources uniformly distributed
on the surface of a sphere. From Section 2.1.8, the figure of merit for a high resolution lattice
quantizer is the normalized second moment of its Voronoi region; however there is no known
general method to calculate this figure of merit for quantizers formed from shells of lattices,
and it is not known which lattice is best, or even which shell of a given lattice is best for a
given rate. Indeed, many different shells of a lattice have the same number of codepoints, but
may have vastly different performances. Among all shells containing a given number of points,

the smallest radius shell might result in a small encoding complexity, but it often does not give
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the best performance. For example, among the first eight shells of the hexagonal lattice Ao
that result in different codebook sizes, seven give suboptimal MSE performance for a source
uniformly distributed on the circle, and the same seven are outperformed by larger shells of
the lattice which contain the same number of points. Even these larger shells are suboptimal,
however. For the A3 lattice, the results are similar. See Figures 2.9 and 2.10.

The conclusion is that although a k-dimensional lattice may be a very dense lattice or a
very good quantizer for a uniform source in R¥, this alone does not imply that shells of this
lattice will be very dense spherical codes or that the spherical code will be good for quantizing a
uniform source on the sphere Q.

Intuitively, it should be expected that for an optimal codebook in high resolution, the code-
points on a small (k — 1)-dimensional “patch” on the surface of Q should be in an arrangement
very similar to the best (k — 1)-dimensional packing for quantizing a uniform source in RF~!.

This thesis exploits this intuition.
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Figure 2.9 Eight shells of lattice Ao, normalized to unit radius. Unnormalized, each shell is
the smallest radius shell of Ay which contains the given number of points. These squared radii
are 1, 7, 49, 91, 637, 1729, 2401, and 8281, resulting in spherical codes of sizes 6, 12, 18, 24, 36,
48, 30, and 54, respectively. Only the code of size 6 has an optimal arrangement for minimum
distance or quantization coefficient.
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Figure 2.10 Eight shells of the face-centered cubic lattice (D3), normalized to unit radius.
Lattice points are located at the center of the spherical caps shown, which are drawn at the
largest size such that they are nonoverlapping. Unnormalized, each shell is the smallest radius
shell of D3 which contains the given number of points. The unnormalized squared radii are 1,
2, 3,6, 7,9, 18, and 54, resulting in spherical codes of sizes 12, 6, 24, 8, 48, 36, 30, and 32,
respectively. Only three of the eight codes have an optimal arrangement of points for minimum
distance or quantization coefficient. 97



CHAPTER 3

BOUNDS ON THE DENSITY OF A SPHERICAL CODE

This chapter begins with a lemma that states that the maximum density of a k-dimensional
spherical code, asymptotically as the minimum distance shrinks, equals the maximum density
of a (k — 1)-dimensional sphere packing. There is intuitive justification for this relationship,
and similar relationships hold for parameters other than density. Two other parameters are
explored in Appendix B.

When designing for minimum distance, the best k-dimensional spherical code with min-
imum distance d is the one which has the largest number of codepoints, namely, M(k,d).
Consequently, most previous authors have used M(k,d) as the figure of merit for a spherical
code. Using Equation (2.8), any bound on the code size M (k,d) may be converted to a bound
on the code density A(k,d). Whereas the code size increases without bound as d becomes small,
the density is always a number in the interval [0, 1]. Therefore, for small minimum distances the
bounds are more easily compared if they are expressed in terms of density. Additionally, using
density as the figure of merit instead of code size allows one to compare the quality of codes
with different minimum distances. Conversion of the bounds from statements about M (k,d) to
statements about A(k,d) also highlights the gap between the existing upper and lower bounds,
and brings to light the fact that some of the best bounds known are not asymptotically tight.

3.1 Asymptotic Spherical Code Density

The following lemma shows that as d — 0, the density of the densest k-dimensional spherical

code approaches that of the densest sphere packing in k — 1 dimensions.! Let the asymptotically

lFor k = 3, the densest covering of Earth with dimes would look like the hexagonal lattice packing As to
someone standing on the Earth.
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mazximum spherical coding density be defined by
Ay¢ = lim A(k,d
k dl_I)I(l) ( ) )a

where A(k, d) is the maximum density of a k-dimensional spherical code with minimum distance

d, as defined in (2.8). Let Aﬁ‘wk denote the density of the densest k-dimensional sphere packing.
Lemma 3.1 A} = Aia_cf.

Proof: See Appendix C.1

The proof of Lemma, 3.1 gives a technique to create spherical codes that are asymptotically
optimal, as d — 0. However, the performance of these codes for moderately large d may be
poor. Also, no efficient decoding technique for these spherical codes is known. The wrapped
and laminated spherical codes presented in later chapters perform well for moderate sizes of d

and are efficiently decodable.

pack ¢
A2 To2v3?

dimensional spherical code is QWW The densest sphere packing is not known for & > 2, however.

Note that since the maximum asymptotic density possible for a three-

2
From Lemma 3.1, upper bounds on asymptotic sphere packing densities give upper bounds on
spherical code densities. For example, Rogers’s bound [75] on sphere packing densities is used

to provide the upper bound in Figure 2.8.

3.2 Upper Bounds on Density

3.2.1 Fejes Téth upper bound (k = 3)

For small d, the smallest known upper bound on M(3,d) is given by Fejes Téth [23], who
proved that disjoint spherical caps with angular radius /2 cannot be packed on the sphere Q3
in a denser configuration than that of three mutually tangent spherical caps with angular radius

0/2 (see Figure 3.1). As a result, the minimal angular separation was shown to be bounded as

M(3,d)w
cot” (GM(g,d))—n) -1

2 bl

6 < cos™? (3.1)

from which the following lemma is obtained.

*In 1991 W.-Y. Hsiang announced a proof [43] (later published in [44]) of Kepler’s conjecture, dating back to
1611, that the face-centered cubic packing is the densest packing in three dimensions. However, the validity of
the proof has been questioned [37]. Hsiang has published a rejoinder [45].
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Figure 3.1 The density of a spherical code with minimal angle separation 6 is at most the
percentage of area covered in the spherical triangle formed by three mutually touching caps of
angular radius 6/2.

Lemma 3.2 The density of any three-dimensional spherical code C with minimum distance

d > 0 is less than 2”% Asymptotically, the density is bounded above as Ag < v — O(d?).

Proof: Combining (2.3) and (3.1) gives

d< \/3—C°t2 (m>

or equivalently

/6 -1
M@3,d) <2 [1 . W?)——d?]
Using 02
S(c(3,0/2)) = 52/ sinzdz = 27(1 — cos0/2) = 2n(1 — \/T— /d)
0
and (2.8),

1
2. [1 - %] 2n(1— /1 — d2/4)

4r
1—/1—d?/4
1 7'('/6 (3'2)
 cot~1v/3—d?
Some elementary (but laborious) calculus reveals that the supremum of (3.2) is 3 \[, which
occurs as d — 0. A Taylor expansion about d = 0 gives A(3,d) < F - 0(d?). m
Since AR — =3 \/g’ Lemma 3.2 agrees with Lemma, 3.1, and implies the following.

Corollary 3.1 The Fejes Toth bound is asymptotically tight.

Proof: From Lemma 3.1, it follows that A$¢ = AD** —

A5 =1limg,0 A(3,d) < 2\/_ |

ﬁ. The Fejes Téth bound implies
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3.2.2 Coxeter upper bound (k > 4)

Boroczky [10] proved that in a k-dimensional space of constant curvature, the density of a
packing of equal radii k-dimensional spheres cannot exceed the density of k + 1 such spheres
that mutually touch one another. This verified Coxeter’s conjecture [16] that spherical caps
on () can be packed no denser than k spherical caps on ) that simultaneously touch one
another. The centers of these caps lie on the vertices of a regular spherical simplex, which is a

generalization of the Fejes Téth bound for k£ = 3. Coxeter’s bound is given by

2Fk_1(a)
M(k,d) < ————,
k. d) Fi(a)
where « is given by
20 = —— +k—2
sec 2a 92 + )

and where Fi(«) is Schlafli’s function given by the recursive relation

with sec 23 = (sec26) — 2, and the initial conditions Fy(a) = Fi(a) = 1. Unfortunately, the
computational complexity of evaluating the bound is high for k£ > 3, as it involves a |k/2|-fold
integral.

Coxeter’s bound was motivated by an argument of Rogers, who showed that the density of
a simplex is an upper bound on the density of a sphere packing, despite the fact that simplicia
cannot tile R¥ [75]. Coxeter’s bound uses a similar argument, except that RF is replaced by Q
and simplicia are replaced by spherical simplicia. (A similar argument was used for a proposed
bound on the quantization coefficient in R¥ [13].) Thus, when Coxeter’s bound on M (k,d)
is translated to a bound on A(k,d), it becomes a statement about the density of a spherical
simplex of edge-length d. As d — 0, the density of the spherical simplex of edge-length d on

Q) approaches the density of a regular simplex in R¥=1, which gives us the following lemma.

Lemma 3.3 Cozeter’s upper bound on asymptotic spherical coding density Ay-“ equals Rogers’s

. . pack
upper bound on sphere packing density A7

Corollary 3.2 Coxeter’s upper bound on Aj:“ is tight if and only if Rogers’s upper bound on

Aﬁa_cf is tight. In particular, Coxeter’s bound is not asymptotically optimal for k = 4.
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Figure 3.2 Yaglom’s mapping consists of taking the part of a lattice within Q 1, shown at
left, and projecting it out of the page onto the surface of €2, shown at right.

Proof: The first statement follows from Lemmas 3.1 and 3.3. The second statement follows

because Rogers’s bound of Ag‘wk < 0.7796 has been improved to Ag‘wk <0.7784 [57]. &

3.3 Lower Bounds on Density

3.3.1 Yaglom lower bound

Any spherical code can be described by the projection of its codepoints to the interior of a
sphere of one less dimension via the mapping (xl, e Th—1,4/1 — Zfz_ll xf) = (1, ,Tk—1)-
Conversely, a k-dimensional spherical code may be obtained by placing codepoints in the interior
of Q1 and projecting each codepoint onto {2, using the reverse mapping. This simple mapping
was used by Yaglom [97] to map a (k — 1)-dimensional lattice A onto €. Specifically, Yaglom
proves this method implies -

M(k,d) > (;) ARk
In particular, for £ = 3 this method implies that M (3,d) > —Z%—. The distortion created by

2v/3d?>”
mapping A to Qi gives poor asymptotic spherical code densities, even if A is the densest lattice

in £ — 1 dimensions, as summarized in Figure 2.8. This is due to the “warping” effect on the
codepoints near the boundary, as illustrated in Figure 3.2.
Converting Yaglom’s bound on M (k,d) to a bound on A(k,d) is accomplished by noting

that points initially are located on and inside of 2;_1, and are mapped to the surface of €.

D(z)I'(y)
T(z+y)

This implies the following lemma. The Beta function, defined by §(z,y) = , is used in

the lemma.
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pack pack
Vi1 ATy Ay

. > =
Lemma 3.4 A(k,d) > —4 —DB(ED)

Corollary 3.3 Spherical codes constructed from Yaglom’s mapping are not asymptotically op-
timal. Furthermore, the ratio of the asymptotic density of these codes in k dimensions to the

mazimum asymptotic spherical coding density A tends to 0 as k — oc.

Proof: The first statement follows from Lemmas 3.1 and 3.4 and the fact that (k—1)8(%, 3) > 1
for all £ > 1, and the second statement follows from the the fact that this quantity tends to co

as k — oco.

3.3.2 Wpyner lower bound

Wyner [95] gives a nonconstructive lower bound. The largest k-dimensional code with
minimum distance d has the property that there is no point on {2 that is more than distance
d away from its nearest codepoint; otherwise, such a point could be added to the code. Thus,
if M (k,d) caps of angular radius /2 are nonoverlapping, increasing the angular radius of each
cap to 0 causes them to cover the sphere. Wyner used this to show a general bound in k

dimensions: .

k ﬁr(ﬁ) 2sin~!(d/2) e -
Mk d) 2 oy Vi /0 sink 2 gdg| .
2

When k = 3, the result is that M(3,d) > ;—2. The bound is written more concisely in our

notation:
Sk
S(c(k,0))’

which together with Equation (2.8) gives us the following lemma.

M(k,d) >

S(c(k,0/2))
Lemma 3.5 A(k,d) > S(c(k,0))

Using Equation (2.6), the asymptotic nature (as d — 0) of Wyner’s bound is Aj< > 21k,
How well does this compare with the true answer of Aj“ = Azcicf , as proved in Lemma 3.17
Even for moderately large k, the result is very weak. For example, when k£ = 25, Wyner’s bound
is Af¢ > 2724 ~ 5.96 x 1078, whereas the Leech lattice implies AfS = Aﬁa_cf > 0.001930. In
fact, for all £ < 25, Aza_cf > 2'7%_ On the other hand, for very large k, Minkowski’s bound of

Aﬁa_cf > 21k ig still the best bound known.

Corollary 3.4 The Wyner bound is not asymptotically tight for 1 < k < 25.
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3.3.3 Concatenated spherical codes

An M-ary phase-shift-keying (MPSK) code is a set of points equally spaced about a circle
in R?. MPSK codes C, ... ,C,, may be concatenated to yield a 2m-dimensional spherical code
C1 X +++ X Cpp. Concatenated codes have the desirable property that they are not only formed
from codepoints of constant energy, but also every pair of coordinates in the code is constant
energy as well. In general, the codes being concatenated need not be two-dimensional. Using
the same method and notation, /-dimensional codes may be concatenated. Let M; and r; be
the number of codepoints and the norm of codepoints of C; (radius of the sphere containing C;),
respectively, and let r;d; be the distance between points of C;, i.e., so that d; is the minimum
distance when C; is scaled to the unit sphere (circle, for MPSK codes).

A concatenation of m of these [-dimensional codes is said to be an optimal concatenation
if no other concatenation of m such [-dimensional codes has the same number of codepoints
and a larger minimum distance. Underlying codes of differing radii and number of codepoints
may be used in the concatenation [98]. For example, a four-point MPSK code on a circle with
radius 1/2 may be concatenated with a 16-point MPSK code on a radius v/3/2 circle to form

a 64-point four-dimensional spherical code. This gives d = 2@ sin({g) ~ 0.338.

Lemma 3.6 Let a (2m)-dimensional spherical code with M™ codepoints be formed by the con-

catenation of m two-dimensional codes of radii r,... , 7y, and sizes My, ... , M,,, respectively.
The code is an optimal concatenation if My =My =-- =My, =M andri =ro9=--- =1y =
1/m.

Proof: The concatenated code is subject to the constraints

m
[[M = M™and (3.3)
=1
m
dorf o= 1, (3.4)
i=1
First, it is shown that every optimal concatenation satisfies d = ridy = rody = - - - = rpd,,. By

definition, d = min{r;d;}. By way of contradiction, suppose there were an optimal concatena-
tion with 4 and j such that d = r;d; < rjd;. Choose § > 0 such that r;d; < r;d; —¢. Construct a

new concatenated code by increasing the radius of code i by some small € > 0 (to be determined
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shortly), and decreasing the radius of code j by another amount. This is indicated using the

prime notation for the new concatenation parameters

r, = r1;+e€

- 2 _ L 22
r; = ﬁ/rj 2er; — €4,

Note that under this change the constraints (3.3) and (3.4) are still met. However, it follows

that

rid; = (ri+e)d; > rid;,

T_;d; = \/T‘J? — 2er; — €2 d]‘ > Tjdj —§,> rid;

for sufficiently small e. Thus, the minimum distance of the concatenation has been improved,
a contradiction.

Each component code of an optimal concatenation is optimal; M; points equally spread
about a unit circle give a minimum distance of d; = 2sin(7w/M;), for all i. Suppose an optimal
concatenation exists such that for some 7 and j, M; > M; + 1. A new concatenated code is

constructed by adjusting the size and radii of the ¢th and jth codes as follows:

M = M;—1
M, = M;+1
r_ rid;
T, = —F——~
: ™
2Sln(m)
o= rj%;

The minimum distance of the new code is equal to that of the old code, since rd; = r;d; and
r3d; = rjd;. The new code has more points, since M;M; = (M; —1)(M; + 1) = M;M; + M; —
M; — 1> M;M;. To meet constraint (3.3), any M™ of the points are retained and the rest are
discarded. Next it is shown that constraint (3.4) holds. Note that if Y. | r? < 1, then all codes

may have their radius increased, which would meet constraint (3.4) and increase the minimum
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distance. Hence, it need only be shown that (r})? + (7"3-)2 <r?+ 7']2-, or equivalently,
(rodi)* _ (rdy)*  _ (ridi)* | (ryd)*
asin? () asin? (5f)  dsin? () 4sind ()

Recall, r;d; = r;d;, and hence, it suffices to show that

1 1 1 1 ! .
f(M)zsing(%)—SmQ(Mﬂl): sin(%ﬁsm(Mwl) sin () sin (577)

o(M) h(M)

is a nondecreasing function in M. It is easy to see that g(M) is increasing in M. Elementary

calculus shows that 1/sin(7w/M) is convex; thus,

1 1 2
+ - > 0.

a2
. x . i sin (Z
sin (—M+1> sm<M71> (M)

The left-hand side is equal to h(M + 1) — h(M); therefore, h(M) is increasing in M. Since

g(M) and h(M) are increasing in M, f(M) is increasing in M. Thus, the new concatenated
code meets the size and radius constraints. Since it has the same number of points as the old
code and its minimum distance did not decrease, it is also an optimal concatenation. Note
that the difference between the number of points of the ith and jth codes is strictly less than
before. This process may be repeated until the component code sizes are equal or differ by
one. Thus, there exist a > 0 and [ € [0,m], such that [ component codes are of size a and
m — [ component codes are of size a + 1, and such that the concatenation is optimal. Since the

number of codepoints in the concatenation is M™, it follows that a'(a + 1)™~! = M™. Thus,
a" <d@+1)" =M< (a+1)™.

This implies a < M < a+ 1. Since M € Z, either M = g or M = a + 1. In the first case,

a™ = a'(a+ 1)™! and [ must be m; in the second case a'(a + 1)™! = (a + 1)™ and [ must be

0. In either case, then, the component codes are all the same size (either all size a or all size

a + 1). Thus, there is an optimal code with M; = --- = M,,. Since d; = 2sin(7w/M;), it follows

that r{ =---7,, as well. R

Corollary 3.5 Optimal concatenation of MPSK codes implies
k/2

.
oo—1 k
sin (d §>
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for k even.

Proof: Lemma 3.6 implies r1 = 1/y/m = \/% and d; = 2sin (#) Since d = rids, it follows
that d = 2\/% sin (#) , from which the result follows. H

Corollary 3.6 For k even, the optimal concatenation of MPSK codes does not result in asymp-

totically optimal spherical codes. In fact, the density of these codes tends to 0 as d — 0.

k/2
Proof: From Equation (2.8), it suffices to show that limg_, ﬁ -S(c(k,6/2)) — 0.
sin™ " | dy/ g
This follows directly from Equation (2.7), which implies S(c(k,0/2)) = O(d*~1), and from
k/2
x = O0(d*?.m

sin~1 (d\/@

Lemma 3.6 allows one to plot an upper bound on minimum distances attainable for concate-
nated codes, for no concatenated code will perform better than the code formed by concatena-
tions of (hypothetical) codes which meet the Coxeter upper bound. That is, any /-dimensional
spherical code may be rescaled by dividing it by y/m and concatenated with m copies of itself
to obtain a (2ml)-dimensional code having a minimum distance smaller by a factor of v/m. In
general, even the size of these hypothetical codes compares unfavorably to other construction
techniques. For example, consider a spherical code in three dimensions of minimum distance
0.83. For the sake of argument, suppose this code met the Coxeter upper bound of 20 codepoints.
(In fact, the best code known with this minimum distance has only 18 points.) A concatenation
of the code with itself gives a six-dimensional 400-point code with d = 0.830/v/2 ~ 0.587. On
the other hand, there exist six-dimensional codes of size more than 720 points that meet this
minimum distance.

This result is not entirely surprising, for embedded in every spherical code obtained by
concatenating [-dimensional codes is the constraint that every [ components of each codepoint
form a vector of some fixed norm; this severely limits the position of codepoints on the larger

dimensional sphere of the code.
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3.3.4 Spherical codes from binary codes

To obtain a spherical code from a binary code of blocklength k, every 0 is changed to 1 and

every 1 to -1, and every coordinate is rescaled by 1/ Vk. For example,

01111101 — (1,-1,-1,-1,—-1,-1,1,—1), and

11110000 — (-1,-1,-1,-1,1,1,1,1).

SI-5-

Hamming distance dg between two codewords of length k corresponds to Euclidean distance
2\/m between the corresponding spherical code codepoints. In the example, Hamming
distance 4 corresponds to Euclidean distance v/2.

There does not exist a family of asymptotically optimal k-dimensional spherical codes that
are constructed from binary codes using the method described in this section. In fact, the
density of these codes tends to 0 as d — 0. This is implied by the simple fact that a binary code
of blocklength k is limited to at most 2¥ codewords, a finite number, and thus no asymptotically
large spherical code may be formed, for fixed k, from the binary code.

How do nonasymptotic spherical codes from binary codes perform? If we restrict attention
to linear codes, the Singleton bound implies that a linear binary code of blocklength &, size M,

and minimum Hamming distance dy, must satisfy
dp <1+ k—logM,
and using d = 21/d g /k, the corresponding spherical code satisfies

M < ok(1—d?/4)+1

Using Equation (2.8), the density A of a spherical code constructed from a linear binary code

is at most
o MS(elk0/2) _ 20-P0H (V a(9F 1 0@ ) 4-2 KT
a Sk = Sk - &V '
Thus, for a given k and d, A < 1=t = kﬂ(%,%)' This quantity is significantly less than AP*

for 1 < k <9, as can be verified from known lower bounds on Aiaff }
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3.3.5 Apple-peeling spherical codes

Prior to this thesis, the best spherical codes known for asymptotically small d were the
so-called apple-peeling codes due to El Gamal et al. [18]. Their technique resembles peeling an
apple in three dimensions, and is described below for comparison purposes.

Let C*(k — 1,d) denote any (k — 1)-dimensional spherical code with minimum distance d,
whose codepoints are indexed from 1 to |C*(k —1,d)|. The apple-peeling spherical code C*(k, d)
on € with respect to C*(k — 1,-) is defined in [18] as the set of points

{(z1(4,5) cosn(i), ... ,zx-1(2,7) cosn(2), sin(n(¢))) }
such that

i € {leZ:—m/2<n()<n/2} (3.5)
j € {1,...,|C*(k—1,d/cosn(i))|}
n() = (i+1/2)0
X(,5) = (z1(i,9),... ,25_1(i,7)) is the jth (3.6)

codeword of C*(k — 1,d/ cosn(7)).

It is verified in [18] that the apple-peeling code has minimum distance d.
Summing over all admissible values of 7 in (3.5) and choosing C*(k — 1,d/ cos (7)) to be a
maximum size code for all 7 give the lower bound
L5 —3]

M(k,d) >2- M(k —1,d/ cosn(i)). (3.7)
i=0

=

Lemma 3.7 The density of the densest k-dimensional apple-peeling spherical code CA(k,d)

pack

approaches % AV Bk, 1

29 5), as d — 0.
Proof: See Appendix C.2.

Corollary 3.7 For all k > 3, the k-dimensional apple-peeling code is not asymptotically opti-
mal. Further, the ratio of the asymptotic density of apple-peeling codes in k-dimensions to the

mazimum asymptotic spherical coding density A(k) tends to 0 as k — oo.
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Proof: This follows from the facts that 1 - 8(%,1) is less than 1 for all k > 3 and that this

quantity approaches 0 as k tends to co. H

The numeric values of M (k—1,d) for k > 4 are not presently known, except for a handful of
values of d; hence, Aca( g) cannot be easily evaluated using (3.7). Also, Aﬁa_cf is not known for
k > 5, and so the asymptotic performance is also difficult to evaluate. However, the numerical
values of the asymptotic density of the best realizable apple-peeling codes, given the current
state of knowledge of M (k—1,d), can be determined as follows. If, in (3.6), C*(k—1,d/ cosn(i))
is chosen to be the best code known with the given parameters, then a lower bound on A(k, d)
can be computed. By Lemma 3.1, the density of C(k — 1,d/cosn(i)) can be as high as the
density of the best sphere packing known in R¥=2. The asymptotic density of the best apple-
peeling codes currently realizable is given by replacing Aia_cf in the formula for the density in
Lemma 3.7 with the density of the best sphere packing known in RF~2. This apple-peeling code
asymptotic density is shown in Figure 2.8, using a table [14] of the best sphere packings known,
along with recent improvements from [90] and [15]. The asymptotic density of the wrapped

spherical codes is equal or higher in every dimension.

3.3.6 Codes from other structures

The vertices, midpoints of edges, or centers of the faces of any regular polytope may be
used to derive spherical codes. For example, the vertices of a dodecahedron are each the same
distance to the center of the dodecahedron, and these form a spherical code of size 20. The
midpoints of the edges or centers of the faces result in codebooks of size 30 and 12, respectively.
In fact, the vertices of the octahedron, tetrahedron, and icosahedron result in spherical codes
with optimally high d.

Permutation groups also may be used. If (z1,...,zg) is a k-tuple, then any permutation
of its components has the same norm. The k-tuples of a permutation may be scaled to form a
spherical code [§].

Some success in generating spherical codes with large d has been reported in [21]. The codes

are constructed from symmetric sets of equally spaced points on the real line.
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3.3.7 Unstructured spherical codes

In this section, a method is described to construct spherical codes with excellent minimum
distance properties, using an iterative design technique. The method is motivated by a phys-
ical model of charges on a sphere. The implementation is similar to the simulated annealing
method of [18]. This method requires a substantial computational effort, and does not produce
asymptotically optimal spherical codes. However, the algorithm in this section has produced

many codes that improve upon those of [18] for specific minimum distances.

3.3.7.1 Physical model

Imagine a metal sphere on which a single charge is placed. When a force acts upon the
charge, the charge moves through the metal, always confined to the sphere’s interior or surface.
If M equal charges are placed on the surface of the sphere and there are no external forces, the
net force on any particular charge depends only on the contributions of force from the other
M — 1 charges. Since the charges all repel each other, none of the M — 1 contributing forces
has a component directed to the interior of the sphere, and thus the charges will remain on the
surface of the sphere as they move about. The charges will continue to move until some stable
configuration is reached.

The goal is to find the final stable configuration of charges. In a sense the algorithm
presented in this section seeks to mimic nature, where each “charge” represents a codepoint of

a spherical code, and the “forces” between codepoints are determined by computer simulation.

3.3.7.2 Algorithm motivation and description

The physical analogy of the design procedure is intuitively interesting, although it is not a
perfect analogy. Whereas the value of the minimum distance d can be determined directly from
the nearest neighbor distances of the M codepoints (the smallest one), the potential energy
is a sum involving all of the distances between pairs of points. To coarsely account for this
difference, the algorithm only considers the force exerted by a charge’s nearest neighbor. This
has the additional advantage of easing the computation, reducing M — 1 force computations to

one.
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Table 3.1 Iterative spherical code optimization algorithm.

Step 1. Populate the k-dimensional sphere with M codepoints at random positions.
Step 2. Repeat the following, until the minimum distance stops improving;:

A. Develop a “goal” minimum distance g for the codebook, based on how fast the
algorithm has improved the codebook in recent iterations. The value of g is assigned
a value slightly larger than the minimum distance of the best codebook obtained
thus far.

B. Pick a codepoint X at random.

C. Move X directly toward or away from its nearest neighbor, according to the modified
force law (3.8).

Another difference is that charges on a sphere may arrange themselves in a locally stable
configuration that is not the best configuration. A modification of the usual inverse square law
for force helps to avoid this problem. Whereas the magnitude of the natural repelling force

between two charges at locations X and Y is proportional to

1
IX = Y|*’

the algorithm uses a modified force law in which the repelling force is proportional to

IX - Y|*— g

, (3.8)
X =Y

where g is a goal minimum distance of the codebook. Indeed, suppose g is the desired minimum
distance, X is the codepoint for which the force is to be determined, and Y is the nearest
neighbor of X. If | X — Y| < g, it is important that X move away from Y— all codepoints
should be at a distance at least g from each other. On the other hand, if || X — Y| > g, it is
not important that X move away from Y, since X meets the goal distance g without moving.
In fact, it is desirable for X to move toward Y, so that X is packed next to Y at or close to
a distance g from Y, and a gap is opened where X was before it was moved. This gap may
prove useful for other codepoints, as is illustrated in Figure 3.3. The algorithm is summarized

in Table 3.1.
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Figure 3.3 A small section of the surface of the unit sphere. Codepoints have a cap of radius g
around them. If no caps intersect, then the minimum distance is greater than g. The algorithm
moves X toward its nearest neighbor Y, not away. This allows U and W to make use of the
resulting gap.

3.3.7.3 Implementation

The algorithm has been implemented on an HP Apollo Series 700. The codebook is stored
as a linked list, sorted by the first coordinate of the codepoints. When a codepoint is perturbed,
it is reinserted at the proper point in the list, and the new minimum distance of the codebook is
computed. Each codepoint’s nearest neighbor is tracked at all times. This involves, after each
perturbation, finding the new nearest neighbor of the perturbed codepoint and determining
whether the perturbed codepoint has become the nearest neighbor of any other codepoint.

Efficient methods for determining nearest neighbors were used. To find the nearest neighbor
of codepoint X, the algorithm begins by computing the distance d* to the codepoint next to X
in the sorted linked list. Then, the list is searched backward and forward from X for a nearer
codepoint to X, aborting any partial distance calculation when it exceeds d*, and ending the
entire search when a codeword Y in the list is reached that differs from X by more than d* in
the first coordinate alone. In this way, much of the codebook is never involved in the distance

calculation. This method has also been used elsewhere [31, p. 479-480].
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For each dimension and number of codepoints considered, one to three million perturbations
were performed, requiring anywhere from a few minutes to a few hours of computation time,
depending on the dimension and number of codepoints.

The program has produced codes remarkably better than those from lattices, binary codes,
and other means. In particular, one spherical code produced in a few minutes of computation
has larger minimum distance than that published in [35], a paper devoted solely to developing
a spherical code with M = 19 and k£ = 3. Figure 3.4 shows the front and back of a three-
dimensional sphere with the placement of 19 points on it after iterations one to one million.
The final minimum distance obtained by our algorithm is 0.807, while [35] achieves 0.804.

This unstructured spherical code search has been improved in [69,82]. The iterative algo-
rithm described above converges to a locally optimal solution, but the locally optimal configu-
ration will not be obtained exactly after a finite number of iterations. Instead, the algorithm
may be terminated and a system of equations may be solved to yield this locally optimum
configuration. This improves many of the solutions and has yielded the best known spherical

codes in three dimensions for codesizes up to 33,002 [82].

3.3.7.4 Other algorithms for unstructured codes

The algorithm presented above strikes a balance between mimicking nature faithfully and
running each iteration quickly, but it does not prove that better unstructured spherical codes
are impossible. Could some other method do better, while still having a reasonable running
time? There is not much room for improvement, since the method presented here already
closely approaches the upper bounds on the minimum distance.

Nonetheless, a few other ideas were investigated. Testing showed that whether the force law
was an inverse square, inverse cube, etc. made very little difference in the resulting minimum
distance. Keeping track of more than one nearest neighbor of each codepoint and computing
the forces based on those sets of points results in a faster convergence rate per iteration, but a
much slower convergence rate per hour of computer time, because more computation is required
per iteration.

Another approach is to randomly populate the sphere with points as before, except that
thousands or millions more points than are actually desired for the final codebook must be

created. Then, the codepoint having the closest nearest neighbor is identified and deleted.
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d

0.519

Iteration

1,000

10,000 | 0.777

1,000,000 | 0.807

Figure 3.4 The algorithm in action.
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From this new codebook, again the codepoint having the closest nearest neighbor is found and
deleted. This process is repeated until the desired number of codepoints remains. At each stage,
the minimum distance increases or remains unchanged. Also, the algorithm is less complex than
the one above. Unfortunately, this approach resulted in codebooks with minimum distances

that are substantially lower than those of the original algorithm.

3.4 Comparisons

For dimensions three, four, and eight, Figures 3.5, 3.6, and 3.7, respectively, show the relative
performance of the spherical codes constructed by the methods in this section. Numerical values
are given in Tables 3.2 and 3.3. In dimensions three and four, the density of various spherical
codes divided by the upper bound on density is plotted versus the minimum distance.

Recall that the minimum distance between points on these shells is at least as large as
the minimum distance of the lattice, but could be much larger. To make a fair comparison,
the exact minimum distances were calculated with the aid of a computer. It was found that
minimum distances could be 50% higher, or more, than the minimum distance of the lattice.
Whereas previous work has compared spherical codes using the lower figure [98], this thesis
appears to be the first work in which an exact minimum distance has been computed. The first
1000 shells of lattices were used to construct spherical codes.

For minimum distances larger than about 0.5, shells of lattices often produce very good
spherical codes. For example, a shell of each of A3, A% and Z? produces the optimal three-
dimensional spherical code with twelve points and minimum distance one. Shells of lattices also
produce the (conjectured optimal) four-dimensional spherical code with 24 points and minimum
distance one. A shell of Eg produces the best known eight-dimensional code with minimum
distance one. A few codes constructed by Ericson and Zinoviev also have good performances for
large minimum distances. The performance for smaller minimum distances is worse, however.
For minimum distances below about 0.1, the wrapped and laminated spherical codes perform
better than the shells of lattices.

The codes compiled by (and in many cases constructed by) Hardin and Sloane [82] represent
the best known spherical codes in three dimensions for minimum distances larger than about

0.02 and in four dimensions for minimum distances larger than about 0.6. These codes were
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Table 3.2 Three-dimensional code sizes at various minimum distances.

d Coxeter laminated wrapped apple-peeling
upper bound code code code
101 1450 1294 1070 1236
1072 145,103 134,422 130,682 125,504

1073 | 1.45 x 107 1.43 x 107 | 1.40 x 107 1.26 x 107

1004 ] 1.45x10° | 1.45x10° | 1.44 x 10%* 1.26 x 10°

107° | 1.45 x 10T | 1.45 x 10 | 1.45 x 1011* | 1.26 x 10!
* estimated

Table 3.3 Four-dimensional code sizes at various minimum distances. The Coxeter upper
bound is not asymptotically tight: using the best known upper bound on packing density in
three dimensions and Lemma 1 of [1], an asymptotic upper bound of 2.79 x 103"*! is achieved,
for d = 107" and large n.

d Coxeter laminated wrapped apple-peeling
upper bound code code code
1071 29,364 16,976 17,198 22,740

1072 | 294 x107 | 2.31x107 | 2.31 x 107* 2.28 x 107

1073 | 2.94 x 100 | 2.59 x 100 | 2.59 x 1019* | 2.28 x 100

1074 | 2,94 x 10 | 272 x 10" | 2.72 x 1013* | 2.28 x 10"

107° | 2.94 x 10'6 | 2.77 x 100 | 2.77 x 1016* | 2.28 x 10'°
* estimated

constructed by an iterative algorithm which would not be suitable for extremely large spherical
codes with small minimum distances. Codes from the iterative technique presented in this
chapter are included in Figures 3.5, 3.6, and 3.7 as well.

The performances of the wrapped spherical codes and laminated spherical codes are included

in the plots as well, and will be discussed more in Chapters 4 and 5.

3.5 Conclusions

The surface of the k-dimensional sphere “looks” like R¥~1, in the sense that the maximum
packing density, minimum quantization coefficient, and thinnest covering in R¥~1 equal the
maximum asymptotic spherical coding density, minimum asymptotic spherical quantization
coefficient, and thinnest asymptotic covering of €1, respectively.

Previous bounds on the size of spherical codes have been converted to bounds on the density
of spherical codes. This brings to light the fact that Yaglom’s spherical codes, Wyner’s lower

bound, concatenated MPSK codes, spherical codes from binary codes, and apple-peeling codes
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are not asymptotically optimal. Unstructured codes can be asymptotically optimal, but finding
them requires a computer optimization that is not feasible for large codebooks. The spherical
code constructions of the next two chapters each produce asymptotically optimal spherical

codes.
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CHAPTER 4

WRAPPED SPHERICAL CODES

4.1 Introduction

In this chapter, a mapping is introduced which effectively “wraps” any packing in RF~1
around €2 (actually into a finite subset of €x); hence, the spherical codes it constructs are
referred to as wrapped spherical codes. This technique creates codes of any size and thus
provides a lower bound on achievable minimum distance as a function of code size. It will be
shown that the spherical code density approaches the density of the underlying packing, as
d—0.

4.2 Construction of Wrapped Spherical Codes

Let A be a sphere packing in R¥~! with minimum distance d and density Ay. A may be
either a lattice packing or a nonlattice packing. Let 0 = &) < --- < {n =1, and for z € [—1,1],
let £(z) = max{&; : & < |z|} and &(x) = min{§; : & > || }. The real numbers &,... ,£y are
referred to as latitudes and will be chosen later to yield a large code size. The ith annulus is
defined as the set of points (z1,...,z) € Q that satisfy & < zp < &1 (i-e., points between

consecutive latitudes). Define the many-to-one function f': Q; — RE~! by

(331,--- axk—l)

fl( IR ): ( )
I Tk O\ T m

(4.1)

where

olax) = \/1—§<wk)2—Wu—g(mk)m(w—g(wk)Z—w—wz)Z ,

+
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and where (z); = max(0,z). If X = (z1,... ,z¢) and Y = f/(X) # 0, then

(V1€ ) - (Vi=ahbanl )| = /1= eGar = 171,
which is shown geometrically in Figure 4.2. Define the buffer region as the set
2
B'= { (@15 s 2k) € Q= (Jzg| — E(zp))” + (\/1 — &(k)? — \/1 —xi> <d’ } :

A useful spherical code with respect to A is defined by WA-SC = (f)~1(A\ {0}) \ B'.
Let

A ) (@1, Th—oy Tp—1, 7)) if |2k < 1/V/2
T1ye. , D) = )
f,(xla' .- 7$k—2a$k7mk—1) if |:I"k| > 1/\/5

and let

B:B'U{(a:l,...,:ck)eﬂk: <|$k|—%)2+(%— 1_:cg>2<d2}.

The wrapped spherical code with respect to a packing A having minimum distance d is defined
by
WA-SC = f~}(A\ {0}) \ B.

Figure 4.1 illustrates part of a wrapped spherical code constructed with this mapping. Note
that WA-SC depends on those latitudes ¢ that satisfy & < 1/v/2. Geometrically, WA-SC
is identical to C* for points whose last coordinate has magnitude at most 1/4/2, and is a
reflection of CA by 7/2 for the remaining points. In the following two sections, it will be shown
that WA-SC has good asymptotic density properties and has an efficient decoding algorithm.

As this thesis is chiefly concerned with asymptotic performance, discussion on small code-
book improvements possible for moderately large minimum distances will be limited. A number
of simple improvements are possible. One such improvement involves the buffer regions B’ and
B, which are included in the code definitions solely to insure the minimum distance requirement
is met. For a particular value of d, a careful choice of a latitudes {{;} may make much of the
buffer region unnecessary.

The inverse mapping (f') ! may be computed using the following lemma.

Lemma 4.1 For every Y € RF=1\ {0}, (f")~1(Y) is given by

Y / 2
|'|gy||:i:(0,...,0, 1—gi2):()§hi<\/(fi+1—§i)2+<\/1—£i2—\/1—§i2+1> ,
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Figure 4.1 Part of a wrapped code constructed from Z?2. The slightly distorted grid above is
the inverse image of the grid formed from Z2 below. Codepoints are located at the intersections
of the distorted grid lines.

il

Y =f(X)
(a) (b)

Figure 4.2 (a) Geometrical interpretation of f(X). (b) Annuli.
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where hi = \/1— € — |Y|| and g; = (1—*;—?) J1—e—h& o p2.

Proof: See Section C.3

Lemma 4.1 also allows f~! to be calculated, via

1710 = {(@, om0 € (7Y < 1/V2)
U{(@s. e oz mn i) € (F) (V) e > 1/v2]-
Note that ||f'(X)|| < /1 —&(zx)? for any point X = (z1,...,2;) € Q, with equality if
and only if 2 = £(x;). This may be verified directly from (4.1). In fact, ||f'(X)|| <
l(z1,..., 25 1)||- Since the norm ||f'(X)| depends only on ) and the orientation f'(X)/||f'(X)| =
(x1,--. ,Tk—1), f' maps points in {; with a constant kth coordinate (i.e., constant latitude) to

points on a (k — 1)-dimensional sphere in R¥"1. The image under f’ of an annulus in €, is a

region bounded by two concentric (k — 1)-dimensional spheres in RF~1.

Lemma 4.2 If X = (z1,... ,2k) € Q. and Y = (y1,... ,yk) € Qi belong to the same annulus
of CA, then
IF(X) = 2 < [IX = Y%

If, additionally, & = sin (Z\/E), Th Yk < 1/V2, and ||f/(X) — (V)| < d, then
IX = Y|* = 3d°% + O(d®) < || f'(X) = f'(¥)II*.

Proof: Let X' = (x1,...,25-1) and Y' = (y1,... ,yk—1), and note that {(zx) = £(yx) and
&(wk) = &(yk). Then

k 2
£ - PO = Z(”X,H )

a(@)alr) . s
XY

— (alon) ~ ) + TS (I =Y - (00 - 1)?) - @)

= afzp)® + olye)® -

XY

< (o — o)+ (X = V)2 (43)
a(zxk)a(yk) 2 n v 2
e (=Y = (1= 1v71)?)

= (ar— ) + X = Y|?

o(zp)a(ye) P2 2
+(Forat — 1) (1 - vie - (e - 1vy?)

IX - Y7, (4.4)

IN
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where (4.3) follows because

(ater) —at)? = {[y1=e - |(Vi-eha) - (/1= entan)|
o () (s}
() ]
()|}
(V=) = (Vi) | b he tiangte ety

= (zx —yw)” + (1X']| = IY])).

IN

Also, (4.4) follows since

ofzy) < (\/1 — E(ap)?2 — \/0 + <\/1 —E@)? /1 - ;@2) = x|,
+

(and similarly a(yg) < ||Y’||) and

X" —Y')? - (11X - ||Y'||)2 >0, (by Cauchy-Schwarz).

Note that equality holds in both (4.3) and (4.4) if and only if either X =Y or z3 = yj, = {(zx).
This proves the first part of the lemma.
Now suppose that & = sin(iv/d), =, yx < 1/v/2, and ||f'(X) — f'(Y)|| < d. A lower bound

on (a(z) — ayx))? will be found. Without loss of generality, suppose yx > x3 > 0 and let

;- (i

v = (\/1_?/1%’3%)

Letc=|X-Y|,e=|X—E|,g=|Y —E|, 8 =4£Y0X,y=£ZXOE, and ¢ = § + 1, as
illustrated in Figure 4.3. It follows that

B = 2sin—1§ (4.5)
v o= ¢-8 (4.6)
e = 2sm% (4.7)
g = 2sm§. (4.8)



/

0

Figure 4.3 Notation used in proof of Lemma 5. The triangle XY E at left is shown enlarged
at right.

Combining (4.5)-(4.8) gives

la(z) —alyk)] = g—e
i1
= 2Sin§ — 2sin (¢ — 281; (0/2))
3 —2sin ! 3
b= T4 0" — g 2571 (of2) - L2 o) ()
3 2 2
= =L P10+ 0
d3/2 )
> c— 4~ 0(d), (4.10)

where (4.9) follows from a Taylor expansion, and (4.10) follows since ¢ < v/d and ¢ = O(d).

Thus,
9 9 d5/2 3 ) 9 /2 5
(alex) — o)) 2 ¢~ T +0@) = @~y 41X~ ¥2 - T 1 o).
Since || X’|| > 1/4/2, it also follows that
afzy) _ | X'| - Vd
1> > >1—v2d 4.11
>l > e 2 v —
and similarly,
(yk)
12”w“21—¢ﬁ. (4.12)



Hence, (4.2) may be rewritten as

170 PO = (alar) - alye)? + LU (xr gz () — y?)

X1y
_ 2 I 2 ﬂ/? 3
> (o — k)" + X =Y 5 T O@) (4.13)
a(zg)a(y) ! "2 ! 11\ 2
+ 2 (X Y2 - (IX] - )Y
Ty (P =Y = (0= 1v'))?)
d5/2

— X - Y|P -5 + o)

a(zk)a(yr) _ 2 v 2
+ (S - 1) (1 - v - x - 1))

> ||IX - Y|* - %/2 +O(d) + (1= V242 1) X -Y|2  (419)
= X -Y|*(1~-v2d)® - %/2 +0(d’)

5/2
= | X —Y|?(1 —2v2d + 2d) — dT +O(d?)
IX — Y2 — (2v2+ 1)d®? + O(d®)

Y

> |X —Y|? =382 + 0(d®),

where (4.13) follows from (4.10) and (4.14) follows from (4.11) and (4.12). &

Note that if & = 1/4/2 for some 4, then Lemma 4.2 also holds when f’ is replaced by f.

Corollary 4.1 If A is a sphere packing with minimum distance d, then the minimum distance

of the wrapped spherical code WA-SC is also d.

Proof: If distinct X,Y € WA-SC belong to the same annulus, then || X =Y || > || f(X)—f(Y)] >
d, since the minimum distance of A is d. If X and Y belong to different annuli, then the definition

of B guarantees their separation is d. H

4.3 Asymptotic Density of the Wrapped Spherical Code

Let {55'1)} be the partition of [0,1/1/2] used in the definition of a wrapped spherical code

WA-SC that has minimum distance d. Let ¢; = sin™! 551)1 — sin™! §§d) denote the angular

separation of the ith annulus. Next it is shown that if the maximum angular separation between

annuli, ¢ = max; ¢; approaches 0 as d — 0 and the minimum angular separation ¢ = min; ¢;

58



does not approach zero too quickly, then the density of the wrapped code approaches the density
of A.

Theorem 4.1 Let A be a (k — 1)-dimensional sphere packing with minimum distance d. Let
WA-SC be a wrapped spherical code with respect to A and with latitudes &, ... ,&n. If the
mazimum and minimum annulus angular separations satisfy limg_,o[¢ + (d/¢)] = 0, then the

asymptotic density of WA-SC approaches the density of A, i.e., limg .o Awa_sc = Ap.

Proof: It will be shown that the density of codepoints within each annulus is close to A. It
suffices to concentrate on the annuli with latitudes at most 1/v/2, i.e., where f is equivalent
to f'. Let T;(d) be the ith annulus and let R;(d) = f(7i(d)). Let Sy gy and Sg,4 denote the
(k — )-dimensional contents of T;(d) and R;(d), respectively. For ease of notation, let £ = {gd)
and let & = §Z +1- Abbreviate T;(d) and R;(d) as T and R, respectively. As in Equation (2.3),

the angular separation ¢; may also expressed as a Euclidean distance (thickness), by

2sin(¢/2) = \/(3—§)2+ (\/1 —& -1 —52)2

Throughout this proof, constants encompassed by O(-) notation do not depend on i. First St

and Sk are computed.

sin~1 ¢
Sr = Sk—l/ cost 2z dx
g

sin~1¢ k-2
= S / [(1 — &) 7 —O(z—sin"'§) | dx (4.15)
= Sk (1- §2)¥ ¢i — O(¢7),

where (4.15) follows from the Taylor expansion of cos*~2 z about sin~! §. The (k—1)-dimensional
content of R is the difference between the (k—1)-dimensional contents of two concentric (k—1)-

dimensional spheres, namely, a sphere of radius /1 — ¢ 2 and a sphere of radius

g |E-gre (g -vi-g)
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Thus,

= Vi, (1_§2)k;1_
k—l_ (k=1 _2k211<__ \ — 22)3]
g 1)( . )(1 &) 3 +(\/1 13 1 5) J (4.17)

—0<(E—§)2+( Ty 1—52)2>]

k—2

= Vi1 {(k—l) (1-¢€) 7 ¢ —0(¢) (4.18)
= S (1-€) 7 gi—0(e),

where (4.16) follows because the (k — 1)-dimensional content of a (k — 1)-dimensional sphere
of radius r is V;_17*~! and (4.17) follows from the binomial theorem. The zeroth term in the
summation in (4.17) cancels the term outside the summation, and the remaining terms are
higher powers of the Euclidean thickness of the annulus, which are expressed in O(-) notation.

The Euclidean thickness is expressed as an angular separation by

\/ €2+ (\/1 2\ —52) — 2sin(6i/2) = ¢ — ¢/24 + O()

which gives (4.18), and (4.19) follows from S;_1 = (kK — 1)V;_1. Thus,

St — O0(¢?) < Sr < St + O(¢?). (4.19)

Next, |A N R| and [WA-SC N T'| are computed.

AA(S(R) — O(d))
kal(d/Q)k_l ’

IANR| =

where the O(d) term appears because the density of lattice points in R may be lower than Ay

in a region within distance d of the boundary of R, and the (k — 1)-dimensional content of this
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boundary region is O(d). Also,

[IWA-SCNT| = |[ANR\{0} —|ANRNf(B)\ {0}
AA(S(R) —O(@d) __ A\O(d)
Vi—1(d/2)k—1 Vi—1(d/2)k—1
Ap(S(R) — O(d))
Vk_l(d/2)k_1 )

Thus,
[WA-SC NT|S(c(k,0/2))
St
[A\;\k(sl(g)/Q)’“(l))] Vi 1(%)19—1(1 +O(d2))
St
Ar(Sr — O(d))(1 + 0O(d?))
St
Ap(ST — (¢2 + d))(l +0(d?))

(4.20)

_ AL-O (a . g) , (4.21)
where (4.20) follows from the left-hand inequality of (4.19). Using the right-hand inequality of

(4.19), the inequality sign of (4.20) reverses if ¢? is replaced by —¢Z, which gives
Ap < Ap+O0 (). (4.22)
Since (4.21) and (4.22) do not depend on 4,
Ar—O ($+ %) < Awasc <AL+ 0 (9). (4.23)

Since limg_,o[¢ + (d/ ¢)] = 0 and each term inside the limit is nonnegative, limg_,o ¢=0.1

Equation (4.21) also suggests a choice of {¢;} that will provide a fast rate of convergence,

and implies the following corollary.

Corollary 4.2 Let A be a (k—1)-dimensional sphere packing with minimum distance d, and let
WA-SC be a wrapped spherical code with respect to A and with latitudes given by & = sin (2\/8)
for 0 <i < W/(Q\/E) Then the spherical code density satisfies |Awa-sc— Ap| < O(Vd).
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Proof: The result follows immediately from (4.23), since ¢ = ¢ = Vd. m

The performances of the wrapped spherical codes in dimensions three, four, and eight are
shown in Figures 3.5, 3.6, and 3.7, respectively. In three dimensions, the wrapped spherical
code has a higher density than shells of Z3, A3, and A} for minimum distances less than 0.3. As
the minimum distance shrinks, the convergence of the density to the upper bound is evident.

The wrapped spherical codes are outperformed by the laminated spherical codes in dimen-
sions three and four. For higher dimensions, however, the wrapped spherical codes perform
better. For example, in dimension 8 shown in Figure 3.7, the wrapped code is dramatically
better than the laminated spherical code. The wrapped spherical code outperforms most other

codes for minimum distances less than about 0.4.

4.4 Decoding Wrapped Spherical Codes

An important question in channel decoding and quantization encoding is how to efficiently
find the nearest codepoint to an arbitrary point in RF [30,31,59,67,89]. Often, an advantage
of a structured code is that codepoints themselves need not be stored explicitly.

If the k-dimensional signal X € WA-SC is sent across an additive white Gaussian noise
(AWGN) channel, then the received signal is R = X + N, where N is a zero-mean Gaussian
random vector with variance ¢2. The maximum likelihood decoder is a minimum distance de-
coder, i.e., given R, the decoder output is X = arg minxewa_sc ||X — R||, the closest codepoint
to R. For any R € R¥ and any spherical code C(k, d), the nearest codepoint of C(k,d) to R is
the same as the nearest codepoint of C(k,d) to R/||R||. Hence, in the following, it is assumed
that R € Q.

The performance of an efficient suboptimal decoding method can now be evaluated. Given
a received vector R € 2, let the decoder output be

X= arg min_ [|f(X) — f(R)].

Note that X € WA-SC implies f(X) € A. Let Y be a nearest neighbor of f(R) in A. There
is at most one candidate in the set f !(Y) which could be a nearest neighbor to R, namely,
the element F which is in the same annulus as R. However, because of the buffer region B, E

might not be in WA-SC. This happens with probability O(v/d) or less, for B covers O(V/d)
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of the sphere. (Such an E exists provided ||Y]| < 1 and R is not within d of the border of an
annulus, which holds with probability 1 — O(v/d).) Thus, with probability 1 — O(v/d),
X st (arepinlv - 1R,
which involves only f, f !, and the decoding algorithm for A.
It is known that when points from the packing A with minimum distance d are used on
an AWGN channel, the probability of symbol error is TQ(%) (see, e.g., [14]), where 7 is the
average number of codepoints at distance d from a codepoint and where () is the complementary

error function defined by Q(z) = \/%—W e e=%"/2dgz. The following theorem shows that the

performance of efficiently decoding WA-SC is asymptotically close to the performance of A.

Theorem 4.2 Let A be a (k—1)-dimensional packing with minimum distance d, and let WA-SC
be a wrapped spherical code with respect to A and with latitudes &; = sin(z'\/E). Let P, be the prob-
ability of symbol error when WA-SC is used on an AWGN channel with equiprobable inputs and
the decoder output is X = arg minxe wa-sc ||f(X) — f(R)|. Then P, < 7Q (%(1 — 0(d'*))).

Proof: Given a received vector R € QF, a decoding error occurs if X is not a nearest neighbor
codepoint of R, i.e., if there exist X,Y € WA-SC such that |X — R||? < ||Y — R|? and
IF(X) = fF(R)|I?> > ||f(Y) — f(R)|?>. Together with Lemma 4.2, these inequalities would imply

Y —R[> > [IX-R|?
I£(X) = fF(B)I?

1F(Y) = fF(R)|?
> ||V = R|? = 3d°/% + O(d®).

Y

\%

Hence,

0<[IF(X) = FR)I> =1/ (V) = FBR)|* < 3d°% + O(d?).

That is, in RF—1, f(R) is within \/3d5/2 + O(d3) = v/3d/*4+0(d"/*) of the bisecting hyperplane
between f(X) and f(Y). Since f(X) and f(Y) differ by at least d, by the union bound the
probability of symbol error is

d— 6d°/* + O(d7/4)> d

=7Q (%(1 — O(d1/4))) :
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4.5 Conclusions

A new technique was presented that constructs wrapped spherical codes in any dimension
and with any minimum distance. The construction is performed by defining a map from RF~!
to Q. Although any set of points in R¥~! may be wrapped to Q; using our technique, if the
densest packing in R¥~1 is used the wrapped spherical codes are asymptotically optimal, in the
sense that the ratio of the code size of the constructed code to the upper bound approaches one
as the minimum distance decreases. This demonstrates the tightness of the upper bound in [23]
for three dimensions, asymptotically, and that previous lower bounds are not asymptotically

optimal.
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CHAPTER 5

LAMINATED SPHERICAL CODES

5.1 Introduction

Chapter 4 described a technique to map any packing A onto the unit k-dimensional sphere
Q. In this chapter, a new technique is introduced to construct spherical codes called laminated
spherical codes. Whereas wrapped spherical codes were described by an explicit function that
maps RE~! onto the unit sphere Q, for any k € Z_, laminated spherical codes will be defined in
a recursive manner using terminology and techniques from laminated lattice constructions. The
laminated spherical codes improve upon previously known codes, and for low dimensions and
many code sizes have higher minimum distances than the wrapped spherical codes described
in Chapter 4. Most of the known best performing spherical codes in three dimensions with
less than about 30,000 codepoints and in four and five dimensions with less than about 150
codepoints are due to Hardin and Sloane [82]. For codes larger than the Hardin-Sloane codes
or for dimensions greater than three, the laminated spherical codes introduced in this chapter
often give the best known performance.

As explained in Section 3.3.1, any spherical code can be described by the projection of its
codepoints from Q, to R¥~!, via the mapping (21,... ,25_1,2%) = (21,... ,2k_1). Conversely,
a k-dimensional spherical code may be obtained by placing codepoints on concentric (k — 1)-
dimensional spheres and projecting each codepoint onto 2. If the projected codepoints are
kel 9\ 1/2

i1 xz) , then a structured packing can be

constrained to lie on a small number of radii (Z
obtained. This idea is exploited by packing the concentric spheres closely. The codepoints of
one sphere are placed at the radial extension of the holes of codepoints of the next smaller

radius sphere, and use a method similar to that for constructing laminated lattices (e.g., [14])
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to construct new spherical codes, which is denoted by LSC. This is illustrated for K = 2 and
k = 3 in Figure 5.1. This method is similar to those of [97] and [18] in that a projection from
k — 1 dimensions to k£ dimensions is used; the difference lies in the placement of points prior to
the projection. The new technique creates codes of any size and thus provides a lower bound on
achievable minimum distance as a function of code size. The spherical code density approaches

the density of the laminated lattice A1, as d — 0.

5.2 Construction of Laminated Spherical Codes

Let k¥ < 49 and d € (0,1]. For k = 2, a largest spherical code with minimum distance d
is obvious (although not unique); it is denoted by LSC(2,d). For k > 3, the k-dimensional

laminated spherical code LSC(k,d) with minimum distance d is recursively defined as follows.

LSC(k,d) = Llgene

N
: (:1:1,... ,.kal) € U"'ici(k—l,d/rs(i)) s
=0 (5.1)

where

2 d i —1Ck—
i Ti—1 (1—%) \/1 rc’“( 21) —I—d\/ (1-r2,) T b(ir,«s(lic_klfy)
e 1—5b (n-1ck—2d>
Ts(i—1)

ud ifi=0o0ri=1

if i > 1 and |r;_1d=2/%] #
r(i, 0)

[max(r (i, 1),r(i — lg_1,0))d /"
max(r(i,1),r(i — lx—1,0)) otherwise

min{j: r; > id*/*}

Il

T

v K
—~ —~
. .
~— ~—
Tl

g(max{j: o) < 73})

N = max {z ri < \/1— d2/4} (5.2)
w(X) = n(w_i(F1(X)))
LX) = {w {(D(w-1(X);):1<i<ng_o}
_  HILX))
T = Jaael
LSC(k — 1,d) if1=0
C ( )—H(k - ].,d) =

FCoprair(k—1,d)) H1<I<g(i+1)—g(G)—1
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Figure 5.1 (a) Eleven scaled one-dimensional spherical codes. (b) Two-dimensional code
derived from the scaled one-dimensional codes by projecting codepoints up and down. (c¢) Five
scaled two-dimensional codes. (d) Three-dimensional code derived from the two-dimensional
codes by projecting codepoints out of the page, where codepoints are the centers of the caps.
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Remarks:

e The sequence {r;} satisfies 0 =19 < -+ <ry < /1 —d?/4.

e {r;} and s(i) are defined in terms of each other, but each is well-defined. In particular,

s(i — 1) and r; each depend only on rg,... ,7_1.

o wi(X): Cojyu(k —1,d) — AL, associates each point from a spherical code with a point

on a laminated lattice

e L(X) associates X € Cy(jy4i(k — 1,d) with a subset of Cy(;y4;(k — 1,d) that is used to

determine a point on the shell with radius 74¢;)4141-
e [i is defined in (2.1) and ¢k, H(-), and n(-) are defined in Section 2.1.9.

The following definitions are also used in the code construction:

ith shell: riCi(k —1,d/rs(s))
ith gap: T, = {(151,--- @) € et/ Shla? e (Tilﬂ“i]}
g(i+1)—1
ith annulus: A, = U T;
J=g(i)+1
ith buffer zone: B; = < (x1,...,2%) € Qi \/Zf;f z? € (Tg(i)_l,Tg(i)]}
Wy = (:(21,... ,.’Ek) € Qy: Zf:_ll.’lig <d1/k}
Wy = S (z1,-.. ,7) € Qe Zf:_llm$>1—d1/k}
wasted region: W = Wi UWsy
[d=2/k]—1
=0
[d=2/*]—-1
B =

U B;.
i=1

The ith shell shell is a (k — 1)-dimensional spherical code scaled to a sphere of radius 7;. The
points between the spheres of the (i —1)th and ith shells constitute the ith gap. The ith annulus
is the set of points in R¥~! whose distance to the origin is in the interval (rg(i),rg(iﬂ)_l]. That
is, an annulus is a collection of consecutive gaps. Note that s(7) is the smallest integer for which

the set of all points whose magnitude is in the interval (ry;,r;] lies in a single annulus. The
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Figure 5.2 The sphere is partitioned into annuli, buffer zones, and wasted regions. In general,
W1 and W5 may contain one or more annuli.

ith buffer zone is the set of points lying between the (i — 1)th and ith annuli. Shells, gaps,
annuli, and buffer zones that are projected onto the unit k-dimensional sphere ); are again
called shells, gaps, annuli, and buffer zones, respectively. The sets W; and W5 are referred to
as “wasted” regions, in which codepoints are not necessarily as tightly packed as the rest of the
sphere. The radii {r;} and the sets W, T', and B are determined by the parameters k and d.
For any k and d, it follows that Qp = W UT U B, as seen in Figure 5.2.

Each point in LSC(k, d) corresponds to a unique point on the lattice Ag_1, since each point
in the shell Cg(j)+l_1(k — 1,d) corresponds to a unique point on the lattice Ag__;), via the
function w;_1(-). Recall that a point X € Ag__; ) gives rise to the point n(X) € A,(cl)_2 via the
hole H(D(X)1,... ,D(X)y,_,). Likewise, a point X € Cy(j)11—1(k — 1,d) gives rise to a point
in Cy(j)+1(k — 1,d) via the hole of the codepoints of Cy(j)11—1(k — 1,d) which correspond to
D(X)1,... , D(X)n,_,, namely, L(X). Thus, Cg(jy4i(k — 1,d) is equal to a set of the (properly

normalized) holes arising from Cg(;y4;—1(k — 1,d), and w;() is now also defined. For k = 3, the

two-dimensional code layers can explicitly be written as

{(cos (iﬂg(j)ﬂ-) ,sin (ieg(j)+i))} if i even
{(cos (i + 5)0g(5)+1) »sin (i + 2)0gj)4:)) }  if i 0dd

where 0m525m—1( d ),je {0,...,127/0;] — 1} and i € {0,... ,N}.

27 s(m)

Co()+i(2,d) =

The laminated spherical code construction ensures that each (k — 1)-dimensional code has
minimum distance d. The sequence {r;} must be defined such that codepoints from different

shells are at least distance d from each other. This constraint is analogous to the separation of
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Origin

Figure 5.3 Relation between r; and r;_1.

layers of Ag_o in Ag_1, except that here there is the added complication that each layer (i.e.,
(k — 1)-dimensional spherical code) is projected onto (.

The radius r; is recursively chosen as small as possible and yet large enough so that the points
at radius r; are at least distance d from the points at radius r;_1, after the projection. Suppose
rg,... ,T;—1 have been determined. Then r; is defined as the smallest positive number such
that for each X = (z1,... ,25-1) € riCi(k — 1,d/ry)) and Y = (y1,... ,yp—1) € 1i—1Ci—1(k —

1, d/rs(i)), the distance between the corresponding codepoints X' = (xl, e Tp_1,4/1— Zf;ll xf)

and V' = (yl, e Yk—1,4/1— Zi-:ll yf) in LSC(k,d) is at least d (see Figure 5.3). That is, r;
is chosen such that || X' —Y’|| > d.

Let & be the distance from Y to the hole associated with Y. Note that C;—1(k —1,d/ry;_1))
and Cy(;y(k — 1,d/ry;)) each have codepoints with angular separation ;. Thus, the distance

Ti—1

from Y to its associated hole is - D times greater than the distance from a point in Cy(;) to

its associated hole. Hence,

5> liz1ok-2d (5.3)
Ts(i—1)

where the inequality comes from the fact that c;_od is less than or equal to the distance from

a point of Cs(i)(k —1,d) to its associated hole. Therefore, r; is chosen such that

d2

IN

X" —Y'|?
2 2
— (ri—,/r?1—62> +52+<\/1—rz~21—\/1—ri2> .
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Rearranging terms gives

\/(1—1~ DA —12) <1—d?/2 = [r2 | — 62

which upon squaring both sides and solving the quadratic for r; give

(1-%) Ve fu-r @ - -»

1—462

(5.4)

T >

The negative solution for the quadratic equation is smaller than r;_; and is omitted. Taking
the derivative of the right-hand side of (5.4) with respect to ¢ reveals that it is a decreasing
function of § when § is in the range for which (5.4) produces a real value. Thus, using (5.3)

and setting

2 c d d2 Ti—1Ck—2\2
ri_1<1—d7) 1— (2220244, /(1 —7r2 (1 — & — (B=22)2)
= \/ s('L 1) \/ Ts(i—1) (5.5)

_ [ricick_od
! (TH)

ensure that || X' —Y’|| > d.

The recursion for 7; in (5.5) is used only when Y belongs to the same annulus as X. If r;_;
is the radius of the outermost shell in an annulus, then 7; is defined such that every point on
;{1 is at least a distance d from every point on the circle of radius ;1. This is equivalent

to taking § = 0 in the solution above (i.e., when YX is directed radially outward), and gives

=11 (1—d;>+d\/(1—r )(1—%2) (5.6)

While (5.5) ensures that the minimum distance between codepoints in a pair of adjacent

shells is no more than d, it does not insure this condition for codepoints in nonadjacent shells.
It is possible that (5.5) would result in codepoints from shell ¢ and shell 7 +1;_; which are closer
than d. Let X', Y’', and Z’, respectively, be the projections of X, Y, and Z shown in Figure 5.3,
onto Q. Then Y', X' € LSC(k,d). If | Z' — X'|| < d, then (5.5) is not used, in which case r; is
set to the value which produces ||Z' — X'|| = d and from (5.6) gives

TP =Tiy, (1 - d;) + d\/(l —ry heoy) (1 - %2) (5.7)

In summary, the r;’s may be determined by the following algorithm:
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1:=1;
rs =11 = d;
while 7; < /1 —d2/4 {
t:=1+1;
if [ri_1d=%/*] # [max(r(i,1),7(i — lk—1,0))d=%/*]
then rg :=r; :=r(4,0); /* begin new annulus */
else r; ;== max(r(i,1),r(i — lx_1,0)); /* regular solution */
}
N :=i-1;

Example of a Laminated Spherical Code
The construction of a laminated spherical code is illustrated for £ = 3 and d = 0.3. First, the
radii {r;} are determined. Since in Ay lattice points in one layer differ in the second coordinate
from lattice points two layers away, it follows that lo = 2. In Aj, holes are a distance 1/2
from two lattice points, and hence ¢; = 1/2, and n; = 2. An iteration of the algorithm
above gives (rg,...,rn) = (0,.3,.569,.752,.872,.978), (s(0),...s(5)) = (0,1,2,2,2,5), and
(9(0),...,9(3)) = (0,1,2,5). Next, the two-dimensional spherical codes to be projected onto

Q3 are determined.
i =0: Ci(k—1,d/ry)) = Co(2,00) = Cy0)+0(2,00) = LSC(2,00) = {(1,0)}.
i=1: Ci(k —1,d/rys) = Cy1)40(2,1) = LSC(2,1) = {(cos(im/3),sin(im/3)): 0 < i < 5}.

i=2: Ci(k—1,d/rys) = Cy2)40(2,.527). Thus, 0; = 2sin~1(.527/2) = .533, and
Ci(k —1,d/rys)) = {(cos(.533i),sin(.533:)): 0 <7 < 10}.

i =3: Cilk — 1,d/ry(5)) = Cyz1(2,-527) = f(Ci(2,.527)) = {5+ X € £(Ci(2, 527))}-
IfY € AY, then D(Y); =Y, D(Y)y =Y + (1,0), and so n(Y) = H(D(Y)1,D(Y)3) +
(0,4/1—¢c_,) =Y +(1/2,v/3/2). Let X = (cos(.5334),sin(.533i)) € C2(2,.527). Then
wo(X) = (4,0), and hence

LX) = {wy'(;,0),wy! (i +1,0)}

= {(cos(.533i),sin(.5337)), (cos(.533(¢ + 1)), sin(.533(¢ + 1)))}.
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From this, it follows that H(L(X))/||H(L(X)|| = (cos(.533(¢ + 1/2)),sin(.533(: + 1/2))).
In the next shell, the fact that wi(X) = (i + 1/2,/3/2) is used. Letting X range over
C2(2,.527) gives Ci(k — 1,d/rys)) = {(cos(.533(i +1/2)),sin(.533(i + 1/2))): 0 <4 < 10}.

i =4: Ci(k —1,d/ry)) = Cy(2)42(2,.527) = {(cos(.533i),sin(.5334)): 0 <7 < 10}.

i =5: A new annulus begins with Cy(3),¢(2,.307). Thus, 6; =2 sin~1(.307/2) = .308, and
Ci(k —1,d/ry)) = {(cos(.308i),sin(.308:)): 0 <7 < 19}.

The resulting code LSC(3,.3) is defined using (5.1) and has six shells. The shells contain
1,6,11,11,11, and 20 points, respectively, and thus, the entire code has 120 points. The subset
of Ay used is shown in Figure 5.4(a). The unprojected two-dimensional codes are shown in
Figure 5.4(b). The spherical caps of the final code LSC(3,.3) are shown in Figure 5.4(c). As d
approaches 0, the advantage of the laminating technique becomes more apparent. The apple-
peeling spherical code C4(3,0.05) is compared to the laminated spherical code LSC(3,0.05) in
Figure 5.5.

There are a number of improvements that may be made to the general construction. First,
there may be points on the sphere that are not within d of any codepoint— and thus these
points may be added to the codebook. For example, on shells 3 and 4 of LSC(3,.3), it appears
that an extra codepoint may be added without reducing the minimum distance. Also, the width
of the annuli may be modified, which would alter the number of shells that may be fit on the
sphere, as well as their placement. The annulus width used above was d?/F ~ .448. If the
annulus width is set to zero instead, the apple-peeling code results. When the annulus width is

., a code of size 128 may be obtained. In fact, each annulus width can be optimized separately.

5.3 Asymptotic Density of the Laminated Spherical Code

Let Arsc(k,d) be the density of LSC(k,d), let Arsc(k) = limsup,_,o Arnsc(k,d), and let
Aj, be the density of the sphere packing with spheres of radius 1/2 and centers in A;. Within
an annulus, layers of shells are stacked similarly to layers of lattices in a laminated lattice.
Theorem 5.1 establishes that Argc(k) is asymptotically equal to the density of the sphere
packing generated by Ay ;.
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(a)

Figure 5.4 (a) A finite subset of As. (b) LSC(3,.3), before projection. (c¢) LSC(3,.3) after
projection.
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Figure 5.5 Comparison of apple-peeling, laminated, and wrapped spherical codes. To obtain
the spherical codes, the points shown in the circles are projected straight out of the page onto the
surface of a sphere. (a) Apple-peeling code C4(3,0.05) has 4764 codepoints. (b) Laminated code
LSC(3,0.05) has 5244 codepoints. (c) Wrapped code WA-SC constructed from the hexagonal
lattice with minimum distance 0.05 has 4802 codepoints.
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Theorem 5.1 The density of a k-dimensional laminated spherical code LSC(k,d) with min-
imum distance d is no more than O(d'/*) less than the density of the (k — 1)-dimensional

laminated lattice Ay_1, for all k < 49. That is, Apsc(k,d) = Ay, , — O(d'/*).

Proof: See Appendix D
Corollary 5.1 follows from Lemma 3.2, Theorem 5.1, and the fact that Ao is the densest
possible packing in two dimensions. It also establishes the fact that the Fejes T6th upper bound

in Lemma 3.2 is asymptotically tight.

Corollary 5.1 The three-dimensional laminated spherical codes LSC(3,d) are asymptotically

optimal in the minimum distance sense as the minimum distance decreases.

Figure 3.5 shows the laminated spherical code density Ajsc(3,d) versus d. All code densities
are normalized by the Fejes T6th upper bound, i.e., Arsc(3,d)/Ar(3,d) is plotted versus d,
where Ap(3,d) is the upper bound on density A(3,d) for a three-dimensional spherical code
with minimum distance d. For d < 0.7, the laminated spherical code LSC(3,d) outperforms
known codes derived from shells of lattices, and is comparable to the apple-peeling code. For
d < 0.02, LSC(3,d) is the best code known, and convergence to the upper bound is apparent
as d — 0.

In dimension four, the performance is similar to the performance in three dimensions: for
small minimum distances, the best known spherical codes are produced. This is shown in
Figure 3.6. In higher dimensions, the performance is not as good. In dimension eight, the
performance of the laminated spherical code is significantly weaker than that of the wrapped
spherical code and shells of lattices. However, from Theorem 5.1, the asymptotic density
of the eight-dimensional laminated spherical code is the same as the density of the wrapped
spherical code with an underlying A7 lattice. Hence, for extremely small minimum distances,
the laminated spherical code has equivalent performance to that for the wrapped spherical
code. Figure 3.7 indicates that the convergence of the density of laminated spherical code to

its asymptotic value is much slower in dimension eight than in the lower dimensions.

76



5.4 Decoding Laminated Spherical Codes

Two approaches to decoding are considered, reflecting a tradeoff in the time and space
complexity of the decoding, namely, (I) the decoder stores the radii used to construct the code,
or (II) the decoder stores only the dimension k¥ and minimum distance d. For any R € RF
and any spherical code C(k,d), the nearest codepoint of C(k,d) to R is the same as the nearest
codepoint of C(k,d) to R/||R||.- Hence, in the following, it is assumed that R € . Recall from
(5.2) that N = max {z r; < m}, i.e., N is the number of radii needed to construct a
laminated spherical code (not counting the radii used to construct lower dimensional laminated

codes).
Lemma 5.1 N = O(|LSC(k,d)|"/(:=1),

Proof: By construction of LSC(k, d), codepoints arising from C; and C;_;, _, have angular separa-
tion at least 6, for all ¢ > ;1. Thus, (0,...,0,r;, ﬁ) and (0,...,0,7i—;,_,,+/1— rf_lk_l)
also have angular separation 6 (even though these points might not be codepoints). The in-
tersection of € and the plane in R* spanned by (0,...,0,1) and (0,...,1,0) is a unit circle;
thus, lx_1 N < 7/(26). From the definition of density, |[LSC(k,d)|-s(c(k,0/2)) = Arsc(k,d)- Sk.
Using Equation (11) of [38] and the fact that Argc(k, d)- Sk is bounded away from zero (in both
k and d), it follows that |LSC(k,d)| = O(1/d*~'); hence, N = O(1/d) = O(|LSC(k, d)|*/*+=1).
|

Lemma 5.2 The sequences of radii needed to construct LSC(k,d) can be written with storage

complezity O (\/ |LSC(k, d) \) .

Proof: Let N(k,d) denote the total number of radii needed to construct LSC(k, d), i.e., N plus
the total number of radii needed to construct all of the (k — 1)-dimensional laminated spherical
codes used in the recursive definition of LSC(k, d). There are O(d~%/*) annuli in LSC(k, d), each

of which has shells defined via a (k — 1)-dimensional laminated spherical code with minimum
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distance at least d. Thus,

N(k,d) = O@d™)+0O(d?*)N(k—1,d)

+
d—(1+( z/k») +0 (dwc ) N(k —2,d)
g~ @/ 2/ (k1) +(2/4)))

|
S o O O

(

(

(Mk r(1+235 41/1))
(Va1).

Lemma 5.3 For k < 49, the distance from any point on Uk to the nearest codepoint in

LSC(k,d) is O(d).

Proof: The width of any shell is no more than d. Thus, the distance from an arbitrary point
R € Q) to the nearest point, say R’, on the boundary of the shell containing R is at most
d. This shell boundary contains a scaled spherical code r;C;(k — 1,d/ry)), for some i. Since
rid/rs(i) < 2d, R' is at most 2d from the nearest point on the boundary of some shell used to
construct C;(k—1,7;d/r(;)). By computing the distance to the boundary of a shell in successively
lower dimensions, it follows that R is at most a distance d + 2d +4d + - - - +2%~2d = O(d) from
a codepoint of LSC(k,d). B

Let R € Q. By counstruction of LSC(k,d), codepoints arising from C; and C; have

i—lg—1
angular separation at least 6, for all ¢ > [;_;. Hence, there are only a constant number of
shells that contain points whose angular separation from R is O(d). By Lemma 5.3, the nearest
neighbor search may thus be restricted to a constant number of candidate shells, and the nearest

neighbor distances may be found on each of those shells and compared to R. The algorithm

may be written explicitly as follows:

Nearest_Neighbor(k,d, R,{r:}) {
(Z1,...,2%) := R;
i::min{j: r; >/} +---+xi_1};
if (k=2){
X = (ric1, VI =ric1);
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if (H(T“ M) — RH <||X - R||) then X := (ri, M),
}
if (k> 2) {
X:=(3,...,3);
for ji=i—1Ip 1-2F"Ttoi+1, -2
{rn} = sequence of radii used to construct C,;)(k —1,d/s(j));
X' = (x4,...,2)_,) := Nearest_Neighbor (k = 1,d/ry), M’{Wn}) :
if (| (24, 4y /1= (0 +--ad ) — BRI < |X — R
then X := (x’l, ST, \/1 —(z?+-- -mifl)) :

}

return (X);

}

Theorem 5.2 There exists a nearest codepoint algorithm for LSC(k, d) using O ( |LSC(k,d) |)
space and O (log |LSC(k,d)|) time, and there exists a nearest codepoint algorithm using O(1)
space and O ( |LSC(k,d)|) time.

Proof: In the algorithm above, storing the sequences of radii requires O(1/|LSC(k,d)|), by

Lemma 5.2. To find the index ¢ used in the algorithm requires
O(log N) = O(log |LSC(k, d)|"/*~1)) = O(log |LSC(k, d)|)

time, by Lemma 5.1. The other lines of the algorithm require constant time plus a constant
number of recursive calls to the decoding algorithm. Since the dimension & in LSC(k,d) is a
constant, the algorithm performs only a constant number of recursive calls. Thus, the algorithm
uses O ( |LSC(k,d)\) space and O(log |[LSC(k,d)|) time.

Alternatively, the sequences of radii need not be stored. If only k& and d are stored, O(1)
storage space is required. The algorithm may then generate a sequence of radii when needed,

using the technique outlined in the construction of LSC(k, d). This generation takes linear time

in the size of the sequences, i.e., O (\/|LSC(1§, d)|> [ |
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5.5 Conclusions

A new technique was presented that constructs laminated spherical codes in dimensions up
to 49. The three-dimensional laminated spherical codes are asymptotically optimal, in the sense
that the ratio of the minimum distance of the constructed code to the Fejes T6th upper bound
given in [23] approaches one as the number of codepoints increases. This proves that the upper
bound is tight, asymptotically, and that previous lower bounds are not asymptotically optimal.
The codes generated also compare favorably to other codes, for a wide variety of minimum
distances. Good asymptotic performance is also achieved in higher dimensions, where the k-
dimensional laminated spherical code density approaches the density of Ai_1. The question
of whether the asymptotic density of the k-dimensional laminated spherical code is optimal is
equivalent to the question of whether the Ay is the densest sphere packing.

Both wrapped spherical codes and laminated spherical codes presented in [38] improve
the asymptotic performance of previous spherical codes. Similarly, the density of a wrapped
spherical code with respect to a packing A approaches the density of A; hence, any densest
lattice A gives rise to an asymptotically optimal spherical code. The wrapped codes are not
restricted to laminated lattices; any lattice or packing in R¥~! may be used to construct a
k-dimensional wrapped code.

The comparison of the nonasymptotic performance reveals that both the wrapped and lam-
inated spherical codes perform better than other constructions, i.e., have larger code sizes for a
given minimum distance. In three and four dimensions, the laminated spherical codes perform
better than the wrapped codes. In higher dimensions, the advantages of wrapped spherical
codes become more apparent: the wrapped codes are easier to construct than laminated spher-
ical codes because an explicit mapping is specified instead of a recursive one, and the decoding
algorithm reduces to a decoding algorithm for the underlying lattice, a well-studied problem.
The decoding algorithm for the laminated codes is recursive, and though efficient for low di-
mensions, is in fact exponential in the number of dimensions. Additionally, the asymptotic
density of wrapped spherical codes is higher than the asymptotic density of laminated spherical
codes in any dimension for which the laminated lattice in the previous dimension is not the

best packing, e.g., dimensions 10-13.
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CHAPTER 6

WRAPPED SPHERICAL CODES AS VECTOR
QUANTIZERS FOR A MEMORYLESS GAUSSIAN SOURCE

6.1 Introduction

A major goal in source coding theory is to design a quantizer that has both low implemen-
tation complexity and performance close to the rate-distortion function of the source. Scalar
quantizers have low implementation complexity, but their distortion performance is usually
much worse than the rate-distortion function. Shannon’s source coding theorem shows that the
performance of fixed-rate vector quantizers (VQs) can approach the rate-distortion function
as the vector dimension tends to infinity [28], but the proof is nonconstructive. Constructive
techniques for VQ, such as the generalized Lloyd algorithm [56] perform well, but their creation,
storage, and encoding complexities each grow exponentially in both dimension and rate. There
are other examples of VQs with good performance and exponential complexity as well [72,94].
An exponential complexity is such a barrier to implementation that any quantizer exhibiting
this behavior has been termed “noninstrumentable” [7].

A number of complexity constrained VQs have been proposed in an attempt to improve
upon scalar quantization while retaining a low complexity implementation [31]. This chapter
makes use of two of these methods: lattice quantizers and shape-gain quantizers. Our proposed
quantizer does not have exponential complexity; in fact, the operating complexity grows linearly
with the rate.

The quantizer presented in this chapter is optimized with respect to a memoryless Gaussian
source. One reason for concentrating on a memoryless Gaussian source is that it naturally arises

in numerous applications. For example, the prediction error signal in a DPCM (differential
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pulse code modulation) coder for moving pictures is well-modeled as Gaussian using block
activity classes with 8 x 8-dimensional blocks [92]. Also, discrete Fourier transform coefficients
and holographic data can often be considered to be the output of a Gaussian source [84],
although some other aspects of images and speech are better modeled as Laplacian distributions
[26,88]. Furthermore, a known filtering technique tends to make any memoryless source appear
Gaussian, which makes the system insensitive to errors in modeling the input [73]. Finally, the
Gaussian source is easier mathematically to analyze compared to some other sources, because
its distortion-rate function is known explicitly: D = 0227 2%. The literature is filled with results
of quantizers with respect to a Gaussian source [2,22,24,25,46,47,61-63, 66,68,71-73,76,77,
84,92-94)].

In the following sections, it is shown how a lattice quantizer can be transformed into a
shape-gain quantizer. For a memoryless Gaussian source, this shape-gain quantizer performs
better than any quantizer in the literature at rates of three bits per sample or higher. for a
memoryless Gaussian source. Section 6.2 presents properties of the Gaussian source, Section 6.3
gives the construction method for the wrapped shape-gain quantizer, Sections 6.4 and 6.5 give
implementation complexity and distortion analysis, and Section 6.6 gives simulation results.
Several extensions are discussed in Section 6.7, including the quantization of non-Gaussian

sources.

6.2 Properties of Vectors from a Memoryless Gaussian Source

Let X = (Xi,...,X}), where each X; is drawn from a memoryless N(0,02) source. The

probability density function (pdf) of X is

P /—Q,R.O_Q - (27m2)k/2

Since fx(Y) depends only on ||Y||, the notations fx (||Y]|) and fx(Y") will be used interchange-

2 —Y 2
ﬁ exp (235 ) exp (—202” )

Ix(Y) = fx(y1,--- ,y8) =

ably.

2
ork—1 exp(g—b—)

Lemma 6.1 The pdf Ofg = ||X|| 18 fg(?") = W
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Proof:

for) = lim - = (Pr{| X < 7+ h] — Pr{|X]| < 1)

= lim — / fx)dy 6.1
h—0 h <|Y|I<r+h ( ) ( )
< lim - / fx(r)dY
h—0 h ,,.<||y||<,,.+h ( )

= 0 / P
= fx(r)- hm h(Vk(r + h)k — vk
= fX(r)karlC !
= fx(r)Spr*,
where, as in earlier chapters, Vi is the k-dimensional content (“volume”) of the unit-radius

k-dimensional sphere €2, and Sy, is the (k — 1)-dimensional content (“surface area”) of ;. On

the other hand, from Equation (6.1),

h—0 h

1
_ -lim | — d
= fx(r)Sert.

f,(r) > lim~ / Fx(r +h)dy
<IVl<rih

Thus,

2rk=1 exp (2022)
T(k/2)(202)k/2 "

folr) = fx(r)Spr*~! = (6.2)

This derivation avoids the use of k-dimensional spherical coordinates, which were previously

thought to be necessary [83, p. 258]. Using f4(-), it is straightforward to verify the following.

Lemma 6.2 The mean, second moment, and variance of | X|| are given by

V202D (5) V2702

Eflx|l = =
IR TCIEY
BIX]*] = ko®
210
varl|[X[] = ko?— =7, (6.3)
73
where T(x) = J§° et dt and f(ay) = AW
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Proof: See Section C.4.
Figure 6.1 shows the pdf of X and var[||X||] when 02 = 1. Not surprisingly, var[||X||] appears

to be a strictly increasing function of its dimension k. This trend holds for all k.
Lemma 6.3 var{||X||] is a strictly increasing function of the vector dimension k.

Proof: See Section C.5.

The following lemma demonstrates that the variance of the norm of X is bounded, for all k.
Lemma 6.4 var|||X|]] < 0?/2, for every vector dimension k.

Proof: From Lemma 6.3, it suffices to show that limg_,. var[|| X||] < 02/2.

- s 20°T? (ﬁ)
Jm var(|lX[l] = lim [k"2 - ng]
2 i 2(1@5;1)’““. (ﬂ) -(1+0(1/k))?
= ¢° lim |k— 2 by Stirling’s formula
Jim, (B gowouzmy |
= o lim - % S(L+1/k)* - %]
= o lim L % <1 - % + O(l/kQ)) ' %] o
i (1+ O(1/k))
= o2 klggo _(5 +O(1/k2)> 'm]
2
) % (6.5)

where in (6.4) we have used the fact that (1 + 1/k)F =e- (1 — 5 + O(Elg)), as derived in the

proof of Lemma 6.3. B

Lemma 6.4 provides a tighter bound than the var[|| X ||] < 502/6, as reported by Sakrison [77].
For ease of exposition, in the remainder of the chapter it is assumed that ¢ = 1.

The analysis above brings to light a number of subtle points:

e The maximum value of fx(Y) occurs when Y = 0 and decreases monotonically as ||Y||
increases; therefore, among all k-dimensional spheres of constant volume, the sphere cen-
tered on the origin has the highest probability of containing X. On the other hand,
Figure 6.1(a) shows that X is not likely to be near the origin, even for small k. The high

probability region of || X|| is near its expected value, which by Stirling’s formula for I is

approximated very well by o1/k — (1/2) for k > 1.
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Figure 6.1 X = (X,..., X)) is formed from an i.i.d. N(0, 1) source. (a) The pdf of || X||. (b)
The variance of || X|| and the variance of | X||/vk
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e The “sphere hardening” that occurs as k — oo (see, e.g., [32]), occurs on a normalized
sphere only. That is, the high probability region of the random variable || X|| /v/k converges
to an infinitesimal interval about 1 as k& — oo, but the high probability region of the
unnormalized random variable || X is a cloud of roughly constant thickness, as derived

in (6.5), and this thickness does not go to zero as k — oo.

e Since fx(Y) depends only on ||Y||, it follows that X/||X]|| is uniformly distributed on
the unit sphere Q. This provides the motivation for mapping lattices from RF~! to
Q. The excellent performance of lattice quantizers for a uniform source in R¥~1 is then

transformed to excellent performance for a uniform source in .

Recall from Chapter 2.2.4 that a spherical vector quantizer is one whose output points lie on
a sphere. It is easy to show that if a spherical vector quantizer uses a nearest neighbor encoding
rule and encodes X to X , then it encodes cX to X as well, for all ¢ > 0. Sakrison showed that if
a spherical vector quantizer with radius E[||X||] is used to quantize a Gaussian random vector X
to X using a nearest neighbor encoding rule, then the resulting MSE distortion per dimension
can be decomposed into shape and norm distortions [77]. For completeness, a derivation is

included here. Let X, = E[||X||] - 57- Then,

T
D = IE|X - X
= E [HX—X,,JFXP—XHQ]
_ %E [HX,,—X’HQ] + var[|| X|[)/%, (6.6)

where the cross term vanished because

Bl -x)" (%-X)] = BB -x)" (% - %) 1%
_ B E :(X —Xp)TIXp] (Xp—ff)]
= m[p[ X axi- s %, | (%, - )]
_ E % -E[(I1X]| - EIX]) [X5] (Xp —X)]
_ g % BIOX] - BIXID] (X, —ff)}
= 0,
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where the second to last step uses the fact that || X|| and X, are independent random variables.
Thus, for large k, the last term of Equation (6.6) is negligible (see dashed curve in Figure 6.1(b)),
and an effective quantizer for X is a spherical vector quantizer for a source uniformly distributed
on the k-dimensional sphere with radius E[||X]|]. Sakrison designed such a quantizer using a
random coding argument, which proved that the rate-distortion function can be approached,
but this quantizer is noninstrumentable. This chapter provides a spherical vector quantizer
that can be efficiently implemented and which also has excellent distortion performance. In
the design no assumption is made that k is asymptotically large, and hence it is not assumed
that the last term of the distortion is negligible. For example, when k = 25, the last term of
Equation (6.6) dominates the overall distortion performance at rates of three or higher. This

distortion is reduced in this chapter by the use of shape-gain quantization.

6.3 A Wrapped Spherical Vector Quantizer

6.3.1 Structure of the codebook

A shape-gain vector quantizer is used. Shape-gain VQ is a quantization technique in which
a source vector X is decomposed into gain g = || X|| and shape S = X/g components, g and
S are quantized separately to g and S, respectively, and the VQ output is QS’ . One advantage
of shape-gain quantization is that the storage complexity is the sum of the gain codebook size
and shape codebook size, while the effective codebook size is the product of these quantities.
In the new implementation, the gain codebook has fifteen or fewer codepoints for rates under
4, and the shape codebook is structured so that it need not be stored.

For the shape-gain quantizer presented here, § depends only on g and S depends only on
S. This allows the gain and shape quantizers to operate in parallel and independently of each
other, and it also greatly simplifies the analysis of the distortion. In the most general setting, §
and S each depend on both g and S, and a small performance improvement can be realized. An
extension to this type of quantizer will be discussed in Section 6.7. The gain codebook outputs
are denoted by {g1,... ,g,r, }, where the gain rate R, is derived in the following section.

Using the gain pdf f,(r) from Equation (6.2), the gain codebook is optimized by the Lloyd-
Max algorithm [58,63]. No training vectors are needed for this since the pdf is known exactly.

Furthermore, since f4(r) is a log-concave function, the Lloyd-Max algorithm converges to the
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globally optimum gain codebook [27,87]. The Lloyd-Max algorithm is terminated after a finite
number of steps when successive iterations do not appreciably alter the codebook. Regardless
of when terminated, the centroid condition holds and thus E[§] = E[g] and the MSE distortion
is E[g?] — E[9?] [31]; these facts will be used in the distortion analysis in Section 6.5.

The shape codebook is generated by a wrapped spherical code as described in Chapter 4,
except that the buffer zones are not used. Recall that the purpose of the buffer zones was
to ensure that minimum distance violations did not occur between annuli, which is not a
concern for the quantization problem. The wrapped spherical code construction is reviewed
here. Let A be a sphere packing in R¥~! with minimum distance dy and density Ay. A may
be either a lattice packing or a nonlattice packing. Using the same notation as in Chapter
4, let N = [#ﬂL let @ = &, let & = sin(ic) for 0 < i < N, and for z € [-1,1], let
£(z) = max{¢ : & < |7} and {(x) = min{¢; : & > |z|}. Define the many-to-one function
fl:Q — R by

f’(.ﬁL‘l, e ,:ck)

o N \/(|wk| e+ (g 1) | )
A

where (z); = max(0,x). Let

i@, ap g, mp,p)  if |z <1/V/2
f(.iljl,... ,a:k) = . - (68)
fl@1,. . Th—g, o, xp—1) i 2] > 1/V2

The wrapped spherical vector quantizer (SVQ) with respect to a packing A having minimum

distance dp is defined by
WA-SVQ = f71(A). (6.9)

The use of WA-SVQ on a digital communication channel is accomplished using the algorithm

in Table 6.1.

6.3.2 Shape-gain rate allocation

Let R be the desired total rate of the wrapped SVQ. The shape code rate Rs and gain code
rate Ry, must satisfy R; + Ry < R. The rate Ry of the shape codebook defined in Equation
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Table 6.1 Algorithmic description of WA-SVQ on a digital communication channel.

Step 1. Given k source samples, form vector X € R, )

Step 2. Compute g = || X|| and S = X/g.

Step 3. Use gain codebook to quantize g as g.

Step 4. Compute f(S) using Equation (6.8).

Step 5. Find nearest neighbor f(S) to £(S), using a nearest neighbor
algorithm for A.

Step 6. Compute f~1(f(S)) to identify quantized shape 3.

Step 7. Compute the index of §S using Equation (6.11). )

Step 8. Transmit index of §S across (noiseless) channel. } Channel

Step 9. Identify §5 using Equation (6.11). } Decoder

>  Encoder

(6.9) can be altered by rescaling A so that the minimum distance is some value d instead of the
prescribed d,. The optimal allocations for R; and R, are obtained by analyzing the distortion
of the wrapped SVQ under varying allocations and performing a binary search for the optimal
value of R,. Since the gain codebook size is an integer, the values of R, are restricted to a
finite set and the optimal value of R, can be found exactly.

For a given rate allocation, the gain codebook is optimized using the Lloyd algorithm with
R, bits. A is scaled by d/dx before the shape codebook is constructed, where d is determined as
follows. The image of an annulus on ; under the mapping f(-) is a region A bounded by two
concentric spheres in R¥~! (see explanation before Lemma 4.2); hence, the number of lattice
points in A is the number of lattice points on the corresponding annulus in ;. As explained
in Section 2.3, this number is obtained from the theta function of the lattice A.

In principle, specification of the theta function of a lattice allows one to efficiently count the
number of codepoints in A, but in practice the theta function often involves functions which are
difficult to compute. This difficulty does not affect the operating complexity of the quantizer,
because the optimization of the codebook is performed off-line. Nevertheless, it helps the design
efficiency to use an approzimate count of the codepoints in A, and then perform an accurate
count at the end of the design algorithm. The approximation is computed as follows. According
to Theorem 4.1, the density of WA-SVQ is approximately Ay. Therefore, a (k— 1)-dimensional

lattice A with minimum distance d and density A gives rise to a wrapped spherical code with
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M codepoints, and M satisfies

ApSk

M~ S etk sin= L d2))

where S(c(k,sin"!(d/2))) is the surface area of a spherical cap on € with angular radius

sin~!(d/2). Thus, the scale of A is chosen (heuristically) by

AnSk kR
S(c(k,sin~1(d'/2))) <2 }’

which will create a shape codebook that has 2¥%s codepoints, i.e., a rate per sample of R

d = arg IIcli}Il { (6.10)

bits. After optimization is complete, a one-time count of the actual number of codepoints is

computed by evaluating the theta function.

6.3.3 Index assignment

Thus far, it has been assumed that a k-dimensional WA-SVQ with M codepoints and
operating at rate R satisfies M = 2¥%_ In order to be implemented in a communication system,
the M quantizer codepoints must be uniquely identified by binary strings of length kR which
are transmitted across the channel. Since each binary string represents a number between 0
and M — 1, an equivalent problem is the assignment of codepoints to unique integers.

The assignment is accomplished in a similar manner as for the pyramid vector quantizer
for the Laplacian source [24]. First, the number of codepoints in each annulus of the shape
codebook is counted, by the method of the previous section. This can be done with the theta
function of A. For the WA94—SVQ codes in this thesis, this involved a one-time computation of
the first few hundred coefficients of the theta function of the Leech lattice, which were stored
and used as needed.

It is assumed that there is an efficient method for assigning indices to the underlying lattice,
and in particular, to those points in A, as defined in Section 6.3.2. This is the case with many
lattices, including for example, the Leech lattice Aa4. The points of .4 may be ordered using
this index. For example, the Ith point of A could be that point that has the Ith lowest index.

The codepoints of the wrapped spherical code are assigned to integers according to their
quantized gain, annulus, and order within their annulus, as follows. Let IV represent the number
of annuli of the shape codebook. Let P; be the number of points in the jth annulus of a shell,

and let P be the total number of points in the shape codebook. Assuming all indices start at
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0, the Ith point within the jth annulus of the ith shell is assigned to the number

j—1
iP+Y P+l (6.11)

a=0
The encoder and decoder each are required to perform the summation. This can be made
efficient by storing in memory the partial summations Zi;é FP,, for j =0,1,... ,N —1. The
memory required for this is equal to the total number of annuli in the codebook, which is
generally not excessively large. For example, in the rate 4 WA24—SVQ, there are 36 total

annuli.

6.4 Operational Complexity

The computational complexity of the operation of WA-SVQ is analyzed in this section. The
arithmetic functions needed are addition, multiplication, division, square root, and comparison.
In our analysis, one operation is counted for any arithmetic function. If arithmetic functions
take differing times to execute, this count could be decomposed into the number of operations
of each type.

Refer now to the steps in Table 6.1. Step 1 requires no computation. Step 2 requires
k squaring (multiplication) operations, & — 1 additions, and one square root to calculate the
gain; k divisions to calculate the shape; and 3k operations altogether. Step 3 requires one scalar
quantization operation, which can be performed by a binary search with R, comparisons. Step 4
requires one comparison to determine if zy, is greater than 1//2; one multiplication to obtain x%;
one addition and one square root to determine (/1 — :vi; log N < R comparisons in a binary
search to identify £(zy); one multiplication, one addition, and one square root to determine
\/1— §2(xk); four additions, two multiplications, one square root, and one division to complete
the computation of the scaling factor; and k£ — 1 multiplications to obtain f(S). Thus, Step 4
requires no more than k + R; + 14 operations. Step 5 requires the number of steps in a nearest
neighbor algorithm for A. For the Leech lattice, the fastest known algorithm requires about
2955 operations on average [91]. Referring to Lemma 4.1, Step 6 requires one multiplication,
one addition, and one square root to determine h;; one multiplication, one addition, and one
square root to determine /4 — h?; k — 1 multiplications, k — 2 additions, and one square root

to determine ||Y||; four multiplications and two additions to determine g;; one multiplication,
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Table 6.2 Comparison of the operating complexity of WA24—SVQ to other quantization schemes
for a memoryless Gaussian source. Data for other methods are taken from Table XII of [62].

Method Operating complexity
WA24-SVQ 127 + R/25
TCQ (doubled alphabet) 3S+4R+4
TCQ (quadrupled alphabet) 3S+8R+8
GLA 2kR+1

Wilson S 2f+L
Pearlman (S +2)2F

k: dimension

R: rate

S: number of trellis states

one addition, and one square root to determine /1 — gZ; one division to determine g;/||Y||; and
k — 1 multiplications to determine the final result. Thus, Step 6 requires 3k + 13 operations.
Step 7 requires one multiplication and two additions to determine the index. Step 8 requires
no computation. Step 9 requires one division to identify § and a table lookup to identify
S. Altogether, this amounts to at most 7k + R + L + 32 arithmetic operations, where k is
the dimension, R is the rate, and L is the computational complexity of the nearest neighbor
algorithm of A. Thus, per sample, the computational complexity is 7+ (R + L + 32)/k. For
the WA9,—SVQ, the parameters are k = 25 and L = 2955, and the computational complexity
is 127 + R/25.

Thus, the operating complexity of WA-SVQ grows linearly with rate, and is comparable to
that of trellis-coded quantization (TCQ). As previously mentioned, the generalized Lloyd algo-
rithm and several other methods are “noninstrumentable,” as they have operating complexity

which grows exponentially with rate. See Table 6.2.

6.5 Performance Analysis

To design the quantizer, a measure of performance is needed. In particular, a method
is needed to decide when one rate allocation is better than another. Finding an analytic
expression for the distortion under varying allocations would be difficult; however, the distortion

decomposes into gain and shape distortions in much the same way as Sakrison’s spherical vector
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quantizer did in Equation (6.6). The gain distortion may be easily evaluated using numerical
integration. The shape distortion is estimated using a heuristic technique that is motivated by
reasonable assumptions about the mapping used in a wrapped spherical code. The estimate
of the total distortion is validated by the simulated calculation of the actual distortion, which
agrees closely with the estimate.

To compute the estimate of the distortion, it is first decomposed into shape and gain com-

ponents. The MSE per dimension of the WA-SVQ is
1 ~ &2
D = CEIX g8
1 . . A
= TE[IX —g5+95 45|

1 R 2 R R A 1 N LA
= LE[IX — S|P+ ZEI(X - §8)7(3S — 98)] + 1 FllgS —951")  (6.12)

Dy + D, + Dy, (6.13)

where Dy, D., and D, denote the first, second, and third terms, respectively. Thus,
7\ || - 1 A% 1
1-2)x|| |==E|(1=2) | X|?| = =E[(g — §)?
(-9 ] 2l(1-2) ||] LEl(g - 3)7)

(6.14)
the per-dimension distortion due solely to the gain quantizer. Using repeated expectations and

1 . 1
Dy = LE[IX = §5|") = 1 E

the fact that if g5 is known, then g, S, and S are each also known, and it follows that
D, = ZEIEI(X - 38)"(35 - 99)\4S]
= 2BBI(X - §5)7195165 ~ 4]
= 25IBlg - 9)5"198](6S ~ 93)
= ZEIBl(g - 9455735 - 4]
= %E’[E[(g —§)918% (S — §5)], by the independence of g and § from S

= 0,
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where the inner expectation is zero by the centroid condition of the gain quantizer. Thus, the

crossterm does not contribute to the distortion. Finally,

1 R A
D, = 2E[lgS —3S|’]
1. N
= TE@|IS - S|P
p 22
= 72 g BllIS - 511§ = g:]Prlg = gi] (6.15)
i=1

1 A N
= EE[Q2]E[||S — 8], by the independence of S and S from g

1 N
= E(E[QZ] — E[(g — §)*)EI|IS — S||?], from the centroid condition of §

Q

LIS - 817, (6.16)

where the final approximation follows from the fact that, by design, E[(g—§)?] < E[g?]. Hence,
D, may be accurately referred to as the shape distortion (multiplied by a constant).

In summary, the distortion of WA-SVQ is

D = D,+D,

= 1Elg— 91+ BBl - $IP)

FEllg — 9]+ LBl 1B - 5P (617)

Q

Thus, the distortion of WA-SVQ may be partitioned into shape and gain components,
just as Sakrison did for his quantizer [77]. This property holds despite the fact that the new
quantizer presented here consists of multiple, structured, and concentric shape codebooks with
various norms instead of one unstructured shape codebook of a fixed norm. This convenient
decomposition of D into D, and D, allows us to optimize WA-SVQ by separately optimizing
the shape and gain components.

Estimation of D;

An analytical expression for D; is difficult to obtain. Instead, an estimate for D, is made; this
estimate is used in the design algorithm and is validated by the observed shape distortion in
the simulations of WA-SVQ.

Given X = (x1,...,2) € Qf and 23 > 0, let x = sin™ /1 — xi denote the latitudinal
angle of X. Let X and Y be arbitrary points within the 7th annulus and at some fixed distance

|X = Y| = 4. As in Chapter 4, let X' = (z1,...,25-1) and let Y' = (y1,... ,yx—1). If X
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and Y have maximally differing latitudes given the constraints above, i.e., |zx — yi| is as large
as possible given that || X — Y| = J, then the distortion % is less than the ratio of
the arc length to the chord length shown in Figure 4.2. On the other hand, if X and Y have
identical latitudes, i.e., xy = vy, then f scales the first kK — 1 coordinates of X and Y by the
same amount, and ZX'0Y' = Zf(X)0f(Y). Denote this common angle by ¢. Note that the
distances between X and Y and between f(X) and f(Y) now can be computed on a circle. It

follows that

| X —Y] _ 2| X"||sin(¢/2)
£ (X) = fF(Y)] 2[| f (X)) sin(¢/2)
X
1 (X))
cos Ox

= ; — i (6.18)
cos(ia) — 2sin(=5"%)

h(0x)

where Figure 4.2 has been used as a guide in obtaining (6.18). Under the assumption that

% is maximized when zy = y, for all X and Y of the ith annulus, it follows that

X —v]
70 — ) < M0x)-

Although this assumption is not rigorously justified, it is intuitively appealing and leads to

good quantizer performance. Thus,

E[lS —8IP] < E[h*(6s)-1£(S5) — £(S)I”]
= E[R*@s)ElI£(S) — F(9)I] (6.19)
—  E[R2(0))(k — 1) - G(I) - V()& - (d/dp)?, (6.20)

where (6.19) and (6.20) are accurate in high resolution (see Section 2.2.4). The first factor of
(6.20) is the expected shape distortion due solely to the mapping f(-), while the second is the
distortion due to the lattice being used. When the random point P is uniformly distributed on

the part of €2 between latitudinal angles 0 and 7/4, the pdf of the latitudinal angle 6p is given
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Table 6.3 Optimization algorithm for construction of WA-SVQ at rate R.

Step 1. Set R, =0 and R, = R.

Step 2. Use Equation (6.10) to estimate minimum distance of underlying lattice A.

Step 3. Use the Lloyd algorithm to optimize gain scalar quantizer of size 2% for pdf fo(r)-
Step 4. Estimate distortion of WA-SVQ using Equations (6.14) and (6.21).

Step 5. Set R; = R and R = 0, and repeat steps 2-4 to compute a new distortion.

Step 6. Using a binary search, find the allocation of R, and R, which minimizes the distortion.
For each allocation, use Steps 2-4 to compute the distortion.

Step 7. Compute R, exactly using theta function of A.

by Sk—1cos*~20s/( [y ™4 S, | cosh— 2¢'do'). Hence,

/2 coskF—2
E[h*(0s5)] = /0 hz(e)-f cro do

0”/4 cosk—26' 49’

oskF—20

_ Z/ cosf 2 "
= Jimnya \eos((i — D] = 2sin(0 — (i — 1)a)/2] ) [7/% cosk—2 g1 dpr
B / Z cos(f+ (i —1)a) 2 cosk=20 40
B cos[(i — 1)a] — 2sin(6/2) foﬂ/‘l cosk—2 ' 4o’
which is easily calculated given d, since d uniquely determines N and «. Substituting into

Equation (6.16),

D, <

oskF—29

k-1 kl cos(0 + (i — 1)) 2 c
TE[g2]-G( )-V(IL)#-1-(d/da) / Z (COS [(i — 1)a] — 251n(9/2)> foﬂ/z; o2 g7 dgl(céil)

Thus, the total distortion D = Dy + D, may be estimated using Equations (6.14) and (6.21).

This is used in the design algorithm in Table 6.3.

6.6 Simulations and Comparisons

6.6.1 Average distortion computation

The WA94—SVQ was optimized according to the steps in Table 6.3. Its performance was
evaluated with computer-generated i.i.d. Gaussian random samples. The random samples were

encoded as described in Table 6.1; Step 5 was performed by an implementation of the Leech
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lattice nearest neighbor algorithm in [6]. The average distortion was computed for 500,000

Gaussian samples, i.e., 20,000 25-dimensional vectors.

6.6.2 Confidence intervals of the simulations

Note that the codebook sizes for 25-dimensional VQ are extremely large: a codebook with
a rate of R bits per sample has 22 points. For a codebook of rate one, the 500,000 random
Gaussian samples amount to only one sample vector for every 1,677 codebook points. Thus,
it is very important to detail why the simulations give meaningful results despite the fact that
such a simulation cannot possibly test every Voronoi region of every codepoint.

The quality of the simulation results is expressed in terms of a 95% confidence interval. Let
D be the true average distortion of the codebook, and let D be the sample average distortion
found by simulation. Tt is desired to find the value of § such that Pr[|D — D| < ] = 0.95.

The simulation run of 20,000 vectors was broken down into 20 blocks that each contain
1,000 vectors. For the ith block, the average sample distortion D; was determined. Since D;
is a an average of 1,000 i.i.d. random variables, the central limit theorem may be applied to
conclude that D; has an approximately Gaussian distribution. The overall sample distortion
was computed by D = % 2321 D;, and the sample variance of the block averages was computed
by % = 55 2 .(D; — D).

The random variable

is distributed according to the student’s ¢-distribution

n+1

Fn(t)=\/ﬁﬂ2%,%) (nj:ﬁ) 2 ’

where n = 19 is one less than the number of block samples [50]. Thus, the solution with respect

to t of
t
0.95 = / Fo(t) dt
—t
gives the value of ¢ for which Pr[|D — D| < j—f—g] = 0.95. From mathematical tables, it is
found that ¢ ~ 2.093, so that the 95% confidence interval is given by § = 29235  This may be

V19
converted to a confidence interval of the SQNR expressed in decibels by writing

Pr[D -6 <D < D+ éD] = 0.95,
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which implies

D D D
Pr (101 — ) <101 =) <101 =— ]| =0.95.
T[ 08g10 (D—{—é)_ 0810 (D)_ 0810 (D—é)]

Thus, with 95% confidence the absolute difference in decibels between the true and sample
SQNR, i.e., 10log;, (%), is not more than 10log;, (%).

In all simulation results, 10log; (EDT(;) was calculated and found to be less than 0.03 dB.
Thus, with 95sample SQNR, which provides sufficient justification that the average distortions

computed by the simulations accurately reflect the true performance of the codebook.

6.6.3 Comparisons

WA-SVQ was designed to have good performance for asymptotically large rates. This good
performance for high rates holds for surprisingly small rates as well. As indicated in Figure 6.2
and Table 6.4, WA24—SVQ performs within one dB of the distortion-rate function for rates in the
range of two to seven. For this range, it performs better than some of the best quantizers in the
literature, including 256-state trellis coded quantization (TCQ) [62], two-dimensional four-state
trellis coded vector quantization (TCVQ) [93], Fischer’s spherical vector quantization [24], and
Lloyd-Max scalar quantization. With an increasing number of trellis states, TCQ and TCVQ
perhaps would outperform WA-SVQ; however, the reports of results in the literature have thus
far been limited to trellises with 256 or fewer states because the design complexity of TCQ and
TCVQ is somewhat prohibitive for larger trellises. Trellis-based scalar-vector quantization [53]
performs slightly better than WA94—SVQ at a rate of two, but is outperformed at rates three
and higher.

The SQNR gap between WA24—SVQ and the rate-distortion function is roughly constant for
all rates. This property is shared neither by Lloyd-Max quantization, nor by trellis quantizers
(either scalar or vector) having a fixed number of states. The performance reported by Fischer
[24] for a spherical vector quantizer formed from lattice shells is constant but lower than for
WA24—SVQ; furthermore, it is an estimate only and depends on the assumption that points
from high-dimensional lattice shells are approximately uniformly distributed on the sphere.
This assumption requires justification in view of the fact that shells of lattices appear to be

mostly clustered and sparsely located about the surface of the sphere (see Figures 2.9 and 2.10).
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Figure 6.2 Comparison of VQs for the memoryless Gaussian source. The number of decibels
below the SQNR of the rate-distortion function is plotted as a function of rate, for various

quantization schemes.
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Table 6.4 Comparison of various quantization schemes for a memoryless Gaussian source.
Values are listed as SQNR in decibels.

Method Rate: 1 2 3 4 5 6 7
D(R) 6.02 | 12.04 | 18.06 | 24.08 | 30.10 | 36.12 | 42.14
WA24,—SVQ(acc,ind,sim) 244 | 11.02 | 17.36 | 23.33 | 29.29 | 35.27 | 41.33
GLA (kR=8) 10.65 20.98

Lloyd-Max Scalar 4.40 | 9.30 | 14.62 | 20.22 | 26.02 | 31.89 | 37.81
Uniform scalar 4.40 | 9.25 | 14.27 | 19.38 | 24.57 | 29.83 | 35.13
Ent. coded scalar 4.64 | 10.55 | 16.56 | 22.55 | 28.57 | 34.59 | 40.61
UPQ 4.40 | 9.63

Fischer SVQ (estimated) 4.49 | 10.51 | 16.53 | 22.55 | 28.57 | 34.59 | 40.61
TCQ (256 state) 5.56 | 11.04 | 16.64

Wilson (128 state) 5.47 | 10.87 | 16.78

TB-SVQ (4 state) 5.14 | 11.11 | 16.77

TB-SVQ (64 dim.,16 state) | 5.49 | 11.28 | 17.05

6.7 Improvements and Extensions of the Basic Construction

6.7.1 Vector quantization of the gain

Thus far, the shape-gain approach has used a scalar quantizer for the gain and a wrapped
spherical code as a vector quantizer for the shape. Improvement in the distortion can be made
by blocking together the gains of L consecutive k-dimensional vectors. Using this method, the
shape codebook is used L times for the L vectors, and a single L-dimensional VQ is used for
the block of gains.

To evaluate the performance of this scheme, let Y = (X W ... X (L)), where for each 1,
x@ = (Xy), e, X ,gi)), and where X J(-i) is drawn from a memoryless Gaussian source, for all

i,j. As before, each k-dimensional vector is decomposed into its gain and shape by letting

g® = XD and SO = X /g Let

A

Y= (WM. 40 gw)
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be the quantized value of Y, where for all i, S is the quantized value of S using the

shape codebook as before, and where G = (g<1>, ..

.Q(L)) is the quantized value of the vector

(g(l), ceey g(L)). G is the output of an L-dimensional VQ optimized by the generalized Lloyd

algorithm. In particular, the VQ satisfies the centroid condition. The MSE distortion per

dimension is

1 N
7 Bl = Y]

= [Z IX® — 50502

= [Z | X @) _ g g 4 5 g0 _ (i)g(i)H?]

1 .
= § ElNX® —
kL = i

1l

| =
-]
QD
+
A
+
S

GOS0 + 28X -

Following the same analysis as in Equations (6.14)-(6.16),

Thus,

= = HlIG - G
= lEge-ap
Tk

1 A
— ZE[IG - G|

| =

= ZEIIG -G+

1

Q

-7 (ElGI" -

A 1
CElIG = GI* + S ElIGIPIET| S

DO —

1 7 ~ (7
§ EE[(Q() —¢®)?]

) — o

]

{

. 1
@ — Lpie
s 2 [(g

]

NAE(ISD — 5O,

a9+ E[( D)2 ()5

i)

Z1E[IS® — $O2)

LZE

L
1 N )
_ (1) _ &1))2 ~(1)\2
+ o EllISY =5 ];:1 E[(g™)7]

L Az (1)
+ kLE[IIGII 1E[]|S

- S(l) ||2]a

1 . .
E[lG - GIPDE(Is™) -

(1) ||2], by centroid condition

— 517 (6.22)
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which is the same as Equation (6.17) except that the scalar quantizer output § has been replaced
by the VQ output G. For all i # j, g; is independent of gj, and thus the pdf of G is given by
falri,...,rp) = HiL=1 fg(ri). The design algorithm in Table 6.3 remains the same, except that
Steps 3 and 4 are replaced by:

Step 3’. Use the generalized Lloyd algorithm to optimize gain VQ of size 2575 for pdf fq.

Step 4°. Estimate distortion using Equation (6.22)

6.7.2 Allowing the shape codebook to depend on the gain

The codebook of the shape-gain quantizer may be viewed as a set of concentric shells on
which all codepoints lie. Each shell in this set has exactly the same number of codepoints on
it, and is a scaling of every other shell. Consequently, larger shells have more space between
codepoints compared to smaller shells. Also, the pdf of X is not equal among all shells. This
leads us to believe that performance may be improved by allowing shells to have a differing
number of codepoints. This implies having a different shape codebook corresponding to each
output g of the gain quantizer, and that the shape quantizer depends on g and S, instead of just
S. The different shape codebook sizes are obtained by scaling the underlying lattice a different
amount.

Nothing in the analysis of D = D, + D, from Equations (6.12) to (6.15) assumed that the
shape codebooks were all the same. In particular, Equation (6.15) still holds. Let M; denote
the number of codepoints on the ith shell, and define its partial distortion by

1 41121 A .
Di{M;) = 262 (IS = 5113 = gi] - Prlg = gi), (6.23)

so that D, = ), D;[M;]. If the gain codebook is of sufficiently high resolution, then the partial

distortion theorem [31] implies that the optimal allocation of Mi,... , My is such that
Dy [My] = Dy[Ms] = - -- = Dy[My],

as N — oo. Usually, however, the gain codebook is too small to justify use of the theorem.
An alternate optimization method for M; is as follows. For a fixed gain codebook, the
partial distortion D;[M;] is a monotonically nonincreasing function of a discrete argument, it

can be extended to a continuous and piecewise linear function which is also monotonically
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nonincreasing. For ease of notation, let us also refer to this function as D;[M;], with the

understanding that M; is now real-valued. Left- and right-hand derivatives exist for all M; > 0;

let 68_]\21' and an;V[D; denote these derivatives, respectively. Then a necessary condition for the
optimality of My,... , My is

6+DZ‘ > 8_Dj

forallz;é],a—]wi_ M,

That is, removing a point from shell j and adding a point to 7 cannot lower the distortion.
For moderate rates, the left- and right-hand derivatives of each partial distortion are ap-
proximately equal. For example, if R = 3 in WA94-SVQ, then M = 2325 = 3.78 x 10?2, the

gain codebook is size 7, and so M; > 1 for all ¢. Therefore, for each i

- +71.

(?91\21 ~ %AZZ (6.24)
and the ‘+’ and ‘—’ may be dropped from the notation. A necessary condition for optimality
of My,... My is

SAZZ - g—]\%, (6.25)
for all 7 and j.

Using this condition, M, ... , Ms may be optimized, i.e., M1,... , My are chosen to mini-

mize Y_; D;[M;] subject to the constraint that >, M; = 2f«. The optimization is begun with

an initial assignment of M; = --- = My. Then, gﬁj is computed for each i. Let ¢ and j be the
indices of the maximum and minimum partial derivatives, respectively. M; is reduced and M;
is increased by equal amounts, and the partial derivatives are recalculated. This is repeated
until the condition in (6.25) holds. The number of points moved at each iteration does not have
to be constant. Faster convergence to the optimal allocation would occur if a larger number
were moved during early iterations, and a gradual reduction is made throughout the algorithm.
The algorithm is summarized in Table 6.5.

The operating complexity of the quantizer is not affected very much by having gain-
dependent shape quantizers. The encoder and decoder need only store the minimum distance
of each shape code, which increases the storage complexity by a factor of two (only the gain
codebook previously was stored). Using these stored minimum distances, decoding complexity

remains the same as before.
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Table 6.5 Iterative algorithm to allocate number of points per shell.

28s

Step 1. Set M1 =--- =My = N
Step 2. Adjust des1gn parameter m.

Step 3. For each i, compute an estimate of 3 oD; 7 by calculating D;[M;] and D[M; +m] using
Equation (6.23).

Step 4. Let ¢ = argmax; 81; M) and j = arg min 81;3\[/[]\;[’].

Step 5. Set M, := M, — mandM]—M+m

Step 6. Go to Step 2.

If each shell has a differing number of points and/or shells, the index assignment must also
be modified. Let Ann(z) be the number of annuli in the ith shell, and let M (i, 7) be the number
of codepoints on the jth annulus of the ith shell. The codepoints of the first annulus of the first
shell are assigned to the integers (0,... ,M(1,1) — 1), the codepoints of the second annulus of
the first shell are assigned to the integers (M(1,1),... ,M(1,1) + M(1,2) — 1), and in general,

the [th point within the jth annulus of the ith shell is assigned to the integer
i—1 Ann(a j—1
> Z a,b) | + (ZM(i,b)) +1
a=1 b= b=1

6.7.3 Allowing the gain codebook to depend on the shape

The shape-gain quantizers can be improved by allowing § to depend not only on g, but on §
as well [31]. This is accomplished by first encoding S and then choosing § to minimize || X — g3,
instead of ||g — g||. Using this approach makes the optimization problem much more difficult,
since the two quantizers are now coupled. In particular, the gain codebook cannot be designed
based solely on the pdf of g. The analysis of the distortion also becomes more involved, as the
distortion does not separate neatly into shape and gain components, because D, # 0. In any
case, using a training sequence to design g, and simulating the performance of the dependent
shape-gain wrapped spherical vector quantizer, it was found that this more general approach
results in improvements of 0.02 dB or less for rates above 3. For this reason and because
the analysis and implementation of the quantizer is less complex if the two quantizers operate

independently, it was assumed in the rest of the chapter that § depends only on g.

104



x>

<>
I
—

“H,() T Q m()
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6.7.4 Non-Gaussian sources

Inherent in the treatment thus far is that the source has a Gaussian distribution, for if
the source is not Gaussian then the high probability region is not a sphere, but some other
shape [60], and the wrapped SVQ cannot be effectively used. This section presents a method
to obtain the performance above for any source. The method consists of transform coding
the source. Typically, transform coding is done to remove dependencies between consecutive
samples of the source; here, it is used to change the distribution of the source, which may or
may not already be i.i.d., to be roughly Gaussian and i.i.d., so that wrapped SVQ may still be
used. This same intuition was used in [73] to quantize an arbitrary source and obtain distortion
performance that approximates that of a scalar quantizer for a Gaussian source. Unlike the
approach in [73], in this section the source is transformed in blocks, instead of using FIR filters.

Let Q(-) be the output of any k-dimensional vector quantizer. Let

X1 Xy X(k-1)m+1

Xm X2m chm

Let #H,, be a Hadamard matrix of order m, i.e., an m X m matrix with +1 and —1 entries only
such that H1 #,, = mI. Such matrices are known to exist when the order is any power of 2, and
for many other orders as well.! Let H,, = (1/\/m)Hy,. Given X, the vector quantizer output
is: HLQ(H;,X). This is illustrated in Figure 6.3. If Y = H,,, X, Y = Q(Y), and e = v -v,

'"Hadamard matrices are known to exist for orders equal to every multiple of 4 up to 268. It is an open
question as to whether they exist for orders equal to all multiples of 4. It is known that if m is a multiple of 4
and m = p + 1 for some prime p, then a Hadamard matrix of order m exists.
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then it follows that

A~ ~

X = HLY
= HI(Y +e)
= HI(H,X +e)
= HIH,X+Hle

= X+ HEe.
The end-to-end distortion of this system is

E[|X -X|"] = E[X-X)"(X-X)
= E[(Hpe)" (Hye)]
= E[e"H,, H]e]
= E[eTe]
= E[(Y -Y)"(V -Y)]

= B[V - Y|

Thus, the end-to-end distortion of the system is equal to the distortion due to the quantization
of the intermediary signal Y alone. Most importantly, the Hadamard transform modifies the
distribution of the input to the vector quantizer. A row Y; of Y is an k-vector, each component
of which is the sum of m different samples (or their negation) from {X;}; hence, as m — oo the
probability distribution of each component of Y; approaches the Gaussian distribution, by the
central limit theorem. Thus, the internal k-dimensional quantizer () may be optimized with

respect to the Gaussian distribution, even if k is fixed and small.

6.8 Conclusions

The wrapped spherical vector quantizer for the memoryless Gaussian source achieves ex-
cellent distortion performance, in some cases better than any other published results. The
operating complexity of the quantizer grows linearly with the rate, and for moderate rates
is dominated by the complexity of the nearest neighbor algorithm of the underlying lattice.

This complexity is comparable or slightly less than other efficient quantization techniques such
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as pyramid vector quantization of the Laplacian source [24], trellis coded quantization [62],
and trellis coded vector quantization [93]. Thus, the wrapped spherical vector quantizer is
instrumentable, unlike full-search quantization techniques which have exponential operational
complexity.

The codepoints of the wrapped spherical vector quantizer lie in the high probability region
of the source in a pattern that, locally, is only a small distortion of the underlying lattice. It is
worth remarking that packings other than lattices may be used to create the shape codebook.
In this case, more than one type of Voronoi cell results, and an average over all the different
Voronoi cells is necessary to compute the MSE of the scaled packing as in (2.2).

This work might be extendible to trellis coded quantization of wrapped spherical codes. A
trellis coded quantizer based on a lattice is designed using a partition of the lattice into subsets,
where each subset has a larger minimum distance than the lattice itself. This same partition
may be used in the wrapped spherical vector quantizer, and the trellis may operate in the same

manner as it would for the underlying lattice.
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CHAPTER 7

CONCLUSIONS

The characteristics of asymptotically optimal codes with respect to minimum distance,
quantization coefficient, and covering thickness have been related to the corresponding param-
eter for sphere packings in one lower dimension. The wrapped spherical codes presented in this
thesis are asymptotically optimal with respect to minimum distance; the laminated spherical
codes are asymptotically optimal whenever the laminated lattice of the previous dimension is
the densest sphere packing in that dimension. This represents the first work that has produced
asymptotically optimal spherical codes. An extensive review of other methods of construct-
ing spherical codes has been given in Chapter 3. Some of these techniques produce the best
known spherical codes for particular minimum distances, but it was shown that none of them
is asymptotically optimal for small minimum distances.

In addition to being asymptotically optimal, the spherical codes presented in the thesis are
also the best known codes for a large range of moderate minimum distances. The codes are also
highly structured. This structure allows extremely large codes to be used in communication
applications with very modest implementation complexity. In particular, it was shown that
the wrapped spherical code may be used as a vector quantizer for the memoryless Gaussian
source. Despite the fact that the spherical code is optimal only in an asymptotic sense, the
wrapped spherical vector quantizer outperforms other quantizers found in the literature for
rates as low as R = 2 bits per sample. For example, its performance compares favorably with
Lloyd-Max scalar quantization, 256-state trellis coded quantization, and many other schemes.
This is accomplished by using a 25-dimensional spherical code with 225% points, which is an

extremely large number even for moderate R.
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The wrapped spherical vector quantizer opens up a number of new questions. Just as a
memoryless Gaussian source naturally gives rise to a high-probability region near the surface
of a sphere, other sources have high-probability regions with other geometries. For example,
the high-probability region of a Gaussian source with memory is a hyperellipse, and the high-
probability region of a Laplacian source is a hyperpyramid. The mapping used for wrapped
spherical codes may be altered to match these or other geometries.

Since the wrapped spherical code has many of its properties in common with its underlying
lattice, many quantization techniques for a memoryless uniform source may be converted to
quantization techniques for a memoryless Gaussian source. This is based on the principle that
the wrapped spherical codes map RF~1 to €, with little distortion and the fact that a vectorized
memoryless Gaussian source is spherically symmetric and heavily concentrated near the surface
of a sphere. As an example, consider a trellis-coded quantizer for the uniform source based on
the Z? lattice. It is formed by a partition of Z2 into subsets in which each has a larger minimum
distance than Z2?; the partition gives rise to a trellis whose paths correspond to sequences
of subsets. This may be converted to a trellis-coded wrapped spherical vector quantizer as
follows. First, WZ2-SVQ is constructed using the definition of the wrapped spherical code.
The codepoints are then partitioned according to the partition of Z2. The trellis for WZ2-SVQ

may choose a sequence of subsets in the identical manner as the original trellis-coded quantizer.
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APPENDIX A

GENERATOR MATRICES OF LATTICES

1 00 0

010 0

0 00 1

-1 1 0 0 0 0

0 -1 1 0 0 0
Msy,= 0 0 -1 1 -+ 0 0

0 0 0 O -1 1

1 -1 0 0 0 0

1 0 -1 0 0 0

1 0 0 -1 0 0
MA* = .

1 0 0 0 -1 0

-k 1 1 1 11

k+1  k+1  k+1 k41 k+1  k+1
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Mp, =

MDk* =

k

Mg,

1 -1
0 1
0 0
1 0
0 1
0 0
| 172 1/2
2 0
-1 1
0 —1
0 0
0 0
0 0
0 0
1/2 1/2

-1
0
0
0

0 0
0 0
0 0
1 -1
0 0
0 0
1 0
1/2 1/2 |
0 0
0 0
0 0
1 0
-1 1
0 -1
0 0

o o o o o

-1

o o o o o o

1

o O o o o o

0

/2 1/2 1/2 1/2 1/2 1/2
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APPENDIX B

THE ASYMPTOTIC NATURE OF PARAMETERS OTHER
THAN DENSITY

B.1 Quantization Coefficient

In this section it is shown that the quantization coefficient for vectors having a uniform
distribution in R¥~! is k/(k — 1) times the spherical quantization coefficient for vectors having
a uniform distribution on €.

Let X € R* be a random vector with pdf f(X), let Qx denote an N-point vector quantizer
for X, and let
A

uﬁ%EMX—4&ﬂXNm-

D(r,k,N, f) mt

From Zador [99],

lim N"/*D(rk,N, f) = Grlfl] s (B.1)
—+r

N—o

where || fl, = [[ f P1Y/P | and where G is a constant depending only on 7 and k. If f is uniform

inside an open, bounded region R C R¥ | i.e.,

Al 1/V(R) f X €eR
f(X) = Upcrr(X) =
0 otherwise,

where V(R) is the k-dimensional content of R, then (B.1) can be written as

N T'/k
Grk = A}gnw (m) D(k,N,r,Ugcg»)-

G is referred to as the quantization coefficient for vectors with a uniform source in RF, under

the rth norm distortion measure; G, ; may be regarded as the normalized rth norm distortion
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of a uniformly distributed source in R¥ when optimal quantization and a large number of points
are used.

Let X be uniform in an open region 7' C (), i.e.,

1/8(T) fXeT

1>

f(X) = Urca, (X)
0 otherwise,

where S(T) is the (k — 1)-dimensional content of T'. The spherical quantization coefficient for

vectors uniform in 7' C € under the rth norm distortion measure is defined by

A . N T/(k*l)
Hr,k — 1\/11—I>noo <ﬁ) D(TakaNa UTQQ)C)

Lemma B.1 Under the rth distortion measure, the spherical quantization coefficient for vectors

uniformly distributed in a subset of Qy is (k—1)/k times the quantization coefficient for vectors

uniformly distributed in a bounded, open region within R¥=1. That is,

k—1
H, = TGr,k—l-

Proof: Define a mapping F : Q — RF=! by F(zy,... ,2%) = (21,...25_1), and let
T={(z1,... ,25) € U : Vi< k—1,|z;| <c, and 5 > 0},

where ¢ > 0 is a constant to be chosen later. Let R = F(T). For all X,Y € T, it is the case
that | X = Y| > ||F(X) — F(Y)||, and hence V(R) < S(T). In the other direction, the surface
area of T' is less than the surface area of a superscribing hypercube in Ry with k£ — 1 sides of

length ¢ and one side of length O(c?):
S(T) <k 42815 1. 0(?) = V(R) + O(FT).
Also,

IX-vI = (IXx-v|»)"

k r/2
- (S

i=1

= (IF(X) = F(V)|? + 0(c)""”

= IF(X) = F)[" (1 +0(c?).
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Hey = lim (%)“ D(r,k, N, Urca,)
() g fn -
2 Hm (V(R)+NO(ck+1) inf /”F N(X))HTV(R) +10(ck+1)dX
- %;gnw(%)m[l—o it [ I = @y Ol - (1~ Ofe)
= B %)"”mf L 1K = QI gy X | - (- 0@ ax
= %Gr,k_l [1—0(c+cﬁ)]

and

Hy < ngnoo(%) it [ (1P = FQuCOI (14 0(2)] X

= B () e _l/nx QN g7 | - [1+ 0]
— %GT,H [1+0(ch)].

Thus,

1—O(c)§(k_kf§%§1+0(02).

Since ¢ may be chosen arbitrarily small, H, j = %Gr,k_l. |

B.2 Covering Thickness

The covering thickness (or covering density) of an arrangement of unit-radius spheres that
covers R¥ is defined as the average number of spheres that contain a point of R¥. Denote
the minimum covering thickness for R¥ by Ogx. If A is the set of unit-radius spheres in
the arrangement and N (A, R) is the number of spheres in A whose center lies inside the k-
dimensional hypercube centered about the origin and with edge length R, the covering thickness
is

k
Opr = 11%11_)1101O Al;lﬂg N(A,R)Vy/R".
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Similarly, suppose an arrangement of spherical caps with angular radius ¢ covers . Let
C(¢) denote the set of caps, and define Ogq, (¢) as the average number of spherical caps that

contain a point of €, i.e.,

Let the thinnest asymptotic covering thickness for ) be defined by

1>

A . .
A, f .
O =l ¢ o, O (@)

Lemma B.2 The thinnest asymptotic covering thickness of i equals the thinnest covering

thickness of Ry_1, i.e., Oq, = Ogk-1.
Proof: Define a mapping F : Q, — RE™! by F(zq,... ,25) = (z1,...2k_1), and let
T={(z1,... ,25) € U : Vi< k—1,|z;| <c, and x5 > 0},

where ¢ > 0 is a constant to be chosen later. Let {C(¢)} be a family of coverings of 2 whose
thicknesses converge to ©q, as ¢ — 0. Construct an arrangement of unit-radius spheres in
RF~1 with centers from the set

AFC@nT)e cZ’H_

A(9) 5

Then the arrangement covers Rf—1.

Oq, = lim inf ©Ogq,(¢)

$—0C(¢) 20
— lim it €@ S(e(k, 9))
$—0C(4) 20 Sk
o e C9)NT| - S(c(k, 9))
= it S(T)
~ 900(9)2T k-1 4 O(ck+1)
e AN (ET)/)] - Vieigb Tt 1-0(47)
- i%céf)lgT ck=1 "1+0(?)
o : [AQ/R)N(R-F(T))[- Vg1 1
N Rh—{%o A(l/}lslng—l ck—1Rk-1 1 —I—O(02)

o : (1 _ 2 k-1
= Jm b NAQ/R), BV - (1= O()/R

= Qi - (1—0(2))

Since ¢ can be chosen as small as desired, ©q, = Ogi-1. B
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APPENDIX C

PROOF OF LEMMAS

C.1 Proof of Lemma 3.1

Proof: First, suppose that Aj¢ > Ai‘icf . Then there exists a family of spherical codes

{C(k,d)} such that

lim A g = ALS > APY,
i etkd) = Sk 2 B
Define a mapping F : Q — R¥~! by F(z1,... ,2}) = (z1,... ,2x_1) and let

d2/3
R = (Il,...,l’k)EQkZ‘l’i|<T, V’LSIC—]. .

This is illustrated in Figure C.1. We construct a (k—1)-dimensional sphere packing with density

greater than Aﬁaff . Define the packing by the sphere centers described by the direct sum

P = F(RNC(k,d)) & (d*/® + d)z+ 1.
Denote two arbitrary distinct points in P,Q) € P by
P =X+ (d*? +d)(i1,... ,ir_1)

and

Q =Y + (d2/3 +d)(]17 ajk—l)a
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(a)

Figure C.1 Mapping part of Q) to R¥~1. (a) R is the set of points whose image under F lies in
a hypercube of edge length a = d%/3. (b) A packing is constructed by shifting copies of F(R).

where X, Y € F(RNC(k,d)). If (i1,... ,ig—1) # (j1,--- ,Jk—1), then clearly |P — Q| > d. If

(’il,. .. ,’I;kfl) = (jl,. .. ,jkfl), then

1P-Qll = [[X-Y]
> d- ||F_1(X)—F_1(Y)V||+ X =Y (C.1)
k k-1
= d— | > (@i —yi)?+ \l D (@i —i)?
\ im1 i=1
k—1 k—1
> d— (i — i)® — |zp — ye| + Z(ﬂfi —4i)? (C.2)
\ i=1 i=1
= d— |zg — yxl
> d- (1 1 (k- 1)d4/3/4)
> d—0(d"?),

where (C.1) follows because F~1(X), F~}(Y) € C(k,d), and (C.2) follows by the triangle in-
equality. Thus, the packing radius is at least (d/2) — O(d*/?). By the choice of the family
{C(k,d)}, for any € > 0 there is a sufficiently small d such that

(Ai =) S(R)
S(c(k,0/2))

[RNC(k,d)] >
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where S(R) is the (k — 1)-dimensional content of R. Since the (k — 1)-dimensional content of

a (k — 1)-dimensional sphere of radius 7 is V;_17*~! and using (2.7),

Vii1($—O(@/3)k=1 Vi q(4 —0(d*?))k!
S(c(k,0/2)) T Vi1 (d/2)F T+ O(dF )
= (1—o0(d@/) (C.3)

Also, since F(R) is a (k — 1)-dimensional hypercube with edge length d?/3, we have S(R) >
S(F(R)) = d**=1)/3 and thus

S(R) S S(F(R))
(d2/3 + d)k—l = d2(k—1)/3(1 + O(dl/S))
1
T 1+ 0(dP)
= 1-0(d"?). (C.4)

The density of the sphere packing P is (for sufficiently small d,e > 0)
_ 4/3Y 1.
Vlc 1(d O(Qd ))k 1
(23 + d)k—1
_ 4/3
(Ap* = )S(R) Vimr (D!

Ap > [RNC(,)-

S(c(k,0/2)) (23 + d)k—T
e e e
= (& _6)((d2/3+d’€1 S(c(k,0/2)) )
> (AF© —e)(1—0(d"?)(1—0(d/?)F! (C.5)
> (A —e(1- O(dl/?’))k
> AR, (C.6)

where (C.5) follows from (C.3) and (C.4), and (C.6) is true for sufficiently small € and d. This
is a contradiction, since Agacf is by definition the highest density possible. Thus, Aj¢ < AP aCk
It remains to show that Aj¢ > Aﬁa_cf . Let P(d) be the set of centers of spheres of radius
d/2 which belong to a (k — 1)-dimensional sphere packing with density Aﬁac{c From P(d), we
shall construct a family of spherical codes whose asymptotic density is Ap ‘wk For any € > 0,
Q) can be partitioned into sets (called “cells”) whose diameters are at most € by uniformly
quantizing each coordinate separately. Let L be an arbitrary cell, and define axes such that if

(1,...,z) € L then |z;| <eforall i <k —1 and z; > 0. Let

CL={Xe€Q:F(X)eP(d)nF(L) and cx(k,sin"*(d/2)) C L},
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and define a spherical code by C = UCy.

Let X,Y € C, with X #Y. If X and Y belong to the same cell, then || X — Y| > d, since
points in P(d) are separated by at least distance d. If X and Y do not belong to the same cell,
then cx (k,sin~!(d/2)) and cy (k,sin~!(d/2)) are disjoint and again || X — Y| > d. Thus, C has
minimum distance at least d.

The density of (k—1)-dimensional spheres of P(d) with centers in F'(Cr) (i.e., the percentage
of volume within F'(L) covered by such spheres) approaches Aia_cf as d — 0, by the choice of
P(d). As in the first part of the proof, the ratio of the (k — 1)-dimensional content of L to that
of F(L) can be made arbitrarily close to 1 and the ratio of the (kK — 1)-dimensional content of a
spherical cap c(k,sin~!(d/2)) to the (k — 1)-dimensional content of a (k— 1)-dimensional sphere

of radius d/2 can be made arbitrarily close to one, by the choice of e. Thus, the asymptotic

pack m

density of cell L, and hence C, can be made arbitrarily close to A7

C.2 Proof of Lemma 3.7
Proof: Let v € (0,7/2) and
R={(z1,...,xr) € Qi : siny < x < sin(y+0) },
and let S(R) be the (k — 1)-dimensional content of R. Then,
y+0
S(R) = Sk—1/ cos* 2z dx
v
y+0
— Sia [ (cosy = Oa =) d
v
y+0
= Sk_l/ cos® 2y — Oz — ) da
v
= Sp_10cost72y — 0(6?).

Since the kth coordinate of every codepoint in C4(k,d) is of the form sin[(i 4+ 1/2)d], every
codepoint in C4(k,d) N R has the same kth coordinate, say, sinn. Thus,

|CA(k,d) N R| = M(k — 1,d/ cosn). (C.7)

By the definition of A$. | given any € > 0 there exists a sufficiently small dy > 0 such that
y k—1> g

M(k —1,d/ cosn)S(c(k — 1,sin"1(d/(2cos7))))
Sk—1

< A]scfl +e€
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for all d < dj. Since

sin~! (L) =sin~! (sm(0/2)) = 6 - 0(93)a
2cosn cosn 2cosn

one can apply (2.6) and obtain

k—2
S(c(k —1,sin71(d/(2cosn)))) = Vi_a ( b ) —0(6%).

Hence,

|CA(k,d) N R| - S(c(k,0/2))
S(R)
M(k —1,d/cosn)S(c(k,8/2))
S(R)
(AFE +€)Sk-15(c(k,6/2))
S(c(k —1,sin1(d/(2cosn))))S(R)
(A3 + & (Ver(§)F — O(6F))

Acaga <

(Vis ()" = 009 @02~ 0(0)

(A3 + & Vi1(H

IN

2cosn

AR +€)Vi—
_ (& 21Vk€2) L4 000),

ack
Ai o Vi1

= TH‘FO(G—FQ),

where (C.9) follows from (C.8), and where (C.10) follows from

cos "y cos "y

cosn  cosy — O() =1+00).

By letting ¢ — 0 and § — 0, the result is obtained. W

C.3 Proof of Lemma 4.1

Proof: Let Y € RE-L Y #£ 0, and let J(Y) be the set claimed to equal f~(Y).

X = (z1,...,z) € J(Y), and define X' = (z1,... ,2,_1). Let 7 be such that

2
OShiS\/(§i+1_§i)2+(\/1_51'2_\/1_51'2-1—1) :
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(C.10)

Let



Then z = 1/1 — g2, | X'|| = ¢i, and
f(X) = (,/152 \/mk_gz ¢1_5z \/1—:%)) X

1 — 22

(e[ ao) (e a))

Hence,

) =Y (ﬂ \/(M—@)2+ (ﬂa)l S

& 2(1—@\/1—93—9,\/1—53):}13 (C.11)
& gi=<1—%2>\/ —& - hg’ 4 —h2, (C.12)

where (C.11) follows because Y # 0, and (C.12) follows from simplification and the quadratic

formula. The condition is always satisfied, by the definition of g;; therefore, X € f~1(Y), i.e.,

J(Y) C f~YY).
Now let X = (z1,... ,2x) € f7'(Y), and let i be such that & = {(zy). Since f~*(Y) can

have at most one element corresponding to each &;, from the above it only has to be shown that

osms\/(ém (\/1—52 Ji- m) .

The left inequality is implied by 0 < ||[Y[| = || f(X)|| < /1 — £2. On the other hand, & = {(zy)

implies &1 > |zg|, and thus

\/(gz+1 <\/1—§2 \/1—Z+1) > \/(x“—fz (\/1—xk—\/1—§2)
= J1-g-|v],

which is the right inequality. Therefore, f1(Y) C J(Y). R
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C.4 Proof of Lemma 6.2

Proof: The derivation involves an integral which can be massaged to the form of the Gamma,

function:
FUXI) = [ afya)ds
22
©  2gkese?
= / s dz
o T(3)(202)k/2
0o 9k/2—t  [g2 . "
= /0 ?%) . Q_t dt,by settlng t= 202
5 poo
e
I'(3) Jo
_ 2021"(%)
r(%)
,/2 2
= kﬂal ,since I'(1/2) = /7.
ﬂ(ia 5)
Also,
E[|X|?] = B[X? +--- + X}] = B[X?] +--- + E[X}] = ko?,
and
9 9 9 27a?
var[| X |]] = E[||X[]"] = E[|X]]" = ko” — —7—
/B (57 5)
|
C.5 Proof of Lemma 6.3
Proof: Let f(k) = var[||X||], where X is a k-dimensional vector formed from an i.i.d.

N(0,02) source. It suffices to show that f(k+1) — f(k) > 0 for all £ > 0. From Equation (6.3),

2

k) = ko® — ——.
= mED
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Thus, f(1) = 0? — 2;2/22()2 ) = o%(1 — %) ~ 0.363 and it is readily computed that the sequence
continues 0.429,0.453,0.466,0.473,0.478, . ... Hence, attention may be restricted to k > 6.

flk+1) = f(k) =

i k41 k
_ 2ligo FQ(?) 3 I12(3)
I r2(3) (5
[ k
— 2142 (FQ(%) - k21“2k(§1) )] ..
I FQ(E) 4F2(i)
Let g(k) = 2I'? (&) / (kT2 (%)). From Stirling’s asymptotic series [36],
k1 E+1\7 [ 2 1
™
"(57) = (%) a
2 2e (5 12(5)

(3) = ()& (g mm)

Thus,

If a function h(z) has a continuous (n+1)st derivative for all z € [0, t] and satisfies "+ (z) > 0

for all z in that range, then [4]

") ()
h(z) > Z m

1!
1=0
for all z € [0,#]. Thus, e * > 1 — u for all u € [0,1], since Zze % = e~ > 0 for all u € [0, 1].

du?
Also,

2 b !
4

In(l1+z) >z~ —
for all z € [0, 1], since % In(1+z) = ﬁ > 0 for all z € [0,1]. This implies

2 '3

2 x3

1 r x
~In(1 >1 -2 4 -
) 21-gd 5=
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for all z € (0,1], and

1+ — exp E In(1 + w)]

2 3

xr 332 .CC3
- eXp[_T’?_Z]
> 6-(1—£—|—$—2—$—3>
- 2 3 4

for all € (0,1]. Note that = € (0, 1] implies u = £ — % + ﬂ—g > 0, which meets the requirement

for the inequality e ® > 1 — u. Setting k = 1/, it follows that

1\* 11 1
1+-) e (1- 45— —= 1
<+k> = ( o% T 32 4k3> (C.13)
for all K > 1. Also, for all k£ > 1,

85 169 13
k kp7— 0 _
Ok +7 > k47— 1% ~ Sears 364k

13 1 1
C (i) (e ke L),

Dividing both sides by the first factor on the right-hand side and then dividing by the last

factor on the right-hand side give

1+ \? 13
(_) s1o B ©.14)
1+ & + s 72k

for all £ > 1. Using Equations (C.13) and (C.14),

111 13
B o> (1-—+— L) (1=
9(k) = ( 2% 32 4k3) ( 72k2)

o1 23 13 13

-1 - - 1
ok T 7T2kZ T 144k7  216k% | 288K5 (C.15)
1

1— — 4+
SR TR,
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where the last inequality holds for all k¥ > 7, as can be verified by using the quadratic formula

on the third through fifth terms of (C.15). Therefore,

Fh+1) = f(k) > o <1+kg(k) - g(k—k)>
— ﬁ(g(k)2+@_l>

g9(k) k

ko? 1 1\?2 1—2+
> 2 (12 — 4+ — T2 T 8k 4
) (( 2k+8k2) T
T 64k3g(k)

which was what was wanted. l
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APPENDIX D

PROOF OF THEOREM 5.1

Proof: Use induction on the dimension k. The claim holds for k£ = 2, since Apsc(2,d) >

1-— % and Aj, = 1. Now suppose k > 3 and let
J = {z d'* < ry <1 —d"*, where r; is determined by (5.5)} .

For each ¢ € J, the density Ar, of gap 7T; of LSC shall be computed. The (k — 1)-dimensional

content (surface area) of T; is

1—ri
S(T) = / Skt (1- $2)(k73)/2 dz. (D.1)

,/1—r?

The integrand in (D.1) is monotonically nonincreasing in z, and hence

(\/1—7" —\/l—r)rfl?’gikl (\/l—r /1 ) (D.2)

Using (5.5), the occurrences of r; in (D.2) shall be removed. First (5.5) will be put into an

asymptotic form. In the following, constants encompassed by the O-notation do not depend on

i. Since r; > d/¥ for all i € J, ry;) > d'/* — d*/F = Q(d"/*), and so

O e R e

T's(i)
Also,
1 2 Gy _ 1 Choali 1 1 d?
4 2 2 B A_,r?
3(1) \ S(Z) 4(1_ k— 2 i— 1)
s(z)
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where the fact that

2
o124 o |rsw) +d*
Ts@) T's(3)

2
= |1+ 0@/
= _,+0(d/

< 0.99, (D.3)

has been used, where (D.3) holds for sufficiently small d because ¢ , < 31/32 for k < 49 [14].

Similarly,
2 72
ri_,d

2
"'s(3)

and thus, (5.5) can be rewritten as

62 T'-2
ri 11— O(@*=D/%) +d\ /1 - 12, ( 1 0(d2))

1-0(d)

_ 2 ChoT7 1 2k—1)/k
= rady| (=12 ) (12 B2 ) gaemy,

Ts@)

2
112 = (n L dy| (1 —r2 (1 %- 2” 1) O(dZ(’“l)/’“))

1/2
I 1do 1 — Ck 271 1 /
; i—1 S(Z d2k 1)/lc)
A 1= / 1—r?
1—7" —1

1—7r
= J1—r2 -7 i1 — ck2zl O(2k=D/ky.
T's(4)

Hence, the left- and right-hand sides of (D.2) differ by O(d?). This gives

S(T; _
A (o= i) s o)

2 2
= riza 1= B gy
(i)

< hi-d,, (D.4)
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where (D.4) holds for sufficiently small d. From Equation (11) of [38],
S(c(k,0/2)) = Vi1 (d/2)F1(1 — O(d?)). (D.5)

and thus the number of codepoints in each of shell C;_1(k—1,d/r,(;)) and shell C;(k—1,d/r,:))
is

Nsay = — <k b %) k-1

$ (e (k=157 (545)))

ALSC( )) Sk—1

VH( 5)

Arsc(k —1, O(d( DIk)) Sk

Vi—2 (%(i))kiz

where (D.6) holds for sufficiently small d, by (D.5). The density of spherical caps in 7; is thus

Ap = NS ;Eﬁgv) 0/2)) (D.7)

(ALSC(k1,O(d(k1)/k))'5k1) . Vk_l(d/Q)k—l (11— O(d2))

k—2
Vi <2Tj(i) )

Y

(D.6)

7

. Sk_1r¥ 21—, .
_ Awsc(k—1,0d* V)Y O(d*) (D.9)
2Vi_oy/1— 2,
v (1 — O(d"/*)) — O(d'/*) (D.10)
2oy /1 =,
I v 0 D (d/F), (D.11)

2‘/16 21/1—Ck 9

where (D.10) follows by induction on k. The above density applies for all ¢ € J, ie., all ¢
determined by (5.5) that are not in a wasted region. Now the argument is repeated for r;

determined by (5.7). Let
J = {z d* < r; <1 —d"*, where r; is determined by (5.7)} . (D.12)

If J' # ¢, let i € J', and let

= U (.13



Then from (5.7),

Ty =T 0y + d1 /1 — Ti2—lk,1 — O(d2),

and

= T e d O

From (D.2), with r;_; replaced by r;_;,_,, it follows that

(i), < 580 < (i i)

Again, the left- and right-hand side differ by O(d?). Thus,

s = (i) vo

= rF2 A4 O(d®-V/ky

i—lg 1

IN

k=2 d(1 4+ O(dM*)).

i—lp 1

The density of spherical caps in R; is thus
lk—1Ny(5)S(c(k,0/2))

Agp. = D.14
A k—1,0(d*k=1/k)).5, _ _
li_1 LSC( ( k_)2) k=11, Vk_l(d/Z)k 1, (1 _ O(d2))
()
> (3)
- Se-ari 2 d(1 + O(dl/*))
_ (k—=1)/kY).
Busclt LOWEID) S | Ly, (d/2)k - (1 £ O(d/¥))
tor ()
>
Sk_lrf:li_ld 1— Ciﬁ
AV
> Skl ik, (D.15)
24/1— Ci_2Vk_2
where (D.15) follows from Iy >1/,/1 —¢Z_,, and (D.15) follows from (D.8)-(D.11).
Since (D.11) and (D.15) are independent of i, the density of 7" can be bounded as
Ap, Vi
Ap > Rkl gk, (D.16)

2,/1=c2 Vi o
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Since r; — rj_1 < d, for all j, the (k — 1)-dimensional content of any buffer zone is bounded
above by Sy 1d. The number of buffer zones in this region is no more than 2[d=2/*], where
buffer zones with both positive and negative kth coordinates are included. Hence, the total

(k — 1)-dimensional content of B = U;B; is bounded as
S(B) < QSk_ld[d_2/k-| = O(d(k_2)/k)’

and S(W) = O(d'/*). Thus,

Arsc(k,d) > ArS(T)
Sk
= 5(7) - S(B)

A7

_ Apnes Vo1 0(d/*) (M) (D.17)

Wp_o\/1— 2, Sk

— AAk—ZVk_l _ O(dl/k)

Vo4 /1=,
where (D.17) follows from (D.16). Since layers of Ax_; within Ay are separated by a distance
of /1 — ci_l and each lattice point is distance 1 from an adjacent point, it follows that

= A

AAkfl‘/k?(%)k AAkflvk:

E = = .
Vit (31 /1—c2 | 2V /1—c2

Thus, Arsc(k,d) > Ap,_, — O(d'/*). m

Ap

(D.18)
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