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ABSTRACT OF THE DISSERTATION

Linear Network Coding over Ring Alphabets

by

Joseph Michael Connelly

Doctor of Philosophy in Electrical Engineering

(Communication Theory & Systems)

University of California, San Diego, 2018

Professor Kenneth Zeger, Chair

As connected devices play an ever-growing role in our society, there is a subsequent need for ad-

vances in multi-user communication systems. In a network, senders and receivers are connected via a series

of intermediate users who share information represented as sequences of bits or elements of some other fi-

nite alphabet. By allowing users to transmit functions of their inputs, as opposed to simply relaying received

data, the information throughput of a network can be increased. Network codes in which these functions

are linear are suboptimal in general but are of practical interest due to their mathematical tractability and

low implementation complexity. The study of linear network coding has primarily been limited to finite

field alphabets. In this work, we consider linear network codes over more general algebraically-structured

alphabets, namely finite rings. We contrast linear network codes over finite fields, commutative rings, and

non-commutative rings, and we discuss cases where non-linear codes attain higher information rates than

even very general linear codes. Our results show that finite fields are, in some sense, the best ring alphabets

for linear network coding, but in certain instances, it may be advantageous to use linear coding over some

other ring alphabet of the same size. Specifically, we prove results related to:

x



(i) network solvability: whether or not a network’s receivers can obtain their desired information using

codes over a given alphabet. We characterize the commutative rings for which there exists a network

that is linearly solvable over the ring but not over any other commutative ring of the same size.

We show that these rings are, in some sense, the best commutative rings of a given size for linear

network coding. We then present an infinite class of networks that are linearly solvable over certain

non-commutative rings but not over any commutative rings. We also prove that vector linear codes

over finite fields minimize the alphabet size needed for linear solvability, which is desirable from an

implementation complexity standpoint.

(ii) network capacity: how much information per channel use can be sent to the network’s receivers in

the limit of large block sizes for transmission. We show that the linear coding capacity of a given

network cannot be increased by looking beyond finite fields to more general rings.
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Chapter 1

Introduction

In the past decade, the world has become a more connected place, as cell phones, personal com-

puters, and other smart devices have become increasingly ubiquitous. By 2021, the global Internet traffic is

projected to double its 2017 levels, and the number of connected devices is expected to exceed the global

population by a factor of three [4]. Alongside this growth in information volume, there is an ever-increasing

demand for faster broadband speeds for applications such as video streaming and cloud computing. This

growth in demand has produced a subsequent need for advances in multi-user communication systems,

wherein senders and receivers are often not connected directly. Rather, information passes through interme-

diate users and relays in a network.

1.1 Network Coding

In 2000, Ahlswede et. al [1] published a seminal work proposing a mathematical model for in-

formation networks. They showed that, under this model, the information throughput of a network can be

increased by allowing network nodes to transmit functions of their inputs, as opposed to simply relaying

(routing) data. This paradigm shift gave rise to the field of network coding, which has since produced a

rich collection of theoretical results and practical applications [2, 17]. Network coding has connections

to a broad range of topics in engineering, mathematics, and computer science, and many problems in the

field lie at the intersection of information theory, graph theory, complexity theory, and linear algebra. This

dissertation explores a connection between abstract algebra and network coding theory.
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Data in networks, such as sensor readings or multimedia, is typically represented as sequences

of binary bits or as elements of some other finite set (e.g. ternary or, more generally, n-ary), called an

alphabet. In order to more easily study and implement network codes, we can impose algebraic structure

on the alphabet. That is, we introduce operations, such as addition and multiplication, on the alphabet,

allowing us to describe edge and decoding functions in a network code in terms of these operations. There

are generally multiple ways of assigning addition and multiplication operations to a given alphabet while

still preserving certain arithmetic properties. In this dissertation, we compare classes of network codes with

various algebraically-structured alphabets. Prior work has focused on alphabets with finite field structure; in

what follows, we study the more general case where the alphabet is a finite ring. We broadly seek to answer

the question of whether or not it is advantageous to use this more general class of network codes. We show

that, while the information throughput of a network cannot be increased by using codes with finite ring

alphabets instead of field alphabets, there can be other advantages to using these codes in certain instances.

1.2 Group, Ring, and Field Alphabets

x,y

x,yx,y

x,y

x

x

x

x y

y

y

y

x⊕ y

x⊕ y

x⊕ y

(x⊕ y)⊖ x = y
(x⊕ y)⊖ y = x

00

11 22

33

44

55 66

Figure 1.1: The Butterfly Network (left), and a solution for the Butterfly Network (right) over any finite

group alphabet. There is a single source, node 0, which generates the messages x and y. Each of the

receivers, nodes 5 and 6, demands both x and y. The Butterfly Network has no routing solutions when each

edge is used at most once.
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The overarching goal in network coding is for the receivers to recover their demanded messages

while limiting the number of uses of the channels that connect the network’s nodes. Such channels are

modeled as directed edges that can carry symbols from the network alphabet. The Butterfly Network, given

in Figure 1.1, is a classic example of a network that exhibits a throughput gain via network coding. When

each edge of the Butterfly Network can carry at most one symbol, the source’s messages cannot be relayed

to both receivers using routing alone, regardless of the network alphabet. To see this, if (without loss of

generality) node 0 transmits x to node 1 and y to node 2, then in order for x and y to get to nodes 6 and

5, respectively, the center edge must carry both symbols. However, we will see that using network coding,

the receivers can recover their demands over any alphabet size using each edge exactly once. In order to

describe such a network code, we introduce an algebraic structure with addition and subtraction operations.

Definition 1.2.1. An Abelian group (G,⊕) is a set G with a binary operation ⊕ : G×G → G such that

• ⊕ is associative and commutative,

• there is an identity element 0 ∈ G such that 0⊕g = g for all g ∈ G, and

• for each g ∈ G, there exists an inverse (−g) ∈ G such that g⊕ (−g) = 0.

We will write g⊖h to mean g⊕ (−h).

The binary alphabet {0,1} together with the exclusive or (XOR) operation forms an Abelian group,

where 0 is the identity element and 1 is its own inverse, i.e. addition and subtraction are both XOR, in

this case. More generally, if n is a positive integer, then the n-ary alphabet Zn = {0,1, . . . ,n−1} forms an

Abelian group with n elements, where the operation is addition modulo n (i.e. taking the remainder of the

sum when divided by n), e.g. 1+2 = 0 modulo 3 and 4+3 = 2 modulo 5.

If an Abelian group structure (G,⊕) is imposed on the alphabet in the Butterfly Network, then the

network code given in Figure 1.1 allows each receiver to recover both x and y using each edge exactly once.

This network coding solution requires only addition and subtraction operations and is valid for any Abelian

group alphabet. This means that regardless of whether the network alphabet is binary, ternary, or n-ary, the

receivers can recover their demands using this code.

In general, networks may require more complex coding operations in order to achieve solutions, and

it may not be the case that a solution is attainable over every alphabet size. We can introduce a multiplication

operation by considering network alphabets that have a ring structure. This will allow us to study classes of

network codes much broader than those consisting only of addition and subtraction operations.
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Definition 1.2.2. A ring (R,+,∗) is a set R with binary operations + and ∗ such that

• (R,+) is an Abelian group with additive identity 0,

• ∗ is associative and distributive with respect to +, and

• there is a multiplicative identity element 1 in R such that 1∗ r = r ∗1 = r, for all r ∈ R

For brevity, we will often refer to a ring (R,+,∗) as R. A ring is called commutative if the multiplication

operation ∗ is also commutative.

In other words, a ring is a collection of elements with addition, subtraction, and multiplication

operations that behave as we might expect, except that a∗b is not always equal to b∗a. The set Zn together

with addition and multiplication modulo n is a commutative ring with n elements. In particular, the addition

and multiplication tables of Z4 are given by

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

∗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

For each integer k ≥ 2, the set of all k× k matrices whose entries are from Zn together with matrix addition

and multiplication modulo n is an example of a non-commutative ring, since matrix multiplication does not

commute, in general, e.g.



1 0

0 0








1 1

0 0



=




1 1

0 0



 6=




1 0

0 0



=




1 1

0 0








1 0

0 0



 .

There are generally multiple rings of a given size. For example, the ring of k× k matrices with entries from

Zn and the ring Z
nk2 both have nk2

elements and are distinct, since the former is non-commutative and the

latter is commutative. While our focus will be on rings with a finite number of elements, there exist rings

with infinite cardinality, such as the set of integers Z together with addition and multiplication.

Not every ring has a well-defined division operation for its non-zero elements. As an example, in

the ring Z4, we have 2 = 2∗1 = 2∗3 and 0 = 2∗2 = 2∗0, so the element 2 has no multiplicative inverse.

That is, there is no element a ∈ Z4 such that 2a = 1, so there is no notion of “dividing by 2” in Z4. On

the other hand, in the ring Z5, we have 2 ∗ 3 = 4 ∗ 4 = 1, so 2−1 = 3, 3−1 = 2, and 4−1 = 4. It turns out

whenever p is prime, every non-zero element of Zp has a multiplicative inverse.
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Definition 1.2.3. A field is a commutative ring in which every non-zero element has a multiplicative

inverse.

The sets of rational, real, and complex numbers together with their respective addition and multipli-

cation operations are infinite-cardinality fields. Many results from linear algebra extend to fields with finite

cardinality, making them attractive from a coding theory perspective. Unlike finite rings, a finite field must

have prime-power size. When p is prime, there is a unique finite field with pk elements, which we denote

by GF(pk).1 The rings Zp and GF(p) are isomorphic, but when k ≥ 2, the ring Zpk and the field GF(pk) are

distinct. For example, GF(4) has elements {0,1,α ,α+1} and addition and multiplication given by:

+ 0 1 α α+1

0 0 1 α α+1

1 1 0 α+1 α

α α α+1 0 1

α+1 α+1 α 1 0

∗ 0 1 α α+1

0 0 0 0 0

1 0 1 α α+1

α 0 α α+1 1

α+1 0 α+1 1 α

Addition and multiplication in the field GF(4) differ from addition and multiplication in the ring Z4. In

particular, every element of GF(4) added to itself is zero, whereas 1+1 = 2 in Z4, and there is no non-zero

element of GF(4) whose square is zero, whereas 2∗2 = 0 in Z4.

1.3 Scalar Linear Codes over Finite Fields

For each integer n ≥ 2, the n-Choose-Two Network, given in Figure 1.2, is another example of a

network that exhibits a network coding throughput gain under certain circumstances. Let F be a finite field,

and consider a code for the n-Choose-Two Network in which the messages x and y are from F and each

edge carries a single symbol from F of the form:

λi = Ai x+Bi y

where the Ai’s and Bi’s are constants in F. Such a code is scalar linear over F. In other words, scalar linear

codes over fields consist of network out-edges carrying field elements which are linear combinations of their

input field elements. It was shown in [21] that, for each finite field F, there exists a scalar linear solution for

the n-Choose-Two Network over F if and only if |F| ≥ n−1.

1“GF” stands for Galois Field, named after French mathematician Évariste Galois.
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x,y
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λ1 λ2 λn−1 λn

Figure 1.2: The n-Choose-Two Network is parameterized by an integer n ≥ 2. There is a single source node

that generates messages x and y, and there are
(

n
2

)
receivers, each of which gets a unique pair (λi,λ j) of

intermediate functions of x and y, from which they must recover x and y.

In particular, if F is such that |F| ≥ n−1, define a scalar linear code over F such that

λ1 = x, λ2 = y, λi = x+Bi y (i = 3, . . . ,n),

where the Bi’s are distinct non-zero elements of F. Such a choice for B3, . . . ,Bn is possible, since there are

at least n−2 non-zero elements of F. Then x and y can be recovered from each pair (λi,λ j) by:

(
λ1, λ2

)
= (x,y)

(

λ1,
λi −λ1

Bi

)

= (x,y) (i = 3, . . . ,n)

(
λi −Biλ2, λ2

)
= (x,y) (i = 3, . . . ,n)

(
Biλ j −B jλi

Bi −B j

,
λi −λ j

Bi −B j

)

= (x,y) (i, j = 3, . . . ,n and i 6= j).

Division by Bi and (Bi−B j) is well-defined in F, since the Bi’s are non-zero and distinct, and every non-zero

element of F is invertible. Thus the code is a scalar linear solution over F. Conversely, when |F| < n− 1,

it can be shown that there are not enough distinct linear combinations of x and y for x and y to be linearly

recovered from each pair (λi,λ j).

Scalar linear codes over finite fields have been particularly attractive to study, in part because it is

more feasible to analyze scalar linear functions, as opposed to arbitrary functions. There has been much

work in developing algorithms for constructing scalar linear solutions for certain classes of networks [11,

12, 16]. The existence of scalar linear solutions over finite fields has also been connected to other topics in

mathematics, such as finding roots of systems of polynomials [8, 14] and matroid theory [7, 19]. However,

scalar linear codes over finite fields are far from sufficient in general.
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1.4 Vector Linear Codes over Finite Fields

The M Network, defined in Figure 1.3, is an example of a network for which scalar linear codes

over fields are insufficient. It was shown in [18] that the M Network has no scalar linear coding solutions

over any finite field alphabet. However, by viewing each message and each edge symbol as a 2-dimensional

vector over a field F (i.e. the alphabet is F2), we can describe a routing solution for the M Network.

1 2

3 4 5

6 7 8 9

w,x y,z

w,y w,z x,y x,z

a b c d

e f g h

Figure 1.3: The M Network. The sources, nodes 1 and 2, generate messages w, x, y, and z, as indicated.

Each receiver demands a unique pair of messages, one of which originates at node 1, the other of which

originates at node 2.

Let x1 and x2 denote the components of the vector x ∈ F2, and define a code for the M Network over F2 by:

(a1,a2) = (w1,x1) (b1,b2) = (w2,x2) (c1,c2) = (y2,z2) (d1,d2) = (y1,z1)

and

(e1,e2) = (b1,c1) ( f1, f2) = (b1,c2) (g1,g2) = (b2,c1) (h1,h2) = (b2,c2)

= (w2,y2) = (w2,z2) = (x2,y2) = (x2,z2)

where each receiver can recover both components of each of its demands by:

6 :
(a1,e1) = (w1,w2)

(d1,e2) = (y1,y2)
7 :

(a1, f1) = (w1,w2)

(d2, f2) = (z1,z2)
8 :

(a2,g1) = (x1,x2)

(d1,g2) = (y1,y2)
9 :

(a2,h1) = (x1,x2)

(d2,h2) = (z1,z2)

This solution uses routing operations on vectors and is a special case of the more general class of vector

linear codes. This code provides a solution over any alphabet whose size is of the form p2n, for some prime

p and positive integer n, yet the M Network has no scalar linear solutions over any finite field.
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In a vector linear code over a field, out-edges carry linear combinations of input vectors of field

elements, where the coefficients are matrices of field elements, i.e. out-edges carry vectors of the form

M1 x1 + · · ·+Mn xn

where x1, . . . ,xn are vectors from a field of a given dimension, representing the inputs to the node, and

M1, . . . ,Mn are square matrices whose entries are constants from the field. Vector linear coding generalizes

scalar linear coding and can attain linear solutions not possible with scalar coding [10, 18, 23]. In [9],

the authors presented an algorithm for constructing vector linear solutions for certain classes of networks.

Linear coding over finite fields has been the cornerstone of a large portion of network coding research

during the last fifteen years [15]. However, vector linear codes over finite fields are known to not always be

sufficient.

aa

a

bb

b

cccc

c

d

d

e

e

Figure 1.4: The Diabolical Network.

The Diabolical Network, given in Figure 1.4, is known [6] to have a non-linear solution over an

alphabet of size 4, yet it has no linear solution over any finite field alphabet and any vector dimension.2 In

particular, for a linear code to be a solution for the left-hand side, we must have 1+1 = 0 in the field, but the

right-hand side requires that 1+1 6= 0 in the field. Other works have shown other advantages of non-linear

codes, such as reducing the alphabet size needed for a solution (e.g. [5, 22]). Even though linear network

codes over finite fields are suboptimal in general, they have been attractive to study for two primary reasons:

(1) They can be less complex to implement in practice due to reduced storage and/or reduced computation

compared to non-linear codes.

2The Diabolical Network was shown to not even have linear solutions over ring and module alphabets.
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(2) They are more mathematically tractable to analyze compared to non-linear codes.

It is natural to ask whether there exists a class of network codes that still satisfy these desirable properties

yet outperform linear codes over fields.

1.5 Linear Network Coding over Finite Rings

The definitions of scalar and vector linear codes over finite fields can easily be extended to more

general finite ring alphabets, since computing a linear combination requires only addition and multiplication

operations. A field is a special case of a ring, so a linear network code over a ring may be implemented

analogously to a linear code over a field by performing addition and multiplication over the ring.3 Since the

founding of network coding in 2000, network codes whose edge functions are linear over fixed finite field

alphabets have been studied extensively (e.g. [7–12, 14–16, 19, 22–24]). In contrast, very little is presently

known about linear network coding over other ring alphabets. Non-field rings are known to be useful for

other information-theoretic problems, such as error-correcting codes [3, Chapter 8] and cryptography [13],

so it is reasonable to ask whether it is better in some sense to use linear network coding over a finite field

alphabet or over some other ring alphabet of the same size.

If p is a prime, there is a unique finite field of size pk, but the number of commutative rings of size

pk is on the order of pk3

[20, Theorem 11.2]. This suggests that the class of codes that are linear with respect

to some ring of size pk is much broader than the class of codes that are linear with respect the field of size pk.

By considering a broader class of codes, one would expect to be able to attain more solutions. Additionally,

linear network codes over rings may be of value by allowing for linear coding over non-power-of-prime

alphabet sizes. Linear codes over rings appear to have many of the attractive properties of linear codes over

finite fields, yet they also constitute a much broader class of network codes.

Many interesting questions regarding linear codes over rings exist: Can a network be linearly solv-

able over rings but not over fields? Can a network have no linear solutions over a given field yet be linearly

solvable over some other ring of the same size? Is there a “best” ring alphabet of a given size to use for

linear network coding? Is there a “best” ring alphabet to use for linear coding on a given network? Over

what ring alphabets are particular networks (linearly) solvable? Can the linear capacity of a network over a

finite field be increased by using some other ring of the same size as the field? Can linear codes over rings

close the gap between linear codes over finite fields and non-linear codes? This dissertation addresses these

and many related questions.

3Efficient implementations of ring arithmetic generally depend on the specific algebraic properties of the ring.
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1.6 Overview

The results in this dissertation fall under the umbrella of two underlying network coding problems.

(i) In the network solvability problem, one attempts to determine whether there exist network coding

solutions over a given alphabet in which each edge carries at most one alphabet symbol.

(ii) In the network capacity problem, one attempts to determine how much transmitted information per

edge use can be sent to the network’s receivers in the limit of large block sizes for transmission.

The remainder of the dissertation consists of published and submitted journal papers on these topics and is

organized as follows.

Chapter 2 studies network scalar linear solvability over commutative rings and makes comparisons

to the well-studied special case where the alphabet is a field. We characterize the commutative rings for

which there exists a network that is a scalar linearly solvable over the ring but not over any other commu-

tative ring of the same size. We show that these rings are, in some sense, the “best” commutative rings of

a given size. We also show that every finite field is such a ring, and, whenever p is prime, there is some

network that is scalar linearly solvable over a commutative ring of size pk but not the field of size pk if and

only if k 6∈ {1,2,3,4,6}. On the other hand, we show that if a network is scalar linearly solvable over some

commutative ring, then the (unique) smallest such ring is a field. The results in this chapter imply that for

scalar linear coding over commutative rings, fields can always be used when the alphabet size is flexible, but

other rings may be needed when the alphabet size is fixed. Chapter 2 is a reprint of the material as it appears

in J. Connelly and K. Zeger, “Linear network coding over rings – Part I: Scalar codes and commutative

alphabets,” IEEE Transactions on Information Theory, January 2018.

Chapter 3 studies the more general setting of network vector linear solvability over (possibly non-

commutative) rings. It is shown that vector linear solvability over some field is equivalent to scalar linear

solvability over some ring.4 We also present an infinite class of networks that are scalar linearly solvable

over certain non-commutative rings but not over any commutative rings. Finally, we show that vector

linear codes over fields minimize the alphabet size needed for linear solvability, which is desirable from

an implementation complexity standpoint. The results in this chapter suggest that, in a sense, vector linear

codes over prime fields are the best alphabets to use for linear network coding. Chapter 3 is a reprint of the

material as it appears in J. Connelly and K. Zeger, “Linear network coding over rings – Part II: Vector codes

and non-commutative alphabets,” IEEE Transactions on Information Theory, January 2018.

4In fact, vector linear solvability over some field is equivalent to linear solvability over some module. Linear codes

over modules are an even broader class of codes that generalize both scalar and vector linear codes over rings.
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Chapter 4 considers the network capacity problem using linear network codes. It is shown that a

network’s linear capacity cannot be improved by looking beyond finite field alphabets to more general ring

alphabets. However, some rings can linearly attain higher rates for certain networks than can a given field.

In particular, we show that for any finite ring and any finite field, there is some network with higher linear

capacity over the ring if and only if the sizes of the field and ring are relatively prime. In other words, higher

code rates cannot be attained by using linear codes over more general alphabets than finite fields. Chapter 4

is a reprint of the material as it appears in J. Connelly and K. Zeger, “Linear capacity of networks over ring

alphabets,” submitted to IEEE Transactions on Information Theory, June 2017, revised January 2018.

Chapter 5 considers both the network solvability and capacity problems for a particular class of

networks with emphasis on non-linear coding. We present an infinite class of networks for which non-linear

codes strictly outperform linear codes for both network solvability and capacity. These networks generalize

the Diabolical Network from [6] and further demonstrate the insufficiency of linear network coding. Certain

instances of these networks are shown to only be solvable over non-power-of-prime size alphabets. This

contrasts greatly with linear solvability, since any linearly solvable network has a vector linear solution over

a field (with prime-power alphabet size). Chapter 5 is a reprint of the material as it appears in “A class of

non-linearly solvable networks,” IEEE Transactions on Information Theory, vol. 63, no. 1, pp. 201 – 229,

January 2017.
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Chapter 2

Scalar Codes and Commutative Rings

Abstract

This chapter considers the setting of scalar linear network coding over finite commutative ring

alphabets. We show that if a network has a scalar linear solution over some finite commutative ring, then

the (unique) smallest such commutative ring is a field.

We also show that fixed-size commutative rings are quasi-ordered such that all scalar linearly solv-

able networks over any given ring are also scalar linearly solvable over any higher-ordered ring. We study

commutative rings that are maximal with respect to this quasi-order, as they may be considered the best

commutative rings of a given size. We prove that a commutative ring is maximal if and only if some net-

work is scalar linearly solvable over the ring but not over any other commutative ring of the same size.

Furthermore, we show that maximal commutative rings are direct products of certain fields specified by the

integer partitions of the prime factor multiplicities of the ring’s size. Finally, we prove there is a unique

maximal commutative ring of size m if and only if each prime factor of m has multiplicity in {1,2,3,4,6}.

As consequences, (i) every finite field is such a maximal ring, and (ii) for each prime p, some network is

scalar linearly solvable over a commutative ring of size pk but not over the field of the same size if and only

if k 6∈ {1,2,3,4,6}.
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2.1 Introduction

In this chapter, we focus on the case where the network coding alphabet is a commutative ring, and

we make comparisons to the even more specialized (and more studied) case where the alphabet is a field.

In Chapter 3, we study vector linear codes and non-commutative rings and specifically contrast the results

with the results on scalar codes and commutative rings given in this present chapter.

Many networks evolve over time as nodes are added or deleted and as edge connections are formed

or broken. Thus, it might be advantageous to choose a coding alphabet that makes as many networks as

possible scalar linearly solvable over the chosen ring. If, for example, every network that is scalar linearly

solvable over a particular ring is also scalar linearly solvable over a second ring, then, generally speaking,

the second ring would be at least as good as the first ring. This notion of one ring being better than another

ring is the core concept behind our study in this chapter. We seek out the best such rings, namely the

ones that are maximal with respect to this induced ordering of rings of a given size. On the other hand,

when a network is fixed, it is sometimes advantageous to select the smallest possible alphabet that yields a

solution [22]. Two of the main results of this chapter are:

(1) If p is prime and k 6∈ {1,2,3,4,6}, then there always exists some network that is not scalar linearly

solvable over the finite field GF(pk) yet is scalar linearly solvable over a different commutative ring

of the same size. When k ∈ {1,2,3,4,6}, no such network exists.

(2) If a network has a scalar linear solution over a commutative ring that is not a field, then it also has a

scalar linear solution over a field of strictly smaller size.

2.1.1 Network Model

A network will refer to a finite, directed, acyclic multigraph, some of whose nodes are sources or

receivers. Source nodes generate messages, each of which is an arbitrary element of a fixed, finite set of

size at least 2, called an alphabet. The elements of an alphabet are called symbols. The inputs to a node

are the messages, if any, originating at the node and the symbols on the incoming edges of the node. Each

outgoing edge of a network node has associated with it an edge function that maps the node’s inputs to the

symbol carried by the edge, called the edge symbol. Each receiver node has decoding functions that map

the receiver’s inputs to an alphabet symbol in an attempt to recover the receiver’s demands, which are the

messages the receiver wishes to obtain. The outputs of a node are its demands, if any, and the symbols on

the outgoing edges of the node. A network is multicast if there is a single source node and each receiver

demands every message.
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A code over an alphabet A is an assignment of edge functions to all of the edges in a network and

an assignment of decoding functions to all of the receiver nodes in the network such that messages and edge

symbols are elements of A . A solution is a code in which each receiver’s decoding functions recover each

of its demands from its inputs.

In particular, we will consider codes over alphabets that have addition and multiplication operations,

namely finite rings. If A is a ring alphabet, then a function f : A m →A is linear over A if it can be written

in the form f (x1, . . . ,xm) =C1 x1 + · · ·+Cm xm, where C1, . . . ,Cm are constant values in A . A code is scalar

linear over A if each edge function and each decoding function is linear over A . In contrast, in a k-

dimensional vector linear code over A , messages and edge symbols are k-dimensional vectors over A (i.e.

the alphabet is A k), and edge functions are linear combinations of input vectors, using k× k matrices over

A as coefficients. Scalar linear codes are a special case of vector linear codes where k = 1.

We say a network is solvable over A (respectively, scalar linearly solvable over A ) if there exists

a solution over A (respectively, scalar linear solution over A ), and we say a network is solvable if it is

solvable over some alphabet.

2.1.2 Related Work

Ahlswede, Cai, Li, and Yeung [1] introduced network coding in 2000 and showed that it is possible

to increase the information throughput of a network by allowing nodes to transmit functions of their inputs,

as opposed to simply relaying their inputs. Li, Yeung, and Cai [26] showed that every solvable multicast

network is scalar linearly solvable over every sufficiently large finite field, although it was shown in [8]

that non-multicast networks may not have this property. Networks were demonstrated by Riis [30], Rasala

Lehman and Lehman [29], and in [10] that are solvable non-linearly but not scalar linearly over the same

alphabet size. It is not currently known whether there exists an algorithm that determines if a network is

solvable; however, determining whether a network is scalar linearly solvable over a particular field has been

studied extensively.

Koetter and Médard [21] showed that for every network, there exists a finite collection of poly-

nomials, such that for every finite field F, the network is scalar linearly solvable over F if and only if the

polynomials have a common root in F. Conversely, it was shown in [9] that for every finite collection of

polynomials, there exists a network, such that for every finite field F, the polynomials have a common root

in F if and only if the network is scalar linearly solvable over F. This connection between scalar linear

solvability and polynomials stems from the connection between scalar linearly solvable networks and ma-

troid theory. It was also shown in [11] that every network that is scalar linearly solvable over some field
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is naturally associated with a representable matroid. Effros, El Rouayheb, and Langberg [14] showed that

network coding and index coding are equivalent in a general setting, including with linear and non-linear

codes.

The study of linear network codes over fields has led to efficient methods of constructing scalar

linear solutions for networks that also minimize the field alphabet size. Ho et. al [18] described a random

scalar linear coding technique where the probability that a code is a solution grows with the field size. Jaggi

et. al [19] presented polynomial-time algorithms for designing scalar linear codes for multicast networks.

Karimian, Borujeny, and Ardakani [20] showed there exists a class of non-multicast networks for which

random scalar linear coding algorithms fail with high probability and presented a new approach to random

scalar linear network coding for such networks. Rasala Lehman and Lehman [29] and Tavory, Feder, and

Ron [35] independently showed that some solvable multicast networks asymptotically require finite field

alphabets to be at least as large as twice the square root of the number of receiver nodes in order to achieve

scalar linear solutions. Sun, Yin, Zi, and Long [33] and Sun, Li, and Li [34] both demonstrated classes of

multicast networks that are scalar linearly solvable over certain fields but not every larger field.

Médard, Effros, Ho, and Karger [28] showed that there can exist a network that is vector linearly

solvable over some field but not scalar linearly solvable over any field. Sun et. al [32] demonstrated

that, while vector linear codes can outperform scalar linear codes in terms yielding solutions for general

networks, there can exist multicast networks that are not k-dimensional vector linearly solvable over GF(2)

yet have scalar linear solutions over some field alphabet whose size is less than 2k. Etzion and Wachter-

Zeh [16] bounded the reduction in alphabet size needed for a vector linear solution to a multicast network

as compared to a scalar linear solution. Ebrahimi and Fragouli [13] presented algorithms for constructing

vector linear codes that achieve solutions not possible with scalar linear codes.

Convolutional network coding (e.g. [23,24]) is a technique for linear coding for networks that may

contain cycles, and the alphabets in such codes can be viewed as principal ideal domains (and more generally

as discrete valuation rings), which are not necessarily finite. However, in our study, we focus on acyclic

networks and finite coding alphabets. To our knowledge, outside of the context of the insufficiency of linear

codes and convolutional coding, there has been little study of linear network codes over more general ring

and module alphabets. We consider such linear codes and compare them to the well-studied case of linear

codes over fields.
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2.1.3 Our Contributions

Our main results show that for networks that use scalar linear codes over commutative rings, finite

fields can always be used if the alphabet size is flexible, but if the alphabet size is fixed, then finite fields

may not always be the best choice for every network. Figure 2.1 summarizes our main results for fixed

networks, and Figure 2.2 summarizes our main results on the “best” commutative rings of a fixed size. We

outline the remainder of the chapter in what follows.

We prove (in Theorem 2.2.10) that if a network has a scalar linear solution over some commutative

ring, then the unique smallest-size commutative ring over which the network has a scalar linear solution is a

field. Thus, for a given network, if the minimum alphabet size is desired for scalar linear network coding, it

suffices to use finite fields. This result also shows that networks that are scalar linearly solvable over some

commutative ring are also scalar linearly solvable over some field although not necessarily of the same size.

Section 2.2 introduces a “dominance” relation on finite rings, such that all networks that are scalar

linearly solvable over a given ring are also scalar linearly solvable over any ring that dominates the given

ring. We show that this relation is a quasi-order on the set of commutative rings of a given size.1 We also

demonstrate (in Theorem 2.2.19 and Corollary 2.3.3) non-isomorphic commutative rings of the same size

that are equivalent with respect to dominance, and we show (in Theorem 2.2.20) that dominance is a total

quasi-order of the commutative rings of size p2.

Section 2.2.4 analyzes the scalar linear solvability of a class of multicast networks. We show (in

Theorem 2.2.16) that for every finite field, there exists a multicast network that is scalar linearly solvable

over the field but is not scalar linearly solvable over any other commutative ring of the same size. This

demonstrates that every finite field is maximal with respect to the dominance. We also show (in Corol-

lary 2.2.18) that there exists a solvable multicast network that is not scalar linearly solvable over any ring

whose size is equal to 2 mod 4, which contrasts with the fact that every solvable multicast network is scalar

linearly solvable over every sufficiently large field.

Section 2.3 compares various commutative rings with respect to dominance. We demonstrate (in

Theorem 2.3.8) that some network is scalar linearly solvable over a commutative ring of size 32 but is not

scalar linearly solvable over any other commutative ring of size 32, including the field GF(32). We later

prove (in Corollary 2.5.10) that 32 is the size of the smallest such commutative ring alphabet where this

phenomenon can occur.

1Although the relation is defined on all finite rings, a maximal ring will always refer to a commutative ring which

is maximal with respect to the quasi-order on the set of commutative rings of a given size.
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We prove (in Theorem 2.3.9) that whenever a network is scalar linearly solvable over a commutative

ring, the network must also be scalar linearly solvable over a field whose size divides the ring size. In fact,

for each prime factor of the ring size, there is a corresponding such field whose characteristic equals the

prime factor. As a consequence (in Corollary 2.3.11), whenever a network is scalar linearly solvable over a

ring whose size is a product of distinct primes (i.e. “square free”), the network must also be scalar linearly

solvable over each finite field whose size is a prime factor of the ring size. However, we demonstrate (in

Corollary 2.3.12) that when the ring size is not square free, the particular ring may need to be examined in

order to determine over which fields the network is scalar linearly solvable.

Section 2.4 introduces “partition rings” which are direct products of finite fields that are specified

by integer partitions of the prime factor multiplicities of the ring size. We define a relation called “partition

division” and show that it induces a quasi-order on the set of partitions of a given integer. We show that the

maximal partitions under this quasi-order are precisely the partitions that do not divide any other partition

of the same integer. We also provide a partial characterization of the maximal partitions. The results of this

section are used in various proofs in Section 2.5.

Section 2.5 connects the relations of ring dominance and partition division. We prove (in The-

orem 2.5.4) that, when restricting to commutative rings of a given size, the maximal commutative rings

under dominance are precisely partitions rings where each partition is maximal under partition division. We

prove (in Theorem 2.5.8) that a finite commutative ring is maximal if and only if there exists a network that

is scalar linearly solvable over the ring but is not scalar linearly solvable over any other commutative ring

of the same size.

Finally, we prove (in Theorem 2.5.9) that if p is prime, then the field GF(pk) is the unique maximal

commutative ring of size pk whenever k ∈ {1,2,3,4,6}, but if k = 5 or k ≥ 7, then there exist multiple

maximal commutative rings of size pk. This result is also generalized to commutative rings of non-power-

of-prime sizes in Theorem 2.5.9. Since there can exist more than one maximal ring of a given size, there

are instances where scalar linear solutions cannot be obtained using finite field alphabets of a given size but

can be achieved using other commutative rings of the same size.
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N ∈ Nlin(R)

∃ field F such that |F|< |R|

R is not a field

and N ∈ Nlin(F)

∃ maximal ring S such that

|S|= |R| and N ∈ Nlin(S)

N is the
Two-Six Network

(Fig. 2.5)

|R| 6= 2 mod 4

∀ prime p
∣
∣ |R|, ∃n such that

N ∈ Nlin(GF(pn))

(Theorem 2.2.10) (Remark 2.2.2) (Corollary 2.2.18)(Theorem 2.3.9)

Figure 2.1: N denotes an arbitrary network, R denotes an arbitrary finite commutative ring, and Nlin(R)
denotes the set of networks scalar linearly solvable over R. It follows from these results that finite fields

minimize the alphabet size needed for a scalar linear solution over commutative rings, and the set of net-

works that are scalar linearly solvable over some commutative ring and the set of networks that are scalar

linearly solvable over some field are equal.

4

R is maximal

with respect to dominance

in R(pk)

R is direct product of fields

specified by certain integer

partitions of k

k ∈ {1,2,3,4,6} k 6∈ {1,2,3,4,6}

R ∼= GF(pk) ∃ maximal S ∈ R(pk)−{R}

∃N ∈ Nlin(R) such that

∀S ∈ R(pk)−{R},

N 6∈ Nlin(S)

(Theorem 2.5.8)(Theorem 2.5.9) (Theorem 2.5.9)(Theorem 2.5.4)

Figure 2.2: A ring S is dominated by a ring R if every network that is scalar linearly solvable over S is also

scalar linearly solvable over R. This dominance induces a quasi-order on R(pk), i.e. the set of commutative

rings of size pk. The rings which are maximal with respect to these quasi-orders are, in some sense, the best

rings of a given size. The finite field GF(pk) is always maximal (Theorem 2.2.16), but it follows from these

results that, whenever k = 5 or k ≥ 7, there are other maximal rings of size pk. GF(8)×GF(4) is the smallest

such maximal commutative ring (Corollary 2.5.10). In particular, it follows that there exist networks with

scalar linear solutions over some ring of size pk but not the field GF(pk), whenever k 6∈ {1,2,3,4,6}. The

maximal rings of size p
k1

1 · · · p
kt
t (for distinct primes p1, . . . , pt ) are direct products of maximal rings of size

p
k1

1 , . . . , p
kt
t (Remark 2.5.5).
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2.2 Ring Dominance

A quasi-order2 4 on a set A is a subset of A×A that is reflexive and transitive. We write x 4 y to

indicate that the pair (x,y) is in the relation. Each quasi-order induces an equivalence relation on A defined

by x≡ y if and only if x4 y and y4 x. We denote the equivalence class of x by [x]. Any quasi-order naturally

extends to a partial order on the equivalence classes by defining [x] 4 [y] if and only if x 4 y. An element

x ∈ A is said to be maximal with respect to the quasi-order if for all y ∈ A, we have y 4 x whenever x 4 y.

The same definition of maximal applies with respect to the induced partial order on equivalence classes.

For each integer m ≥ 2 and each finite ring R,

• R(m) denotes the set of commutative rings of size m, up to isomorphism,

• ∼= denotes ring isomorphism, and

• Nlin(R) denotes the set of all networks scalar linearly solvable over R.

Definition 2.2.1. For any two finite rings R and S, we say S is dominated by R (denoted S � R) if every

network that is scalar linearly solvable over S is also scalar linearly solvable over R. Equivalently, S � R

if and only if Nlin(S)⊆ Nlin(R).

On the other hand, S is not dominated by R whenever there exists a network with a scalar linear

solution over S but not over R. Intuitively, if a ring R dominates a ring S of the same size, it may be viewed

as advantageous3 to use R instead of S in a network coding implementation, since any network that is scalar

linearly solvable over S is also scalar linearly solvable over R. If, additionally, Nlin(S)⊂ Nlin(R) then even

more networks are scalar linearly solvable over R. This dominance relation gives us a reasonable way of

comparing rings with respect to linear network coding.

For each m ≥ 2, it can be verified that the relation � is a quasi-order on the set R(m). The induced

equivalence relation on rings has the property that R ≡ S if and only if Nlin(R) = Nlin(S). It turns out that

the exact same set of networks can sometimes be scalar linearly solvable over non-isomorphic rings of the

same size (as illustrated later, in Theorem 2.2.19 and Corollary 2.3.3), which means that the quasi-order �

is not anti-symmetric on R(m). This also means that � is not generally a partial order.

2Also known as a pre-order (e.g. [31, Chapter 1]).
3There may be other advantages to using one ring over another, such as lower computational complexity arithmetic,

ease of implementation, etc.
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Throughout this chapter, whenever we refer to a finite commutative ring as being maximal, we

mean the ring is maximal with respect to the relation � on the set of commutative rings of the same size.

A maximal commutative ring R has the desirable property that, for any commutative ring S of the same

size, the set of networks that are scalar linearly solvable over R cannot be a proper subset of the set of

networks that are scalar linearly solvable over S. Thus, in this sense, maximal rings may be considered the

“best” commutative rings to use for network coding, and non-maximal rings are always “worse” than some

maximal ring of the same size.

Remark 2.2.2. Every commutative ring of size m is dominated by a maximal commutative ring of

size m, since R(m) is a finite quasi-order. Hence any network that is linearly solvable over some

commutative ring of size m is linearly solvable over some maximal commutative ring of size m.

2.2.1 Fundamental Ring Comparisons

We now prove results on ring dominance that will be used throughout the rest of the chapter.

For each integer m ≥ 2, the Char-m Network is given in Figure 2.3. This network was introduced

as N2(m,1) (with a slight relabeling of sources) in [4] and is a generalization of the Fano Network. We

use this class of networks to demonstrate some interesting properties of scalar linear codes over rings. The

following lemma was shown in [4, Lemma IV.6] in a slightly more general form.

Lemma 2.2.3. For each finite ring R and integer m ≥ 2, the Char-m Network is scalar linearly solvable

over R if and only if char(R)
∣
∣ m.

In particular, if R is a finite ring such that char(R)
∣
∣ m, then m = 0 in R, and the following scalar

linear code over R is a solution for the Char-m Network:

ei =
m

∑
j=0
j 6=i

x j and e =
m

∑
j=0

x j

where i = 0,1, . . . ,m+1, and the receivers linearly recover their demands as follows

Ri : e− ei = xi and Rx :
m+1

∑
i=1

ei = x0 +m
m+1

∑
i=0

xi = x0

[
from char(R)

∣
∣ m
]
.

On the other hand, if char(R) ffl m, then m 6= 0 in R, so this code is not a solution in this case, which agrees

with Lemma 2.2.3.
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v0 v1 vm+1 v

R0 R1 Rm+1 R

S0 S1 Sm+1

Figure 2.3: The Char-m Network has source nodes S0,S1, . . . ,Sm+1 which generate the messages

x0,x1, . . . ,xm+1, respectively. The node u has a single incoming edge from each source node, and the edge

connecting nodes u and v carries the edge symbol e. For each i = 0,1, . . . ,m+ 1, the node ui has a single

incoming edge from each source node, except Si. The edge connecting nodes ui and vi carries the edge

symbol ei. The receiver Ri demands xi and has an incoming edge from node vi and an incoming edge from

v. The receiver R demands x0 and has an incoming edge from each of the nodes v1, . . . ,vm+1.

The following corollary demonstrates that rings whose sizes are powers of distinct primes cannot

dominate one another. Our focus on comparing rings of the same size is driven in part from a practical

standpoint, i.e. determining the “best” rings of a given size. However, the study of dominance is also more

interesting when applied to rings whose sizes are powers of the same prime, particularly rings of the same

size.

Corollary 2.2.4. Let p and q be distinct primes, and let k and n be positive integers. No ring of size pk

is dominated by a ring of size qn.

Proof. The characteristic of any ring of size pk must divide pk, so by taking m = pk in Lemma 2.2.3, the

Char-pk Network is scalar linearly solvable over any ring of size pk, but this network is not scalar linearly

solvable over any ring of size qn, since p and q are distinct primes. Hence, no ring of size pk is dominated

by a ring of size qn. �
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The following lemma is also shown in Chapter 3 Corollary 3.1.7, where it follows from a more

general result on linear codes over modules. However, we include the proof of Lemma 2.2.5 in this chapter

for completeness.

A ring homomorphism is a mapping that preserves the additive and multiplicative structure of rings.

Intuitively, a linear code consists of addition and multiplication operations, so taking the image of linear

coding coefficients under the homomorphisms should preserve the structure of the code. In fact, this lemma

shows that ring homomorphisms induce ring dominance.

Lemma 2.2.5. Let R and S be finite rings. If φ : S → R is a homomorphism, then S is dominated by R.

Proof. Let N be a network that has a scalar linear solution over S. Suppose the inputs to a node in a scalar

linear solution over S are x1, . . . ,xm ∈ S and can be written in terms of the messages z1, . . . ,zn ∈ S in the

following way

xi =
n

∑
j=1

Bi, j z j (2.1)

where Bi,1, . . . ,Bi,n ∈ S are constants. Then any output y ∈ S of the node is of the form

y =
m

∑
i=1

Ci xi (2.2)

=
n

∑
j=1

(
m

∑
i=1

Ci Bi, j

)

z j [from (2.1)] (2.3)

for some constants C1, . . . ,Cm ∈ S. Then (2.2) describes y in terms of the inputs to the node, and (2.3)

describes y in terms of the messages of the network.

Form a scalar linear code for N over R by replacing each coefficient Ci in (2.2) by φ(Ci). In other

words, the coefficients in R that describe the linear combinations of the inputs at a node are the image under

φ of the corresponding coefficients in S. We will now show that the coefficients in R that describe the linear

combinations of the messages at a node are the image under φ of the corresponding coefficients in S.

Assume the corresponding inputs to the node in the linear code over R are x′1, . . . ,x
′
m ∈ R and can

be written in terms of the messages z′1, . . . ,z
′
n ∈ R in the following way

x′i =
n

∑
j=1

φ(Bi, j)z′j. (2.4)

i.e. the inputs to the node in the linear code over R are such that the coefficients are the image under φ of

the corresponding coefficients in S. Then, since homomorphisms preserve addition and multiplication, the
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corresponding output y′ ∈ R of the node is of the form

y′ =
m

∑
i=1

φ(Ci)x′i

=
m

∑
i=1

φ(Ci)
n

∑
j=1

φ(Bi, j)z′j [from (2.1)]

=
n

∑
j=1

m

∑
i=1

φ(Ci)φ(Bi, j)z′j

=
n

∑
j=1

φ

(
m

∑
i=1

Ci Bi, j

)

z′j (2.5)

so the coefficients in R that describe the linear combinations of the messages at a node in (2.5) are the image

under φ of the corresponding coefficients in S in (2.3).

If a decoding function in the linear solution over S produces the message zl , then in (2.3)

m

∑
i=1

CiBi, j =







1 if j = l

0 if j 6= l.

Since φ is a homomorphism, φ(1) = 1 and φ(0) = 0, so the corresponding coefficients in (2.5) are

φ

(
m

∑
i=1

CiBi, j

)

=







1 if j = l

0 if j 6= l

so the decoding function in the linear code over R produces the message z′l . Thus each receiver recovers its

demands in the scalar linear code over R, so the code is, in fact, a solution for N . Therefore S � R. �

The following corollary is a special case of Lemma 2.2.5, where S is a subring of R. A subring S of

R is a subset of R that is closed under addition and multiplication and 0,1 ∈ S. A further special case, which

will be used frequently throughout the rest of the chapter, is when R = GF(pk) and S = GF(pm) where p is

prime and k,m are positive integers such that m divides k (e.g. see [3, Theorem 2.3.1]). We also remark that

for finite rings R1 and R2, the multiplicative identity of R1 ×R2 is in neither R1 nor R2, so while R1 and R2

are isomorphic to subsets of R1 ×R2 that are closed under addition and multiplication, neither is a subring

of R1 ×R2.

Corollary 2.2.6. If S is a subring of a finite commutative ring R, then S is dominated by R.

Proof. If S is a subring of R, then the identity mapping from S to R is an injective homomorphism, so by

Lemma 2.2.5, S � R. �
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In general, if a network is scalar linearly solvable over an alphabet A , then it is also scalar linearly

solvable over the alphabet A k, for any k ≥ 2, by using a Cartesian product code.4 In particular, if a network

is scalar linearly solvable over the ring Zn, then it is also scalar linearly solvable over the direct product of

rings Zk
n = Zn ×·· ·×Zn
︸ ︷︷ ︸

k times

. Since Znk is not isomorphic to the product ring Zk
n, it does not immediately follow

that a network scalar linearly solvable over Zn must also be scalar linearly solvable over Znk , and, in fact,

the contrary is demonstrated below in Corollary 2.2.7.

Corollary 2.2.7. Let m,n ≥ 2. The ring Zm is dominated by the ring Zn if and only if n
∣
∣ m.

Proof. Let φ : Zm →Zn be defined such that φ(a) is the unique integer in {0,1, . . . ,n−1} satisfying φ(a) =

a mod n. If n
∣
∣ m, then φ is a surjective homomorphism, so by Lemma 2.2.5 we have Zm � Zn. Conversely,

if n ffl m, then by Lemma 2.2.3, the Char-m Network is scalar linearly solvable over Zm but not Zn, since

char(Zm) = m
∣
∣ m and char(Zn) = n ffl m, which implies Zm is not dominated by Zn. �

If p is prime and k ≥ 2, then by Corollary 2.2.7, we have Nlin(Zpk) ⊂ Nlin(Zp). In this sense, the

larger ring alphabet Zpk is strictly “worse” than the smaller field alphabet Zp. This contrasts significantly

with finite fields, where, generally speaking, larger field alphabets are “better” than smaller field alphabets.

In particular, it follows from Corollary 2.2.6 and Lemma 2.2.15 that Nlin(GF(p)) ⊂ Nlin(GF(pk)).

2.2.2 Minimizing Alphabet Size

In this section, we prove our main result (Theorem 2.2.10) on minimizing the alphabet size needed

for a scalar linear solution over a commutative ring. The following lemma is a standard result of algebra

related to ideals of rings which will be used to show Corollary 2.2.9.

Lemma 2.2.8. [12, Theorem 7, p. 243]: If I is a two-sided ideal of ring R, then the mapping φ : R → R/I

given by φ(x) = x+ I is a surjective homomorphism.

Corollary 2.2.9 demonstrates that rings with large ideals are “bad” in the sense that they are always

dominated by a smaller ring. Intuitively, rings without ideals should minimize the ring-size needed for a

scalar linear solution. We formalize this notion in Theorem 2.2.10.

Corollary 2.2.9. If I is a proper ideal in a finite commutative ring R, then R is dominated by R/I.

Proof. The quotient ring R/I is finite and commutative. By Lemma 2.2.8, there is a surjective homomor-

phism from R to R/I, so R � R/I by Lemma 2.2.5. �

4In fact, the network is solvable over any alphabet of size |A |k but linearity may not be preserved.
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Theorem 2.2.10 next demonstrates that when attempting to find a minimum size commutative ring

over which a network is scalar linearly solvable, it suffices to restrict attention to finite field alphabets.

Theorem 2.2.10. If a network is scalar linearly solvable over a commutative ring, then the unique

smallest such ring is a field.

Proof. Let N be a scalar linearly solvable network and let R be a smallest commutative ring over which

N is scalar linearly solvable. Suppose R is not a finite field, and let I be a maximal ideal5 of R. Since

{0} is an ideal in every ring, R must have at least one maximal (proper) ideal. Then R/I is a field (e.g.

see [12, p. 254, Proposition 12]). By Lemma 2.2.8, there is a surjective homomorphism from R to R/I, but

R/I is a field and R is not, so the rings cannot be isomorphic. Therefore, |R/I| < |R|. By Corollary 2.2.9,

R � R/I. Thus N must also be scalar linearly solvable over R/I, which contradicts the assumption that R

is a smallest commutative ring over which N is scalar linearly solvable. �

2.2.3 Direct Products of Rings

Sun, Yin, Li, and Long [33] presented a class of multicast networks, called Swirl Networks, param-

eterized by an integer ω ≥ 3 that affects the number of independent messages generated by the source as

well as the number of receivers and intermediate nodes. An interesting open question is for which p and k

does there exist a multicast network that is scalar linearly solvable over some ring of size pk but not over the

field of the same size. Example 2.2.11 demonstrates a particular Swirl Network is such a multicast network

for p = 2 and k = 13.

Example 2.2.11. It was shown in [33, p. 6185] that the Swirl Network with ω = 213 is scalar linearly

solvable over GF(29) and GF(24) but not over GF(213). By using a Cartesian product code, this Swirl

Network is scalar linearly solvable over the ring GF(29)×GF(24).

The following lemma relates Cartesian product codes and the dominance relation.

Lemma 2.2.12. A network is scalar linearly solvable over a finite direct product of finite rings if and only

if the network is scalar linearly solvable over each ring in the product.

5Whenever we refer to a maximal ideal, we will always mean maximal with respect to set inclusion.
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Proof. Let R1, . . . ,Rm be finite rings. Any network that is scalar linearly solvable over each of the rings

R1, . . . ,Rm, is clearly scalar linearly solvable over the product ring R1 ×·· ·×Rm by using a Cartesian prod-

uct code of the scalar linear solutions over each R1, . . . ,Rm. Conversely, for each j = 1, . . . ,m, the projec-

tion mapping φ j : R1 ×·· ·×Rm → R j defined by φ j(x1, . . . ,xm) = x j is a surjective homomorphism, so by

Lemma 2.2.5, R1 ×·· ·×Rm � R j and thus any network that is scalar linearly solvable over the product ring

R1 ×·· ·×Rm is also scalar linearly solvable over each ring R1, . . . ,Rm. �

Lemma 2.2.13 demonstrates that if each ring in a collection of rings dominates at least one ring in

a second collection of rings, then the direct product of the rings in the first collection dominates the direct

product of the rings in the second collection.

Lemma 2.2.13. If each of the finite rings S1, . . . ,Sn is dominated by at least one of the finite rings R1, . . . ,Rm,

then S1 ×·· ·×Sn is dominated by R1 ×·· ·×Rm.

Proof. Let N be a network that is scalar linearly solvable over S1 × ·· · × Sn. Let i ∈ {1, . . . ,m} and let

j be such that S j � Ri. By Lemma 2.2.12, N is scalar linearly solvable over S j, so N is scalar linearly

solvable over Ri. Thus by Lemma 2.2.12, since i was chosen arbitrarily, N is also scalar linearly solvable

over R1 ×·· ·×Rm. �

The following remark notes that two rings of different sizes can each dominate the other.

Remark 2.2.14. For each finite ring R and all positive integers m,n, the direct product rings R×·· ·×R
︸ ︷︷ ︸

n times

and R×·· ·×R
︸ ︷︷ ︸

m times

each dominate the other by Lemma 2.2.13.

2.2.4 The n-Choose-Two Networks

Figure 2.4 shows a multicast network studied by Rasala Lehman and Lehman [29], which we call

the n-Choose-Two Network. This network will be used to illustrate various facts in what follows. The

network has two messages x and y, intermediate edge symbols λ1, . . . ,λn, and
(

n
2

)
receivers. Each receiver

receives a unique pair of symbols (λi,λ j), where i < j, and must decode both messages x and y. The

following lemma was shown in [29], and it characterizes the finite fields over which a scalar linear solution

to the n-Choose-Two Network exists and gives an alphabet-size condition necessary for solvability.

27



...

...

...

...

...
x,y

x,yx,yx,yx,yx,yx,y

λ1 λ2 λn−1 λn

Figure 2.4: The n-Choose-Two Network is parameterized by an integer n≥ 2. The network’s name indicates

the number of receivers.

Lemma 2.2.15. [29, p. 144]: Let n ≥ 3.

(a) If the n-Choose-Two Network has a solution over an alphabet A , then |A | ≥ n−1.

(b) The n-Choose-Two Network is scalar linearly solvable over a field F if and only if |F| ≥ n−1.

The following theorem demonstrates that for each finite field, there exists a multicast network that

is scalar linearly solvable over the field but is not scalar linearly solvable over any other commutative ring of

the same size. Theorem 2.2.16 additionally implies that GF(pk) is not dominated by any other commutative

ring of size pk, which implies that GF(pk) is maximal with respect to the quasi-order of commutative rings

of size pk.

Theorem 2.2.16. For each prime p and positive integer k, the (pk +1)-Choose-Two Network is scalar

linearly solvable over the field GF(pk) but not over any other commutative ring of size pk.

Proof. Lemma 2.2.15 (b) implies that the (pk + 1)-Choose-Two Network is scalar linearly solvable over

GF(pk). On the other hand, if the (pk+1)-Choose-Two Network network were scalar linearly solvable over

a commutative ring R of size pk that is not a field, then by Theorem 2.2.10, it would also be scalar linearly

solvable over some field whose size is less than pk, which would contradict Lemma 2.2.15. �

The following theorem gives a necessary and sufficient condition on the alphabet sizes over which

a scalar linear solution to the n-Choose-Two Network exists for at least one ring.
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Theorem 2.2.17. Let m = p
k1

1 · · · p
kt
t be the prime factorization of m ≥ 2, and let n ≥ 3. The n-Choose-

Two Network is scalar linearly solvable over some ring of size m if and only if p
ki

i ≥ n− 1 for each i.

Proof. Assume p
ki

i ≥ n − 1. Then by Lemma 2.2.15 (b), the n-Choose-Two Network is scalar linearly

solvable over GF(p
ki

i ). So by Lemma 2.2.12, the n-Choose-Two Network is scalar linearly solvable over the

product ring GF(p
k1

1 )×·· ·×GF(p
kt
t ) which has cardinality m.

Conversely, suppose m = p
k1

1 · · · p
kt
t and the n-Choose-Two Network is scalar linearly solvable over

a ring R of size m. R is isomorphic to a direct product of rings of size p
k1

1 , . . . , p
kt
t (e.g. see [27, p. 2]).

For each i = 1, . . . , t, let Ri be the ring of size p
ki

i . Then by Lemma 2.2.12, the n-Choose-Two Network is

scalar linearly solvable over each of R1, . . . ,Rt . Hence by Lemma 2.2.15 (a), we must have p
ki

i ≥ n−1 for

all i. �

x,y x,y x,y x,yx,y x,y

x,y

λ1 λ2 λ3 λ4

Figure 2.5: The Two-Six Network is a multicast network studied in [10]. Each of the receivers gets a unique

pair of edge symbols (λi,λ j), where i < j. The network’s name indicates the alphabet sizes over which the

network is not solvable.

A variation of the 4-Choose-Two Network, called the Two-Six Network, is given in Figure 2.5. The

Two-Six Network was used in [10] to show that a multicast network with a solution over a given alphabet

size might not have a solution over all larger alphabet sizes. Corollary 2.2.18 gives conditions on the

solvability and scalar linear solvability of the Two-Six Network. We use the fact that the Two-Six Network

is equivalent in terms of solvability to the 4-Choose-Two Network.
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Corollary 2.2.18. For each m ≥ 2, the Two-Six Network is:

(a) Solvable over an alphabet of size m if and only if m 6∈ {2,6}.

(b) Scalar linearly solvable over some ring of size m if and only if m 6= 2 mod 4.

(c) Scalar linearly solvable over all finite fields except GF(2).

Proof. Part (a) is [10, Lemma V.3]. Parts (b) and (c) follow immediately from Lemma 2.2.15 and Theo-

rem 2.2.17, respectively, when n = 4. �

The proof of Corollary 2.2.18 (a) (i.e. Lemma V.3 in [10]) made use of a theorem characterizing

the orders for which orthogonal latin squares exist. Euler originally conjectured over 230 years ago that

orthogonal latin squares existed for all orders not congruent to 2 mod 4. It turned out that Euler was

incorrect, and it was shown in 1960 that orthogonal latin squares existed for all orders except 2 and 6.

Interestingly, the Two-Six Network was shown in Corollary 2.2.18 to be solvable for all alphabet sizes

except 2 and 6 and scalar linearly solvable over some ring of every size that is not congruent to 2 mod 4.

Li, Yeung, and Cai [26] showed that every solvable multicast network is scalar linearly solvable

over every sufficiently large finite field. We observe that this property is not true for finite rings, as the

Two-Six Network is a solvable multicast network and is not scalar linearly solvable over any ring whose

size is 2 mod 4.

2.2.5 Rings of Size p2

Remark 2.2.14 demonstrated that it is possible for the exact same set of networks to be scalar

linearly solvable over two rings of different sizes. The following theorem shows that, for each prime p, this

is also possible for two rings of size p2, i.e. it is possible to have two non-isomorphic commutative rings of

size p2, such that the rings are equivalent under dominance.

Theorem 2.2.19. For each prime p, the rings GF(p)[x]/〈x2〉 and GF(p)×GF(p) are each dominated

by the other but are not isomorphic.

Proof. The rings are clearly not isomorphic since the only element of GF(p)×GF(p) whose square is

zero is zero itself, and in GF(p)[x]/〈x2〉, the squares of both zero and x are zero. The field GF(p) is a
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subring of GF(p)[x]/〈x2〉, so by Corollary 2.2.6, GF(p) � GF(p)[x]/〈x2〉. On the other hand, the mapping

φ : GF(p)[x]/〈x2〉 → GF(p) given by φ(a+ bx) = a is a surjective homomorphism, so by Lemma 2.2.5,

GF(p)[x]/〈x2〉 � GF(p). Thus, GF(p) ≡ GF(p)[x]/〈x2〉 and by Lemma 2.2.12, GF(p)×GF(p) ≡ GF(p).

�

In the proof of the previous theorem it is shown that GF(p) ≡ GF(p)[x]/〈x2〉 which is another

interesting example of rings of different sizes being equivalent under dominance. It is known [17, Theo-

rem 2, p. 250] that, for each prime p, the only four commutative rings of size p2 are GF(p2), GF(p)×

GF(p), Zp2 , and GF(p)[x]/〈x2〉. The following theorem describes a chain of dominances between these

rings and shows that dominance is a total quasi-order of the commutative rings of size p2.

Theorem 2.2.20. For each prime p, the four commutative rings of size p2 satisfy

Nlin(Zp2)⊂ Nlin(GF(p)[x]/〈x2〉) = Nlin(GF(p)×GF(p)) ⊂ Nlin(GF(p2)).

Proof. The field GF(p) is a subring of the field GF(p2), so by Corollary 2.2.6, GF(p) � GF(p2). This,

along with the fact the (p2+1)-Choose-Two Network is scalar linearly solvable over GF(p2) but not GF(p)

(via Lemma 2.2.15), implies Nlin(GF(p))⊂Nlin(GF(p2)). By Theorem 2.2.19 and Corollary 2.2.7, we also

have Zp2 � GF(p)≡ GF(p)×GF(p)≡ GF(p)[x]/〈x2〉. Additionally, by Lemma 2.2.3, the Char-p Network

is scalar linearly solvable over GF(p) but not Zp2 , thus proving the claim. �

2.3 Finite Field Dominance

A ring R does not dominate the ring S whenever there exists a network that is scalar linearly solvable

over S but not over R. The following lemma demonstrates a class of non-multicast networks that will be

used in later proofs to show a given ring is not dominated by another given ring. Such networks are scalar

linearly solvable only over certain fields.

Lemma 2.3.1. [9, Section VI, Example (7)]: For any primes q1, . . . ,qs and positive integers m1, . . . ,ms,

there exists a network that is scalar linearly solvable over the fields GF(qnm1

1 ), . . . , GF(qnms
s ) for all n ≥ 1,

but not over any other fields.

Note that the primes q1, . . . ,qs in Lemma 2.3.1 need not be distinct. The following lemma will

enable us to demonstrate certain networks that are scalar linearly solvable over some ring of prime power
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size but not over the field of the same size. Lemma 2.3.2 will also be used in some of the proofs in

Section 2.5.

Lemma 2.3.2. Let p1, . . . , pr and q1, . . . ,qs be primes, and let k1, . . . ,kr and m1, . . . ,ms be positive integers.

The ring GF(qm1

1 )×·· ·×GF(qms
s ) is dominated by the ring GF(p

k1

1 )×·· ·×GF(pkr
r ) if and only if for each

i ∈ {1, . . . ,r} there exists j ∈ {1, . . . ,s} such that q j = pi and m j

∣
∣ ki.

Proof. If, for each i, there is a j such that q j = pi and m j

∣
∣ ki, then GF(q

m j

j ) is a subring of GF(p
ki

i )

so by Corollary 2.2.6, GF(q
m j

j ) � GF(p
ki

i ) and therefore, by Lemma 2.2.13, GF(qm1

1 )× ·· · ×GF(qms
s ) �

GF(p
k1

1 )×·· ·×GF(pkr
r ).

To prove the converse, suppose to the contrary that there exists i ∈ {1, . . . ,r} such that for all

j ∈ {1, . . . ,s}, either q j 6= pi or m j ffl ki. By Lemma 2.3.1, there exists a network N that is scalar lin-

early solvable precisely over those fields of size q
nm j

j , where j ∈ {1, . . . ,s} and n ≥ 1. Taking n = 1

and applying Lemma 2.2.12, implies that N is scalar linearly solvable over GF(qm1

1 )× ·· · × GF(qms
s ).

But N can not be scalar linearly solvable over GF(p
ki

i ), since for all j ∈ {1, . . . ,s}, either q j 6= pi or

m j ffl ki, so by Lemma 2.2.12, N is not scalar linearly solvable over GF(p
k1

1 )× ·· · × GF(pkr
r ). Thus,

GF(qm1

1 )×·· ·×GF(qms
s ) 6� GF(p

k1

1 )×·· ·×GF(pkr
r ). �

As in Theorem 2.2.19, the following corollary demonstrates that two non-isomorphic commutative

rings of the same size may be equivalent with respect to the dominance relation �. In this case, the rings

are both direct products of fields.

Corollary 2.3.3. For each k ≥ 3 and prime p, the rings GF(pk−1)×GF(p) and GF(pk−2)×GF(p)×GF(p)

each dominate the other.

Proof. The result follows from Lemma 2.3.2 by taking r = 2,s = 3, p1 = p2 = q1 = q2 = q3 = p, k1 =

k − 1, m1 = k − 2, and k2 = m2 = m3 = 1 to get GF(pk−2)×GF(p)×GF(p) � GF(pk−1)×GF(p), and

by taking r = 3,s = 2, p1 = p2 = p3 = q1 = q2 = p, k1 = k− 2, m1 = k− 1, and k2 = k3 = m2 = 1 to get

GF(pk−1)×GF(p)� GF(pk−2)×GF(p)×GF(p). �

Example 2.3.4 next demonstrates a network that is scalar linearly solvable over a ring of size 32

but is not scalar linearly solvable over the field of size 32. It turns out that 32 is the smallest prime power

alphabet size for which a network can have a scalar linear solution over a commutative ring but not over the

field of the same size (see Corollary 2.5.10).
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Example 2.3.4. Taking r = 1,s = 2, p1 = q1 = q2 = 2 and k1 = 5,k1 = 3,k2 = 2 in Lemma 2.3.2 shows

that GF(8)×GF(4) is not dominated by GF(32). In particular, there exists a network that is scalar linearly

solvable over the ring GF(8)×GF(4) but not over the field GF(32).

Theorem 2.2.16 and Examples 2.2.11 and 2.3.4 also demonstrate that dominance is not necessarily

a total quasi-order of the commutative rings of a given size, as there can exist rings of the same size such

that neither dominates the other.

2.3.1 Local Rings

A finite commutative ring is said to be local if it has a single maximal ideal (see [3, Definition

1.2.9]). Lemmas 2.3.5 and 2.3.6 are standard results from commutative ring theory.

Lemma 2.3.5. [3, Theorem 3.1.4]: Every finite commutative ring is a direct product of local rings.

Lemma 2.3.6. [3, Theorem 6.1.2 II]: If R is a finite commutative local ring with maximal ideal I, then there

exists a prime p and positive integers k and m such that

(i) |R|= pk

(ii) R/I is a field of size pm and m divides k.

All finite fields are local rings, since their unique maximal ideal is the trivial ring {0}. The ring

Zn is local if and only if n is a prime power, since for any prime divisor p of n, 〈p〉 = {ap : a ∈ Zn} is a

maximal ideal of Zn. However, not every ring of prime power size is local. For example, GF(2)×GF(2)

has distinct maximal ideals {(0,0),(1,0)} and {(0,0),(0,1)}. The following lemma connects the algebraic

concept of local rings to the dominance relation of network coding.

Lemma 2.3.7. Every finite commutative local ring is dominated by the finite field of the same size.

Proof. Let R be a finite commutative local ring with maximal ideal I. By Lemma 2.3.6, there exist a prime

p and positive integers k and m such that |R|= pk, m
∣
∣ k, and R/I ∼= GF(pm). Thus, by Corollary 2.2.9, we

have R � GF(pm), and since m
∣
∣ k, we have GF(pm) � GF(pk) by Lemma 2.3.2. The lemma then follows

from the transitivity of �. �

Example 2.3.4 demonstrated that there exists a network that is scalar linearly solvable over the ring

GF(8)×GF(4) but not over the field GF(32). The following theorem strengthens the result in Example 2.3.4

by additionally showing the network is not even scalar linearly solvable over any other commutative ring of

size 32. This contrasts with Theorem 2.2.16, which demonstrates a network that is scalar linearly solvable

over GF(32) but not over any other commutative ring of size 32.
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Theorem 2.3.8. There exists a network that is scalar linearly solvable over GF(8)×GF(4) but not over

any other commutative ring of size 32.

Proof. By Lemma 2.3.1, there exists a network N that is scalar linearly solvable precisely over all fields

whose size is of the form 22n or 23n, where n ≥ 1. Hence N is scalar linearly solvable over both GF(4)

and GF(8) but neither GF(2) nor GF(32). By using a product code, N is also scalar linearly solvable over

the ring GF(8)×GF(4) of size 32. We will now show that N is not scalar linearly solvable over any other

commutative ring of size 32.

By Lemmas 2.3.5 and 2.3.6 (i), every commutative ring R of size 32 satisfies exactly one of the

following seven properties:

(a) R is a local ring of size 32

(b) R is a direct product of local rings of size 16 and 2

(c) R is a direct product of local rings of size 8 and 4

(d) R is a direct product of local rings of size 8, 2, and 2

(e) R is a direct product of local rings of size 4, 4, and 2

(f) R is a direct product of local rings of size 4, 2, 2, and 2

(g) R is a direct product of five local rings of size 2.

By Lemma 2.3.7, any network that is scalar linearly solvable over a commutative local ring of size 32 is also

scalar linearly solvable over GF(32). This eliminates case (a). Similarly, any network that is scalar linearly

solvable over a local ring of size 2 is also scalar linearly solvable over GF(2). By Lemma 2.2.12, any

network that is scalar linearly solvable over a direct product ring is also scalar linearly solvable over every

ring in the direct product. This eliminates cases (b),(d),(e),(f),(g). Thus if N is scalar linearly solvable over

a commutative ring R of size 32, R must satisfy case (c).

Suppose S is a commutative local ring of size 8 with maximal ideal I. Then Lemma 2.3.6 (ii)

implies S/I ∼= GF(2m) for some m ∈ {1,3}. If m = 3, then S ∼= GF(8), and if m = 1, then by Corollary 2.2.9,

S � GF(2). Similarly, a commutative local ring of size 4 is either isomorphic to GF(4) or is dominated by

GF(2). Thus if N is scalar linearly solvable over a ring R satisfying case (c), then R ∼= GF(8)×GF(4);

otherwise, by Lemma 2.2.12, a scalar linear solution over R would imply there exists a scalar linear solution

over GF(2). Thus GF(8)×GF(4) is the only commutative ring of size 32 over which N is scalar linearly

solvable. �
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Theorem 2.3.8 demonstrates that GF(8)×GF(4) is not dominated by any other commutative ring

of size 32 (including GF(32)) and thus is maximal. On the other hand, Theorem 2.2.16 demonstrates that

GF(32) is not dominated by any other commutative ring of size 32 (including GF(8)×GF(4)) and thus is

maximal. In Section 2.5, we characterize all maximal rings, and we show that all maximal rings have the

property that there exists some network that is scalar linearly solvable over the maximal ring but not over

any other commutative ring of the same size, which agrees with Theorems 2.3.8 and 2.2.16.

The network in the previous theorem is clearly also scalar linearly solvable over the fields GF(8)

and GF(4). So while GF(8)×GF(4) is the only commutative ring of size 32 that the network is scalar

linearly solvable over, it is not the smallest commutative ring the network is scalar linearly solvable over.

This fact agrees with Theorem 2.2.10.

2.3.2 Non-Power-of-Prime Size Rings

Theorem 2.2.10 demonstrated that scalar linear solutions over commutative rings induce scalar

linear solutions over finite fields. For a network that is scalar linearly solvable over a given commutative

ring it is natural to ask over which fields is the network also scalar linearly solvable. In this section, we

partially answer this question.

Theorem 2.3.9. Suppose a network is scalar linearly solvable over some commutative ring whose

size is divisible by the prime p. Then the network is scalar linearly solvable over some finite field of

characteristic p whose size divides the size of the ring.

Proof. Let the commutative ring be R. By Lemma 2.3.5, there exist commutative local rings R1, . . . ,Rn such

that R ∼= R1×·· ·×Rn. So we have |R|= |R1| · · · |Rn| and since p divides |R|, there exists j ∈ {1, . . . ,n} such

that p divides |R j|. By Lemma 2.3.6 (i), this implies |R j| = pm for some positive integer m. Therefore,

by Lemma 2.3.7, R j � GF(pm). Since N is scalar linearly solvable over R, by Lemma 2.2.12, N must

be scalar linearly solvable over R j, and since R j � GF(pm), N must also be scalar linearly solvable over

GF(pm). �

Theorem 2.3.9 demonstrates that commutative rings of non-power-of-prime size are always domi-

nated by some fields whose characteristics are the prime factors of the ring’s size. Determining which fields

dominate a particular ring appears to be a non-trivial problem, since it depends on the local decomposition

of the ring. We address a select few cases.
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The following result is a standard result of algebra and shows that for each square-free integer m,

any ring (with identity) of size m must be isomorphic to a direct product of prime fields. As an example, the

ring Z6 is isomorphic to GF(3)×GF(2).

Lemma 2.3.10. [2, p. 457]: Let p1, . . . , pn be distinct primes. The commutative ring GF(p1)×·· ·×GF(pn)

is the only ring of size p1 · · · pn.

The following corollary shows that if a network is scalar linearly solvable over a ring whose size

is square-free, then it must also be scalar linearly solvable over the prime fields corresponding to its prime

factors.

Corollary 2.3.11. Let p1, . . . , pn be distinct primes. If a network is scalar linearly solvable over a ring of

size p1 · · · pn, then the network is scalar linearly solvable over each of the fields GF(p1), . . . , GF(pn).

Proof. By Lemma 2.3.10, the only ring of size p1 · · · pn is GF(p1)×·· ·×GF(pn). By Lemma 2.2.12, any

network that is scalar linearly solvable over this ring must also have a scalar linear solution over each of

GF(p1), . . . , GF(pn). �

In general, one cannot specify in Theorem 2.3.9 which fields of characteristic p a particular net-

work is scalar linearly solvable over without knowing the particular ring R. As an example, the following

corollary illustrates that different networks that are scalar linearly solvable over different rings of size 12,

may be scalar linearly solvable over different finite fields. Additionally, Corollary 2.3.12 demonstrates that

Corollary 2.3.11 does not always hold when p1, . . . , pn are non-distinct primes.

Corollary 2.3.12. (i) If a network is scalar linearly solvable over GF(4)×GF(3), then the network is scalar

linearly solvable over GF(4) and GF(3) but not necessarily over GF(2). (ii) If a network is scalar linearly

solvable over Z12, then the network is scalar linearly solvable over GF(2) and GF(3).

Proof. Part (i) follows from Lemma 2.2.12 and the fact that the Two-Six Network is scalar linearly solvable

over GF(4) and GF(3) but not over GF(2) (see Corollary 2.2.18). Part (ii) follows from Corollary 2.2.7. �
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2.4 Integer Partitions

This section focuses on using integer partitions to describe a particular class of commutative rings

that are direct products of finite fields. These rings will then be used in Section 2.5 to characterize commu-

tative rings that are maximal.

For any positive integer k, a partition of k of length r is a non-decreasing sequence of positive

integers (a1, . . . ,ar) whose sum is equal to k. The length r of a partition A is sometimes denoted |A|. Let

Π(k) denote the set of all partitions of k.

Definition 2.4.1. For each prime p, and each partition A = (a1, . . . ,ar) of k, define the direct product

ring

RA,p = GF(pa1)×·· ·×GF(par).

Let m ≥ 2 have prime factorization m = p
k1

1 · · · p
kt
t , and let R be a ring of size m. We call R a partition

ring if for each i = 1, . . . , t, there exists Ai ∈ Π(ki) such that

R ∼= RA1,p1
×·· ·×RAt ,pt

.

We will refer to A1, . . . ,At as the partitions of R.

As an example, if m = 864 = 2533, then R = GF(22)×GF(22)×GF(21)×GF(32)×GF(31) is a

partition ring and the partitions of R are A1 = (2,2,1) and A2 = (2,1). Another partition ring of size 864

is R = GF(24)×GF(21)×GF(33) and the partitions of R are A1 = (4,1) and A2 = (3). As another special

case, any field GF(pk) is a partition ring whose partition is (k). In later proofs, we will encounter direct

products of fields not given in terms of partitions; however, Lemma 2.4.2 demonstrates that each such direct

product is, in fact, a partition ring.

Lemma 2.4.2. Every finite direct product of finite fields is a partition ring.

Proof. Suppose q1, . . . ,qs are (not necessarily distinct) prime numbers and n1, . . . ,ns are positive integers

and define the product ring R = GF(qn1

1 )× ·· · ×GF(qns
s ). Let p

k1

1 · · · p
kt
t denote the prime factorization of

the ring size |R|, so that p
k1

1 · · · p
kt
t = q

n1

1 · · ·qns
s . For each j ∈ {1, . . . ,s}, we have q j = pi for some unique

i ∈ {1, . . . , t}. Thus, for each i = 1, . . . , t, there exist positive integers ri and ai,1 ≥ ·· · ≥ ai,ri
such that

ai,1 + · · ·+ai,ri
= ki and GF(qn1

1 )×·· ·×GF(qns
s )∼=

t

∏
i=1

ri

∏
j=1

GF(p
ai, j

i ). Let Ai = (ai,1, . . . ,ai,ri
). Then for each

i, Ai is a partition of ki, and R is isomorphic to the partition ring with partitions A1, . . . ,At . �
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2.4.1 Partition Division

Definition 2.4.3. Let A and B be partitions of k. We say that A divides B and write A
∣
∣ B if for each

element b of B, there exists an element a of A such that a
∣
∣ b. We call the relation “

∣
∣” partition division.

For each positive integer k, it can be verified that the partition division relation is a quasi-order on

the set Π(k). Throughout this chapter, whenever we refer to a partition of an integer as being maximal, we

mean the partition is maximal with respect to the relation
∣
∣ on the set of all partitions of the same integer.

In particular, a partition B of k is maximal if and only if A
∣
∣ B whenever B

∣
∣ A, for all partitions A of k.

Sometimes distinct partitions of the same integer each divide the other. For example, for each k ≥ 3, the

partitions (k−1,1) and (k−2,1,1) of k divide one another. Hence partition division is not anti-symmetric

on Π(k).

Lemma 2.4.4 demonstrates the connection between partition division and dominance of partition

rings. Lemma 2.4.4 is a special case of Lemma 2.3.2, where the direct products of finite fields are based on

partition rings.

Lemma 2.4.4. Let m ≥ 2 have prime factorization m = p
k1

1 · · · p
kt
t , and for each i = 1, . . . , t, let Ai and Bi

be partitions of ki. Then RA1,p1
×·· ·×RAt ,pt

is dominated by the ring RB1,p1
×·· ·×RBt ,pt

if and only if Ai

divides Bi for all i.

Proof. For each i ∈ {1, . . . , t}, let Ai = (ai,1, . . . ,ai,ri
) and Bi = (bi,1, . . . ,bi,si

). Then

RA1,p1
×·· ·×RAt ,pt

∼=
t

∏
i=1

ri

∏
j=1

GF(p
ai, j

i ) and RB1,p1
×·· ·×RBt ,pt

∼=
t

∏
i=1

si

∏
j=1

GF(p
bi, j

i ).

By Lemma 2.3.2,
t

∏
i=1

si

∏
j=1

GF(p
ai, j

i )�
t

∏
i=1

ri

∏
j=1

GF(p
bi, j

i )

if and only if for each i ∈ {1, . . . , t} and each j ∈ {1, . . . ,ri}, there exists l ∈ {1, . . . ,si} such that ai,l

∣
∣ bi, j.

However, the latter condition is precisely Ai

∣
∣ Bi for all i. �

2.4.2 Characterizing Maximal Partitions

The following lemma shows that if a partition divides a partition that is not shorter than it, then it

also divides a partition which is shorter. This property will be used to characterize maximal partitions in

Theorems 2.4.6 and 2.4.9.

38



Lemma 2.4.5. Let A and B be different partitions of k. If |A| ≤ |B| and A
∣
∣ B, then there exists a partition

C of k such that |C|< |A| and A
∣
∣ C.

Proof. The proof uses induction on |B|−|A|. In this proof, when we refer to elements of an integer partition

as being “distinct” we mean that the elements are in different positions in the partition but possibly equal in

value, i.e. if i 6= j, then ai and a j are distinct elements of A, even when ai = a j.

• Base case: |B|− |A|= 0.

If no element of A divides multiple elements of B, then, since |A|= |B|, each element of A must divide

exactly one element of B. Then there exists a permutation σ of {1, . . . , |A|} such that ai divides bσ(i).

Then

|A|

∑
i=1

bσ(i) =
|A|

∑
i=1

bi [from σ is a permutation]

=
|B|

∑
i=1

bi [from |A|= |B|]

=
|A|

∑
i=1

ai [from A,B ∈ Π(k)]

which implies ai = bσ(i) for all i. However, this contradicts the assumption that A 6= B.

So we may assume there exists an element a of A that divides some distinct elements bi,b j of B. Let

C be the partition B with elements bi and b j removed and replaced by (bi +b j). Then C is a partition

of k that is shorter than A, and since a divides (bi +b j), we have A
∣
∣ C.

• Induction step: Assume true whenever |B|− |A|< n (where n ≥ 1).

Suppose |B|− |A|= n.

◮ Case: n = 1

Since |B| > |A| and A
∣
∣ B, there exists an element a of A that divides some distinct elements

bi,b j of B. If there is a third distinct element bl of B such that a
∣
∣ bl , then let C be the partition

B with elements bi, b j, and bl removed and replaced by (bi +b j +bl). Then C is a partition of k

that is shorter than A, and since a divides (bi +b j +bl), we have A
∣
∣ C.

If there is no such third distinct element bl , then modify B by removing the elements bi and b j

and adding an element (bi +b j). The new B is a partition of k that is the same length as A, and

since a divides (bi + b j), we have A
∣
∣ B. Since a divides both bi and b j, we have a 6= bi + b j,

and since (bi +b j) is the only element of B that a divides, the value a is not one of the elements

of B. Hence B 6= A, which reduces to the base case n = 0.
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◮ Case: n ≥ 2

Since |B| > |A| and A
∣
∣ B, there exists an element a of A that divides some distinct elements

bi,b j of B. Modify the partition B by removing the elements bi and b j and adding the element

(bi +b j). The new B is a partition of k that is one shorter than before the modification, and since

a divides (bi +b j), we have A
∣
∣ B. This reduces to the case |B|− |A|= n−1, which is true by

the induction hypothesis.

�

Theorem 2.4.6. No maximal partition of k can divide any other partition of k.

Proof. Any partition A is maximal if and only if the equivalence class [A] is maximal (with respect to the

induced partial order under partition division), so it suffices to show that if [A] is maximal, then [A] = {A}.

Let A be a maximal partition of k such that A is of minimal length among the partitions in [A], and

suppose B ∈ [A]−{A}. Then |A| ≤ |B| and A
∣
∣ B, so by Lemma 2.4.5, there exists C ∈ Π(k) such that

|C|< |A| and A
∣
∣ C. Since [A] is maximal, we must have C

∣
∣A, which implies C ∈ [A], but this violates the

minimum length of A in [A]. Thus, [A] = {A}. �

In theory, the maximal elements in a quasi-order could be equivalent to another maximal element,

i.e. the corresponding equivalence class contains more than one element. However, Theorem 2.4.6 implies

the maximal partitions of k are precisely the partitions of k that do not divide any other partition of k, i.e.

each maximal partition is in a distinct equivalence class. This is a stronger maximality condition than the

maximality induced by the quasi-order.

Lemma 2.4.7 demonstrates a property of maximal partitions that will be used in a later proof.

Lemma 2.4.7. No element of a maximal partition of k is divisible by a different element of the partition.

Proof. Let A = (a1, . . . ,ar) be a partition of k. Assume there exist distinct i, j ∈ {1, . . . ,r} such that ai

divides a j. Then ai divides (ai +a j). Create a new partition B of k by removing the elements ai and a j of A

and inserting a new element (ai +a j). Then B 6= A and A
∣
∣ B, so by Theorem 2.4.6, A is not maximal. �

The converse of Lemma 2.4.7 does not necessarily hold. For example, the partition (5,3,2) satisfies

the latter condition of Lemma 2.4.7, but (5,3,2)
∣
∣ (10), so (5,3,2) is not maximal.
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2.4.3 Maximal Partitions of Short Length

The following results provide a partial characterization of the maximal partitions with respect to

partition division.

Remark 2.4.8. For each k ≥ 1, the partition (k) is maximal, since k does not divide any positive integer

less than k.

Theorem 2.4.9 gives a complete characterization of the maximal partitions of length 2.

Theorem 2.4.9. Let k and m be positive integers such that m ≤ k/2. The partition (k−m,m) of k is

maximal if and only if m ffl k.

Proof. Assume m
∣
∣ k. Then (k−m,m)

∣
∣ (k), so by Theorem 2.4.6, (k−m,m) is not a maximal partition.

Now assume m ffl k. Then k 6= 2m, so m < k/2, or equivalently k−m > k/2. Thus, (k −m) ffl k,

which means that (k−m,m) does not divide (k). But (k) is the only partition of k shorter than the partition

(k−m,m), so by Lemma 2.4.5, the partition (k−m,m) cannot divide any other partition of k that is at least

as long as (k−m,m). Thus (k−m,m) is maximal. �

We can have maximal partitions of length 3 or greater, such as (7,6,4), although we do not know of

a nice characterization of such partitions. In Table 2.6, we provide a computer generated list of all maximal

partitions of k, for each k ≤ 30.

Theorem 2.4.10. Let k be a positive integer. Then (k) is the unique maximal partition of k if and only

if k ∈ {1,2,3,4,6}.

Proof. For each positive integer k, by Remark 2.4.8, (k) is a maximal partition. It is easily verified that the
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following are all the partitions of k, for k ∈ {1,2,3,4,6}:

Π(1) = {(1)}

Π(2) = {(2),(1,1)}

Π(3) = {(3),(2,1),(1,1,1)}

Π(4) = {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)}

Π(6) = {(6),(5,1),(4,2),(4,1,1),(3,3),

(3,2,1),(3,1,1,1),(2,2,2),

(2,2,1,1),(2,1,1,1,1), (1,1,1,1,1,1)} .

For each k ∈ {1,2,3,4,6}, every partition of k has an element that divides k, so (k) is the only maximal

partition for such k.

For each odd k ≥ 5, we have

gcd

(
k−1

2
,k

)

= gcd

(
k−1

2
,k−2

(
k−1

2

))

= gcd

(
k−1

2
,1

)

= 1 <
k−1

2

so k−1
2

ffl k. Therefore
(

k+1
2
, k−1

2

)
is a maximal partition, by taking m = k−1

2
in Theorem 2.4.9.

For each even k ≥ 8, we have

gcd

(
k

2
−1,k

)

= gcd

(
k

2
−1,k−2

(
k

2
−1

))

= gcd

(
k

2
−1,2

)

≤ 2 <
k

2
−1

so
(

k
2
−1
)

ffl k. Therefore
(

k
2
+1, k

2
−1
)

is a maximal partition, by taking m = k
2
−1 in Theorem 2.4.9.

Thus if k = 5 or if k ≥ 7, then there exist at least two maximal partitions of k. �

2.5 Maximal Commutative Rings

In this section, we characterize the commutative rings which are maximal with respect to the quasi-

order of commutative rings of a given size under dominance. In order to do, we make use of the results on

partition division from Section 2.4.

Corollary 2.5.1. If each of a partition ring’s integer partitions is maximal, then the ring is not dominated

by any other partition ring of the same size.

Proof. Let m = p
k1

1 · · · p
kt
t be the prime factorization of m. For each i = 1, . . . , t, let Ai,Bi ∈ Π(ki) be such

that Ai is maximal. Suppose RA1,p1
× ·· · ×RAt ,pt

� RB1,p1
× ·· · ×RBt ,pt

. Then by Lemma 2.4.4, Ai

∣
∣ Bi

for all i. Since each Ai is maximal, by Theorem 2.4.6, Bi = Ai, for all i. Therefore the partition ring

RA1,p1
×·· ·×RAt ,pt

is isomorphic to the partition ring RB1,p1
×·· ·×RBt ,pt

. �
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Lemma 2.5.2 extends Corollary 2.5.1 to show that partition rings, where each partition is maximal,

are not dominated by any other (not necessarily partition) commutative ring of the same size.

Lemma 2.5.2. If each of a partition ring’s integer partitions is maximal, then the ring is not dominated by

any other commutative ring of the same size.

Proof. Let m = p
k1

1 · · · p
kt
t be the prime factorization of the size of the ring R = RA1,p1

×·· ·×RAt ,pt
, where

for each i = 1, . . . , t, the partition Ai = (ai,1, . . . ,ai,ri
) of ki is maximal. Suppose R is dominated by a

commutative ring S of size m. We will show that R and S are isomorphic rings.

By Lemma 2.3.5, the ring S can be written as a direct product of commutative local rings, and by

Lemma 2.3.6 (i), the size of each such local ring has to be a power of one of the prime factors p1, . . . , pt of

m. Specifically, for each i = 1, . . . , t, there exist local rings Li,1, . . . ,Li,si
such that each |Li, j| is a power of pi

and

S ∼=
t

∏
i=1

si

∏
j=1

Li, j. (2.6)

For each i = 1, . . . , t and j = 1, . . . ,si, Lemma 2.3.7 impies that Li, j � GF(|Li, j|). Then,

RA1,p1
×·· ·×RAt ,pt

�
t

∏
i=1

si

∏
j=1

Li, j [from R � S, (2.6)]

�
t

∏
i=1

si

∏
j=1

GF(|Li, j|) [from Lemma 2.2.13] (2.7)

and the right-hand-side of (2.7) is a partition ring of size m, by Lemma 2.4.2. Since each Ai is maximal, by

Corollary 2.5.1 and (2.7), we have
t

∏
i=1

si

∏
j=1

GF(|Li, j|)∼= RA1,p1
×·· ·×RAt ,pt

∼=
t

∏
i=1

ri

∏
j=1

GF(p
ai, j

i ). (2.8)

Therefore for each i = 1, . . . , t, we have si = ri, and by (2.8), without loss of generality, we may assume

|Li, j|= p
ai, j

i , for all j = 1, . . . ,ri.

For each i = 1, . . . , t and j = 1, . . . ,ri, let Ii, j be the maximal ideal of the local ring Li, j. Then, by

Lemma 2.3.6 (ii), for each i and j, there exists a positive integer bi, j such that bi, j

∣
∣ ai, j and GF(p

bi, j

i ) is

isomorphic to Li, j/Ii, j. Corollary 2.2.9 then implies

Li, j � GF(p
bi, j

i ) (i = 1, . . . , t and j = 1, . . . ,ri) (2.9)

43



and therefore

R ∼=
t

∏
i=1

ri

∏
j=1

GF(p
ai, j

i )

�
t

∏
i=1

ri

∏
j=1

Li, j [from R � S, (2.6)]

�
t

∏
i=1

ri

∏
j=1

GF(p
bi, j

i ) [from (2.9), Lemma 2.2.13] . (2.10)

Lemma 2.3.2 and (2.10) imply that for each i ∈ {1, . . . , t} and j ∈ {1, . . . ,ri}, there exists l ∈

{1, . . . ,ri} such that ai,l

∣
∣ bi, j. We also have bi, j

∣
∣ ai, j , so ai,l

∣
∣ ai, j. Since Ai is maximal, by Lemma 2.4.7,

this implies l = j. Thus bi, j = ai, j , for all i ∈ {1, . . . , t} and j ∈ {1, . . . ,ri}, and therefore Li, j/Ii, j
∼= GF(p

ai, j

i )

for all i, j. However, we also have |Li, j|= p
ai, j

i for all i, j. So it must be the case that |Ii, j|= 1, and

Li, j
∼= GF(p

ai, j

i ) (i = 1, . . . , t and j = 1, . . . ,ri). (2.11)

Thus,

S ∼=
t

∏
i=1

ri

∏
j=1

GF(p
ai, j

i ) [from (2.6), (2.11)]

∼= RA1,p1
×·· ·×RAt ,pt

∼= R.

�

Lemmas 2.5.2 and 2.5.3 will be used in the proof of Theorem 2.5.4 to show that the maximal

commutative rings with respect to dominance are precisely partition rings where each partition is maximal.

Lemma 2.5.3. Every finite commutative ring is dominated by some partition ring of the same size, all of

whose partitions are maximal.

Proof. Let R be a finite commutative ring. By Lemma 2.3.5, there exist commutative local rings R1, . . . ,Rn

such that R ∼= R1 × ·· · × Rn. By Lemma 2.3.7, for each j = 1, . . . ,n, we have R j � GF(|R j|) so by

Lemma 2.2.13, we have

R1 ×·· ·×Rn � GF(|R1|)×·· ·×GF(|Rn|). (2.12)

Let m = p
k1

1 · · · p
kt
t denote the prime factorization of m. Then by Lemma 2.4.2, for each i = 1, . . . , t,

there exists a partition Bi of ki such that

RB1,p1
×·· ·×RBt ,pt

∼= GF(|R1|)×·· ·×GF(|Rn|). (2.13)
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Since Π(ki) is a finite quasi-ordered set under partition division, for each i = 1, . . . , t, there exists

maximal Ai ∈ Π(ki) such that Bi

∣
∣ Ai. So we have

R � RB1,p1
×·· ·×RBt ,pt

[from (2.12), (2.13)]

� RA1,p1
×·· ·×RAt ,pt

[from Lemma 2.4.4] .

�

The following theorem characterizes maximal commutative rings.

Theorem 2.5.4. A finite commutative ring is maximal if and only if it is a partition ring, each of whose

integer partitions is maximal.

Proof. If R is a partition ring such that each of its partitions is maximal, then by Lemma 2.5.2, no other

commutative ring of the same size dominates R. Thus, R is maximal.

Conversely, assume commutative ring R is maximal. By Lemma 2.5.3, R is dominated by a partition

ring S of the same size where each of its partitions is maximal. Since R is maximal, this implies S � R.

However, by Lemma 2.5.2, this implies S ∼= R. Thus, R is a partition ring such that each of its partitions is

maximal. �

Remark 2.5.5. Since the maximal rings of a given size are partition rings where each integer partition

is maximal, the maximal rings of non-power-of-prime size are direct products of maximal rings of

prime-power sizes.

Corollary 2.5.6. Let m ≥ 2 have prime factorization m = p
k1

1 · · · p
kt
t . Then GF(p

k1

1 )× ·· · ×GF(p
kt
t ) is a

maximal ring of size m.

Proof. This follows from Theorem 2.5.4 and Remark 2.4.8. �

It was shown in Theorem 2.2.19 and Corollary 2.3.3 that non-isomorphic rings can be equivalent

under dominance; however, Corollary 2.5.7 demonstrates that such equivalent rings cannot be maximal.
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Corollary 2.5.7. No maximal commutative ring is dominated by any other commutative ring of the

same size.

Proof. This follows immediately from Theorem 2.5.4 and Lemma 2.5.2 �

We note that this is a stronger maximality than the maximality induced by the quasi-order, since in

a quasi-order, maximal elements can be equivalent to other maximal elements.

Theorem 2.2.16 demonstrated that for each finite field, there exists a multicast network that is scalar

linearly solvable over the field but not over any other commutative ring of the same size, and Theorem 2.3.8

demonstrated a network that is scalar linearly solvable over GF(8)×GF(4) but not over any other commu-

tative ring of size 32. The following theorem shows a similar property for every maximal commutative ring

and provides an alternate characterization of maximal commutative rings than in Theorem 2.5.4.

Theorem 2.5.8. A finite commutative ring is maximal if and only if there exists a network that is scalar

linearly solvable over the ring but not over any other commutative ring of the same size.

Proof. Let R be a maximal commutative ring of size m. By Corollary 2.5.7, R is not dominated by any other

commutative ring of size m, so for each ring S of size m that is not isomorphic to R, there exists a network

NS that is scalar linearly solvable over R but not S. Then the disjoint union of networks

⋃

S∈R(m)
S 6∼=R

NS

is scalar linearly solvable over R, since each NS is scalar linearly solvable over R. However, for each

S ∈ R(m), if S is not isomorphic to R, then NS is not scalar linearly solvable over S, so the disjoint union

network is not scalar linearly solvable over S.

Conversely, if R is a finite commutative ring that is not maximal, then it is dominated by some other

commutative ring S of the same size, so any network that is scalar linearly solvable over R is also scalar

linearly solvable over S. �

An interesting open problem related to Theorem 2.5.8 is to characterize rings with the property

that there exists a multicast network that is scalar linearly solvable over the ring but not over any other

commutative ring of the same size. We showed (in Theorem 2.2.16) that such a multicast network exists
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for every finite field, and we showed (in Example 2.2.11) that there exists a multicast network that is scalar

linearly solvable over a ring of size 213 but not the field GF(213).

2.5.1 Multiple Maximal Rings of a Given Size

Theorem 2.5.9 demonstrates that in some cases, there is only one maximal commutative ring of a

given size. If R is the only maximal ring of a given size, then by Lemma 2.5.3, any network with a scalar

linear solution over some commutative ring of size |R| also has a scalar linear solution over R. Alternatively,

since the set of commutative rings of size |R| is finite and quasi-ordered under dominance, each ring S ∈

R(|R|) is dominated by some maximal ring, and if R is the only maximal ring of size |R|, then S is dominated

by R. In this case, R can be thought of as the “best” commutative ring of size |R|, in terms of scalar linear

solvability.

However, by Theorem 2.5.8, for each maximal ring, there exists a network which is scalar linearly

solvable over the maximal ring but not over any other commutative ring of the same size. When there

are multiple maximal rings of a given size, not every network with a scalar linear solution over some

commutative ring of this size is scalar linearly solvable over every maximal ring. Thus there is no “best”

commutative ring of this size.

Theorem 2.5.9. Let m ≥ 2 have prime factorization m = p
k1

1 · · · p
kt
t . Then GF(p

kt

1 )× ·· ·×GF(p
kt
t ) is

the only maximal ring of size m if and only if {k1, . . . ,kt} ⊆ {1,2,3,4,6}.

Proof. By Corollary 2.5.6, GF(p
kt

1 )× ·· · ×GF(p
kt
t ) is a maximal ring. Assume ki ∈ {1,2,3,4,6} for all

i. Then by Theorem 2.4.10, (ki) is the only maximal partition of ki for all i. Thus, by Theorem 2.5.4,

GF(p
kt

1 )×·· ·×GF(p
kt
t ) is the only maximal ring of size m.

Conversely, assume there exists j such that k j = 5 or k j ≥ 7. Then by Theorem 2.4.10, there exists

a maximal partition B j of k j such that B j 6= (k j). Then by Theorem 2.5.4,

RB j ,p j
×

t

∏
i=1
i6= j

GF(p
ki

i ) and GF(p
kt

1 )×·· ·×GF(p
kt
t )

are distinct maximal rings of size m. �

The bound in the following corollary can be achieved with equality, as illustrated in Example 2.3.4.
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Corollary 2.5.10. If a network is not scalar linearly solvable over a given finite field but is scalar

linearly solvable over some commutative ring of the same size, then the size of the field is at least 32.

Proof. It follows from Theorem 2.5.9 that for each k ∈ {1,2,3,4,6} and prime p, any network that is scalar

linearly solvable over some commutative ring of size pk must also be scalar linearly solvable over the field

GF(pk). The claim follows from the fact p = 2 and k = 5 yield the minimum pk that does not satisfy this

condition. �

In the following example, we list the maximal rings of various sizes.

Example 2.5.11. For each integer k ≥ 1 and prime p, GF(pk) is a maximal ring. The following are the

other maximal commutative rings of size pk for all k ≤ 12:

p5 : GF(p3)×GF(p2)

p7 : GF(p5)×GF(p2) and GF(p4)×GF(p3)

p8 : GF(p5)×GF(p3)

p9 : GF(p7)×GF(p2) and GF(p5)×GF(p4)

p10 : GF(p7)×GF(p3) and GF(p6)×GF(p4)

p11 : GF(p9)×GF(p2), GF(p8)×GF(p3), GF(p7)×GF(p4), and GF(p6)×GF(p5)

p12 : GF(p7)×GF(p5).

GF(8)×GF(4) is the smallest prime-power size maximal commutative ring that is not a finite field, and

GF(128)×GF(64)×GF(16) has size 217 and is the smallest known6 prime-power size maximal commuta-

tive ring consisting of a direct product of more than two fields.

Maximal commutative rings of non-power-of-prime size are direct products of maximal commu-

tative rings of prime-power size (see Remark 2.5.5) and can be found using the maximal partitions of the

prime factor multiplicities. For example, consider maximal rings of size 777600 = 273552. The maximal

partitions of 7 are (7),(5,2), and (4,3); the maximal partitions of 5 are (5) and (3,2); and the only maximal

partition of 2 is (2). Hence the 6 maximal commutative rings of size 777600 are

6 If there were a prime-power size maximal commutative ring, consisting of a direct product of more than two

fields, and whose size were less than 217, then there would exist a length-3 maximal partition of an integer less than

17. The enumeration of maximal partitions given in Table 2.6 implies such a partition does not exist.
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GF(27)×GF(35)×GF(52)

GF(25)×GF(22)×GF(35)×GF(52)

GF(24)×GF(23)×GF(35)×GF(52)

GF(27)×GF(33)×GF(32)×GF(52)

GF(25)×GF(22)×GF(33)×GF(32)×GF(52)

GF(24)×GF(23)×GF(33)×GF(32)×GF(52).

Table 2.6 provides a list of the maximal partitions of k for k = 1,2, . . . ,30, which can be used to find maximal

commutative rings of size m = p
k1

1 · · · p
kt
t , where k1, . . . ,kt ≤ 30.

2.6 Open Questions

Some potentially interesting open questions related to scalar linear codes over commutative rings

and partition division include:

• We have demonstrated there exist non-multicast networks with scalar linear solutions over commu-

tative rings of size pk but not GF(pk) whenever k = 5 or k ≥ 7. For which p and k do there exist

multicast networks with this property?

• Are there cleaner characterizations of maximal rings of a given size?

• Are there cleaner characterizations of maximal partitions of length 3 or greater?

• What is the asymptotic behavior of the number of maximal partitions (rings, respectively) of a given

integer (size, respectively)?

• Can the quasi-order of (not necessarily commutative) rings of a given size under dominance be cleanly

characterized? In particular, what are the maximal rings of a given size when the commutative re-

striction is removed? Non-commutative rings lack some of useful properties of commutative rings,

such as local decomposition.
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(1)

(2)

(3)

(4)

(5) (3,2)

(6)

(7) (5,2) (4,3)

(8) (5,3)

(9) (7,2) (5,4)

(10) (7,3) (6,4)

(11) (9,2) (8,3) (7,4) (6,5)

(12) (7,5)

(13) (11,2) (10,3) (9,4) (8,5) (7,6)

(14) (11,3) (10,4) (9,5) (8,6)

(15) (13,2) (11,4) (9,6) (8,7)

(16) (13,3) (11,5) (10,6) (9,7)

(17) (15,2) (14,3) (13,4) (12,5) (11,6) (10,7) (9,8) (7,6,4)

(18) (14,4) (13,5) (11,7) (10,8)

(19) (17,2) (16,3) (15,4) (14,5) (13,6) (12,7) (11,8) (10,9) (9,6,4) (8,6,5)

(20) (17,3) (14,6) (13,7) (12,8) (11,9)

(21) (19,2) (17,4) (16,5) (15,6) (13,8) (12,9) (11,10) (11,6,4)

(22) (19,3) (18,4) (17,5) (16,6) (15,7) (14,8) (13,9) (12,10) (9,8,5) (9,7,6)

(23) (21,2) (20,3) (19,4) (18,5) (17,6) (16,7) (15,8) (14,9) (13,10) (13,6,4)

(12,11) (11,7,5) (10,9,4) (10,7,6) (9,8,6)

(24) (19,5) (17,7) (15,9) (14,10) (13,11)

(25) (23,2) (22,3) (21,4) (19,6) (18,7) (17,8) (16,9) (15,10) (15,6,4) (14,11) (13,12)

(11,10,4) (11,8,6) (10,9,6) (10,8,7)

(26) (23,3) (22,4) (21,5) (20,6) (19,7) (18,8) (17,9) (16,10) (15,11) (14,12) (12,9,5)

(11,9,6) (11,8,7) (10,9,7)

(27) (25,2) (23,4) (22,5) (21,6) (20,7) (19,8) (17,10) (17,6,4) (16,11) (15,12)

(14,13) (14,8,5) (13,10,4) (13,8,6) (12,8,7) (11,10,6)

(28) (25,3) (23,5) (22,6) (20,8) (19,9) (18,10) (17,11) (16,12) (15,13) (13,9,6)

(12,11,5) (11,9,8)

(29) (27,2) (26,3) (25,4) (24,5) (23,6) (22,7) (21,8) (20,9) (19,10) (19,6,4)

(18,11) (17,12) (16,13) (16,7,6) (15,14) (15,10,4) (15,8,6) (14,11,4)

(14,9,6) (13,11,5) (13,10,6) (13,9,7) (12,10,7) (12,9,8) (11,10,8)

(30) (26,4) (23,7) (22,8) (21,9) (19,11) (18,12) (17,13) (16,14) (13,9,8) (12,11,7)

Figure 2.6: The maximal partitions of k = 1,2, . . . ,30 under partition division.
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Chapter 3

Vector Codes and Non-Commutative Rings

Abstract

In the previous chapter, we studied scalar linear network coding over finite commutative rings and

made comparisons to the well-studied case of linear network coding over finite fields. Here, we consider

the more general setting of vector linear network coding over finite (possibly non-commutative) rings and

modules. We prove the following results regarding the linear solvability of directed acyclic networks over

various finite alphabets.

For any network, the following are equivalent: (i) vector linear solvability over some field, (ii) scalar

linear solvability over some ring, (iii) linear solvability over some module. Analogously, the following are

equivalent: (a) scalar linear solvability over some field, (b) scalar linear solvability over some commutative

ring, (c) linear solvability over some module whose ring is commutative. Whenever any network is linearly

solvable over a module, a smallest such module arises in a vector linear solution over a field.

If a network is scalar linearly solvable over some non-commutative ring but not over any commu-

tative ring, then such a non-commutative ring must have size at least 16, and for some networks, this bound

is achieved. An infinite family of networks is given, each of which is scalar linearly solvable over some

non-commutative ring but not over any commutative ring.

Whenever p is prime and 1 ≤ k ≤ 6, if a network is scalar linearly solvable over some ring of size

pk, then it is also k-dimensional vector linearly solvable over the field GF(p), but the converse does not

necessarily hold. This result is extended to all k ≥ 1 when the ring is commutative.
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3.1 Introduction

In Chapter 2, we studied scalar linear network codes over finite commutative rings. Equivalently,

these are linear codes over modules where a finite commutative ring acts on its own additive group via mul-

tiplication in the ring. In particular, we compared the scalar linear solvability of directed acyclic networks

over different types of commutative rings of the same size. We proved that networks that are scalar linearly

solvable over some commutative ring are also scalar linearly solvable over some field of the same or smaller

size. Additionally, we characterized all commutative rings with the property that there exists a network with

a scalar linear solution over the ring but not over any other commutative ring of the same size.

Linear network codes can be advantageous due to their ease of implementation and mathematical

tractability. These properties are due to the algebraic simplicity of linear maps and also to the structured

nature of the alphabets used. Fields have the most algebraic constraints among alphabets used for linear

network coding, e.g. associativity, distributivity, commutativity, invertibility. More generally, rings may

lack commutativity and/or invertibility, thus providing a broader class of alphabets over which to achieve

linear network solvability. We demonstrated in Chapter 2 that relaxing only the invertibility constraint (i.e.

restricting to commutative rings) can lead to linear network solvability that would not otherwise be possible

with fields of the same alphabet size.

In the present chapter, we additionally relax the commutativity constraint, and we study linear

coding over general ring alphabets and, even more generally, over modules. Vector and scalar linear codes

over rings and fields are special cases of linear codes over modules. We focus on the relationship between

alphabet commutativity and the scalar and vector linear solvability of networks, and we compare the linear

solvability of networks over different modules where the alphabet size is the same.

3.1.1 Linear Codes Over Modules

A module is a generalization of a vector space, where the scalars are from a ring, as opposed to a

field, and the set of vectors may be some other Abelian group. As an example, if R is any ring and k is a

positive integer, then the set of k-vectors over R with component-wise addition forms an Abelian group, and

the ring R acts on this group by scalar multiplication in a similar way to scalar multiplication in a vector

space. In the special case where R is a field, this module is, in fact, a vector space.
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Definition 3.1.1. An R-module (specifically a left R-module) is an Abelian group1 (G,⊕) together with

a ring (R,+,∗) of scalars and an action · : R×G → G such that for all r,s ∈ R and all g,h ∈ G the

following hold:

r · (g⊕h) = (r ·g)⊕ (r ·h)

(r+ s) ·g = (r ·g)⊕ (s ·g)

(r ∗ s) ·g = r · (s ·g)

1 ·g = g.

For brevity, we will sometimes refer to such an R-module as RG or simply G. The size of a module will

refer to |G|.

As an example, any Abelian group (G,⊕) is a Z-module with action given by

n ·g =







g⊕·· ·⊕g
︸ ︷︷ ︸

n adds

n > 0

(−n) · (−g) n < 0

0 n = 0.

In this case, the ring of the module is, in fact, infinite. Since we study network codes over finite alphabets,

we assume all groups are finite, but in theory, the ring of a module need not be finite.

For an R-module G and a positive integer k,

• Mk(R) will denote the ring of all k× k matrices with entries in R, and

• Gk will denote the Abelian group of all k-dimensional vectors with entries in G with vector addition.

Then Gk is an Mk(R)-module where the action is matrix-vector multiplication with multiplication of ele-

ments of R and elements of G given by the action of RG. The special case where G is the additive group of

R will be of particular interest, since this corresponds to matrices over R acting on vectors over R.

We will use the same models as in Chapter 2 (see Section 2.1.1) for networks, alphabets, etc., except

we now study the generalized case of linear codes over modules, as opposed to restricting to linear codes

over rings. An edge function on the out-edge of a network node is linear with respect to the module RG if

can be written in the form
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f (x1, . . . ,xm) = (C1 · x1)⊕·· ·⊕ (Cm · xm) (3.1)

where x1, . . . ,xm ∈ G are the inputs of the node and C1, . . . ,Cm ∈ R are constants. That is, the messages

and edge symbols are elements of the Abelian group G, and the linear edge and decoding functions are

determined by coefficients of the ring R. A decoding function is linear with respect to RG if it has a form

analogous to (3.1), and a code is linear over a module RG if all edge and decoding functions are linear with

respect to RG. The alphabet size in a linear code over a module is the size of the module, i.e. |G|.

For any ring R, we denote its additive (Abelian) group by (R,+). The special case of a module

where the finite ring R acts on its own additive group (R,+) by multiplication in R is denoted by RR, and in

this case, (3.1) is equivalent to the definition of a scalar linear code over a ring that we used in Chapter 2.

A network is linearly solvable over a module RG if there exists a linear solution over RG. We will

focus on two special types of linear codes:

(i) A scalar linear code over a ring R is a linear code over the module RR. A network is scalar linearly

solvable over R if it has a linear solution over the module RR.

(ii) A k-dimensional vector linear code over a ring R is a linear code over the module Mk(R)R
k. A network

is vector linearly solvable over R if it has a linear solution over the module Mk(R)R
k, for some positive

integer k.

When referring to a linear code or solution over a ring, we will always specify (in this chapter) scalar versus

vector, or if neither is specified, then we are referring to a linear code over a module. Additionally, when

referring to an R-module G, the ring R is not assumed to be finite, unless otherwise specified. However,

when referring to a scalar or vector linear code over a ring R, the ring R is assumed to be finite.

We can similarly define a right R-module and a linear code over a right R-module. However, it can

easily be shown that any linear code over a right module is equivalent to a particular linear code over a left

module, so we restrict attention only to left modules.

3.1.2 Our Contributions

Our main results are succinctly summarized in Section 3.5, where we also provide concluding

remarks and list some potentially interesting open questions. The remainder of the chapter is outlined as

follows. In Section 3.1.3, we prove lemmas which are used in proofs later in the chapter.
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Section 3.2 analyzes the linear solvability of networks over ring alphabets which are not necessarily

commutative. In Theorem 2.2.10 of Chapter 2, we proved that whenever a network is scalar linearly solvable

over some commutative ring, then the smallest commutative ring over which the network is scalar linearly

solvable is a field (and thus the ring is unique) Here, we prove (in Theorem 3.2.5) that if a network is scalar

linearly solvable over some (not necessarily commutative) ring, then a smallest such ring is a matrix ring

over a field. It remains unknown, however, whether there can be more than one smallest (not necessarily

commutative) ring over which a network is linearly solvable, since in general, there can exist multiple

matrix rings over fields that are the same size. We demonstrate (in Corollaries 3.2.13 and 3.3.8) that for two

infinite classes of networks studied in this chapter, the smallest size ring over which each network is linearly

solvable is indeed unique.

We prove (in Theorem 3.2.10) that if a network is linearly solvable over some module, then a

smallest such module (i.e. with a smallest associated Abelian group) corresponds to a vector linear solution

over some finite field.2 We prove (in Theorem 3.2.12), in contrast to the commutative ring case, that the

minimum size module with respect to linear solvability is not necessarily unique. Thus, for a fixed network,

vector linear codes over fields are “best” in a certain sense, as these codes can minimize the alphabet size

needed for a linear solution.

We also show (in Corollary 3.2.14) that for all networks, the following properties are equivalent:

(i) vector linear solvability over some field, (ii) scalar linear solvability over some ring, and (iii) linear

solvability over some module. Similarly, we show (in Corollary 3.2.15) that for all networks, the following

properties are equivalent: (a) scalar linear solvability over some field, (b) scalar linear solvability over some

commutative ring, and (c) linear solvability over some module whose ring is commutative.

In Section 3.3, we present a family of networks that generalize the M Network of [8, 15], and we

enumerate (in Theorem 3.3.6) the particular vector dimensions over which each of these networks has vector

linear solutions. A similar result was obtained by Das and Rai in [5]. We prove (in Corollary 3.3.7) that

these networks have scalar linear solutions over certain non-commutative matrix rings yet do not have scalar

linear solutions over any commutative ring. We also show (in Theorem 3.3.10) that if a network is scalar

linearly solvable over a non-commutative ring R and is not scalar linearly solvable over any commutative

ring, then |R| ≥ 16. This lower bound is shown to be achievable (in Corollary 3.3.7 and Example 3.3.9) by

exhibiting a network which has a scalar linear solution over a non-commutative ring of size 16 but not over

any commutative ring.

2For example, in a k-dimensional vector linear code over a field F, the alphabet size of the module is |F|k.
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Section 3.4 focuses on linear solvability of networks over different modules with the same alphabet

size, specifically, k-dimensional vector codes over GF(p) and scalar codes over rings of size pk. We prove

(in Theorem 3.4.1) that for each prime power pk, there exists a network with a linear solution over a module

of size pk but with no scalar linear solutions over any ring of size pk. These particular networks have

k-dimensional vector linear solutions over GF(p). Using a result of Sun et. al [17], we also show (in

Corollary 3.4.3) that there exists a class of multicast networks with similar properties.

On the other hand, we show (in Theorem 3.4.6) that any network with a scalar linear solution over

a commutative ring of size pk has a k-dimensional vector linear solution over GF(p). We prove a similar

result (in Theorem 3.4.17) for general rings of size pk when k ≤ 6. In this sense, k-dimensional vector linear

codes over GF(p) are better than any scalar linear code over a ring of size pk. Additionally, we show (in

Theorems 3.4.6 and 3.4.17) that these results generalize in naturally to rings of non-power-of-prime sizes.

3.1.3 Comparisons of Modules

If G is a Z-module, then as a consequence of Lagrange’s theorem of finite groups, (n|G|) · g = 0

for all g ∈ G and all n ∈ Z. In other words, there are multiple elements of Z that act on G in the same way.

Modules in which every element of the ring acts on G in a different way will be frequently discussed in this

chapter.

Definition 3.1.2. An R-module G is faithful if for each r ∈ R\{0}, there exists g ∈ G such that r ·g 6= 0.

Equivalently, r ·g = 0 for all g if and only if r = 0. For any finite ring R and positive integer k, the

Mk(R)-module Rk is faithful, so vector and scalar linear codes over rings are special cases of linear codes

over faithful modules. On the other hand, it can be verified that the ring Z6 of integers mod 6, acts on the

additive group (Z2,⊕) of integers mod 2, where the action is multiplication modulo 2. For each a = 0,1,

we have 0 = 2a = 4a mod 2 so the Z6-module (Z2,⊕) is not faithful.

For a fixed ring R, there are generally multiple modules over R. For example, if R is a subring of

S, then (S,+) is an R-module where the action is multiplication in S, and (R,+) is also an R-module where

the action is multiplication in R. However, We note, however, that not every ring and group pair can form a

module. For example, the additive group of GF(2) cannot be a GF(3)-module. If (GF(2),⊕) were a GF(3)-

module, then we would have 0 = 0 ·1 = (1+1+1) ·1 = (1 ·1)⊕ (1 ·1)⊕ (1 ·1) = 1⊕1⊕1 = 1 but 0 6= 1

in GF(2). The following lemma shows that the linear solvability of a network over a faithful R-module is
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determined entirely by the ring of scalars R and not by the module’s underlying Abelian group.

Lemma 3.1.3. Let R be a fixed ring. If a network is linearly solvable over some faithful R-module, then it

is linearly solvable over every R-module.

Proof. Let N be a network that is linearly solvable over the faithful R-module (G,⊕). Any linear solution

for N over the R-module (G,⊕) is a linear solution for N over any other R-module.

To see this, let z1, . . . ,zm ∈ G denote the messages of N , and suppose a node in N has inputs

x1, . . . ,xn ∈ G in a solution over RG, where, for each i = 1, . . . ,n,

xi =
m⊕

j=1

(Bi, j · z j)

for some Bi,1, . . . ,Bi,m ∈ R. Then for each output y ∈ G of this node, there exist constants C1, . . . ,Cn ∈ R

such that

y =
n⊕

i=1

(Ci · xi) =
n⊕

i=1

m⊕

j=1

((CiBi, j) · z j) =
m⊕

j=1

((
n

∑
i=1

CiBi, j

)

· z j

)

.

Now let H be any R-module with action ⊙, and suppose the corresponding inputs to the node in

the linear code over RH are x′1, . . . ,x
′
n ∈ H and can be written in terms of the messages z′1, . . . ,z

′
m ∈ H in the

following way

x′i =
m⊕

j=1

(Bi, j ⊙ z′j).

Then the corresponding output y′ ∈ R of the node is of the form

y′ =
n⊕

i=1

(Ci ⊙ x′i) =
n⊕

i=1

m⊕

j=1

((CiBi, j)⊙ z′j) =
m⊕

j=1

((
n

∑
i=1

CiBi, j

)

⊙ z′j

)

.

so by induction, every edge and decoding function in the linear code over RH is the same linear combination

of the messages as in the linear solution over RG.

G is a faithful R-module, so 1 and 0 are the only elements of R such that 1 ·g = g and 0 ·g = 0 for

all g ∈ G. Hence it must be the case that decoding functions in the linear solution over RG are of the form

(1 · zi)⊕
n⊕

j=1
j 6=i

(0 · z j) = zi.

so it must be the case that the corresponding decoding function in the linear code over RH is

(1⊙ z′i)⊕
n⊕

j=1
j 6=i

(0⊙ z′j) = z′i.

Hence, each receiver can linearly recover its demands, so the linear code over RH is, in fact, a solution. �
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In contrast to Lemma 3.1.3, if G is both an R-module and an S-module, then there may exist a

network that is linearly solvable over SG but not RG. For example, consider the case where G = (GF(4),+),

R = GF(2), and S = GF(4). Then GF(2) is a subfield of GF(4), so G is both a faithful R-module and a

faithful S-module. We demonstrate (in Corollary 3.2.13) a network that is scalar linearly solvable over

GF(4) but not GF(2), and by Lemma 3.1.3, this network is linearly solvable over SG but not RG.

a

ab

b c

c

x y

z w

Figure 3.1: The Fano Network is constructed from the Fano matroid [8].

The Fano Network is given in Figure 3.1 and has been used to show numerous interesting properties

of network coding. The following example illustrates the importance of the premise in Lemma 3.1.3 by

demonstrating that the Fano Network has a linear solution over an unfaithful Z6-module yet has no linear

solutions over another Z6-module.

Example 3.1.4. The Fano Network has a linear solution over the unfaithful Z6-module (Z2,⊕) but not the

faithful Z6-module (Z6,+).

Proof. It was shown in [7, Corollary 11] that the Fano Network has solutions only over alphabets whose

sizes are powers of 2, so in particular, the Fano Network has no linear solutions over the Z6-module (Z6,+),

since the alphabet size is 6 in this case.
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Define a linear code for the Fano Network over the Z6-module (Z2,⊕) as follows:

x = a⊕b, y = b⊕ c, z = x⊕ y, w = x⊕ c.

Each of the scalars in Z6 is 1. Then, since g⊕g = 0 for all g ∈ Z2, we have

z⊕a = c, z⊕w = b, w⊕ y = a.

Thus each receiver is able to linearly recover its demands from its inputs, so the code over the Z6-module

(Z2,⊕) is a linear solution. �

If we take the linear code given in Example 3.1.4 to be over the Z6-module (Z6,+), i.e. the same

linear combinations of inputs in a scalar linear code over Z6, then

x = a+b, y = b+ c, z = x+ y

and z+a = 2a+2b+ c 6= c so clearly this code is not a solution when taken over the Z6-module Z6, which

agrees with the result from [7]. If R is any ring such that (Z2,⊕) is an R-module, then the linear solution for

the Fano Network in Example 3.1.4 is a linear solution over the R-module (Z2,⊕). For example, for each

positive integer n, (Z2,⊕) is a Z2n-module where the action is multiplication modulo 2.

In fact, whenever n and m are positive integers, the ring Znm acts on (Zm,+) by multiplication

modulo m. Such a module is faithful when n = 1 and is unfaithful otherwise. So if a network has a scalar

linear solution over Znm, which is equivalent to a linear solution over the faithful Znm-module (Znm,+),

then the network also has a linear solution over the (possibly unfaithful) Znm-module (Zn,⊕). Although, as

demonstrated in Example 3.1.4, the converse may not be true.

While these trivial examples may not seem particularly useful, Corollary 3.1.5 demonstrates an

important special case of Lemma 3.1.3 which will be used frequently in later proofs. It demonstrates an

equivalence between scalar linear solutions over matrix rings and vector linear solutions over rings.

Corollary 3.1.5. Let R be a finite ring, k a positive integer, and N a network. Then N is scalar linearly

solvable over the ring of k× k matrices whose elements are from R if and only if N has a k-dimensional

vector linear solution over R.

Proof. The “if” and the “only if” directions are each obtained by separately applying Lemma 3.1.3, since

Mk(R) and Rk are faithful Mk(R)-modules with matrix-matrix multiplication and matrix-vector multiplica-

tion, respectively. �
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Note that in a k-dimensional vector linear code over a ring R, the alphabet size is |R|k, whereas in a

scalar linear solution over Mk(R), the alphabet size is |R|k
2

. So any network that is scalar linearly solvable

over the matrix ring Mk(R) is also linearly solvable over a smaller module alphabet. We will generalize this

idea in Theorem 3.2.10.

Lemma 3.1.6. If φ : R → S is a ring homomorphism and network N is linearly solvable over some faithful

R-module, then N is linearly solvable over every S-module.

Proof. Let H be an S-module and define a mapping ⊙ : R×H → H by r⊙h = φ(r) ·h, where · is the action

of SH . One can verify that H is an R-module under ⊙. Now, let G be a faithful R-module, and suppose N

has a linear solution over RG. By Lemma 3.1.3, N is linearly solvable over RH , so every output y′ ∈ H in

the solution over RH is of the form

y′ = (C1 ⊙ x1)⊕·· ·⊕ (Cm ⊙ xm) (3.2)

where x1, . . . ,xm ∈ H are the parent node’s inputs and C1, . . . ,Cm ∈ R are constants.

Form a linear code for N over SH by replacing each coefficient Ci in (3.2) by φ(Ci). Let y ∈ H be

the output in the code over SH corresponding to y′ in the code over RH . Then

y = (φ(C1) · x1)⊕·· ·⊕ (φ(Cm) · xm) = (C1 ⊙ x1)⊕·· ·⊕ (Cm ⊙ xm) = y′.

By induction, whenever an edge function in the solution over RH outputs the symbol y′, the corresponding

edge function in the code over SH will output the same symbol y′. Likewise, whenever x is an input to an

edge function in the solution over RH , the corresponding input of the corresponding edge function in the

code over SH will be the same symbol x. The same argument holds for the decoding functions in the code

over SH , so each receiver will correctly obtain its corresponding demands in the code over SH . Hence, the

code over SH is a linear solution for N . �

Corollary 3.1.7 was also shown in Chapter 2 as Lemma 2.2.5. However, Corollary 3.1.7 can also

be viewed as a special case of Lemma 3.1.6 where the modules are RR and SS.

Corollary 3.1.7. Let R and S be finite rings. If there exists a ring homomorphism from R to S, then every

network that is scalar linearly solvable over R is also scalar linearly solvable over S.

For finite rings R and S, special cases of Corollary 3.1.7 include:

(1) R is a subring of S:

The identity mapping is an injective homomorphism from R to S, so any network that is scalar linearly

solvable over R is also scalar linearly solvable over S.
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(2) R has a two-sided ideal I:

There is a surjective homomorphism from R to R/I (see Lemma 3.2.2), so any network that is scalar

linearly solvable over R is also scalar linearly solvable over R/I.

(3) φ : R×S → R is the projection mapping:

φ is a surjective homomorphism, so any network that is scalar linearly solvable over R× S is also

scalar linearly solvable over R (and likewise over S).

Cases (1), (2), and (3) agree with Corollaries 2.2.6 and 2.2.9 and Lemma 2.2.12, respectively.

3.2 Commutative and Non-Commutative Rings

In this section, we will focus on linear codes over modules whose ring acts on its own Abelian

group, i.e. scalar linear codes over rings. As noted after Corollary 3.1.7, for any two-sided ideal I of a finite

ring R, every network that is scalar linearly solvable over R is also scalar linearly solvable over R/I, so in

determining the smallest ring over which a network is scalar linearly solvable, it is natural to focus attention

on rings without two-sided ideals.

A ring is simple if it has no proper two-sided ideals. That is, its only two-sided ideals are the ring

itself and the trivial ideal {0}. The following lemmas give results related to simple rings and network linear

solvability.

Lemma 3.2.1. A finite ring is simple if and only if it is isomorphic to a matrix ring over a field.

Proof. This is a corollary of the Artin-Wedderburn theorem (e.g. [13, p. 36, Theorem 3.10 (4)] and [14, p.

20, Theorem II.9]). �

Lemma 3.2.2. [9, Theorem 7, p. 243]: If I is a two-sided ideal of ring R, then the mapping φ : R → R/I

given by φ(x) = x+ I is a surjective homomorphism.

Lemma 3.2.3. For each finite ring R, there exists a simple ring S such that the following hold:

(a) there exists a surjective homomorphism from R to S,

(b) every network that is scalar linearly solvable over R is scalar linearly solvable over S, and

(c) |S| divides |R|.

Proof. If R is a simple ring, then each statement is trivially true by taking S = R, so we may assume R is

not a simple ring. Thus, R has a proper maximal two-sided ideal I. Let S = R/I, and note that since I is

maximal, S is simple. The mapping φ : R → R/I given by φ(x) = x+ I is a surjective homomorphism by
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Lemma 3.2.2, which proves (a). Hence by Corollary 3.1.7, any network that is scalar linearly solvable over

R is also scalar linearly solvable over S, which proves (b). Since R is finite, we know that |R/I| divides |R|,

which proves (c). �

If R is a finite commutative ring and S is a simple ring satisfying (a)-(c) in Lemma 3.2.3, then S must

also be commutative, since there is a surjective homomorphism from R to S. However, as we demonstrate

in the following example, if R is non-commutative, then such an S is not necessarily non-commutative.

Theorem 3.2.5 demonstrates that any smallest ring over which a network is scalar linearly solvable is simple.

Example 3.2.4. The following demonstrates: (i) a class of non-commutative rings for which the simple ring

in Lemma 3.2.3 is non-commutative, and (ii) a class of non-commutative rings for which the simple ring in

Lemma 3.2.3 is commutative.

(i) For any positive integers k,n, and prime divisor p of n, there exists a surjective homomorphism from

the non-commutative ring Mk(Zn) to the non-commutative simple ring Mk(Zp), given by matrix-

component-wise reduction mod p.

(ii) For each field F and integer k ≥ 2, there exists a surjective homomorphism from the non-commutative

ring of upper triangular k× k matrices with entries in F to the commutative simple ring F (see the

proof of Lemma 3.4.10).

Theorem 3.2.5. If a network is scalar linearly solvable over a ring R but not over any smaller ring,

then R is a matrix ring over a field.

Proof. Suppose a network N is scalar linearly solvable over a ring R that is not simple. By Lemma 3.2.3

(a) (b), there exists a simple ring S and a surjective homomorphism φ : R → S, such that N is scalar linearly

solvable over S. Since φ is surjective, |R| ≥ |S|, but since S is simple and R is not, the two rings cannot be

isomorphic, so |R| 6= |S|, and therefore |R| > |S|. This proves that every smallest size ring over which N

is scalar linearly solvable must be simple, which implies that such a ring is a matrix ring over a field by

Lemma 3.2.1. �

In Theorem 2.2.10 of Chapter 2, we showed that the smallest-size commutative ring over which a

network is scalar linearly solvable is unique. However, there may exist multiple simple rings of the same

size. For example, GF(p4) and M2(GF(p)) are non-isomorphic simple rings of size p4. An interesting open
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question is whether every network with a scalar linear solution over multiple simple rings of the same size

also must have a scalar linear solution over some smaller simple ring. In other words, is the smallest ring

R in Theorem 3.2.5 unique for a given network? We demonstrate (in Corollaries 3.2.13 and 3.3.8) that for

two infinite classes of networks (one of which is a class of multicast networks) studied in this chapter, the

smallest-size ring over which each network is scalar linearly solvable is unique.

3.2.1 Modules and Vector Linear Codes

In a linear network code over a module RG, in principle, the ring R need not be finite (although

representing linear code coefficients might be problematic). However, in a linear network code over a

module, the alphabet is finite, so the Abelian group G must be finite.3 The following lemma and corollary

show that linear solutions over unfaithful modules (whose ring may be infinite) admit linear solutions over

faithful modules (whose ring is finite).

Lemma 3.2.6. Let G be an R-module. There exists a finite ring S such that G is a faithful S-module, and

any network that is linearly solvable over RG is linearly solvable over SG.

Proof. We use ideas from [6, p. 2750] here. Let J = {r ∈ R : r ·g = 0, ∀g∈G} which is easily verified to be

a two-sided ideal of R. Let S = R/J. It can also be verified that G is an S-module with action ⊙ : S×G → G

given by (r+ J)⊙g = r ·g. If (r+ J),(s+ J) ∈ S are such that (r+ J)⊙g = (s+ J)⊙g for all g ∈ G, then

(r − s) · g = 0, which implies (r − s) ∈ J. Hence (r+ J) = (s+ J), so the ring S acts faithfully on G. A

faithful module requires different elements of the ring to yield different functions when acting on elements

of the group. Since G is finite, the number of such functions must be finite, which implies the ring S must

also be finite.

Suppose a network N is linearly solvable over RG. Every output y′ in the solution over RG is of

the form

y′ = (C1 · x1)⊕·· ·⊕ (Cm · xm) (3.3)

where the xi’s are the parent node’s inputs and the Ci’s are constants from R. Form a linear code over SG

replacing each coefficient Ci in (3.3) by (Ci+J). Let y be the edge symbol in the code over SG corresponding

to y′ in the code over RG. Then

y = ((C1 + J)⊙ x1)⊕·· ·⊕ ((Cm + J)⊙ xm) = (C1 · x1)⊕·· ·⊕ (Cm · xm) = y′.

3We will call a module “finite” if and only if its Abelian group is finite.
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Thus, whenever an edge function in the solution over RG outputs the symbol y′, the corresponding edge

function in the code over SG will output the same symbol y′. Likewise, whenever x is an input to an edge

function in the solution over RG, the corresponding input of the corresponding edge function in the code

over SG will be the same symbol x. The same argument holds for the decoding functions in the code over

SG, so each receiver will correctly obtain its corresponding demands in the code over SG. Hence, the code

over SG is a linear solution for N . �

Corollary 3.2.7. Let G be an R-module such that R is commutative. There exists a finite commutative ring

S such that G is a faithful S-module, and any network that is linearly solvable over RG is linearly solvable

over SG.

Proof. This proof is identical to the proof of Lemma 3.2.6. However, since R is commutative, the ring

S = R/J is also commutative. �

A submodule of an R-module G is a subgroup H of G such that H is closed when acted on by R. That

is, both H and G are R-modules and H ⊆ G. Submodules are of particular interest, since by Lemma 3.1.3,

if G and H are faithful R-modules, then the set of networks that are linearly solvable over RG and the set

of networks that are linearly solvable over RH are equal, yet a linear code over RH has a smaller alphabet

if H is a proper submodule of G. As an example, let I be a two-sided ideal in the ring R. Then (I,+) is

a subgroup of (R,+) that is closed under multiplication in R, so RI is a submodule of the R-module R. As

another example, for each finite field F and integer k ≥ 2, the Mk(F)-module Fk is a proper submodule of

the Mk(F)-module Mk(F). Lemmas 3.2.8 and 3.2.9 show results related to submodules that will be used to

prove Theorem 3.2.10.

Lemma 3.2.8. [13, Theorem 3.3 (2), p. 31]: Let F be a finite field and k a positive integer. Then Fk is the

only Mk(F)-module that has no proper submodules.

By Lemma 3.1.3, for each ring R, if a network is linearly solvable over a faithful R-module, then it is

linearly solvable over every R-module. When a network is solvable over the R-modules for a particular ring

R, it may be desirable for linear network coding to determine the minimum-size R-modules. Lemma 3.2.9

considers this question for rings of matrices over a finite field.

Lemma 3.2.9. Let F be a finite field and k a positive integer. If G is a finite non-zero Mk(F)-module, then

|F|k divides |G|.
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Proof. Since G is finite and non-zero, G contains a submodule with no proper submodules (possibly G

itself). By Lemma 3.2.8, Fk is the only Mk(F)-module with no proper submodules, so Fk is a submodule of

G. Hence by Lagrange’s theorem of finite groups (e.g. [9, p. 89, Theorem 8]), |F|k divides |G|. �

The following theorem is a generalization of Theorem 3.2.5, where we characterize smallest-size

modules over which networks are linearly solvable. Theorem 3.2.10 demonstrates that if a network is

linearly solvable over some module, then there exists a vector linear code over a field that minimizes the

alphabet size needed for a linear solution.

Theorem 3.2.10. Suppose a network N is linearly solvable over an R-module G. Then the following

hold:

(a) There exists a finite field F and positive integer k such that N has a k-dimensional vector linear

solution over F and |F|k divides |G|.

(b) If R is commutative, then there exists a finite field F such that N has a scalar linear solution

over F and |F| divides |G|.

Proof. If the ring R is infinite, then by Lemma 3.2.6, N is linearly solvable over some faithful module with

a finite ring. If R is commutative, then by Corollary 3.2.7, N is linearly solvable over some faithful module

with a finite commutative ring. So without loss of generality, assume R is finite and G is a faithful R-module.

By Lemmas 3.2.1 and 3.2.3 (a), since R is finite, there exists a field F, a positive integer k, and a surjective

homomorphism φ : R → Mk(F). By Lemma 3.1.6 any network that is linearly solvable over the faithful

R-module G is also linearly solvable over every Mk(F)-module, so in particular, N has a k-dimensional

vector linear solution over F. Since φ is a homomorphism, any R-module is also an Mk(F)-module (see the

proof of Lemma 3.1.6). Thus, both G and Fk are Mk(F)-modules, so by Lemma 3.2.9, it must be the case

that |F|k divides |G|.

If R is commutative, then, since φ is a surjective homomorphism, Mk(F) must also be commutative,

which implies k = 1. Hence N has a scalar linear solution over F and |F| divides |G|. �

Theorem 3.2.10 demonstrates that, in some sense, vector linear codes over finite fields are optimal

for linear network coding, as they can minimize the alphabet size needed for a linear solution. In particular,

if G is an R-module that yields a minimum-size linear solution for a network N , then Theorem 3.2.10

implies there exists a field F and an integer k such that N has a k-dimensional vector linear solution over F
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and |F|k
∣
∣ |G|. Since the linear code over RG yields a minimum-size solution, we must have |G|= |F|k, so

the Mk(F)-module Fk also a yields a minimum-size linear solution.

The following lemmas will be used to show (in Theorem 3.2.12) that a minimum-size module over

which a network is linearly solvable is not necessarily unique. Lemma 3.2.11 is a result of Sun et. al [17],

and similar results have been shown in, for example, [10].

Lemma 3.2.11. [17, Proposition 1]: Let q be a prime power and k a positive integer. If a network has a

scalar linear solution over GF(qk), then it has a k-dimensional vector linear solution over GF(q).

...

...

...

...

...
x,y

x,yx,yx,yx,yx,yx,y

λ1 λ2 λn−1 λn

Figure 3.2: The n-Choose-Two Network is parameterized by an integer n≥ 2. The network’s name indicates

the number of receivers.

For each integer n≥ 3, the n-Choose-Two Network is a multicast network given in Figure 3.2. These

networks were described by Rasala Lehman and Lehman [16] and were further studied in Chapter 2. We

make use of Lemma 2.2.15 from Chapter 2 in the proofs of the following two results. Lemma 2.2.15 is a

result from [16] regarding the solvability of the n-Choose-Two Networks.

Theorem 3.2.12. For each integer k ≥ 2 and prime p, the (pk + 1)-Choose-Two Network is linearly

solvable over at least two distinct modules of size pk but not over over any smaller modules.

Proof. By Lemma 2.2.15, the (pk + 1)-Choose-Two Network is scalar linearly solvable over GF(pk) and

is not solvable over any alphabet whose size is less than pk. By Lemma 3.2.11, any network with a scalar

linear solution over GF(pk) has a k-dimensional vector linear solution over GF(p). Hence the (pk + 1)-

Choose-Two Network has a scalar linear solution over GF(pk) and a k-dimensional vector linear solution

over GF(p), yet the network has no linear solution over any module whose size is less than pk. �
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The following corollary generalizes Theorem 2.2.16 from Chapter 2, which showed the (pk + 1)-

Choose-Two Network is not scalar linearly solvable over any commutative ring of size pk other than the

field GF(pk). In fact, as a result of Corollary 3.2.13, the (pk+1)-Choose-Two Network is not scalar linearly

solvable over any ring of size pk other than the field.

Corollary 3.2.13. For each integer k ≥ 2 and prime p, the unique smallest-size ring over which the

(pk +1)-Choose-Two Network is scalar linearly solvable is GF(pk).

Proof. By Lemma 2.2.15, the (pk + 1)-Choose-Two Network is scalar linearly solvable over GF(pk) and

is not solvable over any smaller alphabet. Suppose the (pk + 1)-Choose-Two Network is scalar linearly

solvable over a ring R of size pk. By Lemmas 3.2.1 and 3.2.3 (a) (b), there exists a field F, a positive

integer n, and a surjective homomorphism φ : R → Mn(F) such that the (pk + 1)-Choose-Two Network is

scalar linearly solvable over the ring Mn(F). Since φ is surjective, |R|= pk ≥ |F|n
2

. By Corollary 3.1.5, the

(pk +1)-Choose-Two Network has an n-dimensional vector linear solution over F, so by Lemma 2.2.15 (a),

|F|n ≥ pk = |R|. Hence |F|n ≥ |R| ≥ |F|n
2

which implies n = 1 and |F| = |R| = pk. Since φ : R → F is a

surjective homomorphism and we have R ∼= F, and since |R|= pk, we have R ∼= GF(pk). �

The following corollaries summarize our results on the linear solvability of networks using scalar

and linear vector codes over fields, scalar linear codes over rings, and linear codes over modules. Corol-

lary 3.2.14 shows an equivalence between vector linear solvability over fields and linear solvability over

rings and modules, while Corollary 3.2.15 shows an equivalence between scalar linear solvability over

fields and linear solvability over commutative rings and modules.

Corollary 3.2.14. For any network N , the following three statements are equivalent:

(i) N is vector linearly solvable over some finite field.

(ii) N is scalar linearly solvable over some ring.

(iii) N is linearly solvable over some module.

Proof. If a network has a k-dimensional vector linear solution over some field F, then by Corollary 3.1.5 it

has a scalar linear solution over the ring Mk(F), hence (i) implies (ii). A scalar linear code over a ring is a

special case of a linear code over a module, so (ii) implies (iii). By Theorem 3.2.10 (a), (iii) implies (i). �
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Corollary 3.2.15. For any network N , the following three statements are equivalent:

(i) N is scalar linearly solvable over some finite field.

(ii) N is scalar linearly solvable over some commutative ring.

(iii) N is linearly solvable over some module whose ring is commutative.

Proof. A scalar linear code over a finite field is a special case of a scalar linear code over a commutative

ring, hence (i) implies (ii). A scalar linear code over a commutative ring is a special case of a linear code

over a module where the ring is commutative, so (ii) implies (iii). By Theorem 3.2.10 (b), (iii) implies

(i). �

3.3 The Dim-k Networks
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(k)
k

w
(1)
1 w

(k−1)
1

w
(1)
k w

(k−1)
k

k−1k−1
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Figure 3.3: The Dim-k Network. For each i = 1, . . . ,k, the node ai is a source node that generates messages

x
(1)
i , . . . ,x

(k)
i , and ai has k−1 parallel out-edges to node bi and one out-edge to node Z. For each j = 1, . . . ,kk,

the receiver R j has k−1 parallel in-edges from each of the nodes b1, . . . ,bk and a single in-edge from node

Z. Each receiver demands a single message from each source node and each set of k messages demanded by

each receiver is unique; that is, for any i1, . . . , ik ∈ {1, . . . ,k}, there is exactly one receiver which demands

x
(i1)
1 , . . . ,x

(ik)
k .
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For each integer k ≥ 2, the Dim-k Network is defined in Figure 3.3 and is referred to as such be-

cause it has vector linear solutions precisely over vector dimensions that are multiples of k. We prove this

fact in Theorem 3.3.6. This infinite family of networks will be used to demonstrate several theorems re-

lated to commutative and non-commutative rings. The special case of k = 2 corresponds to the M Network

of [15], shown later in Figure 3.4. Das and Rai [5] presented a class of networks, called the Generalized M

Networks, which are similar to the Dim-k Networks. They independently proved a result analogous to Theo-

rem 3.3.6, using a more general approach involving matroid theory. We include our proof of Theorem 3.3.6

for completeness.

Remark 3.3.1. The Dim-k Network has kk +2k+1 nodes and kk(k2 − k+1)+ k2 edges.

A k-dimensional vector routing code over an alphabet A is a code in which messages and edge

symbols are elements of A k and edge and decoding functions copy certain input vector components to

certain output vector components. A vector routing code over A is, in fact, a special case of a vector linear

code over A where each row of each of the matrices C1, . . . ,Cm in (3.1) is either all zero or else has 1 one

and k−1 zeros, and for each i ≤ k, at most one of the matrices C1, . . . ,Cm has a non-zero ith row.

Lemma 3.3.2. For each integer k ≥ 2 and alphabet A , the Dim-k Network has an k-dimensional vector

routing solution over A .

Proof. Each message and edge symbol is an element of A k. Let [x]i denote the ith component of x ∈ A k.

Define a k-dimensional routing code over A by

[

w
( j)
i

]

l
=
[

x
(l)
i

]

j
(i, j, l = 1, . . . ,k).

That is, the lth component of the jth out-edge of the ith source node carries the jth component of the lth

message originating at the ith source node.

For each i = 1, . . . ,k and each j = 1, . . . ,kk, let the set of (k − 1) parallel edges from node bi to

receiver R j carry the symbols w
(1)
i , . . . ,w

(k−1)
i . Then each receiver gets the first (k−1) components of every

message from the edges originating at b1, . . . ,bk, so in particular, each receiver can recover the first (k−1)

components of each of the messages it demands.

Node Z receives the kth component of each message, so each of its out-edges can carry any k of

these components. Let j ∈ {1, . . . ,kk}, suppose x
(i1)
1 , . . . ,x

(ik)
k are the messages receiver R j demands, and let

[u j]l =
[

w
(k)
l

]

il
=
[

x
(il)
l

]

k
(l = 1, . . . ,k).

Then R j can recover the kth component of each of the messages it demands. Since j was chosen arbitrarily,

the code is an k-dimensional vector routing solution. �
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The following lemmas will be used in later proofs, and similar results have been noted in other

works, such as [17, Proposition 5] and [10, Example VI.2].

Lemma 3.3.3. Let R be a finite ring and let k1, . . . ,kt be positive integers. If a network has k1, . . . ,kt -

dimensional vector linear solutions over R, then the network has a (k1 + · · ·+ kt)-dimensional vector linear

solution over R.

Proof. Assume a network has a ki-dimensional vector linear solution over R for each i = 1, . . . , t. In the

ki-dimensional vector linear solution over R, every edge function is of the form y(i) =C
(i)
1 x

(i)
1 + · · ·+C

(i)
m x

(i)
m ,

where x
(i)
j ∈ Rki are the inputs to the node and C

(i)
j are ki × ki matrices over R. For any such edge function,

define a (k1 + · · ·+ kt)-dimensional vector linear edge function over R by letting







y(1)

...

y(t)







=

m

∑
j=1








C
(1)
j 0

. . .

0 C
(t)
j















x
(1)
j

...

x
(t)
j







.

It is straightforward to see this provides a vector linear solution for the network. �

Let X and Y be collections of discrete random variables over an alphabet A , and let pX be the

probability mass function of X . We denote the (base |A |) entropy of X as

H(X) =−∑
u

pX(u) log|A | pX(u)

and the conditional entropy of X given Y as H(X |Y) = H(X ,Y)−H(Y ). The proof of Theorem 3.3.6 will

make use of Lemmas 3.3.4 and 3.3.5 and the following basic information inequalities:

H(X |Y)≤ H(X) (3.4)

≤ H(X ,Y) (3.5)

≤ H(X)+H(Y). (3.6)

Lemma 3.3.4. Let X ,Y1, . . . ,Yk be collections of discrete random variables. Then

k

∑
i=1

H (X ,Yi)≥ (k−1)H (X)+H (X ,Y1, . . . ,Yk) .

Proof.

k

∑
i=1

H (X ,Yi) = kH (X)+
k

∑
i=1

H (Yi|X)

≥ kH (X)+H (Y1|X)+
k

∑
i=2

H (Yi|X ,Y1, . . . ,Yi−1)

= (k−1)H (X)+H (X ,Y1, . . . ,Yk)
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where the inequality follows from (3.4). �

Lemma 3.3.5. [8, Lemma V.9]: Let L : Fm → Fn be a linear map, and let x be a uniformly distributed

random variable on Fm. Then L(x) is uniformly distributed on the range of L, and the base |F| entropy of

L(x) is H(L(x)) = dim(range (L(x)) · log |F|.

Theorem 3.3.6. For each integer k ≥ 2 and each field F, the Dim-k Network has an n-dimensional

vector linear solution over F if and only if k
∣
∣ n.

Proof. Suppose k
∣
∣ n. Then n = kt for some integer t ≥ 1. By Lemma 3.3.2, the Dim-k Network has a

k-dimensional vector linear solution over F, so by taking k1 = · · · = kt = k in Lemma 3.3.3, the Dim-k

Network has an n = kt-dimensional vector linear solution over F.

Conversely, suppose that the Dim-k Network has an n-dimensional vector linear solution over field

F. Then all messages x
( j)
i and edge symbols w

( j)
i are n-vectors over F. For convenience of notation, let

xi = x
(1)
i , . . . ,x

(k)
i and wi = w

(1)
i , . . . ,w

(k−1)
i .

A linear solution must hold for any values the messages take on, so by viewing the message components

as independent uniform random variables over F and considering the entropy using logarithms base |F|, we

have

H (x1, . . . ,xk)=
k

∑
i, j=1

H
(

x
( j)
i

)

. (3.7)

For each i = 1, . . . ,k, the edge symbols w
(1)
i , . . . ,w

(k−1)
i are linear functions of x

(1)
i , . . . ,x

(k)
i , so

H (wi |xi) = 0. (3.8)

The receiver R1 demands the messages x
(1)
1 , . . . ,x

(1)
k and recovers its demands from its inputs, so

H
(

x
(1)
1 , . . . ,x

(1)
k |w1, . . . ,wk,u1

)

= 0. (3.9)

For each i, j ∈ {1, . . . ,k}, the edge symbol w
( j)
i is a linear function of only x

(1)
i , . . . ,x

(k)
i , and the network’s
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messages are jointly independent, which implies

k

∑
i=1

H
(

wi,x
(1)
i

)

= H
(

x
(1)
1 , . . . ,x

(1)
k ,w1, . . . ,wk

)

[from ind.]

≤ H
(

u1,x
(1)
1 , . . . ,x

(1)
k ,w1, . . . ,wk

)

[from (3.5)]

= H (u1,w1, . . . ,wk) [from (3.9)]

≤ H (u1)+
k

∑
i=1

k−1

∑
j=1

H
(

w
( j)
i

)

[from (3.6)]

≤ n(1+ k(k−1)).

By a similar argument, for any i1, . . . , ik ∈ {1, . . . ,k}, there exists a receiver which demands the messages

x
(i1)
1 , . . . ,x

(ik)
k , so

k

∑
j=1

H
(

wj,x
(i j)
j

)

≤ n(k2 − k+1). (3.10)

Since
{

w1,w
(k)
1 , . . . ,wk,w

(k)
k

}

is a cut-set for each receiver, we have

H
(

x1, . . . ,xk |w1,w
(k)
1 , . . . ,wk,w

(k)
k

)

= 0. (3.11)

Therefore,

nk2 = H (x1, . . . ,xk) [from (3.7)]

≤ H
(

x1, . . . ,xk,w1,w
(k)
1 , . . . ,wk,w

(k)
k

)

[from (3.5)]

= H
(

w1,w
(k)
1 , . . . ,wk,w

(k)
k

)

[from (3.11)]

≤
k

∑
i=1

k

∑
j=1

H
(

w
( j)
i

)

[from (3.6)]

≤ nk2 (3.12)

which implies

k

∑
i=1

k

∑
j=1

H
(

w
( j)
i

)

= nk2.

But, since H
(

w
( j)
i

)

≤ n, we get

H
(

w
( j)
i

)

= n (i, j = 1, . . . ,k).
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This implies the bounds in (3.12) are tight, so

H
(

w
(1)
1 , . . . ,w

(k)
1 , . . . ,w

(1)
k , . . . ,w

(k)
k

)

=
k

∑
i=1

k

∑
j=1

H
(

w
( j)
i

)

which implies w
(1)
1 , . . . ,w

(k)
1 , . . . ,w

(1)
k , . . . ,w

(k)
k are independent. Thus,

H (wi) = n(k−1) (i = 1, . . . ,k). (3.13)

For each j = 1, . . . ,k, we have

k

∑
i=1

H
(

wj,x
(i)
j

)

≥ (k−1)H
(
wj

)
+H

(
wj,xj

)
[from Lemma 3.3.4]

= n(k−1)(k−1)+H
(
xj

)
[from (3.8), (3.13)]

= n(k2 − k+1) [from (3.7)] . (3.14)

By fixing i1 = 1 and summing over all i2, . . . , ik in (3.10), we have

kk−1 n(k2 − k+1)
(a)

≥
k

∑
i2,...,ik=1

(

H
(

w1,x
(1)
1

)

+
k

∑
j=2

H
(

wj,x
(i j)
j

))

= kk−1H
(

w1,x
(1)
1

)

+ kk−2
k

∑
j=2

k

∑
i=1

H
(

wj,x
(i)
j

)

(b)

≥ kk−1H
(

w1,x
(1)
1

)

+ kk−2
k

∑
j=2

n(k2 − k+1)

= kk−1H
(

w1,x
(1)
1

)

+ kk−2 n(k−1)(k2 − k+1)

where (a) and (b) follow from (3.10) and (3.14), respectively. Solving for H(w1,x
(1)
1 ) in the previous

equation yields

H
(

w1,x
(1)
1

)

≤ n

(
k2 − k+1

k

)

.

Similarly, for each i, j = 1, . . . ,k, we have

H
(

wi,x
( j)
i

)

≤ n

(
k2 − k+1

k

)

. (3.15)

However, for each i = 1, . . . ,k we also have

n(k2 − k+1)≤
k

∑
j=1

H
(

wi,x
( j)
i

)

[from (3.14)]

≤
k

∑
j=1

n

(
k2 − k+1

k

)

[from (3.15)]

= n(k2 − k+1)
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and so for each i, j = 1, . . . ,k,

H
(

wi,x
( j)
i

)

= n

(
k2 − k+1

k

)

.

The variables w
(1)
i , . . . ,w

(k−1)
i ,x

( j)
i are linear functions of the uniformly distributed messages, so by

Lemma 3.3.5, H(wi,x
( j)
i ) (with logarithms in base |F|) is an integer. However,

gcd
(
k,k2 − k+1

)
= gcd

(
k,(k2 − k+1)− k(k−1)

)
= gcd(k,1) = 1

so if n
(

k2−k+1
k

)

is an integer, then we must have k
∣
∣ n. �

3.3.1 Insufficiency of Commutative Rings

The following corollary demonstrates it is possible for a network to be scalar linearly solvable over

a non-commutative ring but not over any commutative rings, which is, in fact, equivalent to a network being

vector linearly solvable over some field but not scalar linearly solvable over any field, by Corollaries 3.2.14

and 3.2.15. This fact agrees with the result of Médard et. al [15], which demonstrate the M Network is

vector linearly solvable over fields but not scalar linearly solvable over any field.

Corollary 3.3.7. For all integers k ≥ 2, n ≥ 1, and prime p, the Dim-k Network has a scalar linear

solution over a ring of size pnk2

but has no scalar linear solution over any commutative ring.

Proof. If the Dim-k Network were scalar linearly solvable over a commutative ring, then Corollary 3.2.15

would imply the Dim-k Network would also be scalar linearly solvable over some finite field. However, by

Theorem 3.3.6, the Dim-k Network is not scalar linearly solvable over any finite field.

By Theorem 3.3.6, the Dim-k Network has a k-dimensional vector linear solution over GF(pn), so

by Corollary 3.1.5 the Dim-k Network has a linear solution over the ring Mk(GF(pn)). �

Corollary 3.3.8. For each integer k ≥ 2, the unique smallest-size ring over which the Dim-k Network

is scalar linearly solvable is the ring of all k× k matrices over GF(2).

Proof. By taking p = 2 in Corollary 3.3.7, the Dim-k Network has a linear solution over Mk(GF(2)).

Suppose the Dim-k Network is scalar linearly solvable over a ring R such that |R| ≤ 2k2

. By Lem-

mas 3.2.1 and 3.2.3 (a) (b) there exists a field F, a positive integer n, and a surjective homomorphism
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φ : R → Mn(F) such that the Dim-k Network is scalar linearly solvable over Mn(F). By Corollary 3.1.5, this

implies the Dim-k Network has an n-dimensional vector linear solution over F, which by Theorem 3.3.6,

implies k divides n. Since φ is surjective, |Mn(F)| ≤ |R|. Hence we have

2k2

≤ 2n2

≤ |F|n
2

= |Mn(F)| ≤ |R| ≤ 2k2

.

Therefore n = k and F = GF(2). Since |R| = |Mn(F)| and φ is a surjective homomorphism, we have R ∼=

Mk(GF(2)). �

It is interesting to note that, while the smallest-size ring over which the Dim-k Network is scalar

linearly solvable has size 2k2

, the Dim-k Network also has a k-dimensional vector linear solution over GF(2),

which has alphabet size 2k. This demonstrates that linear codes over modules can require smaller alphabet

sizes than scalar linear codes over rings. This also agrees with Theorem 3.2.10, which showed that vector

linear codes over fields minimize the alphabet size needed for a linear solution.

Example 3.3.9. Setting n = 1 and p = k = 2 in Corollary 3.3.7 results in the M Network (see Figure 3.4)

having no scalar linear solution over any commutative ring but having a scalar linear solution over a non-

commutative ring of size 16. The non-commutative ring M2(GF(2)) consists of all 2× 2 binary matrices

under ordinary matrix addition and multiplication mod 2. Denote the 16 ring elements by:

Rqrst =




q r

s t



 (q,r,s, t ∈ {0,1}).

A scalar linear solution for the M Network over the non-commutative ring M2(GF(2))

(i.e. where A,B,C,D,E,F,G,H,W,X ,Y,Z ∈ M2(GF(2))) is given by:

Edge (1,3) : A = R1000W +R0010X Decode at node 6 : W = R1000A+R0010E +R0000D

Edge (1,4) : B = R0100W +R0001X Y = R0000A+R0001E +R1000D

Edge (2,4) : C = R0100Y +R0001Z Decode at node 7 : W = R1000A+R0010F +R0000D

Edge (2,5) : D = R1000Y +R0010Z Z = R0000A+R0001F +R0100D

Edge (4,6) : E = R1000B+R0010C Decode at node 8 : X = R0100A+R0010G+R0000D

Edge (4,7) : F = R1000B+R0001C Y = R0000A+R0001G+R1000D

Edge (4,8) : G = R0100B+R0010C Decode at node 9 : X = R0100A+R0010H +R0000D

Edge (4,9) : H = R0100B+R0001C Z = R0000A+R0001H +R0100D,
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where the out-edges of nodes with a single in-edge each carry the symbol on the in-edge, that is, each

receiver directly receives the edge symbols A and D from the nodes 3 and 5, respectively.

We also note that if the messages and edge symbols of the M Network are 2-dimensional vectors

over GF(2), instead of 2× 2 binary matrices, then a small modification of the linear code described above

provides the 2-dimensional vector linear solution over GF(2) given in [15]. This agrees with Corollary 3.1.5.

1 2

3 4 5

6 7 8 9

W,X Y,Z

W,Y W,Z X ,Y X ,Z

A B C D

E F G H

Figure 3.4: The M Network has a non-commutative scalar linear solution. The messages W,X ,Y,Z take

values in M2(GF(2)). The variables A,B,C,D,E,F,G,H also take values in M2(GF(2)) and represent the

symbols carried on the 8 indicated edges.

The bound in the following theorem is tight via Example 3.3.9.

Theorem 3.3.10. If a network is scalar linearly solvable over some non-commutative ring R, but not

over any commutative rings, then |R| ≥ 16.

Proof. Suppose network N is scalar linearly solvable over some non-commutative ring R but not over any

commutative ring. By Theorem 3.2.5, there exists a positive integer k and a field F such that N has a

scalar linear solution over Mk(F) and |R| ≥ |Mk(F)|. If k = 1, then N is scalar linearly solvable over a

field, which contradicts the assumption that N is not scalar linearly solvable over any commutative ring.

So k ≥ 2, which implies |R| ≥ |Mk(F)|= |F|k
2

≥ |F|4 ≥ 24 = 16. �

78



Suppose R is a non-commutative ring of size pn, for some prime p. It also follows from the proof

of Theorem 3.3.10 that if a network N is scalar linearly solvable over R, but not over any commutative

ring, then n ≥ 4. In fact, we later show in (Theorem 3.4.15) that whenever n ≤ 3, any network with a scalar

linear solution over some ring of size pn must also have a scalar linear solution over the field GF(pn), which

agrees with Theorem 3.3.10.

3.4 Modules of the Same Size

In Chapter 2, we compared the linear solvability of networks over different commutative rings of

the same size, and we showed that in some cases, commutative rings of size pk can attain scalar linear

solutions when the field of size pk cannot. In this section, we compare the linear solvability of networks

over different modules of the same size. We particularly focus on comparing scalar linear codes over rings

of size pk and k-dimensional vector linear codes over GF(p). The following theorem shows that a network

can have a linear solution over a module with alphabet size pk yet have no scalar linear solutions over any

ring of size pk

Theorem 3.4.1. For each integer k ≥ 2 and prime p, the Dim-k Network has a k-dimensional vector

linear solution over the field GF(p) but is not scalar linearly solvable over any ring of size pk.

Proof. By Theorem 3.3.6, the Dim-k Network has a k-dimensional vector linear solution over GF(p). Let

R be a ring of size pk and suppose the Dim-k Network has a scalar linear solution over R. By Lemmas 3.2.1

and 3.2.3 (b) (c), there exists a field F and a positive integer n such that any network that is scalar linearly

solvable over R is also scalar linearly solvable over Mn(F) and |F|n
2

divides pk. Hence F is a field of

characteristic p and n2 ≤ k.

Since the Dim-k Network is scalar linearly solvable over R, the Dim-k Network is scalar linearly

solvable over the ring Mn(F). By Corollary 3.1.5, this implies the Dim-k Network has an n-dimensional

vector linear solution over F, which by Theorem 3.3.6 implies k
∣
∣ n. However, this contradicts the fact that

n2 ≤ k. Thus, no such ring R exists. �

While the Dim-k Network is a non-multicast network, we note that a similar result can occur for

multicast networks as well. The following result was shown by Sun et. al [17].
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Lemma 3.4.2. [17, Theorem 4 and Corollary 11]: For each integer k ≥ 2 and prime p, there exists a

multicast network with

(a) a k-dimensional vector linear solution over GF(p),

(b) no scalar linear solutions over any GF(q) with q ≤ pk, and

(c) no n-dimensional vector linear solutions over any GF(q) with qn < pk.

We thank an anonymous reviewer for a helpful suggestion, which led to the following corollary.

Corollary 3.4.3. For each integer k ≥ 2 and prime p, there exists a multicast network that has a k-

dimensional vector linear solution over GF(p) but is not scalar linearly solvable over any ring of size

pk.

Proof. Let N denote the network constructed by Sun et. al [17] in Lemma 3.4.2 corresponding to p and k.

Such a network has a k-dimensional vector linear solution over GF(p).

Since N is vector linearly solvable, by Corollary 3.2.14, it must be scalar linearly solvable over

some ring. Now suppose R is a minimum-size ring over which N is scalar linearly solvable. By Theo-

rem 3.2.5, there exists a prime-power q and an integer n such that R ∼= Mn(GF(q)). By Corollary 3.1.5,

N has an n-dimensional vector linear solution over GF(q), but by Lemma 3.4.2 (c), this implies qn ≥ pk.

If n ≥ 2, then |R| = qn2

> qn ≥ pk. If n = 1, then N has a scalar linear solution over GF(q), which, by

Lemma 3.4.2 (b), implies pk < q = |R|. Thus the minimum size ring over which N is scalar linearly solv-

able has cardinality greater than pk, so in particular, N is not scalar linearly solvable over any ring of size

pk. �

3.4.1 Commutative Rings

Both a scalar linear code over a ring of size pk and a k-dimensional vector linear code are linear

codes over a module of size pk. We have already seen (in Theorem 3.4.1) that there exists a network with a

k-dimensional vector linear solution over GF(p) yet with no scalar linear solutions over any ring of size pk.

The main result of this section (Theorem 3.4.6) will show that any network that is scalar linearly solvable

over a commutative ring of size pk must also have a k-dimensional vector linear solution over GF(p). The

following lemma was proved in Chapter 2 (in Lemmas 2.2.12 and 2.5.3) and will be used in what follows.
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Lemma 3.4.4. For each prime p and positive integer k, if a network N has a scalar linear solution over

some commutative ring of size pk, then there exists an integer partition (n1, . . . ,nr) of k such that N is

scalar linearly solvable over each of the fields GF(pn1), . . . ,GF(pnr).

Lemma 3.4.5. [14, Theorem I.1]: Every finite ring is isomorphic to a direct product of rings of prime power

sizes.

Theorem 3.4.6. Let m be a positive integer with prime factorization m = p
k1

1 · · · p
kt
t . If a network N

has a scalar linear solution over some commutative ring of size m, then the following hold:

(a) For each i = 1, . . . , t, network N has a ki-dimensional vector linear solution over GF(pi).

(b) Network N has a linear solution over the Mk1
(GF(p1))×·· ·×Mkt

(GF(pt))-module

GF(p1)
k1 ×·· ·×GF(pt)

kt .

Proof. Suppose N is scalar linearly solvable over a commutative ring R of size m. By Lemma 3.4.5, there

exist rings R1, . . . ,Rt such that R ∼= R1 ×·· ·×Rt and |Ri|= p
ki

i for all i.

Let i ∈ {1, . . . , t}. Since the projection mapping from R to Ri is a surjective homomorphism,

by Corollary 3.1.7, network N is scalar linearly solvable over Ri. Then by Lemma 3.4.4, there ex-

ists an integer partition (n1, . . . ,nr) of ki such that N is scalar linearly solvable over each of the fields

GF(p
n1

i ), . . . ,GF(p
nr

i ). By Lemma 3.2.11, this implies that N has an n j-dimensional vector linear so-

lution over GF(pi) for each j = 1, . . . ,r. However, by Lemma 3.3.3, this then implies that N has a

ki = (n1 + · · ·+nr)-dimensional vector linear solution over GF(pi).

Hence, for all i ∈ {1, . . . , t}, a Cartesian product code formed from the ki-dimensional vector linear

solutions over GF(pi) gives a linear solution to N over the described module. �

In Chapter 2, we showed (in Theorems 2.5.8 and 2.5.9) that with respect to ring domination for

scalar linear coding, some ring sizes give rise to multiple maximal commutative rings whereas other ring

sizes yield only a single unique maximal commutative ring. If there is just one maximal commutative ring

of size m, then every network that is linearly solvable over some commutative ring of size m is also linearly

solvable over the maximal ring. In contrast, if there are multiple maximal commutative rings of size m, then

for any commutative ring R of size m, there is always a different commutative ring S also of size m, such

that some network is scalar linearly solvable over S but not over R. Thus, in this sense, there is no “best”

commutative ring of a given size.
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However, by Theorem 3.4.6 (b), if a network has a linear solution over some commutative ring

of size m = p
k1

1 · · · p
kt
t , then it has a linear solution over the Mk1

(GF(p1))× ·· · × Mkt
(GF(pt))-module

GF(p1)
k1 ×·· ·×GF(pt)

kt , which also has size m. In fact, we showed (in Theorem 3.4.1) that when m = pk,

the converse is not true. So in this sense, k-dimensional vector linear codes over GF(p) are strictly “better”

than scalar linear codes over commutative rings of size pk.

3.4.2 Non-Commutative Rings

This section generalizes the results of Theorem 3.4.6 to (not necessarily commutative) rings of

size m with prime factor multiplicity less than or equal to 6. In order to do so, we first will prove some

intermediate results and consider special cases.

The following lemma was proved in Chapter 2 (in Theorem 2.5.9) and will be used in what follows.

Lemma 3.4.7. For each k ∈ {1,2,3,4,6} and prime p, if a network is scalar linearly solvable over some

commutative ring of size pk, then it is scalar linearly solvable over GF(pk).

Lemma 3.4.8. [11, pp. 512–513]: For each prime p, all rings of size p and of size p2 are commutative, and

the ring of all upper-triangular 2×2 matrices over GF(p) is the only non-commutative ring of size p3.

We remark that there exist rings of size p and p2 without identity. For example, the set {0,2,4,6}

with mod 8 addition and multiplication satisfies all of the properties of a ring except there is no multiplicative

identity. However, such rings (sometimes called “rngs”) do not appear to be practical for linear network

coding, as receivers must recover their demands from linear combinations of their inputs.

For example, consider the trivial network shown in Figure 3.5 consisting of a single message x

emitted by a source directly connected by a single edge to a receiver demanding message x. The only

possible linear functions that can be carried on the edge are of the form cx for some fixed c ∈ {0,2,4,6}.

However, no matter what the choice of c is, the messages 0 and 4 always get received as 0 mod 8, so the

receiver cannot uniquely determine x in general. Thus, there is no linear solution for the network over this

ring (with no multiplicative identity). A similar issue arises for the set {0,2} with mod 4 addition and

multiplication, which also satisfies all of the properties of a ring except there is no multiplicative identity.

1 2 xx

Figure 3.5: A trivial network with one message x that is demanded by the receiver.
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Lemma 3.4.9. For each prime p, if a network is scalar linearly solvable over some ring of size p2, then it

is a scalar linearly solvable over GF(p2).

Proof. By Lemma 3.4.8, every ring of size p2 is commutative, and by Lemma 3.4.7, every network that is

scalar linearly solvable over some commutative ring of size p2 has a scalar linear solution over GF(p2). �

By Lemma 3.4.8, all rings of size 2,3,4,5, or 7 are commutative, and by Lemma 3.4.5, any ring of

size 6 is a direct product of rings of size 2 and 3, so any ring of size 6 must also be commutative. Hence, the

smallest non-commutative ring is the ring of the 8 binary upper-triangular 2×2 matrices. As a special case

of the following lemma, any network that is scalar linearly solvable over this ring must also have a scalar

linear solution over GF(2).

Lemma 3.4.10. For each finite field F and integer k ≥ 2, any network that is scalar linearly solvable over

the ring of upper-triangular k× k matrices over F is also scalar linearly solvable over F.

Proof. Let R be the ring of upper-triangular k× k matrices with entries in F and let φ : R → F be given by

φ















a1,1 · · · a1,k

. . .
...

0 ak,k















= a1,1.

Then φ is clearly surjective and preserves identities, and for any A,B ∈ R, we have φ(A+B) = a1,1 +b1,1 =

φ(A) + φ(B) and φ(AB) = a1,1 b1,1 = φ(A)φ(B). Thus φ is a surjective homomorphism, so by Corol-

lary 3.1.7, any network that is scalar linearly solvable over R is scalar linearly solvable over F. �

Lemma 3.4.11. For each prime p, if a network is scalar linearly solvable over some ring of size p3, then it

is scalar linearly solvable over GF(p3).

Proof. By Lemma 3.4.8, the only non-commutative ring of size p3 is the ring of upper triangular matrices

with entries in GF(p), and by Lemma 3.4.10, any network that is scalar linearly solvable over this ring is

also scalar linearly solvable over GF(p). Since GF(p) is a subring of GF(p3), any network that is scalar

linearly solvable over GF(p) is scalar linearly solvable over GF(p3).

By Lemma 3.4.7, every network that is scalar linearly solvable over some commutative ring of size

p3 has a scalar linear solution over GF(p3). �

The following three lemmas are proved in the Appendix.

Lemma 3.4.12. For each prime p, if a network is scalar linearly solvable over some ring of size p4, then it

is scalar linearly solvable over at least one of the rings GF(p4) or M2(GF(p)).
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Lemma 3.4.13. For each prime p, if a network is scalar linearly solvable over some ring of size p5, then it

is scalar linearly solvable over at least one of the commutative rings GF(p5) or GF(p3)×GF(p2).

Lemma 3.4.14. For each prime p, if a network is scalar linearly solvable over some ring of size p6, then it

is scalar linearly solvable over GF(p6).

Theorem 3.4.15 is a generalization of Lemma 3.4.7 to scalar linear codes over non-commutative

rings. Extending Theorem 3.4.15 to |R|= pk for k ≥ 7 is left as an open problem.

Theorem 3.4.15. Let p be a prime, and suppose N is scalar linearly solvable over a ring R. Then N

is scalar linearly solvable over

(a) the field GF(p2), when |R|= p2.

(b) the field GF(p3), when |R|= p3.

(c) at least one of the rings GF(p4) or M2(GF(p)), when |R|= p4.

(d) at least one of the commutative rings GF(p5) or GF(p3)×GF(p2), when |R|= p5.

(e) the field GF(p6), when |R|= p6.

Proof. This follows immediately from Lemmas 3.4.9 and 3.4.11–3.4.14. �

We also note that by Corollary 3.2.13, the (p4 +1)-Choose-Two Network is scalar linearly solvable

over GF(p4) but not over M2(GF(p)), and the (p5+1)-Choose-Two Network is scalar linearly solvable over

GF(p5) but not over GF(p3)×GF(p2). By Corollary 3.3.7, the Dim-2 Network is scalar linearly solvable

over M2(GF(p)) but not over GF(p4). We showed in Theorem 2.3.8 of Chapter 2 that there exists a network

that is scalar linearly solvable over GF(p3)×GF(p2) but not over GF(p5). Hence it is necessary to include

both rings in (c) and (d) in Theorem 3.4.15.

Corollary 3.4.16. Let p be a prime and k ∈ {2,3,4,5,6}, and suppose N is scalar linearly solvable over

a ring of size pk. Then N has a k-dimensional vector linear solution over GF(p).

Proof. If k ∈ {2,3,5,6}, then by Theorem 3.4.15, N has a scalar linear solution over a commutative ring

of size pk, since fields and direct products of fields are commutative rings. So, by Theorem 3.4.6, N has a

k-dimensional vector linear solution over GF(p).

Now suppose k = 4. If N is scalar linearly solvable over GF(p4), then by Lemma 3.2.11, N has

a 4-dimensional vector linear solution over GF(p). If N is not scalar linearly solvable over GF(p4), then
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by Theorem 3.4.15 (c), N must be scalar linearly solvable over M2(GF(p)), so by Corollary 3.1.5, N has

a 2-dimensional vector linear solution over GF(p), in which case N also has a 4-dimensional vector linear

solution over GF(p) by Lemma 3.3.3. �

Theorem 3.4.17. Let m be a positive integer with prime factorization m = p
k1

1 · · · p
kt
t . If a network N

has a scalar linear solution over a ring of size m, then, for each i = 1, . . . , t such that ki ≤ 6, network

N has a ki-dimensional vector linear solution over GF(pi).

Proof. Suppose N is scalar linearly solvable over a ring R of size m. By Lemma 3.4.5, there exists rings

R1, . . . ,Rt such that R ∼= R1 ×·· ·×Rt and |Ri|= p
ki

i for all i.

Now, let i ∈ {1, . . . , t} and suppose ki ≤ 6. The projection mapping from R to Ri is a surjective

homomorphism, so by Corollary 3.1.7, network N is scalar linearly solvable over Ri. Since N is scalar

linearly solvable over a ring of size p
ki

i where ki ≤ 6, by Corollary 3.4.16, N has a ki-dimensional vector

linear solution over GF(pi). �

We leave as an open question whether the restriction that ki ≤ 6 can be removed from the statement

of Theorem 3.4.17. If this generalization is false, then for what primes p and positive integers k is it the case

that there exists a network with a scalar linear solution over a ring of size pk but with no k-dimensional vector

linear solution over GF(p)? If such a ring and such a network do exist, the ring must be non-commutative

and k ≥ 7.

3.5 Concluding Remarks

For each positive integer k and prime p, we have shown that the set of networks with scalar linear

solutions over commutative rings of size pk is properly contained in the set of networks with k-dimensional

vector linear solutions over GF(p). So in this sense, k-dimensional vector linear codes over GF(p) may be

advantageous compared to scalar linear codes over commutative rings of the same size pk. In addition, there

are more k-dimensional linear functions over GF(p) than there over a commutative ring of size pk. Vector

linear codes over fields are also optimal in the sense that they minimize the alphabet size needed for a linear

solution over a particular network. On the other hand, the complexity of implementing vector linear codes

is generally higher than for scalar linear codes over commutative rings of the same size.
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3.5.1 Summary of Results

We summarize our results on minimizing the alphabet size in linear network coding by:

• If a network is scalar linearly solvable over some commutative ring, then the (unique) smallest such

commutative ring is a field (Theorem 2.2.10 of Chapter 2).

• If a network is scalar linearly solvable over some ring, then a smallest such ring is a matrix ring over

field (Theorem 3.2.5). It is not known whether such a smallest ring is unique.

• If a network is linearly solvable over some module, then a smallest such module yields a vector linear

solution over a field (Theorem 3.2.10). Such a module may not be unique (Theorem 3.2.12).

Additionally, we summarize our results on the linear solvability of networks over fields, rings, and modules

in Corollaries 3.2.14 and 3.2.15.

We summarize our results on comparing alphabets of the same size by:

• A network can have no scalar linear solutions over a given field yet be scalar linearly solvable over a

commutative ring of the same size (Theorem 2.3.8 of Chapter 2). Chapter 2 particularly focuses on

commutative rings for which there exists a network that is scalar linearly solvable over the ring but

not over any other commutative ring of the same size.

• A network can have no scalar linear solutions over any commutative ring yet be scalar linearly solv-

able over a non-commutative ring (Corollary 3.3.7). Such a non-commutative ring must have size at

least 16 (Theorem 3.3.10), and for the M Network, this bound is achieved.

• When k ≤ 6, any network with a scalar linear solution over a ring of size pk has a k-dimensional

vector linear solutions over GF(p) (Corollary 3.4.16). This extends to all positive integers k when the

ring is commutative (Theorem 3.4.6).

• There exists a multicast network (Corollary 3.4.3) and a non-multicast network (Theorem 3.4.1) with

k-dimensional vector linear solutions over GF(p) but with no scalar linear solutions over any ring of

size pk.
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3.5.2 Open Questions

Some open questions related to linear solvability of networks over finite rings and modules include:

• Does there exist a network with a linear solution over some ring of size pk but with no k-dimensional

vector linear solution over GF(p)? We have shown that if such a network and such a ring exist, then

the ring is non-commutative and k ≥ 7.

• More generally, does there exist a network with a linear solution over some module of size pk but

with no k-dimensional vector linear solution over GF(p)?

• When a network has a scalar linear solution over a ring of a given size, over what other rings does the

network have scalar linear solutions? In particular, how does Theorem 3.4.15 extend to rings of size

pk when k ≥ 7?

• Does there exist a network that is scalar linearly solvable over at least two rings of a given size but

not over any smaller ring? I.e., is the smallest-size ring over which a network scalar linearly solvable

unique?

• In Chapter 2, we characterized commutative rings with the property that there exists a network with a

scalar linear solution over the ring but no other commutative ring of the same size? Is there a similar

characterization when removing the commutative restriction?
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3.A Proofs of Lemmas 3.4.12, 3.4.13, and 3.4.14

The main purpose of this Appendix is to prove Lemmas 3.4.12, 3.4.13, and 3.4.14, which are used

in the proof of Theorem 3.4.15. It is an open question whether Theorem 3.4.17 can be extended to all finite

rings. The techniques presented in this section may additionally be useful for examining such questions.

Recall that a finite ring is simple if it has no proper two-sided ideals. The radical of a ring R is the

intersection of all its maximal left ideals. The radical of a ring is a two-sided ideal. A finite ring R with

radical J is said to be:

• local 4 if R/J is a field.

• semi-local if R/J is simple, or equivalently R is isomorphic to a matrix ring over some local ring

(e.g. [14, p. 162]).

• semi-simple if R is isomorphic to a direct product of simple rings (matrix rings over fields) or equiva-

lently, J = {0} (e.g. [14, pp. 75, 128]).

The following lemma is a result on local rings that will be used in later proofs.

Lemma 3.A.1. Let p be a prime, k a positive integer, and R a semi-local ring of size pk. Then there exists

a unique local ring S and positive integers r,s, t such that the following hold:

(a) [14, Theorem VIII.26] R ∼= Mr(S)

(b) [1, Theorem 6.1.2] |S|= ps

(c) [1, Theorem 6.1.2] GF(pt)∼= S/J, where J is the radical of S and t
∣
∣ s.

As an example, let p be a prime and let r,s be positive integers. Then Mr(Zps) is a semi-local ring,

since Zps is a local ring. We also remark that in Lemma 3.A.1, if R is itself local, then S ∼= R.

The following lemmas are results on semi-simple rings and the radicals of rings.

Lemma 3.A.2. [14, Proposition IV.6, Theorem VIII.4]: Let R be a finite ring with radical J. Then there

exist fields F1, . . . ,Fs and positive integers r1, . . . ,rs such that R/J ∼= Mr1
(F1)×·· ·×Mrs

(Fs).

Lemma 3.A.3. Let R be a finite ring with radical J, and suppose

R/J ∼= Mr1
(F1)×·· ·×Mrs

(Fs)

for some fields F1, . . . ,Fs and positive integers r1, . . . ,rs. If a network is scalar linearly solvable over R,

then it is also scalar linearly solvable over each of the rings Mr1
(F1), . . . ,Mrs

(Fs).

4If R is a local commutative ring, then R has a single maximal ideal, which corresponds to our definition of a

commutative local ring in Chapter 2.
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Proof. By Lemma 3.2.2, there exists a surjective homomorphism φ : R → R/J. Let i ∈ {1, . . . ,s}. Then the

projection mapping ψi : R/J → Mri
(Fi) is a surjective homomorphism. Hence the composition of mappings

ψi ◦ φ : R → Mri
(Fi) is a surjective homomorphism. Thus by Corollary 3.1.7, any network with a scalar

linear solution over R has a scalar linear solution over the ring Mri
(Fi). �

The following is an enumeration of semi-simple rings that we will reference in upcoming proofs.

Semi-simple rings are direct products of rings of matrices over fields. There are a limited number of small-

size matrix rings over fields, so the semi-simple rings of small sizes can be easily enumerated. For each

prime p, it can be verified that the rings given in (3.16)–(3.48) are all of the semi-simple rings of sizes

p, p2, p3, p4, p5, or p6 (up to isomorphism). In particular, these semi-simple rings must be direct products

of the simple rings GF(p), GF(p2), GF(p3), GF(p4), M2(GF(p)), GF(p5), and GF(p6).

• Size p:

GF(p) (3.16)

• Size p2:

GF(p2) (3.17)

GF(p)×GF(p) (3.18)

• Size p3:

GF(p3) (3.19)

GF(p2)×GF(p) (3.20)

GF(p)×GF(p)×GF(p) (3.21)

• Size p4:

M2(GF(p)) (3.22)

GF(p4) (3.23)

GF(p3)×GF(p) (3.24)

GF(p2)×GF(p2) (3.25)

GF(p2)×GF(p)×GF(p) (3.26)

GF(p)×GF(p)×GF(p)×GF(p) (3.27)
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• Size p5:

GF(p5) (3.28)

M2(GF(p))×GF(p) (3.29)

GF(p4)×GF(p) (3.30)

GF(p3)×GF(p2) (3.31)

GF(p3)×GF(p)×GF(p) (3.32)

GF(p2)×GF(p2)×GF(p) (3.33)

GF(p2)×GF(p)×GF(p)×GF(p) (3.34)

GF(p)×GF(p)×GF(p)×GF(p)×GF(p) (3.35)

• Size p6:

GF(p6) (3.36)

GF(p5)×GF(p) (3.37)

M2(GF(p))×GF(p2) (3.38)

GF(p4)×GF(p2) (3.39)

M2(GF(p))×GF(p)×GF(p) (3.40)

GF(p4)×GF(p)×GF(p) (3.41)

GF(p3)×GF(p3) (3.42)

GF(p3)×GF(p2)×GF(p) (3.43)

GF(p3)×GF(p)×GF(p)×GF(p) (3.44)

GF(p2)×GF(p2)×GF(p2) (3.45)

GF(p2)×GF(p2)×GF(p)×GF(p) (3.46)

GF(p2)×GF(p)×GF(p)×GF(p)×GF(p) (3.47)

GF(p)×GF(p)×GF(p)×GF(p)×GF(p)×GF(p) (3.48)

We now prove Lemmas 3.4.12, 3.4.13, and 3.4.14.

90



Proof of Lemma 3.4.12. Let R be a ring of size p4 with radical J, and suppose N is scalar linearly solvable

over R. Then |R/J| ∈ {p, p2, p3, p4}, so by Lemma 3.A.2, R/J is isomorphic to one of the rings in (3.16)–

(3.27).

If R/J is isomorphic to any of these rings except those in (3.19) and (3.22), then by Lemma 3.A.3,

N is also scalar linearly solvable over at least one of GF(p), GF(p2), or GF(p4). Since GF(p) and GF(p2)

are both subrings of GF(p4), in these cases, N is also scalar linearly solvable over GF(p4). On the other

hand, if R/J is isomorphic to the ring in (3.22), then by Lemma 3.A.3, N is also scalar linearly solvable

over M2(GF(p)). It follows from Lemma 3.A.1 that R/J is not isomorphic to the ring in (3.19). �

Proof of Lemma 3.4.13. Let R be a ring of size p5 with radical J, and suppose N is scalar linearly solvable

over R. Then |R/J| ∈ {p, p2, p3, p4, p5}, so by Lemma 3.A.2, R/J must be isomorphic to one of the rings in

(3.16)–(3.35).

If R/J is isomorphic to one of the rings in (3.22)–(3.27) (i.e. |R/J|= p4), then |J|= p. Since (J,+)

is an R-module and N has a linear solution over the faithful module RR, by Lemma 3.1.3, N has a linear

solution over RJ. By Theorem 3.2.10, this implies N has a scalar linear solution over GF(p). Since GF(p)

is a subring of GF(p5), in these cases, N also has a scalar linear solution over GF(p5).

It follows from Lemma 3.A.1 that R/J is not isomorphic to either of the rings in (3.17) or (3.19). If

R/J is isomorphic to the ring in (3.31), then by Lemma 3.A.3, N is scalar linearly solvable over GF(p3)×

GF(p2). If R/J is isomorphic to any of the remaining cases, then by Lemma 3.A.3, network N is scalar

linearly solvable over either GF(p) or GF(p5). Since GF(p) is a subring of GF(p5), in these cases, N also

has a scalar linear solution over GF(p5). �

Proof of Lemma 3.4.14. Let R be a ring of size p6 with radical J, and suppose N is scalar linearly solvable

over R. Then |R/J| ∈ {p, p2, p3, p4, p5, p6}, so by Lemma 3.A.2, R/J must be isomorphic to one of the

rings in (3.16)–(3.48). It follows from Lemma 3.A.1 that R/J is not isomorphic to any of the rings in (3.22),

(3.23), or (3.28). If R/J is isomorphic to any of the remaining cases, then it follows from Lemma 3.A.3

that N is scalar linearly solvable over GF(pn) for some n ∈ {1,2,3,6}. Since n
∣
∣ 6, GF(pn) is a subring of

GF(p6), which implies N is scalar linearly solvable over GF(p6). �
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Chapter 4

Capacity and Achievable Rate Regions

Abstract

The rate of a network code is the ratio of the block size of the network’s messages to that of its

edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field

alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings,

two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks:

(i) The linear rate region and the linear capacity of any network over a finite field depend only on the

characteristic of the field. Furthermore, any two fields with different characteristics yield different

linear capacities for at least one network.

(ii) Whenever the characteristic of a given finite field divides the size of a given finite ring, each network’s

linear rate region over the ring is contained in its linear rate region over the field. Thus, any network’s

linear capacity over a field is at least its linear capacity over any other ring of the same size. An

analogous result also holds for linear network codes over module alphabets.

(iii) Whenever the characteristic of a given finite field does not divide the size of a given finite ring, there

is some network whose linear capacity over the ring is strictly greater than its linear capacity over the

field. Thus, for any finite field, there always exist rings over which some networks have higher linear

capacities than over the field.
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4.1 Introduction

In network coding, solvability determines whether or not a network’s receivers can adequately

deduce from their inputs a specified subset of the network’s message values. The solvability of directed

acyclic networks follows a hierarchy of different types of network coding. For example, scalar linear coding

over finite fields is known to be inferior to vector linear coding over finite fields [34], which in turn is known

to be inferior to non-linear coding [11]. On the other hand, the capacity of a network reveals how much

transmitted information per channel use (i.e. source messages per edge use) can be sent to the network’s

receiver nodes in the limit of large block sizes for transmission. It is also known that linear codes over

finite fields cannot achieve the full capacity of some networks [11]. Thus, linear coding over finite fields

is inferior to more general types of network coding in terms of both solvability and capacity. Nevertheless,

linear codes over finite fields are attractive for both theoretical and practical reasons [30].

In certain cases, linear coding over finite ring alphabets can offer solvability advantages over finite

field alphabets (see Chapters 2 and 3). An open question has been whether the linear capacity of a network

over a finite field can be improved by using some other ring of the same size as the field. In other words,

does the improvement in network solvability, from using more general rings than fields, also carry over to

network capacity? In the present paper, we answer this question in the negative. That is, we prove that the

linear capacity of a network cannot be improved by changing the network coding alphabet from a field to

any other ring of the same size.

Another open question has been whether the linear capacity of a network over a finite field can

depend on any aspect of the field other than its characteristic. Indeed it has been previously observed that

the linear capacity of a network can vary as a function of the field (e.g. [14, 15]), but all known examples

had linear capacities that only depended on the fields’ characteristics. We also answer this question in the

negative. That is, we prove that any two fields with the same characteristic will result in the same linear

capacity for any given network. Furthermore, any two fields with different characteristics will result in

different linear capacities for at least one network. We prove analogous (and more general) results for

linearly achievable rate regions of networks over finite fields.

Unlike finite fields, finite rings need not have prime-power size, which may be advantageous in

certain applications. An open question has been whether a network can increase its linearly achievable rate

region by allowing the alphabet to be a ring of non-power-of-prime size. However, we again answer this

question in the negative by showing that a network’s linear rate region over a ring is contained in its linear

rate region over any field whose characteristic divides the ring’s size. This result follows from the fact that
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every finite ring is isomorphic to some direct product of rings of prime-power sizes. As a consequence of

this result, any network’s linear capacity over a particular ring is at most its linear capacity over any field

whose characteristic divides the ring’s size. These results extend naturally to the more general case of linear

network codes in which the alphabet has the structure of a finite module.

4.1.1 Modules, Linear Functions, and Tensor Products

We focus on linear network codes over finite rings, but we prove many of our intermediate results

in the broader context of linear network codes over modules. In this section, we define linear functions over

modules, which generalize linear functions over rings. We then formally define linear network codes over

rings and modules in Section 4.1.3.

Definition 4.1.1. A left R-module is an Abelian group (G,⊕) together with a ring (R,+,∗) of scalars

and an action · : R×G → G such that for all r,s ∈ R and all g,h ∈ G the following hold:

r · (g⊕h) = (r ·g)⊕ (r ·h)

(r+ s) ·g = (r ·g)⊕ (s ·g)

(r ∗ s) ·g = r · (s ·g)

1 ·g = g.

From these properties, it also follows that 0 · g = 0 and r · 0 = 0 for all g ∈ G and all r ∈ R. For

brevity, we will sometimes refer to such an R-module as RG or simply the R-module G. Since network

coding alphabets are presumed to be finite, a module will always refer to a module in which G is finite.

However, in principle, the ring need not be finite, so we make no assumptions about the cardinality of the

ring in a module. Some important examples of modules include:

• The ring of integers Z acts on any Abelian group G by repeated addition in G.

• Any ring R acts on its own additive group (R,+) by multiplication in R. We denote this module by

RR.

• Any ring R acts on the set of all t-vectors over R, denoted by Rt , by scalar multiplication. When R is

a field, this module is a vector space.
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• If RG is a module, then the ring of all t × t matrices with entries in R, denoted Mt(R), acts on the

group, Gt , of all t-vectors over G via matrix-vector multiplication where multiplication of elements

of R with elements of G is given by the action of RG. A special case of this module, Mt (R)G
t , occurs

when G= (R,+), in which case matrices over R act on vectors over R via matrix-vector multiplication

over R.

If R is a ring, a function f : Rm → R of the form

f (x1, . . . ,xm) = a1 x1 + · · ·+am xm

where a1, . . . ,am ∈ R, is a (left) one-sided linear function with respect to both the ring R and the left module

RR.1 A function f ′ : Rm → R of the form

f ′(x1, . . . ,xm) =
m

∑
i=1

ni

∑
j=1

ai, j xi bi, j (4.1)

where ai, j,bi, j ∈R, is a two-sided linear function with respect to R. When R is commutative, every two-sided

linear function is also a one-sided linear function, since in a commutative ring,

m

∑
i=1

ni

∑
j=1

ai, j xi bi, j =
m

∑
i=1

(
ni

∑
j=1

ai, j bi, j

)

xi.

However, left and right multiplication are not necessarily the same in a non-commutative ring, so the class

of two-sided linear functions is broader than the class of one-sided linear functions.

Example 4.1.2. Let R be the (non-commutative) ring of all 2× 2 matrices over a field. The function

f : R → R given by

f








x1,1 x1,2

x2,1 x2,2







=




1 0

0 0








x1,1 x1,2

x2,1 x2,2








1 0

0 0



+




0 0

0 1








x1,1 x1,2

x2,1 x2,2








0 0

0 1





=




x1,1 0

0 x2,2





is a two-sided linear function over R. It can be verified that, for all A,B ∈ R, the function f (X) is not the

function AXB. This also implies f (X) cannot be written as a (left or right) one-sided linear function.

1 Every right one-sided linear function with respect to a ring or a right module can be written as a corresponding

left one-sided linear function with respect to a left module with the same Abelian group. Hence, it suffices for us to

exclusively use left one-sided linear functions.
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By allowing for sums of terms multiplied by coefficients on both the left and the right, a broader

class of functions can be attained than with a single term multiplied by coefficients on the left and the right.

In the remainder of this section, we will show that two-sided linear functions over rings can be written as

one-sided linear functions with respect to some module, i.e. f ′ in (4.1) can be written as

f ′(x1, . . . ,xm) = c1 · x1 + · · ·+ cm · xm

where c1, . . . ,cm are elements of some other ring that acts on R. In order to do so, we exploit module tensor

products. If G and H are each R-modules, then the tensor product of G and H is a third R-module that

satisfies properties similar to the constructed vector space in the following example.

Example 4.1.3. Suppose F is a field and U ⊆ Fm and V ⊆ Fn are vector spaces. For each u ∈U and v ∈V ,

define the mn vector (u,v) by

(u,v) =





















u1v1

...

u1vn

...

umv1

...

umvn





















.

It is easily verified that for all u,u′ ∈U , all v,v′ ∈V , and all α ∈ F,

(u,v)+ (u′,v) = (u+u′, v)

(u,v)+ (u,v′) = (u, v+ v′)

α (u,v) = (αu, v)

α (u,v) = (u, αv).

The subspace of Fmn generated by all vectors of the form (u,v) for some u∈U and some v∈V is isomorphic

to the tensor product of U and V . In general, this tensor product space differs from the direct product space

U ×V ⊆ Fm+n obtained by concatenating vectors from U with vectors from V . In fact, when U = Fm and

V = Fn, the tensor product space is Fmn, whereas the direct product space is Fm+n.

If R is a ring and E is a set, the free R-module generated by E is denoted R(E). In this module, the

group is the subset of the Cartesian product ∏
e∈E

R consisting only of the elements that have finitely many

non-zero components together with component-wise addition, and the ring R acts on R(E) component-wise.
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By mapping the element e ∈ E to the vector in R(E) whose eth component is 1 and all other components are

0, we can view R(E) as the set of all finite R-linear combinations of elements of E . In other words, every

element of R(E) can be uniquely written as ∑
e∈E

ae e, where only finitely many ae ∈ R are non-zero, so the set

E is a basis for R(E).

If G is an R-module and N is a subgroup of G that is closed under the action of R, then N is a

submodule of G. The quotient group G/N is also an R-module (e.g. see [16, p. 348]). If E is a subset of G,

then the submodule generated by E is

{r1e1 + · · ·+ rmem : r1, . . . ,rm ∈ R, e1, . . . ,em ∈ E}.

Now let R be a commutative ring, let G and H be R-modules, and let N be the submodule of R(G×H)

generated by the set







(g,h)+ (g′,h)− (g+g′,h),

(g,h′)+ (g,h)− (g,h+h′),

r (g,h)− (rg,h),

r (g,h)− (g,r h)

: g,g′ ∈ G, h,h′ ∈ H, r ∈ R







.

The tensor product module of RG and RH , denoted G⊗R H , is the quotient R-module R(E)/N. In other

words, G⊗R H is the set of equivalence classes of the congruence generated by the following relations on

R(E):

(g,h)+ (g′,h) = (g+g′,h)

(g,h)+ (g,h′) = (g,h+h′)

r (g,h) = (r g,h)

r (g,h) = (g,r h).

The tensor product module is unique up to isomorphism (e.g. see [16, Sections 10.1 – 10.4] for more in-

formation on modules and tensor products) and exhibits similar properties to the tensor product of vec-

tor spaces. The elements of G ⊗R H are called tensors and can be written (non-uniquely, in general)

as sums of equivalence class representatives: (g1,h1) + · · ·+ (gm,hm), for some positive integer m and

(g1,h1), . . . ,(gm,hm) ∈ G×H .
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Definition 4.1.4. Let R and S be finite rings, and let Z denote the ring of integers. The tensor product

ring R⊗S is the Abelian group R⊗Z S together with multiplication given by

(
m

∑
i=1

(ri,si)

)

∗

(
n

∑
i= j

(r′j,s
′
j)

)

=
m

∑
i=1

n

∑
j=1

(rir
′
j, sis

′
j)

for all
(

∑m
i=1(ri,si)

)
,
(

∑n
i= j(r

′
j,s

′
j)
)
∈ R⊗Z S.

This tensor product ring is well defined and unique up to isomorphism (e.g. see [16, Chapter 10.4,

Proposition 21]). As an example, if Zm and Zn denote the rings of integers modulo m and n, respectively,

then we have Zm ⊗Zn
∼= Zgcd(m,n) (e.g. see [16, p. 369]). Specifically, if m = 4 and n = 2, then the tensors

in Z4 ⊗Z2 are such that

(0,0) = (0,1) = (2,1) = (1,0) = (2,0) = (3,0) and (1,1) = (3,1)

and addition and multiplication are isomorphic to addition and multiplication in Z2.

We also comment that the direct product ring R×S with component-wise addition and multiplica-

tion is generally not isomorphic to the tensor product ring R⊗ S. As an example, if m and n are relatively

prime, then by the Chinese remainder theorem, Zm×Zn
∼=Zmn (e.g. see [16, p. 267]), whereas Zm⊗Zn

∼=Z1

is the trivial ring.

For a finite ring R, the opposite ring, denoted Rop, is the additive group of R with multiplication

taken in the opposite order, i.e. a∗op b = ba, for all a,b ∈ R. The tensor product ring R⊗Rop acts on (R,+)

via (
n

∑
i=1

(ai,bi)

)

· r =
n

∑
i=1

ai r bi

for all a1, . . . ,an,b1, . . . ,bn,r ∈ R. In other words, R⊗Rop acts on (R,+) by computing two-sided linear

combinations of elements of (R,+). We denote this module by R⊗RopR. The properties of tensor addition

and multiplication are natural in the context of this module. In particular, for all a,a′,b,b′,x ∈ R, and n ∈ Z,

we have

(
(a,b)+ (a′,b)

)
· x = axb+a′ xb = (a+a′)xb = (a+a′, b) · x

(
(a,b)+ (a,b′)

)
· x = axb+axb′ = ax(b+b′) = (a, b+b′) · x

n(a,b) · x = n(axb) = (na)xb = (na,b) · x

n(a,b) · x = n(axb) = ax(nb) = (a,nb) · x.
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The two-sided linear function f ′ in (4.1) can now be written as

f ′(x1, . . . ,xm) =
m

∑
i=1

(
ni

∑
j=1

(ai, j,bi, j)

)

· xi

which is a one-sided linear function with respect to the R ⊗ Rop-module R. This shows that one-sided

linearity over left modules generalizes two-sided linearity over rings.

Example 4.1.5. Let R be the (non-commutative) ring of all 2×2 matrices over a field. The two-sided

linear function f : R → R from Example 4.1.2 can be written as a one-sided linear function over the

R⊗Rop-module R as

f








x1,1 x1,2

x2,1 x2,2







=












1 0

0 0



 ,




1 0

0 0







+








0 0

0 1



 ,




0 0

0 1











 ·




x1,1 x1,2

x2,1 x2,2



 .

4.1.2 Network Coding Model

A network will refer to a finite, directed, acyclic multigraph, some of whose nodes are sources or

receivers. Source nodes generate message vectors whose components are arbitrary elements of a fixed, finite

set of size at least 2, called an alphabet. The elements of an alphabet are called symbols. We will denote

the cardinality of an alphabet A by |A |. The inputs to a node are the message vectors, if any, originating

at the node and the symbols on the incoming edges of the node. Each outgoing edge of a network node

has associated with it an edge function that maps the node’s inputs to the vector of symbols carried by the

edge, called the edge vector. Each receiver node has decoding functions that map the receiver’s inputs to a

vector of alphabet symbols in an attempt to recover the receiver’s demands, which are the message vectors

the receiver wishes to obtain.

In a network with m message vectors, a (k1, . . . ,km,n) code over an alphabet A (also called a frac-

tional code) is an assignment of edge functions to the edges in the network and an assignment of decoding

functions to the receivers in the network such that the ith message vector is an element of A ki and the edge

vectors are elements of A n. The rate vector of a (k1, . . . ,km,n) network code is r = (k1/n, . . . ,km/n). A

fractional code is a solution if each receiver recovers its demanded message vector from its inputs, and a

rate vector r is achievable for a network if the network has a fractional solution with rate vector r over some

alphabet.
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4.1.3 Linearity over Finite Rings and Modules

A function f : Gs → Gt is linear with respect to the module RG if it can be written as a matrix-vector

product, f (x) = Ax, where

• A is a t × s matrix with elements from R,

• multiplication of elements of R by elements of G is the action of the module.

A fractional code is linear over the R-module G if the message vectors and edge vectors have

components from G and all edge functions and decoding functions are linear over the module. For each

network node, the vector x ∈ Gs is a concatenation of all the input vectors of the node. In other words,

the network alphabet is G, and the outgoing edge vectors and decoded symbol vectors at a node are linear

combinations of the node’s vector inputs, where the coefficients describing the linear combination are from

R. We use modules as a tool to prove results related to linear coding over rings, since linear network coding

over modules generalizes linear network coding over rings and fields. The module approach is especially

useful for non-commutative rings with two-sided linear codes.

If R is a finite ring, then a fractional linear code over the module R⊗RopR is said to be a fractional

two-sided linear code over R. In particular, the network alphabet is R, and the outgoing edge vectors and

decoded symbols carry linear combinations of the node’s input components, where each input component

in the combination is multiplied on the left and right by constants from R. If R is commutative, then then a

fractional two-sided linear code over R is also a fractional linear code over the module RR, since one-sided

and two-sided linearity are equivalent in this case. A rate vector r is linearly achievable for a network over

a finite ring R if the network has a fractional two-sided linear solution over R with rate vector r.

4.1.4 Rate Regions, Capacity, and Solvability

The rate region of a network N is

R(N ) = {r ∈Qm : r is achievable for N },2

the capacity (also known as the “uniform capacity” or the “symmetric capacity”) is

C (N ) = sup {r ∈Q : (r, . . . ,r) is achievable for N },

2Some authors refer to the rate regions and linear rate regions of networks as “capacity regions” or “achievable rate

regions” and sometimes define them as the convex hull or the topological closure of the set. We compare a network’s

linear rate regions over finite rings to its linear rate regions over finite fields, and our results immediately extend to

these alternate definitions of rate regions.
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the linear rate region with respect to a ring alphabet R is

Rlin(N ,R) = {r ∈Qm : r is linearly achievable for N over R},

and the linear capacity with respect to a ring alphabet R is

Clin(N ,R) = sup {r ∈Q : (r, . . . ,r) is linearly achievable for N over R}.

While the emphasis of this paper is on rate regions and capacities of networks, we define several

solvability properties, as they will be useful in proving our main results. A (k1, . . . ,km,n) code, for which

k1 = · · · = km = n = t, is also called a t-dimensional vector code, i.e. the block size of every message and

edge is t, and a 1-dimensional vector code is called a scalar code. A network is said to be

• solvable if it has a scalar solution over some alphabet,

• scalar linearly solvable over RG if it has a scalar linear solution over the module RG, and

• vector linearly solvable over RG if it has a t-dimensional vector linear solution over the module RG,

for some t ≥ 1.

Special cases of scalar and vector linear solvability over modules include scalar and vector linear solvability

over rings, in which case the module is R⊗RR (or equivalently, RR, if R is commutative). The all-one’s vector

is an achievable rate vector for any solvable network. We also comment that if a network has a t-dimensional

vector solution over some alphabet A , then it has a (possibly non-linear) scalar solution over the alphabet

A t , so the network is solvable.

4.1.5 Related Work

In 2000, Ahlswede, Cai, Li, and Yeung [1] showed that some networks can attain higher capacities

by using linear coding at network nodes, rather than just using routing operations. Since then, many results

on linear network coding over finite fields have been achieved. On the other hand, the theoretical potential

and limitations of linear network coding over non-field alphabets has been much less understood.

Li, Yeung, and Cai [29] showed that when each of a network’s receivers demands all of the messages

(i.e. a multicast network), the linear capacity over any finite field is equal to the (nonlinear) capacity. Ho

et. al [22] showed that for multicast networks, random fractional linear codes over finite fields achieve the

network’s capacity with probability approaching one as the block sizes increase. Jaggi et. al [25] developed

polynomial-time algorithms for constructing capacity-achieving fractional linear codes over finite fields for
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multicast networks. Algorithms for constructing fractional linear solutions over finite fields for other classes

of networks have also been a subject of considerable interest (e.g. [17], [24], [40], and [45]).

It is known (e.g. [11]) that for general networks, fractional linear codes over finite fields do not

necessarily attain the network’s capacity. In fact, it was shown by Lovett [31] that, in general, fractional

linear network codes over finite fields cannot even approximate the capacity to any constant factor. Blasiak,

Kleinberg, and Lubetzky [2] demonstrated a class of networks whose capacities are larger than their linear

capacities over any finite field by a factor that grows polynomially with the number of messages. Langberg

and Sprintson [28] showed that, for general networks, constructing fractional solutions whose rates even

approximate the capacity to any constant factor is NP-hard.

It was shown in [4] that the capacity of a network is independent of the coding alphabet. How-

ever, there are multiple examples in the literature (e.g. [7], [11], [15]) of networks whose linear capacity

over a finite field can depend on the field alphabet, specifically by way of the characteristic of the field.

Muralidharan and Rajan [35] demonstrated that a fractional linear solution over a finite field F exists for a

network if and only if the network is associated with a discrete polymatroid representable over F. Linear

rank inequalities of vector subspaces and linear information inequalities (e.g. [44]) are known to be closely

related and have been shown to be useful in determining or bounding networks’ linear capacities over finite

fields (e.g. [14], [15], and [18]).

Chan and Grant [5] demonstrated a duality between entropy functions and rate regions of networks

and provided an alternate proof that fractional linear codes over finite fields do not necessarily attain the

capacity. The relationship between network rate regions and entropy functions has been further studied,

for example, in [6], [21], [36], and [43]. It has also been shown (e.g. [13]) that non-Shannon information

inequalities may be needed to determine the capacity of a network.

It was shown in [5] that fractional linear network codes over finite rings (and modules) are special

cases of codes generated by Abelian groups. However, most other studies of linear capacity have generally

been restricted to finite field alphabets. We will consider the case where the coding alphabet is viewed, more

generally, as a finite ring. We showed in Chapters 2 and 3 that scalar linear network codes over finite rings

can offer solvability advantages over scalar linear network codes over finite fields in certain cases. Some of

the results from these chapters will be used in proofs in the present chapter.
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4.1.6 Main Results

The remainder of the chapter is outlined as follows. In Section 4.2, we explore a connection between

fractional linear codes and vector linear codes, which allows us to exploit network solvability results over

modules from the previous chapters in order to achieve capacity results over rings. For a given network N

and rate vector r, we show (in Lemma 4.2.2) there exists a network N ′ that is vector linearly solvable over a

given module if and only if the rate vector r is linearly achievable for N over the module. In Section 4.2.2,

we order finite modules based on fractional solvability and show that under certain conditions, fractional

linear solutions over a given module imply the existence of fractional linear solutions over other modules.

The results in Sections 4.2.2 and 4.2.3 are used to show (in Lemma 4.2.14) that fractional linear solutions

over modules imply the existence of fractional linear solutions over modules in which the ring of matrices

over a field acts on vectors over the field.

In Section 4.3, we use the results relating solvability and fractional codes from Section 4.2 to show

our main results on linear rate regions over fields. We prove (in Theorem 4.3.3) that for any two finite

fields with different characteristics, there exists a network whose linear rate regions over the fields are not

contained in one another. This indicates that some rate vectors may only be linearly achievable over certain

fields, while other rate vectors may only be linearly achievable over other fields. Additionally, for any two

finite fields with different characteristics, there exists a network whose linear capacities over the two fields

are different (Corollary 4.3.2). We also show (in Theorem 4.3.4) that for any finite fields with the same

characteristic, every network’s linear rate regions over the fields are equal. In other words, the linear rate

region of any network over a field depends only on the characteristic of the field. Consequently, the linear

capacity of any network over a field depends only on the characteristic of the field as well (Corollary 4.3.5).

This contrasts with linear solvability over fields, since scalar linear solvability can depend not only on the

field’s characteristic, but more specifically, on the precise cardinality of the field (e.g. see Chatper 2, [37],

[39]).

In Section 4.4, we prove our main results on linear rate regions and linear capacities over finite

rings. We show (in Theorem 4.4.2) that for any network, any finite field, and any finite ring whose size is

divisible by the field’s characteristic, the network’s linear rate region over the ring is contained within the

network’s linear rate region over the field. Consequently, the network’s linear capacity over the ring is at

most its linear capacity over the field (Corollary 4.4.3). In this sense, it suffices to restrict attention to finite

fields when choosing a coding alphabet from among all rings. In other words, the general class of rings does

not provide any benefit over the restricted class of finite fields, in terms of achieving linear rate regions with
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network coding. In order to prove Theorem 4.4.2, we show (in Theorem 4.4.1) that whenever a network has

a fractional linear solution over some module with a given rate vector, the network has a fractional linear

solution over some field with the same rate vector and potentially larger block sizes.

Even though Theorem 4.4.2 asserts non-field rings cannot provide an increase in linear capacity over

fields for all networks, we show (in Corollary 4.4.4) that generally certain rings, smaller than a given field,

can increase the linear capacity over at least some (but not all) networks. In fact, we show (in Theorem 4.4.5)

that for any finite field and any finite ring, there exists a network with higher linear capacity over the ring

than over the field if and only if the field’s size and the ring’s size are relatively prime. Finally, we show

(in Corollary 4.4.6) that whenever a network has a fractional linear solution over some ring (or module)

with a uniform rate arbitrarily close to 1, the network must also have a fractional linear solution over some

field with the same uniform rate. This strengthens results in [11] by showing that the non-linearly solvable

network presented in this paper additionally is not asymptotically linearly solvable over rings and modules.

4.2 Fractional and Vector Codes over Modules

x,y

x,y

x,y

0

1 2

3

4

5 6

Figure 4.1: The Butterfly Network has a single source node 0, which generates message vectors x and y.

Each of the receivers, nodes 5 and 6, demands both x and y. The linear rate region of the Butterfly Network

is {(rx,ry) ∈Q2 : rx,ry ≥ 0 and rx + ry ≤ 2} over any ring.

Many techniques for upper bounding network linear capacities over finite fields (e.g. [11, 14]) ex-

ploit linear algebra results that sometimes do not extend to matrices over arbitrary rings. For example, it is

known (e.g. see [20]) that the transpose of an invertible matrix over a non-commutative ring is not necessar-
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ily invertible.3 This suggests that directly computing network linear rate regions and linear capacities over

finite rings and modules may be somewhat difficult.

One method for determining whether a network satisfies some solvability or capacity property is to

transform the question into whether a certain related network satisfies a corresponding property (e.g. [26],

[41], and [42]). Namely, in [41] and [42], the authors show that determining the rate region and linear

rate region of a general network can be reduced to determining the rate region and linear rate region of a

corresponding network where each message vector is demanded by exactly one receiver (i.e. a multiple

unicast network). In [26], it is shown that determining whether a multiple unicast network has a solution

with a given rate vector can be reduced to determining whether a corresponding unicast network with two

message-receiver pairs has a solution with a corresponding rate vector.

We use a similar approach to relate the existence of fractional linear solutions over modules to

scalar and vector linear solvability over modules. The results in this section allow us to more easily relate a

network’s linear rate region over a ring to the network’s linear rate region over some field.

4.2.1 Fractional Equivalent Network

For any network N with m message vectors and integers k1, . . . ,km ≥ 0 and n ≥ 1, the following

defines a new network which is vector linearly solvable over a module RG if and only if N has a fractional

linear solution over RG whose rate vector is (k1/n, . . . ,km/n). We prove this fact in Lemma 4.2.2. This

network construction can be used to show many linear solvability properties extend to the existence of

fractional linear solutions.

Definition 4.2.1. For any network N with m message vectors and any integers k1, . . . ,km ≥ 0 and n≥ 1,

let N (k1,...,km,n) denote the network N but with

(i) each edge replaced with n parallel edges, and

(ii) the ith message vector replaced with ki message vectors.

The Butterfly Network is defined in Figure 4.1, and, for each kx,ky ≥ 0 and n ≥ 1, the (kx,ky,n)-

Butterfly Network is defined in Figure 4.2. These networks are consistent with Definition 4.2.1, if they are

denoted by N and N (kx,ky ,n), respectively.

3See [3] and [33] for more information on linear algebra over rings.
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Figure 4.2: The (kx,ky,n)-Butterfly Network has a single source node, which generates message vectors

x1, . . . ,xkx
and y1, . . . ,yky

. Each receiver demands all of the message vectors. The (kx,ky,n)-Butterfly Net-

work is vector linearly solvable over a given ring if and only if kx + ky ≤ 2n.

Lemma 4.2.2. Let N be a network with m message vectors, let k1, . . . ,km ≥ 0 and n, t ≥ 1 be integers,

let RG be a module, and let N (k1,...,km,n) denote the network in Definition 4.2.1 corresponding to N and

k1, . . . ,km and n. The network N has a (tk1, . . . , tkm, tn) linear solution over RG if and only if N (k1,...,km,n)

has a t-dimensional vector linear solution over RG.

Proof. In a (tk1, . . . , tkm, tn) linear code over module RG for network N , suppose a node generates the

l1th,. . . , luth message vectors and has v incoming edges, where the ith message vector is an element of Gtki

and the edge vectors are elements of Gtn. Then an edge function

f : Gtkl1 ×·· ·×Gtklu

︸ ︷︷ ︸

u message vectors

×Gtn ×·· ·×Gtn

︸ ︷︷ ︸

v edge vectors

−→ Gtn

of an outgoing edge of the node is of the form f (x) = Ax where A is a tn× (tk1l1 + · · ·+ tklu + vtn) matrix

with entries in R and x is a vector over G formed by concatenating the input vectors of the node. Let

A1, . . . ,An denote the t × (tk1l1 + · · ·+ tklu + vtn) matrices such that A can be written in block form as

A =








A1

...

An







.
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The corresponding node in N (k1,...,km,n) generates kl1 + · · ·+ klu message vectors and has vn incoming edge

vectors. Define the t-dimensional vector code for N (k1,...,km,n) over RG by letting the edge function of the

ith parallel corresponding outgoing edge be the linear mapping

fi : Gt ×·· ·×Gt

︸ ︷︷ ︸

kl1
+···+klu message vectors

× Gt ×·· ·×Gt

︸ ︷︷ ︸

vn edge vectors

−→ Gt

given by fi(x) = Aix, where i = 1, . . . ,n. The edge in the code for N carries the same linear combination

of its inputs as the n parallel edges in the code for N (k1,...,km,n).

Similarly, in a (tk1, . . . , tkm, tn) code for N , suppose a receiver generates the l1th,. . . , luth message

vectors, has v incoming edges, and demands x j. Then the decoding function

d : Gtkl1 ×·· ·×Gtklu

︸ ︷︷ ︸

u message vectors

×Gtn ×·· ·×Gtn

︸ ︷︷ ︸

v edge vectors

−→ Gtk j

corresponding to x j is of the form f (x) = Dx where D is a tk j × (tk1l1 + · · ·+ tklu + vtn) matrix and x is a

vector over G formed by concatenating the input vectors of the node. Let D1, . . . ,Dk j
denote the t × (tk1l1+

· · ·+ tklu + vtn) matrices such that D can be written in block form as

D =








D1

...

Dk j







.

The corresponding node in N (k1,...,km,n) generates kl1 + · · ·+ klu message vectors, has vn incoming edge

vectors, and demands the k j message vectors corresponding to x j. Define the t-dimensional vector code for

N (k1,...,km,n) over RG by letting the decoding function, corresponding to the ith such message vector, be the

linear mapping

di : Gt ×·· ·×Gt

︸ ︷︷ ︸

kl1
+···+klu message vectors

× Gt ×·· ·×Gt

︸ ︷︷ ︸

vn edge vectors

−→ Gt

given by di(x) = Dix, where i = 1, . . . ,k j. If the function d correctly reproduces its demanded message

vectors in the (tk1, . . . , tkm, tn) code for N , then each of d1, . . . ,dk j
correctly reproduces its demanded

message vector in the t-dimensional code for N (k1,...,km,n). Hence, any (tk1, . . . , tkm, tn) linear solution over

a module RG for N can be translated to a t-dimensional vector linear solution over RG for N (k1,...,km,n).

A t-dimensional vector linear solution over the module RG for N (k1,...,km,n) can similarly be trans-

lated to a (tk1, . . . , tkm, tn) linear solution over RG for N . In particular, if f1, . . . , fn are the edge functions

of the n parallel edges at a node in a t-dimensional vector linear solution for N (k1,...,km,n), then in the
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(tk1, . . . , tkm, tn) linear code over for N , define the corresponding edge function to be

f (x) =








f1(x)
...

fn(x)







.

Similarly, if d1, . . . ,dk j
are the decoding functions at a node in a t-dimensional vector linear solution for

N (k1,...,km,n), then in the (tk1, . . . , tkm, tn) linear code over for N , define the corresponding decoding func-

tion d(x) to be the vector obtained by concatenating d1(x), . . . ,dk j
(x). This (tk1, . . . , tkm, tn) linear code for

N over RG is a solution, since the t-dimensional vector linear code for N (k1,...,km,n) is a solution. �

When RG is a module and t is a positive integer, Mt (R)G
t denotes the module in which the ring of

all t × t matrices with entries in R acts on the set of all t-vectors over G with matrix-vector multiplication,

where multiplication of elements of R with elements of G is given by the action of RG. The following lemma

shows an equivalence between fractional linear codes over modules and fractional linear codes over these

vector modules.

Lemma 4.2.3. Let RG be a module, let N be a network, and let k1, . . . ,km ≥ 0 and n, t ≥ 1 be integers.

Network N has a (k1, . . . ,km,n) linear solution over Mt (R)G
t if and only if N has a (tk1, . . . , tkm, tn) linear

solution over RG.

Proof. This lemma follows from the fact that a scalar linear solution over Mt (R)G
t is equivalent to a t-

dimensional vector linear solution over RG. In particular, in both a scalar linear code over Mt(R)G
t and a

t-dimensional vector linear code over RG, inputs to a node are t-vectors over G and outputs carry linear

combinations of the inputs, where the coefficients that describe the linear combination are t × t matrices

over R. Any scalar linear solution over Mt (R)G
t can be translated to a t-dimensional vector linear solution

over RG and vice versa. This idea generalizes to fractional linear solutions:

N has a (k1, . . . ,km,n) linear solution over Mt (R)G
t

⇐⇒ N
(k1,...,km,n) has a scalar linear solution over Mt(R)G

t [from cap-Lemma 4.2.2]

⇐⇒ N
(k1,...,km,n) has a t-dimensional linear solution over RG

⇐⇒ N has a (tk1, . . . , tkm, tn) linear solution over RG [from cap-Lemma 4.2.2] .

�
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4.2.2 Fractional Dominance

Definition 4.2.4. Let RG and SH be modules. We say that

(a) SH scalarly dominates RG if every network with a scalar linear solution over RG also has a scalar

linear solution over SH ,

(b) SH fractionally dominates RG if for each k1, . . . ,km ≥ 0 and n ≥ 1, every network with a (k1, . . . ,km,n)

linear solution over RG also has a (k1, . . . ,km,n) linear solution over SH .

Remark 4.2.5. Any left-sided fractional linear code over a ring can be viewed as a two-sided fractional

linear code over the ring in which the inputs are multiplied on the right by the identity element, so the

module R⊗RopR fractionally dominates RR for every finite ring R. Furthermore, if R is commutative, then any

two-sided fractional linear code over R can equivalently be written as a left-sided fractional linear code

over R, which implies RR fractionally dominates R⊗RopR.

We also comment that if R and S are finite rings such that S⊗SopS fractionally dominates R⊗RopR,

then for each network N , we have

Rlin(N ,S)⊇ Rlin(N ,R) and Clin(N ,S)≥ Clin(N ,R).

The following lemma shows that scalar dominance and fractional dominance of modules are, in

fact, equivalent. However, it is cleaner to prove results on scalar dominance, as the block sizes of the

message vectors and edge vectors are all one, and we can use results from Chapter 3.

Lemma 4.2.6. Let RG and SH be modules. SH scalarly dominates RG if and only if SH fractionally domi-

nates RG.

Proof. It follows immediately from the definition that SH fractionally dominates RG implies SH scalarly

dominates RG. To prove the converse, suppose SH scalarly dominates RG. Let N be a network with m mes-

sage vectors, let k1, . . . ,km ≥ 0 and n ≥ 1 be integers, and let N (k1,...,km,n) be the network in Definition 4.2.1

corresponding to N , k1, . . . ,km, and n. Then

N has a (k1, . . . ,km,n) linear solution over RG

=⇒ N
(k1,...,km,n) has a scalar linear solution over RG [from cap-Lemma 4.2.2]

=⇒ N
(k1,...,km,n) has a scalar linear solution over SH [from S scalarly dominates R]

=⇒ N has a (k1, . . . ,km,n) linear solution over SH [from cap-Lemma 4.2.2] .
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Hence, for any network, any fractional linear solution over RG implies the existence of a fractional linear

solution over SH with the same block sizes. �

Definition 4.2.7. An R-module G is faithful if for each r ∈ R\{0}, there exists g ∈ G such that r ·g 6= 0.

Lemmas 4.2.8, 4.2.9, and 4.2.10 follow immediately from Lemma 4.2.6 and results from Chapter 3.

Lemma 4.2.8 shows that, for a fixed ring R, fractional linear solutions over faithful R-modules induce

fractional linear solutions over every other R-module. Lemma 4.2.9 shows that fractional linear solutions

over non-faithful modules induce fractional linear solutions over some faithful module. Lemma 4.2.10

shows that ring homomorphisms also induce fractional dominance.

Lemma 4.2.8. Lemma 3.1.3: Let R be a fixed ring, let G be a faithful R-module, and let H be an R-module.

Then RH fractionally dominates RG.

Lemma 4.2.9. Lemma 3.2.6: Let G be an R-module. There exists a finite ring S such that G is a faithful

S-module, and SG fractionally dominates RG.

Lemma 4.2.10. Lemma 3.1.6: Let φ : R → S be a ring homomorphism, let G be a faithful R-module, and

let H be an S-module. Then SH fractionally dominates RG.

By the fundamental theorem of finite Abelian groups, every finite Abelian group is isomorphic to a

direct product of cyclic groups whose sizes are prime powers (with component-wise addition) [16, p. 161].

As an example, Z12
∼= Z4 ×Z3. The following lemma shows that if a finite Abelian group can be written

as a direct product of Abelian groups G and H whose sizes are relatively prime, then whenever G×H is an

R-module for some ring R, the ring R acts on G×H component-wise. This implies that G and H are also

R-modules. Since fractional linear solutions over faithful R-modules induce fractional linear solutions over

every other R-module, this is a useful tool for showing fractional dominance.

Lemma 4.2.11. Let G and H be finite groups such that |G| and |H| are relatively prime, and let G×H be

some R-module. Then G and H are also R-modules.

Proof. Let g ∈ G and r ∈ R, and suppose r · (g,0) = (gr,hr) ∈ G×H . It follows from Lagrange’s theorem

of finite groups (e.g. [16, p. 45]) that |G|g = g⊕·· ·⊕g
︸ ︷︷ ︸

|G| times

= 0, so

(0,0) = r · (0,0) = r · (|G|g,0) = |G|r · (g,0) = |G|(gr,hr) = (|G|gr, |G|hr) = (0, |G|hr).

Since |G| and |H| are relatively prime, it follows from Cauchy’s theorem of finite groups (e.g. [16, p.

93]) that H contains no non-identity elements whose order divides |G|, so it must be the case that hr = 0.
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Similarly, for each h ∈ H and each r ∈ R, there exists hr ∈ H such that r · (0,h) = (0,hr). This implies R acts

on G×H component-wise. In other words, if r ·(g,h) = (gr,hr), then r ·(g,0) = (gr,0) and r ·(0,h) = (0,hr).

Thus the mapping ⊙ : R×G → G given by r ⊙ g = gr satisfies the properties of an action, so G is an R-

module with action ⊙. It can similarly be shown H is an R-module. �

We comment that Lemma 4.2.11 does not extend to finite groups whose sizes are not relatively

prime. As an example, the field GF(4) acts on its own additive group (GF(4),+) by multiplication in

the field. If the elements of GF(4) are represented as {0,1,α ,α + 1} where α2 = α + 1, then for all

(a0 +αa1),(b0 +αb1) ∈ GF(4)

(a0 +αa1)(b0 +αb1) = a0b0 +a1b1 +α(a0b1 +a1b0 +a1b1).

The additive group of GF(4) is isomorphic to the set GF(2)× GF(2) with component-wise addition in

GF(2), so GF(4) acts on GF(2)×GF(2) by

(a0 +α a1) · (b0,b1) = (a0b0 +a1b1, a0b1 +a1b0 +a1b1).

This action is not component-wise, since (1+α) · (1,0) = (1,1) and α · (0,1) = (1,1).

If GF(4) acts on GF(2), then the action must be such that 1 · a = a and 0 · a = 0 for all a ∈ GF(2)

and x ·0 = 0 for all x ∈ GF(4). If α ·1 = 1, then

0 = 1+1 = (α ·1)+ (1 ·1) = (α +1) ·1 = (α2) ·1 = α · (α ·1) = α ·1 = 1

which is a contradiction. If α ·1 = 0, then

1 = 0+1 = (α ·1)+ (1 ·1) = (α +1) ·1 = (α2) ·1 = α · (α ·1) = α ·0 = 0

which is a contradiction. Thus GF(2) cannot be a GF(4)-module, but as shown above, GF(2)×GF(2) is a

GF(4)-module.

4.2.3 Matrix Rings over Fields

If a ring R has a proper two-sided ideal I, then there is a surjective homomorphism from R to R/I. It

is known (e.g. [32, p. 20]) that every finite ring with no proper two-sided ideals is isomorphic to some ring

of matrices over a finite field. In fact, every finite ring R has a two-sided ideal I such that R/I is a matrix

ring over a field. This implies the following lemma, which was more formally shown in Chapter 3.

Lemma 4.2.12. Lemmas 3.2.1 and 3.2.3: Let R be a finite ring. There exists a positive integer t, a finite

field F, and a surjective homomorphism from R to Mt(F).
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Lemmas 4.2.10 and 4.2.12 together imply that fractional linear solutions over modules induce frac-

tional linear solutions over modules in which the ring is a matrix ring over a field. The following lemma

proves a result on the cardinality of such modules.

Lemma 4.2.13. Let F be a finite field and t a positive integer. If G is a finite non-zero Mt(F)-module, then

|F|t divides |G|.

Proof. Since G is finite and non-zero, G contains a submodule with no proper submodules (possibly G

itself). It is known (e.g. [27, Theorem 3.3 (2), p. 31]) that Ft is the only Mt(F)-module with no proper

submodules, so Ft is a submodule of G. Hence by Lagrange’s theorem of finite groups, |F|t divides |G|. �

Lemma 4.2.14 shows that every module is fractionally dominated by a module whose group is the

set of t vectors over some field and whose ring is the set of all t × t matrices over the field. In network

coding, arbitrarily large block sizes may be needed to achieve a solution with a particular rate. Das and

Rai [10] showed that for each k,n ≥ 1 and each t ≥ 2, there exists a network that has a (tk, . . . , tk, tn) linear

solution over any finite field, yet the network has no (sk, . . . ,sk,sn) linear solution over any finite field when

s < t. It was also shown in Chapter 3 that for each t ≥ 2, there exist networks with scalar linear solutions

over certain rings but with no s-dimensional vector linear solutions over any field whenever s < t. This

suggests that the quantity t in Lemma 4.2.14 may need to be arbitrarily large.

Lemma 4.2.14. Let RG be a module. For each prime p that divides |G|, there exists a finite field F of

characteristic p and a positive integer t such that Mt(F)F
t fractionally dominates RG.

Proof. By Lemma 4.2.9 there exists a finite ring S such that the faithful module SG fractionally dominates

RG. By the fundamental theorem of finite Abelian groups, the group G is isomorphic to a direct product

of Abelian groups whose sizes are prime powers, and since p
∣
∣ |G|, the size of at least one of these groups

is a power of p. Let H be the direct product of all such groups whose sizes are powers of p. Then there

exists a finite group G′ such that G ∼= G′×H and |G′| and |H| are relatively prime. Hence by Lemma 4.2.11,

H is also an S-module, and since G is a faithful S-module, by Lemma 4.2.8, the module SH fractionally

dominates SG.

By Lemma 4.2.9, there exists a finite ring S′ such that H is a faithful S′-module and S′H fraction-

ally dominates SH . By Lemma 4.2.12, there exists a positive integer t, a finite field F, and a surjective

homomorphism from S′ to Mt(F). By Lemma 4.2.10, the module S′H is fractionally dominated by every

Mt(F)-module, and the ring Mt(F) acts on the of all t-vectors over F by matrix-vector multiplication over

F, so Mt (F)F
t fractionally dominates S′H . The proof of Lemma 4.2.10 also implies H is an Mt(F)-module,
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so Lemma 4.2.13 implies |F|t
∣
∣ |H|. Since |H| is a power of p, this implies F is a field of characteristic p.

Finally, by the transitivity of fractional dominance, Mt (F)F
t fractionally dominates RG. �

Lemma 4.2.15 uses ideas similar to those in [38, Proposition 1] and [17], and we include a proof

for completeness. This lemma, along with Lemma 4.2.3, implies that a fractional linear solution over any

non-prime finite field induces a fractional linear solution over the corresponding prime field with the same

rate vector. A fractional linear solution over a field F is equivalent to a fractional linear solution over the

faithful module FF, since GF(F) is commutative.

Lemma 4.2.15. Let q be a prime power and t a positive integer. Then Mt(GF(q))GF(q)t fractionally dominates

GF(qt)GF(qt).

Proof. It is known (e.g. see [16, p. 531]) that every extension field GF(qt) is isomorphic to a set of t × t

matrices over GF(q). This implies there exists an injective homomorphism from GF(qt) to Mt(GF(q)). By

Lemma 4.2.10, any network with a fractional linear solution over GF(qt)GF(qt) also has a fractional linear

solution over any Mt(GF(q))-module. In particular, Mt (GF(q))GF(q)t fractionally dominates GF(qt)GF(qt).

�

4.3 Linear Rate Regions over Fields

We define, for each integer m ≥ 2, the Char-m Network in Figure 4.3. The Char-m Network is

denoted by N2(m,1) in [7], with a slight relabeling of sources, and Char-m Network is known to be vector

linearly solvable over a field if and only if the characteristic of the field divides m. When m= 2, this network

exhibits solvability properties similar to those of the Fano network [13].

Let R be a finite ring whose characteristic divides m. Then m = 0 in R, and the following scalar

linear code:

e =
m+1

∑
j=0

x j and ei =
m+1

∑
j=0
j 6=i

x j

over R is a solution for the Char-m Network, where i = 0,1, . . . ,m+ 1, and the receivers linearly recover

their demands as follows

Ri : e− ei = xi

R :
m+1

∑
i=1

ei = x0 +m
m+1

∑
i=0

xi

= x0

[
from char(R)

∣
∣ m
]
.
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Figure 4.3: The Char-m Network has source nodes S0,S1, . . . ,Sm+1 which generate message vectors

x0,x1, . . . ,xm+1, respectively. Node u has a single incoming edge from each source node, and the edge

connecting nodes u and v carries the edge vector e. For each i = 0,1, . . . ,m+1, node ui has a single incom-

ing edge from each source node, except Si. The edge connecting nodes ui and vi carries edge vector ei. The

receiver Ri demands xi and has an incoming edge from node vi and an incoming edge from v. The receiver

R demands x0 and has an incoming edge from each of nodes v1, . . . ,vm+1.

This code relies on the fact m = 0 in R, and it turns out the Char-m Network has no scalar linear solutions

over any ring whose characteristic does not divide m (see [7, Lemma IV.6]).

Lemma 4.3.1. [7, Lemma IV.7]: For each m ≥ 2 and each finite field F, the linear capacity of the Char-m

Network is

• equal to 1, whenever char(F)
∣
∣ m, and

• upper bounded by 1− 1
2m+3

, whenever char(F) ffl m.

4.3.1 Comparing Linear Rate Regions over Different Fields

It follows from Lemma 4.3.1 that certain fields may yield strictly larger linear capacities for some

networks than other fields. In particular, whenever the characteristics of two finite fields are different, there

exists some network whose linear capacities over the fields differ.
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Corollary 4.3.2. If F and K are finite fields with different characteristics, then there exist networks N1 and

N2, such that Clin(N1,F)> Clin(N1,K) and Clin(N2,K)> Clin(N2,F).

Proof. Suppose char(F) = p 6= q = char(K) and let N1 and N2 be the Char-p Network and the Char-q

Network, respectively. Then by Lemma 4.3.1, Clin(N1,F) = 1 and Clin(N1,K) ≤ 1− 1
2p+3

. Similarly,

Clin(N2,K) = 1 and Clin(N2,F)≤ 1− 1
2q+3

. �

In [14], it was shown that for any finite fields F and K of even and odd characteristic, respectively:

(i) the linear rate region of the non-Fano network over F is a proper subset of its linear rate region over K,

and (ii) the linear rate region of the Fano network over K is a proper subset of its linear rate region over

F. In these instances, it is strictly “better” to use an even/odd characteristic field instead of an odd/even

characteristic field. However, the following theorem demonstrates that it may not always be the case that

one field is necessarily “better” than the other for a particular network. In particular, for some networks,

some rate vectors may only be linearly achievable over certain fields while other rate vectors may only be

linearly achievable over other fields.

Theorem 4.3.3. For any two finite fields with different characteristics, there exists a network whose

linear rate regions over the fields do not contain one another.

Proof. A disjoint union of networks refers to a new network whose nodes/edges/sources/receivers are the

disjoint union of the nodes/edges/sources/receivers in the smaller networks. Let F and K be finite fields

of characteristic p and q, for some distinct primes p and q. Let N be the disjoint union of the Char-p

Network and the Char-q Network. Whenever node (respectively, edge and message) labels are repeated,

add an arbitrary additional level of labeling each node (respectively, edge and message) to avoid repeated

labels. Then, by Lemma 4.3.1, the rate vector, in which the rates for the Char-p Network are all one and the

rates for the Char-q Network are all zero, is linearly achievable over F but not over K. Similarly, the rate

vector in which the rates for the Char-q Network are all one and the rates for the Char-p Network are all

zero is linearly achievable over K but not over F. Thus the linear rate regions of N over F and K do not

contain one another. �

We can use a similar network construction to show that there is not necessarily a particular finite

field that can linearly achieve all linearly achievable rate vectors. In other words, there may not be a “best”

field for a particular network. Let p and q be distinct primes, and let N be the disjoint union of the Char-p
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Network and the Char-q Network. Then, by a similar argument to the proof of Theorem 4.3.3, there exists a

rate vector that is only linearly achievable over fields of characteristic p, and there exists another rate vector

that is only linearly achievable over fields of characteristic q. Thus there is no finite field which can linearly

achieve both of these rate vectors. A similar result can be obtained by taking the disjoint union of the Fano

and non-Fano networks.

Theorem 4.3.3 demonstrates that for any two finite fields of distinct characteristics, there always

exists some network whose linear rate regions differ over the two fields. In the following theorem, we

show that the linear rate region of a network over a field depends only on the characteristic of the field.

This contrasts with the scalar linear solvability of networks over fields, since some networks can be scalar

linearly solvable only over certain fields of a given characteristic.

Theorem 4.3.4. Let F and K be finite fields. Then char(F) = char(K) if and only if for each network

N , we have Rlin(N ,F) = Rlin(N ,K).

Proof. Let r and s be positive integers, p a prime, and N a network with m messages. Then GF(p) is a

subfield GF(ps), which implies the identity mapping is an injective homomorphism from GF(p) to GF(ps).

So

N has a (k1, . . . ,km,n) linear solution over GF(pr)

=⇒ N has an (rk1, . . . ,rkm,rn) linear solution over GF(p) [from cap-Lemma 4.2.15]

=⇒ N has an (rk1, . . . ,rkm,rn) linear solution over GF(ps) [from cap-Lemma 4.2.10] .

Both a (k1, . . . ,km,n) linear solution and a (rk1, . . . ,rkm,rn) linear solution have the rate vector

(k1/n, . . . ,km/n). Hence any rate vector that is linearly attainable over GF(pr) is also linearly attainable over

GF(ps) (with possibly larger vector sizes). Similarly, any rate vector that is linearly attainable over GF(ps)

is also linearly attainable over GF(pr) (with possibly larger vector sizes). Hence if char(F) = char(K),

then the linear rate regions of any network over F and K are equal. The reverse direction follows from

Theorem 4.3.3. �

Immediately following Definition 4.2.4, we showed that for any finite rings S and R,

S⊗SopS fractionally dominates R⊗RopR =⇒ Rlin(N ,S)⊇ Rlin(N ,R) for every network N .
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Theorem 4.3.4 can be used to show the converse is not necessarily true. There are numerous examples in

the literature (e.g. see Lemma 2.3.2, [37], [39]) of networks that are scalar linearly solvable over GF(pr)

but not over GF(ps), for some prime p and some distinct positive integers r and s. In such cases, GF(ps)

does not fractionally dominates GF(pr); however, by Theorem 4.3.4, any network’s linear rate region over

either field is the same, since both fields have characteristic p.

Corollary 4.3.5. Let F and K be finite fields. Then char(F) = char(K) if and only if for each network

N , we have Clin(N ,F) = Clin(N ,K).

Proof. This corollary is an immediate consequence of Theorem 4.3.4 and Corollary 4.3.2. �

4.4 Linear Rate Regions over Rings

The following theorem demonstrates that if a network has a fractional linear solution over some

module and if p is a prime that divides the alphabet size (i.e. the size of the group), then the network

must also have a fractional linear solution over every field of characteristic p with the same rate vector and

possibly larger vector sizes.

Theorem 4.4.1. Let RG be a module and let F be a finite field whose characteristic divides |G|. For each

network N and each k1, . . . ,km ≥ 0 and n ≥ 1 such that N has a (k1, . . . ,km,n) linear solution over RG,

there exists a positive integer t such that N has a (tk1, . . . , tkm, tn) linear solution over F.

Proof. Let p= char(F). By Lemma 4.2.14, there exists a finite field K of characteristic p and a positive inte-

ger s such that Ms(K)K
s fractionally dominates RG. Lemma 4.2.3 implies a network N with a (k1, . . . ,km,n)

linear solution over Ms(K)K
s must also have an (sk1, . . . ,skm,sn) linear solution over K. Since F and K both

have characteristic p, and since the rate vector (k1/n, . . . ,km/n) is linearly achievable for N over K, by

Theorem 4.3.4, the rate vector (k1/n, . . . ,km/n) is also linearly achievable for N over F. Hence there exists

a positive integer t such that N has a (tk1, . . . , tkm, tn) linear solution over F. �

We now prove one of our main results regarding linear rate regions over rings.

Theorem 4.4.2. If R is a finite ring and F is a finite field whose characteristic divides |R|, then the

linear rate region of any network over R is contained in the network’s linear rate region over F.
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Proof. Let R be a finite ring, let N be a network, and let F finite field whose characteristic divides |R|.

A fractional two-sided linear solution over R is a fractional linear solution over the module R⊗RopR, so by

Theorem 4.4.1, whenever N has a fractional linear solution over R with a given rate vector, N also has a

fractional linear solution over F with the same rate vector and possibly larger vector sizes. Hence,

{r ∈Qm : r is linearly achievable for N over R} ⊆ {r ∈Qm : r is linearly achievable for N over F}.

�

Corollary 4.4.3. If R is a finite ring and F is a finite field whose characteristic divides |R|, then the

linear capacity of any network over R at most its linear capacity over F.

In some cases, the containment in Theorem 4.4.2 (and the inequality in Corollary 4.4.3) is strict

for some networks, while in other cases, there may be equality for all networks. As an example, by taking

F = GF(2) and R = Z6 in Theorem 4.4.2, any network’s linear rate region over GF(2) contains its linear

rate region over Z6. However, the linear capacity of the Char-2 Network is 1 over the field GF(2) and is

upper bounded by 6/7 over the field GF(3) (see Lemma 4.3.1). Since 3 = char(GF(3)), which divides

6 = |Z6|, by Theorem 4.4.2, the Char-2 Network’s linear capacity over Z6 is upper bounded by 6/7. This

demonstrates that the linear rate regions of R and F are not necessarily equal for all networks.

As another example, by taking F = GF(4) and R = Z2[X ]/〈X2〉 in Theorem 4.4.2, any network’s

linear rate region over GF(4) contains its linear rate region over Z2[X ]/〈X2〉. The field GF(2) is isomorphic

to a subring of Z2[X ]/〈X2〉 (namely Z2), so there is an injective homomorphism from GF(2) to Z2[X ]/〈X2〉,

which by Lemma 4.2.10, implies any network’s linear rate region over Z2[X ]/〈X2〉 contains its linear rate

region over GF(2). However, by Theorem 4.3.4, any network’s linear rate regions over GF(4) and GF(2)

must be equal. Thus the linear rate regions of GF(4) and Z2[X ]/〈X2〉 are equal for all networks. Precisely

characterizing for which rings and fields the linear rate regions are equal for all networks remains an open

problem.

4.4.1 Comparing Linear Capacities over Different Rings

Determining the exact linear capacity and the linear rate region of the Char-m Network over each

finite ring (or even each finite field) is also presently an open problem. Another related open question is

for which finite rings R and S does there exist a network N such that Clin(N ,R) > Clin(N ,S). We have

answered this second question in some select special cases:
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• In Theorem 4.3.4, we showed that when R and S are finite fields, such a network exists if and only if

the characteristics of R and S differ.

• In Theorem 4.4.2, we showed that when S is a field whose characteristic divides |R|, no such network

exists. This includes the special case where |S|= |R|.

Corollary 4.4.4. Let R and S be finite rings. If some prime factor of |S| is not a factor of |R|, then there

exists a network N such that Clin(N ,R)> Clin(N ,S).

Proof. Let p divide |S| but not |R|, and let N denote the Char-|R| Network. Then,

Clin(N ,S)≤ Clin(N ,GF(p)) [from Theorem 4.4.2]

≤ 1−
1

2|R|+3
[from p ffl |R| and Lemma 4.3.1]

< 1

≤ Clin(N ,R)
[
from char(R)

∣
∣ |R|

]

where the last inequality uses the fact that N must be scalar linearly solvable over R, since the characteristic

of R divides the size of R. �

Corollary 4.4.4 implies that if the sizes of two rings do not share the same set of prime factors, then

at least one of the rings induces a higher linear capacity than the other on some network. As an example,

the Char-6 Network has a strictly larger linear capacity over the ring Z6 than over the field GF(25) of larger

size.

Corollary 4.4.4, in particular, implies that for every finite field and every ring, whose sizes are

relatively prime, there is some network for which the linear capacity of the network over the ring is strictly

larger than the linear capacity over the field. In contrast, Theorem 4.4.2 shows that for every ring and every

network, there is some field for which the linear capacity of the network over the ring is less than or equal

to the linear capacity over the field. These facts are succinctly summarized in the following theorem.

Theorem 4.4.5. Let F be a finite field and R be a finite ring. Then |F| and |R| are relatively prime if

and only if there exists a network N such that Clin(N ,R)> Clin(N ,F).

Proof. Let p = char(F). Then |F| and |R| are relatively prime if and only if p ffl |R|.

If p ffl |R|, then by Corollary 4.4.4, there exists a network N such that Clin(N ,R) > Clin(N ,F).

The converse is a restatement of Corollary 4.4.3. �
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4.4.2 Asymptotic Solvability

We say that a network N is asymptotically solvable over A if for all ε ∈ (0,1), the rate vector

(1− ε , . . . ,1− ε) is contained in the network’s rate region. In other words, a uniform rate arbitrarily close

to, or above, 1 is attainable. A network which is asymptotically solvable but is not solvable was demon-

strated in [12], and non-linearly solvable networks were demonstrated in [7] and [11] that are not asymp-

totically linearly solvable over any finite field. The following corollary demonstrates that such networks are

additionally not asymptotically linearly solvable over any module (or ring).

Corollary 4.4.6. If a network is asymptotically linearly solvable over some module or ring, then it must be

asymptotically linearly solvable over some finite field.

Proof. Suppose a network N is asymptotically linearly solvable over some module RG. By Theorem 4.4.1,

there exists a finite field F such that any rate vector that is linearly achievable over RG must also be linearly

achievable over F. Hence N is also asymptotically linearly solvable over F. This also implies any network

that is asymptotically linearly solvable over some ring must also be asymptotically linearly solvable over

some field, since a fractional linear code over a ring is a special case of a fractional linear code over a

module. �

4.5 Concluding Remarks

Linear network codes over finite rings (and modules) constitutes a much broader class of codes

than linear network codes over finite fields. Linear codes over rings have many of the attractive properties

of linear codes over fields, including implementation complexity and possibly mathematical tractability. We

have demonstrated, however, that with respect to linear capacity and linear rate regions, this broader class

of codes does not offer an improvement over linear codes over fields. This particularly contrasts with the

network solvability problem where we demonstrated certain cases where a ring alphabet can offer scalar

linear solutions when a field alphabet cannot.
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Chapter 5

A Class of Non-Linearly Solvable Networks

Abstract

For each positive composite integer m, a network is constructed which is solvable over an alphabet

of size m but is not solvable over any smaller alphabet. These networks have no linear solutions over any

module alphabet and are not asymptotically linearly solvable over any finite-field alphabet. The networks’

capacities are all shown to equal one, and their linear capacities are all shown to be bounded away from

one for all finite-field alphabets. Additionally, if m is a non-power-of-prime composite number, then such a

network is not solvable over any prime-power-size alphabet.
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5.1 Introduction

In 2005, it was demonstrated in [7] that there can exist a solvable network which is not vector

linearly solvable over any finite-field alphabet and any vector dimension. To date, the network given in [7]

is the only known example of such a network published in the literature. In fact, the network given in [7]

was shown to not be linearly solvable over very general algebraic types of alphabets, such as finite rings and

modules, and it was shown not to even be asymptotically linearly solvable over finite-field alphabets. As a

result, the network has been described as “diabolical” by Kschischang [19]1 and Koetter [17].

The diabolical network has been utilized in numerous extensions and applications of network cod-

ing, such as by Krishnan and Rajan [18] for network error correction and by Rai and Dey [23] for multicas-

ting the sum of messages, to construct networks with equivalent solvability properties, hence showing that

linear codes are insufficient for each problem. El Rouayheb, Sprintson, and Georghiades [13] reduced the

index coding problem to a network coding problem, thereby using the diabolical network to show that linear

index codes are not necessarily sufficient. Blasiak, Kleinberg, and Lubetzky [2] used index codes to create

networks where there is a polynomial separation between linear and non-linear network coding rates. Chan

and Grant [5] showed a duality between entropy functions and network coding problems, which allowed for

an alternative proof of the insufficiency of linear network codes.

There remain many open questions regarding non-linear network coding. In this chapter, we present

a class of networks that generalize the diabolical network and show a number of other results related to non-

linear network coding.

5.1.1 Network Coding Model

A network will refer to a finite, directed, acyclic multigraph, some of whose nodes are sources or

receivers. Source nodes generate vectors of messages, where each of the messages is an arbitrary element of

a fixed, finite set of size at least 2, called an alphabet. The elements of an alphabet are called symbols. The

inputs to a node are the messages, if any, originating at the node and the symbols carried by the incoming

edges of the node. Each outgoing edge of a network node carries a vector of alphabet symbols, called edge

symbols. Each outgoing edge of a node has associated with it an edge function which maps the node’s inputs

to the output vector carried by the edge. Each receiver node has demands, which are the message vectors

the receiver wishes to obtain. Each receiver also has decoding functions which map the receiver’s inputs to

vectors of alphabet symbols in an attempt to satisfy the receiver’s demands.

1The terminology was apparently attributed by F. Kschischang to M. Sudan.
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A (k,n) fractional code over an alphabet A (or, more briefly, a (k,n) code over A ) is an assignment

of edge functions to all of the edges in a network and an assignment of decoding functions to all of the

receiver nodes in the network such that message vectors are elements of A k and edge vectors are elements

of A n. A code is a solution if each receiver recovers each of its demands from its inputs. For linear network

coding, we will focus attention on two specific types of (k,n) codes:

Case (1): k = n = 1 and the network alphabet is a module.

Case (2): Any k,n and the network alphabet is a ring.

In a (1,1) code over an R-module G, an edge or decoding function f : Gi → G is linear over the

R-module G if it can be written in the form f (x1, . . . ,xi) = (C1 · x1)⊕·· ·⊕ (Ci · xi), where x1, . . . ,xi ∈ G are

the node’s inputs, C1, . . . ,Ci ∈ R are constants, ⊕ is the Abelian group operation, and · is the action of the

module. A (1,1) code is said to be linear over the R-module G if each edge function and decoding function

is linear over the R-module G. Note that for any R-module G and positive integer k, the set Mk(R) of k× k

matrices over R with matrix addition and multiplication defined in the usual way is a ring, and Gk is an

Mk(R)-module. Hence a “vector linear code” over a module is, in fact, a (1,1) linear code over a different

module.

In a (k,n) code over a ring R, an edge function f : Rk ×·· ·×Rk

︸ ︷︷ ︸

i message vectors

×Rn ×·· ·×Rn

︸ ︷︷ ︸

j in-edges

−→ Rn is linear

over R if it can be written in the form

f (x1, . . . ,xi,y1, . . . ,y j) = M1x1 + · · ·+Mixi +M′
1y1 + · · ·+M′

jy j (5.1)

where x1, . . . ,xi ∈ Rk are message vectors originating at the node, y1, . . . ,y j ∈ Rn are edge vectors carried

by the incoming edges to the node, M1, . . . ,Mi are n× k matrices and M′
1, . . . ,M

′
j are n×n matrices whose

entries are constant in R, i.e. the edge symbol can be written as a linear combination of the node’s inputs.

Similarly, a decoding function is linear if it has a form analogous to (5.1). A (k,n) code is said to be linear

over the ring R if each edge function and each decoding function is linear over R.

A (1,1) linear code over a ring R (called a scalar linear code over R) is also a linear code over

the R-module R, where R acts on its own Abelian group by multiplication in R. For each positive integer

k, a (k,k) linear code over R (called a k-dimensional vector linear code over R) is also a linear code over

the Mk(R)-module Rk. Hence scalar and vector linear codes over rings are special cases of linear codes

over modules. When discussing linear codes over rings, we will always specify the dimension (e.g. scalar,

vector, or (k,n)), but a linear code over a module will always refer to a (1,1) linear code.

A network is defined to be
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• solvable over A if there exists a (1,1) solution over A ,

• asymptotically solvable over A if for any ε > 0, there exists a (k,n) solution over A for some k and

n satisfying k/n > 1− ε ,

• linearly solvable over the R-module G if there exists a linear solution over the R-module G,

• scalar linearly solvable over the ring R if there exists a (1,1) linear solution over R,

• vector linearly solvable over the ring R if there exists a (k,k) linear solution over R, for some k ≥ 1.

We say that a network is solvable if it is solvable over some alphabet. A solvable network is able to

communicate at rate k/n = 1, and an asymptotically solvable network is able to communicate at a rate

arbitrarily close to 1. Since scalar and vector linear codes over rings are special cases of linear codes over

modules, a network that is vector (or scalar) linearly solvable over some ring is also linearly solvable over

some module. Conversely, a network with no linear solution over any module also has no vector linear

solutions over any ring (or field). This paper focuses on solvable networks that are not linear solvable over

any module.

The capacity 2 of a network is:

sup{k/n : ∃ a (k,n) solution over some A }.

The linear capacity of a network with respect to a ring R is:

sup{k/n : ∃ a (k,n) linear solution over R}.

It was shown in [4] that the capacity of a network is independent of alphabet size, and it was noted that

linear capacity can depend on alphabet size.

5.1.2 Previous Work

We now summarize some of the existing results regarding the solvability and linear solvability of

multicast networks (in which each receiver demands all of the messages) and general networks (in which

each receiver demands a subset of the messages). Network codes were first presented by Ahlswede, Ning,

Li, and Yeung [1] as a method of improving the throughput of a network; they presented the butterfly

network, a variant of which is scalar linearly solvable over every field but not solvable via routing. Li,

Yeung, and Ning [20] showed that if a multicast network is solvable, then it is scalar linearly solvable over

every sufficiently large finite-field alphabet. In addition, Riis [25] showed that every solvable multicast

2In the literature, this is sometimes referred to as the “coding capacity” (as opposed to the routing capacity). For

brevity, we will simply use the term “capacity,” as we do not discuss routing capacity in this paper.
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network has a binary vector linear solution in some dimension. Feder, Ron, and Tavory [15] and Rasala

Lehman and Lehman [24] both independently showed that some solvable multicast networks asymptotically

require finite-field alphabets to be at least as large as twice the square root of the number of receiver nodes

in order to have a scalar linear solution over the field.

Non-linear coding in multicast networks can offer advantages such as reducing the alphabet size

required for solvability; Rasala Lehman and Lehman [24] presented a network which is solvable over a

ternary alphabet but has no scalar linear solution over any field alphabet whose size is less than five, and

Riis [25] and also [9] demonstrated general and multicast networks, respectively, which have scalar non-

linear binary solutions but no scalar linear binary solutions. A multicast network was presented in [9] which

is solvable precisely over those alphabets whose size is neither 2 nor 6, and Sun, Yin, Li, and Long [33]

presented families of multicast networks which are scalar linearly solvable over certain finite-field alphabets

but not over all larger finite-field alphabets.

Unlike multicast networks, general networks that are solvable do not necessarily have vector linear

solutions over fields, as demonstrated in [7]. Médard, Effros, Ho, and Karger [21] showed that there can

exist a network which is vector linearly solvable over some field but is not scalar linearly solvable over any

field. Das and Rai [6] showed more generally that for each integer m ≥ 2 the following holds: there exists a

network with k-dimensional vector linear solutions over an arbitrary field if and only if k is a multiple of m.

Sun, Yang, Long, Yin, and Li [31] compared alphabet sizes using scalar and vector linear codes over fields,

where the vector alphabet size is |F|k. They showed that in some cases, linear solutions may be obtained

with vector alphabet sizes that are smaller than any possible scalar solution alphabet size. They also showed

that in other cases, the opposite result may be true. Similarly, Etzion and Wachter-Zeh [14] showed that

vector linear coding can significantly reduce the required vector alphabet size compared to scalar coding.

Shenvi and Dey [29] showed that for networks with two source-receiver pairs the following are

equivalent: the network is solvable, the network is vector linearly solvable over some field, the network

satisfies a simple cut condition. Cai and Han [3] showed that for a particular class of networks with three

source-receiver pairs: the solvability can be determined in polynomial time, being solvable is equivalent

to being scalar linearly solvable over some field, and finite-field alphabets of size 2 or 3 are sufficient to

construct scalar linear solutions. In [11], the Fano and non-Fano networks were shown to be solvable

precisely over power-of-two and odd alphabet sizes, respectively. For each integer m ≥ 2, Rasala Lehman

and Lehman [24] demonstrated a class of networks which are not solvable over any alphabet whose size

is less than m and are solvable over all alphabets whose size is a prime power greater than or equal to m.

For each integer m ≥ 3, Yuan and Kan [34] demonstrated a class of networks which are not solvable over
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any alphabet whose size is less than m and are solvable over all alphabets whose size is not divisible by

2,3, . . . ,m−1.

Koetter and Médard [16] showed for every finite field F and every network, the network is scalar

linearly solvable over F if and only if a corresponding system of polynomials has a common root in F, and

in [8] it was shown that for every finite field F and any system of polynomials, there exists a corresponding

network which is scalar linearly solvable over F if and only if the system of polynomials has a common root

in F. Subramanian and Thangaraj [30] showed an alternate method of deriving a system of polynomials

which corresponds to the scalar linear solvability of a network, such that the degree of each polynomial

equation is at most 2. Presently, there are no known algorithms for determining whether a general network

is solvable.

While networks that are linearly solvable over some module are solvable, the converse need not

be true. This paper demonstrates infinitely many such counterexamples. There remain numerous open

questions regarding the existence of solvable networks which are not linearly solvable over any module.

Are many/most solvable networks not linearly solvable? Can such networks be efficiently characterized?

Can such networks be algorithmically recognized? We leave these questions for future research.

5.1.3 Our Contributions

In this paper, we present an infinite class of solvable networks which are not linearly solvable over

any module alphabet. We denote each such network as N4, and we construct N4 from several intermediate

networks denoted by N1,N2, and N3, all of which are constructed from a fundamental network building

block B. Specifically, for each positive composite number m, we describe how to construct a network

N4 which has a non-linear solution over an alphabet of size m yet has no linear solution over any module

alphabet, including vector linear codes over rings and fields. In addition, such a network is not solvable over

any alphabet whose size is less than m. The diabolical network in [7] was shown to be non-linearly solvable

over an alphabet of size 4. The network in [7] was designed using matroid theory. Other connections

between networks and matroids were investigated, for example, by [10, 13, 18, 22, 32, 35].

The inspiration for the construction of networks N1, N2, and N3 in order to construct N4 relates to

specific solvability properties of each of these component networks. The N1 networks are a generalization

of the non-Fano network, the N2 networks are a generalization of a modified Fano network that also have

non-linear solutions in some cases, and the N3 networks are a generalization of a modified non-Fano net-

work that also have non-linear solutions in some cases. We construct all of these component networks from

the same network building block B. As a result, we can more easily characterize the solvability and linear
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solvability of the networks, since the solvability of this network building block was characterized in [34].

By combining the networks N1,N2, and N3 with certain parameters, we construct non-linearly solvable

networks.

We will now summarize the main results of this paper, which all appear in Section 5.6. The network

N4 is parameterized by an arbitrary integer m ≥ 2. Theorem 5.6.4 shows that N4 is solvable over an

alphabet of size m. Theorem 5.6.5 shows, however, that N4 is never solvable over alphabets smaller than

m. Theorem 5.6.8 shows that when m is prime, N4 has a scalar linear solution over a field of size m. In fact,

for all non-prime integers m, the network N4 has no linear solution, as demonstrated by Theorems 5.6.9

and 5.6.10. In particular, Theorem 5.6.9 shows that when m is composite, no linear solution for N4 exists

over any module, and Corollary 5.6.11 shows that in such case, N4 is not even asymptotically linearly

solvable over any finite-field alphabet. In the special case of m = 4, the demonstrated network N4 exhibits

properties similar to the network presented in [7]. We also demonstrate (in Corollary 5.6.6) that if m is a

non-power-of-prime composite (e.g. 6), then N4 is not solvable over any prime-power size alphabets.

The diabolical network was shown in [7] to have capacity equal to one, whereas its linear capacity

is bounded away from one for any finite-field alphabet. Analogously, we show in Theorem 5.6.10 that for

all m, the capacity of N4 equals one, whereas for all composite m, its linear capacity over any finite-field

alphabet is bounded away from one. Related capacity results are given for the constituent networks N0 (in

Lemma 5.2.4), N1 (in Lemma 5.3.4), N2 (in Lemma 5.4.7), and N3 (in Lemma 5.5.8). We do not see a

straightforward method to determine the linear capacity or asymptotic linear solvability over more general

ring alphabets, as many of the linear algebra results used in this analysis do not extend to matrices over

general rings.

The rest of the paper is organized as follows. Table 5.1 summarizes the networks created and the

results in this paper. Section 5.1.4 provides mathematical background and definitions. Sections 5.2-5.5

present the building block networks which are used to construct the main class of networks. Section 5.6

details the properties and construction of the main class of networks. For each network family, we will

discuss the solvability properties, the linear solvability properties, and the capacity. The Appendix contains

the proofs of three of the lemmas in this paper. All other proofs are given in the main body of the paper.

Section 5.7 poses some open questions regarding the solvability and capacity of general networks.
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Network N1(m) Section 5.3

· Consists of a block B(m) together with source nodes and an additional receiver. Figure 5.4

· 4m+ 7 nodes. Remark 5.3.1

· If solvable over A , then gcd(|A |,m) = 1. Lemma 5.3.2

· Linearly solvable over standard R-module G iff gcd(char(R),m) = 1. Lemma 5.3.3

Network N2(m,w) Section 5.4

· Consists of w blocks B(m+ 1) together with source nodes and an additional receiver. Figure 5.5

· 4mw+ 9w+ 2 nodes. Remark 5.4.1

· If w ≥ 2, then non-linearly solvable over an alphabet of size mw. Lemma 5.4.4

· If solvable over A , then gcd(|A |,m) 6= 1. Lemma 5.4.5

· Linearly solvable over standard R-module G iff char(R)
∣
∣ m. Lemma 5.4.6

Network N3(m1,m2) Section 5.5

· Consists of blocks B(m1) and B(m2) together with source nodes and an additional receiver. Figure 5.6

· 4m1 + 4m2+ 12 nodes. Remark 5.5.1

· For each s, t ≥ 1 relatively prime to m1, if m2 = smα
1 for some α ≥ 1, Corollary 5.5.7

then non-linearly solvable over an alphabet of size tmα+1
1 .

· If solvable over A , then gcd(|A |,m1) = 1 or |A | ffl m2. Lemma 5.5.5

· Linearly solvable over standard R-module G iff gcd(char(R),m1,m2) = 1. Lemma 5.5.6

Network N4(m) Section 5.6

· Consists of a disjoint union of various networks N1,N2, and N3. Equation (5.54)

· Solvable over an alphabet of size m. Theorem 5.6.4

· If |A |< m, then not solvable over A . Theorem 5.6.5

· If m is not a prime power, then not solvable over any prime-power-size A . Corollary 5.6.6

· If m is prime, then scalar linearly solvable over GF(m). Theorem 5.6.8

· If m is composite, then: (1) not linearly solvable over any module. Theorem 5.6.9

(2) not asymptotically linearly solvable over any finite field. Corollary 5.6.11

· Number of nodes is O

(

m
logm

loglogm

)

and Ω(m). Theorem 5.6.12

Figure 5.1: Summary of the networks constructed in this chapter, where m,m1,m2, and w are integers such

that m,m1,m2 ≥ 2 and w ≥ 1.
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5.1.4 Preliminaries

The following definitions regarding linear network codes over modules are from [7] and [12].

Definition 5.1.1. Let (R,+,∗) be a ring with additive identity 0R. An R-module (specifically a left

R-module) is an Abelian group (G,⊕) with identity 0G and an action · : R×G → G such that for all

r,s ∈ R and all g,h ∈ G the following hold:

r · (g⊕h) = (r ·g)⊕ (r ·h)

(r+ s) ·g = (r ·g)⊕ (s ·g)

(r ∗ s) ·g = r · (s ·g).

The ring multiplication symbol ∗ will generally be omitted for brevity. If the ring R has a multiplicative

identity 1R, then we also require 1R ·g = g for all g ∈ G. For brevity, we say that G is an R-module. ⊖

will denote adding the inverse of an element (subtraction) within the group.

For any finite ring R with multiplicative identity, the characteristic of R is denoted char(R) and is

the smallest positive integer m such that 1R added to itself m times equals 0R. The characteristic of a finite

field is always a prime number. The following definition describes a class of modules which we will use to

discuss linear solvability in this paper.

Definition 5.1.2. Let G be an R-module. We will say that G is a standard R-module if

1. R acts faithfully on G; that is if r,s ∈ R are such that r ·g = s ·g for all g ∈ G, then r = s.

2. R has a multiplicative identity 1R.

3. R is finite.

4. If r ∈ R has a multiplicative left (respectively, right) inverse, then this element is a two-sided

inverse, which will be denoted r−1.

A finite commutative ring R, with a multiplicative identity, acting on itself is a standard R-module.

For each positive integer k, the set Mk(R) of k×k matrices over R with matrix addition and multiplication is

a ring and Rk is a standard Mk(R)-module. Since fields are a special case of commutative rings, scalar and

vector linear codes over fields are also special cases of linear codes over standard modules.
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Lemma 5.1.3 was proved in a slightly different form in the proof of Theorem III.4 in [7].

Lemma 5.1.3. If a network is not linearly solvable over any standard module, then it is not linearly solvable

over any module.

We say that a positive integer m is invertible in R if there exists m−1 ∈ R such that m−1 (m1R) = 1R,

where (m1R) denotes 1R added to itself m times. Specifically,

m−1 =



1R + · · ·+1R
︸ ︷︷ ︸

m adds





−1

.

Lemma 5.1.4 is relatively straightforward to show, and thus its proof is omitted. This lemma dis-

cusses properties of multiplicative inverses in rings and will be used in the proofs of Lemmas 5.3.3 and

5.5.6 to more easily characterize the classes of modules over which N1 and N3 are linearly solvable.

Lemma 5.1.4. For each finite ring R with a multiplicative identity and each positive integer m, the integer

m is invertible in R if and only if char(R) and m are relatively prime.

The following definition was called Property P′ by Yuan and Kan [34]. They used this property to

characterize the solvability of classes of networks similar to N0 and N1, and we will use it throughout this

paper.

Definition 5.1.5. Let m ≥ 2. A (1,1) code for a network N over an alphabet A , containing messages

x0,x1, . . . ,xm and edge symbols e0,e1, . . . ,em, e, is said to have Property P(m) if there exists a binary

operation ⊕ : A ×A → A and permutations π0,π1, . . . ,πm and σ0,σ1, . . . ,σm of A , such that (A ,⊕)

is an Abelian group and the edge symbols can be written as

e =
m⊕

j=0

π j(x j) and ei = σi







m⊕

j=0
j 6=i

π j(x j)







(i = 0,1, . . . ,m)

5.2 Network N0(m)

For each m ≥ 2, the network building block B(m) is defined in Figure 5.2 and is used to build

network N0(m), which is defined in Figure 5.3. For each i, the node vi within B(m) has a single incoming

edge from node ui, so without loss of generality, we may assume both outgoing edges of vi carry the
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Figure 5.2: The network building block B(m) has message vector inputs y0,y1, . . . ,ym (from unspecified

source nodes) and m+ 1 output edges. The node u receives each of the inputs and has a single outgoing

edge to the node v, which carries the edge symbol e. For each i, the node ui receives each of the inputs

except yi and has a single outgoing edge to the node vi, which carries the edge symbol ei. The receiver node

Ri has an incoming edge from vi and an incoming edge from v and demands the ith message vector yi. The

ith output edge of B(m) is an outgoing edge of node vi.

symbol ei. Similarly, we may assume each of the outgoing edges of the node v carries the symbol e.

Lemma 5.2.2 demonstrates that for each m ≥ 2, the (1,1) solutions of network N0(m) are precisely those

codes which satisfy Property P(m), defined in Definition 5.1.5. In particular, the solution alphabets have to

be permutations of Abelian groups.

Remark 5.2.1. The network N0(m) has m + 1 source nodes, 2(m + 2) intermediate nodes, and m + 1

receiver nodes, so the total number of nodes in N0(m) is 4m+6.

Lemma 5.2.2 characterizes the solvability of N0(m) and will be used in the proofs of the solvability

conditions of N1,N2, and N3. This lemma was proved in a slightly different form in [34, Proposition 3.2].

Lemma 5.2.2. Let m ≥ 2. A (1,1) code over an alphabet A is a solution for network N0(m) if and only if

the code satisfies Property P(m).

The following result regarding the linear solvability of N0(m) will be used in later proofs.
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e0 e1 em

x0 x1 xm

Figure 5.3: Network N0(m) consists of a block B(m) together with source nodes S0,S1, . . . ,Sm, which

generate message vectors x0,x1, . . . ,xm, respectively. The output edges of B(m) are unused.

Lemma 5.2.3. Let m ≥ 2 and let G be a standard R-module. Suppose a linear solution for network N0(m)

over G has edge symbols

e =
m⊕

j=0

(c j · x j) and ei =
m⊕

j=0
j 6=i

(ci, j · x j) (i = 0,1, . . . ,m)

and decoding functions

Ri : xi = (di,e · e)⊕ (di · ei) (i = 0,1, . . . ,m)

where ci, j,c j,di,e,di ∈ R. Then each ci, j,c j,di,e, and di is invertible in R, and

ci, j =−d−1
i di,e c j (i, j = 0,1, . . . ,m and j 6= i).

Proof. Equating message components at the receiver Ri and using the fact G is a standard R-module, yields

1R = di,e ci (i = 0,1, . . . ,m)

0R = di,e c j +di ci, j (i, j = 0,1, . . . ,m and j 6= i)

which implies the following elements of R are invertible:

di,e and ci (i = 0,1, . . . ,m)

di and ci, j (i, j = 0,1, . . . ,m and j 6= i).

The result then follows by solving for ci, j . �

Lemma 5.2.4 characterizes the capacity and linear capacity of N0, and this lemma will be used to

upper bound the capacities of N1, N2, and N3 in the proofs of Lemmas 5.3.4, 5.4.7, and 5.5.8, respectively.
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Lemma 5.2.4. The network N0(m) has capacity and linear capacity, for any finite-field, equal to 1.

Proof. Let G be a standard R-module. The network N0(m) has the following linear solution over G:

e =
m⊕

j=0

x j and ei =
m⊕

j=0
j 6=i

x j (i = 0,1, . . . ,m)

and decoding at each receiver as follows:

Ri : e⊖ ei = xi (i = 0,1, . . . ,m).

A scalar linear solution over a finite-field alphabet is a special case of a linear solution over a

standard module. Therefore N0(m) is scalar linearly solvable over any finite-field alphabet, so the linear

capacity of N0(m) for any finite-field alphabet is at least 1. The only path for message vector x0 to reach

the receiver R0 is through the edge connecting nodes u and v, so its capacity is at most 1. Thus, both the

capacity of N0(m) and its linear capacity for any finite-field alphabet are equal to 1. �

5.3 Network N1(m)

For each m ≥ 2, network N1(m) is defined in Figure 5.4. The special case m = 2 corresponds to the

non-Fano network from [10, 11], with a relabeling of messages and nodes. Lemmas 5.3.2, 5.3.3, and 5.3.4,

respectively, demonstrate that network N1(m) is

1. solvable over A only if |A | is relatively prime to m,

2. linearly solvable over standard R-module G if and only if char(R) is relatively prime to m,

3. asymptotically linearly solvable over finite field F if and only if char(F) does not divide m.

Remark 5.3.1. Network N1(m) is a network N0(m) with one additional receiver node, so the total number

of nodes in N1(m) is 4m+7.

The following lemma also follows from [34, Proposition 4.1] and characterizes a condition on the

alphabet size necessary for the solvability of N1(m).

Lemma 5.3.2. For each m≥ 2, if network N1(m) is solvable over alphabet A , then m and |A | are relatively

prime.

Proof. Assume N1(m) is solvable over A . Network N1(m) consists of a network N0(m) with the addi-

tional receiver Rx, so by Lemma 5.2.2, the edge functions within B(m) must satisfy Property P(m). Thus,
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Figure 5.4: Network N1(m) consists of a block B(m) together with source nodes S0,S1, . . . ,Sm and an

additional receiver Rx. For each i, the source node Si generates the message vector xi and is the ith input to

B(m). The additional receiver Rx receives all of the output edges of B(m) and demands the message vector

x0.

there exists an Abelian group (A ,⊕) and permutations π0,π1, . . . ,πm and σ0,σ1, . . . ,σm of A , such that the

edges carry the symbols:

ei = σi







m⊕

j=0
j 6=i

π j(x j)







(i = 0,1, . . . ,m) (5.2)

e =
m⊕

j=0

π j(x j).

Now suppose to the contrary that m and |A | share a prime factor p. By Cauchy’s Theorem of Finite

Groups [12, p. 93], there exists a nonzero element a in the group A whose order is p. Since p
∣
∣ m, we have

a⊕·· ·⊕a
︸ ︷︷ ︸

m adds

= 0. Define two collections of messages as follows:

x j = π−1
j (0) and x̂ j = π−1

j (a) ( j = 0,1, . . . ,m)

Since a 6= 0 and each π j is bijective, it follows that x j 6= x̂ j for all j.

By Property P(m), for each i = 0,1, . . . ,m, we have

ei = σi



0⊕·· ·⊕0
︸ ︷︷ ︸

m adds



= σi(0) [from (5.2)]
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for the messages x0,x1 . . . ,xm, and

ei = σi



a⊕·· ·⊕a
︸ ︷︷ ︸

m adds



= σi(0) [from (5.2)]

for the messages x̂0, x̂1 . . . , x̂m. For both collections of messages, the edge symbols e0,e1, . . . ,em are the

same, and therefore the decoded value x0 at Rx must be the same. However, this contradicts the fact that

x0 6= x̂0. �

Lemma 5.3.3. Let m ≥ 2, and let G be a standard R-module. Then network N1(m) is linearly solvable over

G if and only if char(R) is relatively prime to m.

Proof. By Lemma 5.1.4, m is invertible in R if and only if char(R) is relatively prime to m, so it suffices to

show that for each m and each standard R-module G, network N1(m) is linearly solvable over G if and only

if m is invertible in R.

Assume network N1(m) is linearly solvable over the standard R-module G. The messages are

drawn from G, and there exist ci, j,c j ∈ R, such that the edge symbols can be written as:

ei =
m⊕

j=0
j 6=i

(ci, j · x j) (i = 0,1, . . . ,m) (5.3)

e =
m⊕

j=0

(c j · x j) (5.4)

and there exist di,e,di,dx,i ∈ R, such that each receiver can linearly recover its respective demands from its

inputs by:

Ri : xi = (di,e · e)⊕ (di · ei) (i = 0,1, . . . ,m) (5.5)

Rx : x0 =
m⊕

i=0

(dx,i · ei) . (5.6)

Since N1(m) contains N0(m), by Lemma 5.2.3 and (5.3) – (5.5), each ci and each di is invertible in R, and

ci, j =−d−1
i di,e c j (i, j = 0,1, . . . ,m and j 6= i). (5.7)

Equating message components at Rx yields:

1R =
m

∑
i=1

dx,i ci,0 [from (5.3), (5.6)]

=−
m

∑
i=1

dx,i d−1
i di,e c0 [from (5.7)] (5.8)
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and for each j = 1,2, . . . ,m,

0R =
m

∑
i=0
i6= j

dx,i ci, j [from (5.3), (5.6)]

=−






m

∑
i=0
i6= j

dx,i d−1
i di,e




 c j [from (5.7)] .

=
m

∑
i=0
i6= j

dx,i d−1
i di,e c0.

[

from right multiplying by −c−1
j c0

]

. (5.9)

By summing (5.9) over j = 1,2, . . . ,m and subtracting (5.8), we get

−1R =
m

∑
j=0

m

∑
i=0
i6= j

dx,i d−1
i di,e c0 [from (5.8), (5.9)]

= m
m

∑
i=0

dx,i d−1
i di,e c0.

Therefore, m is invertible in R.

To prove the converse, let G be a standard R-module such that m is invertible in R. Define a linear

code over G by:

ei =
m⊕

j=0
j 6=i

x j (i = 0,1, . . . ,m)

e =
m⊕

j=0

x j.

Receiver Ri can linearly recover xi from its received edge symbols e and ei by:

Ri : e⊖ ei = xi (i = 0,1, . . . ,m)

and receiver Rx can linearly recover x0 from its received edge symbols e0,e1, . . . ,em by:

Rx :

(

m−1 ·
m⊕

i=0

ei

)

⊖ e0 =







m−1 ·
m⊕

i=0

m⊕

j=0
j 6=i

x j







⊖
m⊕

j=1

x j =
m⊕

j=0

x j ⊖
m⊕

j=1

x j = x0.

Thus the code is a linear solution for N1(m). �
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As an example of the previous lemma, for each q ≥ 2 relatively prime to m, network N1(m) has a

scalar linear solution over the ring Zq, since Zq is a standard Zq-module and char(Zq) = q. It then follows

from Lemma 5.3.2 that network N1(m) is solvable over A if and only if |A | is relatively prime to m. As

another special case, the network N1(m) is vector linearly solvable over a field F if and only if char(F) ffl m.

The following lemma characterizes the capacity and the linear capacity over finite-field alphabets

of N1(m), and its proof is contained in the Appendix.

Lemma 5.3.4. For each m ≥ 2, network N1(m) has:

(a) capacity equal to 1,

(b) linear capacity equal to 1 for any finite-field alphabet whose characteristic does not divide m,

(c) linear capacity equal to

1−
1

2m+2

for any field alphabet whose characteristic divides m.

5.4 Network N2(m,w)

For each m ≥ 2 and w ≥ 1, network N2(m,w) is defined in Figure 5.5. We note that N2(m,1)

and N1(m+ 1) have similar structure, but in network N1(m+ 1) each of the output edges of B(m+ 1) is

connected to Rx, and in network N2(m,1) all but one of the output edges of B(m+1) are connected to Rz.

This disconnected edge causes the difference in solvability properties of the two networks. Lemmas 5.4.4,

5.4.5, 5.4.6, and 5.4.7 demonstrate that network N2(m,w) is:

1. non-linearly solvable over alphabet of size mw, if w ≥ 2,

2. solvable over A only if |A | is not relatively prime to m,

3. linearly solvable over standard R-module G if and only if char(R) divides m,

4. asymptotically linearly solvable over finite field F if and only if char(F) divides m.

Remark 5.4.1. For each m ≥ 2 and w ≥ 1, network N2(m,w) has: w(m+1)+1 source nodes, w(2m+6)

intermediate nodes, and w(m+2)+1 receiver nodes. So the total number of nodes in N2(m,w) is 4mw+

9w+2.

For each positive integer m, we will view the ring Zm as the set {0,1, . . . ,m−1} together with addi-

tion and multiplication modulo m. This ring will be used to construct non-linear solutions in Lemmas 5.4.2,

5.4.4, 5.5.2, and 5.5.4.
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Figure 5.5: The network N2(m,w) is constructed from w blocks of B(m+ 1) together with w(m+ 1)+ 1

source nodes and an additional receiver Rz. The lth block is denoted B(l)(m+ 1), and the nodes and edge

symbols within B(l)(m+1) are denoted with a superscript l. For each l = 1,2, . . . ,w, the block B(l)(m+1)

has inputs from source nodes S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
m+1, which generate message vectors x

(l)
1 ,x

(l)
2 , . . . ,x

(l)
m+1. The

shared message vector z is generated by source node Sz and is the 0th input to each B(l)(m+1). Each of the

output edges of B(l)(m+1), except the 0th, is an input to the shared receiver Rz, which demands the shared

message vector z.

For each m,w ≥ 2 and each a ∈ Zmw, a receiver cannot uniquely determine the symbol a in Zmw

from the symbol wa ∈ Zmw since the integer w is not invertible in Zmw. For example, if a receiver receives

wa = 0 in Zmw, then the symbol a could be any element in the set {0,m,2m, . . . ,(w−1)m}. The following

lemma describes a technique for recovering the value of a via a decoding function ψ from the w-tuple

wπ1(a),wπ2(a), . . . ,wπw(a), where each πi is a particular permutation of Zmw. This technique will then be

used to show that network N2(m,w) is solvable over an alphabet of size mw.

Lemma 5.4.2. For each m ≥ 2 and w ≥ 1, there exists a mapping ψ : Zw
mw → Zmw and permutations

π1,π2, . . . ,πw of Zmw such that for all a ∈ Zmw, we have ψ (wπ1(a),wπ2(a), . . . , wπw(a)) = a.

Proof. If w = 1, let ψ and π1 be identity permutations. For each a ∈ Zmw we have ψ(wπ1(a)) = a.

Assume w > 1. By the Euclidean Division Theorem, for each integer y, there exist unique integers

qy,ry such that y = qym+ ry and 0 ≤ ry < m. We have wy = w(qym+ ry), which implies

wy = wry (mod mw) . (5.10)
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For all integers x,y we have

wx = wy (mod mw)

⇐⇒ wrx = wry (mod mw) [from (5.10)]

⇐⇒ rx = ry [from 0 ≤ rx,ry < m] . (5.11)

For each a = qam+ ra ∈ Zmw such that 0 ≤ ra < m, let r̂a be the unique integer in {0,1, . . . ,m−1} such that

r̂a = ra +1 (mod m) , and for each l = 1,2, . . . ,w−1, define permutations of Zmw as follows:

πl(a) =







qam+ r̂a if qa = l

qam+ ra otherwise
(5.12)

πw(a) = a = qam+ ra. (5.13)

Note that for all l = 1,2, . . . ,w−1, the (non-linear) permutation πl modifies the remainder ra if qa = l and

otherwise acts as the identity permutation. Also, πw is the identity permutation.

For each a ∈ Zmw, we will now show the mapping given by a 7−→ (wπ1(a), . . . ,wπw(a)) is injective.

For each a,b ∈ Zmw, suppose

wπl(a) = wπl(b) (mod mw) (l = 1,2, . . . ,w), (5.14)

where a = qam+ ra and b = qbm+ rb, with 0 ≤ ra,rb < m and 0 ≤ qa,qb < w. Then

wπw(a) = wπw(b) (mod mw) [from (5.14)] (5.15)

wra = wrb (mod mw) [from (5.10), (5.13), (5.15)]

∴ ra = rb [from (5.11)] . (5.16)

Let r̂b be the unique integer in {0,1, . . . ,m− 1} such that r̂b = rb + 1 (mod m) . If qa 6= qb, then without

loss of generality, qb 6= 0, so

wπqb
(a) = wπqb

(b) (mod mw) [from (5.14)] (5.17)

∴ wra = wr̂b (mod mw) [from (5.10), (5.12), (5.17)]

∴ ra = ra +1 (mod m) [from (5.11), (5.16)] ,

which is a contradiction, so we must have qa = qb. We have shown wπl(a) = wπl(b) (mod mw) for all l

if and only if a = b. Thus a can be uniquely determined from the w-tuple (wπ1(a),wπ2(a), . . . , wπw(a)),

which implies the existence of the claimed mapping. �
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Example 5.4.3. The following table illustrates the permutations of Z12 described in Lemma 5.4.2 for the

case m = 4 and w = 3.

a = π3(a) π2(a) π1(a) 3π3(a) 3π2(a) 3π1(a)

0 0 0 0 0 0
1 1 1 3 3 3
2 2 2 6 6 6
3 3 3 9 9 9

4 4 5 0 0 3
5 5 6 3 3 6
6 6 7 6 6 9
7 7 4 9 9 0

8 9 8 0 3 0
9 10 9 3 6 3

10 11 10 6 9 6
11 8 11 9 0 9

For each a ∈Z12, the triple (3π3(a), 3π2(a), 3π1(a)) ∈Z3
12 is distinct, so a can be uniquely determined from

3π3(a), 3π2(a), and 3π1(a)).

The proof of Lemma 5.4.4 describes a (possibly non-linear) solution for N2(m,w).

Lemma 5.4.4. For each m ≥ 2 and w ≥ 1, network N2(m,w) is solvable over an alphabet of size mw.

Proof. Let ψ and π1,π2, . . . ,πw be the mapping and permutations, respectively, from Lemma 5.4.2. Define

a (1,1) code for network N2(m,w) over the ring Zmw for each l = 1,2, . . . ,w by:

e
(l)
0 =

m+1

∑
j=1

x
(l)
j

e
(l)
i = πl(z)+

m+1

∑
j=1
j 6=i

x
(l)
j (i = 1,2, . . . ,m+1)

e(l) = πl(z)+
m+1

∑
j=1

x
(l)
j .

For each l = 1,2, . . . ,w, the receivers within each B(l)(m+1) block can recover their respective demands as

follows:

R
(l)
0 : π−1

l

(

e(l)− e
(l)
0

)

= z and R
(l)
i : e(l)− e

(l)
i = x

(l)
i (i = 1,2, . . . ,m+1).

For each l = 1,2, . . . ,w, we have

w
m+1

∑
i=1

e
(l)
i = w(m+1)πl(z)+mw

m+1

∑
j=1

x
(l)
j

= wπl(z) [from mw = 0 mod mw] . (5.18)
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Receiver Rz can recover z from its inputs as follows:

Rz : ψ

(

w
m+1

∑
i=1

e
(1)
i , w

m+1

∑
i=1

e
(2)
i , . . . , w

m+1

∑
i=1

e
(w)
i

)

= ψ (wπ1(z), wπ2(z), . . . , wπw(z))

= z [from (5.18) and Lemma 5.4.2] .

Thus the code described above is, in fact, a solution for the network N2(m,w). �

In the code given in the proof of Lemma 5.4.4, if w = 1, then π1 and ψ are identity permutations, so

the code is linear. However if w > 1, then π1,π2, . . . ,πw−1 are generally non-linear, so the code is non-linear.

Lemma 5.4.5. For each m ≥ 2 and w ≥ 1, if network N2(m,w) is solvable over alphabet A , then m and

|A | are not relatively prime.

Proof. Assume N2(m,w) is solvable over A . For each l = 1,2, . . . ,w, the block B(l)(m+1) together with

source nodes Sz,S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
m+1 forms a copy of N0(m + 1), so by Lemma 5.2.2, the edge functions

within block B(l)(m+ 1) must satisfy Property P(m+ 1). Thus, for each l, there exists an Abelian group

(A ,⊕l), with identity 0l ∈ A , and permutations π
(l)
0 ,π

(l)
1 , . . . ,π

(l)
m+1 and σ

(l)
0 ,σ

(l)
1 , . . . ,σ

(l)
m+1 of A , such that

for each i = 1, . . . ,m+1, the edges carry the symbols:

e
(l)
0 = σ

(l)
0

(
m+1⊕

j=1

π
(l)
j

(

x
(l)
j

)
)

e
(l)
i = σ

(l)
i







π
(l)
0 (z)⊕l

m+1⊕

j=1
j 6=i

π
(l)
j

(

x
(l)
j

)







(5.19)

e(l) = π
(l)
0 (z)⊕l

m+1⊕

j=1

π
(l)
j

(

x
(l)
j

)

,

where
⊕

in each of the previous three equations denotes ⊕l.

Now suppose to the contrary that m and |A | are relatively prime. Then by Cauchy’s Theorem, for

each l = 1,2, . . . ,w, the group (A ,⊕l) contains no non-identity elements whose order divides m. That is,

for each a ∈ A , we have a⊕l · · ·⊕l a
︸ ︷︷ ︸

m adds

= 0l if and only if a = 0l . Let a,b ∈ A . Then we have a⊕l · · ·⊕l a
︸ ︷︷ ︸

m adds

=

b⊕l · · ·⊕l b
︸ ︷︷ ︸

m adds

if and only if:

(a⊖l b)⊕l · · ·⊕l (a⊖l b)
︸ ︷︷ ︸

m adds

= 0l [from (A ,⊕l) Abelian]

⇐⇒ a = b [from gcd(m, |A |) = 1] .
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Thus, for each l the mapping a 7−→ a⊕l · · ·⊕l a
︸ ︷︷ ︸

m adds

is injective on the finite set A and therefore is bijective,

and its inverse φl : A → A satisfies

φl(a)⊕l · · ·⊕l φl(a)
︸ ︷︷ ︸

m adds

= a (l = 1,2, . . . ,w). (5.20)

For each a ∈ A such that a 6= 01 and each l = 2, . . . ,w, let

fl(a) = π
(l)
0

(

π
(1)−1

0 (01)
)

⊖l π
(l)
0

(

π
(1)−1

0 (a)
)

. (5.21)

Define two collections of messages as follows:






x
(1)
j = π

(1)−1

j (φ1(a)))

x
(l)
j = π

(l)−1

j (0l)

z = π
(1)−1

0 (01)

and







x̂
(1)
j = π

(1)−1

j (01)

x̂
(l)
j = π

(l)−1

j (φl( fl(a)))

ẑ = π
(1)−1

0 (a),

where l = 2, . . . ,w and j = 1,2, . . . ,m+1. Since a 6= 01 and π
(1)
0 is bijective, it follows that z 6= ẑ.

By Property P(m+1) and (5.19), for each i = 1,2, . . . ,m+1 and each l = 2, . . . ,w, we have:

e
(1)
i = σ

(1)
i



φ1(a)⊕1 · · ·⊕1 φ1(a)
︸ ︷︷ ︸

m adds



= σ
(1)
i (a) [from (5.20)]

e
(l)
i = σ

(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

for the messages x
(l)
j ,z, and

e
(1)
i = σ

(1)
i (a)

e
(l)
i = σ

(l)
i



π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l φl( fl(a))⊕l · · ·⊕l φl( fl(a))
︸ ︷︷ ︸

m adds





= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l fl(a)
)

[from (5.20)]

= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

[from (5.21)]

for the messages x̂
(l)
j , ẑ. For both collections of messages, the edge symbols e

(l)
i are the same for all l =

1,2, . . . ,w and i = 1,2, . . . ,m+1, and therefore the decoded value z at Rz must be the same. However, this

contradicts the fact that z 6= ẑ. �

Lemmas 5.4.4 and 5.4.5 together provide a partial characterization of the alphabet sizes over which

network N2 is solvable. However, these conditions are sufficient for showing our main results. Lemma 5.4.6

characterizes a necessary and sufficient condition for the linear solvability of network N2(m,w) over stan-

dard modules.
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Lemma 5.4.6. Let m ≥ 2 and w ≥ 1, and let G be a standard R-module. Then network N2(m,w) is linearly

solvable over G if and only if char(R) divides m.

Proof. For any ring R with multiplicative identity 1R, the characteristic of R divides m if and only if m =

m1R = 0R, so it suffices to show that for each m,w and each standard R-module G, network N2(m,w) is

linearly solvable over G if and only if m = 0R.

Assume network N2(m,w) is linearly solvable over the standard R-module G. The messages are

drawn from G, and there exist c
(l)
i, j ,c

(l)
j ∈ R, such that for each l = 1,2, . . . ,w and each i = 1,2, . . . ,m+1, the

edge symbols can be written as:

e
(l)
0 =

m+1⊕

j=1

(

c
(l)
0, j · x

(l)
j

)

(5.22)

e
(l)
i =

(

c
(l)
i,0 · z

)

⊕
m+1⊕

j=1
j 6=i

(

c
(l)
i, j · x

(l)
j

)

(5.23)

e(l) =
(

c
(l)
0 · z

)

⊕
m+1⊕

j=1

(

c
(l)
j · x

(l)
j

)

(5.24)

and there exist d
(l)
i,e ,d

(l)
i ∈ R, such that each receiver within B(l)(m+ 1) can linearly recover its respective

demands from its received edge symbols by:

R
(l)
0 : z =

(

d
(l)
0,e · e

(l)
)

⊕
(

d
(l)
0 · e

(l)
0

)

(5.25)

R
(l)
i : x

(l)
i =

(

d
(l)
i,e · e

(l)
)

⊕
(

d
(l)
i · e

(l)
i

)

. (5.26)

Since Rz linearly recovers z from its inputs, there exists d
(l)
z,i ∈ R such that

Rz : z =
w⊕

l=1

m+1⊕

i=1

(

d
(l)
z,i · e

(l)
i

)

. (5.27)

For each l = 1,2, . . . ,w, the block B(l)(m+1) together with source nodes Sz,S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
m+1 forms

a copy of network N0(m+ 1), so by Lemma 5.2.3 and (5.22) – (5.26), each c
(l)
i and each d

(l)
i is invertible

in R, and for each distinct i, j ∈ {0,1, . . . ,m+1}, we have

c
(l)
i, j =−d

(l)
i

−1
d
(l)
i,e c

(l)
j . (5.28)

Equating message components at Rz yields:

1R =
w

∑
l=1

m+1

∑
i=1

d
(l)
z,i c

(l)
i,0 [from (5.23), (5.27)]

=−
w

∑
l=1

m+1

∑
i=1

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0 [from (5.28)] (5.29)
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and for each l = 1,2, . . . ,w and each j = 1,2, . . . ,m+1,

0R =
m+1

∑
i=1
i6= j

d
(l)
z,i c

(l)
i, j [from (5.23), (5.27)]

=−






m+1

∑
i=1
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e




 c

(l)
j [from (5.28)]

=
m+1

∑
i=1
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0

[

from right multiplying by −c
(l)
j

−1
c
(l)
0

]

(5.30)

and by summing (5.30) over j = 1,2, . . . ,m+1, we have

0R =
m+1

∑
j=1

m+1

∑
i=1
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0

= m
m+1

∑
i=1

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0 . (5.31)

By summing (5.31) over l = 1,2, . . . ,w, we have

0R = m
w

∑
i=1

m+1

∑
i=1

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0 [from (5.31)]

= m [from (5.29)] .

To prove the converse, let G be a standard R-module such that m = 0R. Define a linear code over G

such that for each l = 1,2, . . . ,w, we have

e
(l)
0 =

m+1⊕

j=1

x
(l)
j

e
(l)
i = z⊕

m+1⊕

j=1
j 6=i

x
(l)
j (i = 1,2, . . . ,m+1)

e(l) = z⊕
m+1⊕

j=1

x
(l)
j .

For each l = 1,2, . . . ,w, the receivers within each block B(l)(m+ 1) can linearly recover their re-

spective demands as follows:

R
(l)
0 : e(l)⊖ e

(l)
0 = z and R

(l)
i : e(l)⊖ e

(l)
i = x

(l)
i (i = 1,2, . . . ,m+1).

Since m = 0R in R, receiver Rz can linearly recover z as follows:

Rz :

m+1⊕

i=1

e
(1)
i = z⊕ (mz)⊕

(

m

m+1⊕

j=1

x
(1)
j

)

= z.

Thus the code is a linear solution for N2(m,w). �
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By Lemma 5.4.4, for every m,w ≥ 2, network N2(m,w) is solvable over the ring Zmw, but the

characteristic of Zmw is mw, which does not divide m, so by Lemma 5.4.6, the solution is necessarily non-

linear. The following lemma provides a partial characterization of the linear capacity of N2(m,w) over

finite-field alphabets.

Lemma 5.4.7. For each m ≥ 2 and w ≥ 1, network N2(m,w) has

(a) capacity equal to 1,

(b) linear capacity equal to 1 for any finite-field alphabet whose characteristic divides m,

(c) linear capacity upper bounded by 1− 1
2mw+2w+1

for any finite-field alphabet whose characteristic

does not divide m.

Improving these upper-bounds on the linear capacities and/or finding codes at these rates are left as

open problems. The problems appear to be non-trivial, and such improvements are unrelated to the main

results of this paper.

5.5 Network N3(m1,m2)

For each m1,m2 ≥ 2, network N3(m1,m2) is defined in Figure 5.6. We note that N2(m,2) and

N3(m+1,m+1) have similar structure, with the exception of the disconnected output edge of each B(m+1)

in N2(m,2). This disconnected edge causes the difference in solvability properties of the two networks.

Corollary 5.5.7 and Lemmas 5.5.5, 5.5.6, and 5.5.8 demonstrate that network N3(m1,m2) is:

1. non-linearly solvable over an alphabet of size tmα+1
1 , when m2 = smα

1 , where α ,s, t ≥ 1 and s and t are

relatively prime to m1,

2. solvable over alphabet A only if |A | is relatively prime to m1 or |A | does not divide m2,

3. linearly solvable over standard R-module G if and only if gcd(char(R),m1,m2) = 1,

4. asymptotically linearly solvable over finite field F if and only if char(F) is relatively prime to m1 or m2.

Remark 5.5.1. For each m1,m2 ≥ 2, the network N3(m1,m2) has m1+m2+1 source nodes, 2(m1+m2+4)

intermediate nodes, and m1 +m2 +3 receiver nodes, so the total number of nodes in N3(m1,m2) is 4m1 +

4m2 +12.

The following lemmas demonstrate that N3(m1,m2) is non-linearly solvable when m2 = smα
1 , where

α ≥ 1 and s is relatively prime to m1. Consider the ring alphabet Zmα+1
1

. For every a ∈ Zmα+1
1

, a receiver

cannot uniquely determine a symbol a from the symbols m1a and smα
1 a, since the integer m1 is not invertible

in Zmα+1
1

. For example, if a receiver receives m1a = smα
1 a = 0 ∈ Zmα+1

1
, then the symbol a could be any
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Figure 5.6: The network N3(m1,m2) is constructed from B(m1) and B(m2) blocks together with m1+m2+1

source nodes and an additional receiver Rz. The blocks are denoted B(1)(m1) and B(2)(m2) respectively, and

for each l = 1,2, the nodes and edge symbols in B(l)(ml) are denoted with a superscript l. Each B(l)(ml)

block has inputs from source nodes S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
ml

, which generate message vectors x
(l)
1 ,x

(l)
2 , . . . ,x

(l)
ml

. The

shared message vector z is generated by source node Sz and is the 0th input to B(l)(ml). The additional

receiver Rz receives all of the output edges of B(1)(m1) and B(2)(m2) and demands the shared message

vector z.

element in the set {0,mα
1 ,2mα

1 , . . . ,(m1−1)mα
1 }. The following lemma describes a technique for recovering

the value of a via a decoding function ψ from m1π1(a) and smα
1 π2(a), where π1 and π2 are particular

permutations of Zmα+1
1

. This technique will be used to show that, in some cases, network N3 has non-linear

solutions.

Lemma 5.5.2. Let m ≥ 2 and α ,s ≥ 1 be integers such that s is relatively prime to m. Then there exist

permutations π1 and π2 of Zmα+1 and a mapping ψ : Z2
mα+1 → Zmα+1 such that for all a ∈ Zmα+1 ,

ψ (mπ1(a), smα π2(a)) = a.

Proof. Define permutations π1,π2 of Zmα+1 as follows. For each a ∈ Zmα+1 , let ∑α
i=0 miai denote the base m

representation of a. We define

π1(a) = mαa0 +
α

∑
i=1

mi−1ai (5.32)

π2(a) = a =
α

∑
i=0

miai. (5.33)
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The (non-linear) permutation π1 performs a right-cyclic shift of the base-m digits of a, and π2 is the identity

permutation. For each a ∈ Zmα+1 , we will show that the mapping given by a 7−→ (mπ1(a), smα π2(a)) is

injective. For each a,b ∈ Zmα+1 , suppose

mπ1(a) = mπ1(b)
(
mod mα+1

)
(5.34)

smα π2(a) = smαπ2(b)
(
mod mα+1

)
(5.35)

where a =
α

∑
i=0

miai and b =
α

∑
i=0

mibi. Then we have

α

∑
i=1

miai =
α

∑
i=1

mibi

(
mod mα+1

)
[from (5.32), (5.34)] .

Therefore

ai = bi (i = 1,2, . . . ,α) [from 0 ≤ ai,bi < m]

smαa0 = smα b0

(
mod mα+1

)
[from (5.33), (5.35)]

∴ mαa0 = mα b0

(
mod mα+1

)
[from gcd(m,s) = 1]

∴ a0 = b0 [from 0 ≤ a0,b0 < m] .

Thus a = b. We have shown that a = b if and only if mπ1(a) = mπ1(b) and smαπ2(a) = smα π2(b). Thus a

can be uniquely determined from mπ1(a) and smαπ2(a). This implies the existence of the claimed mapping.

�

Example 5.5.3. The table below illustrates the permutations of Z8 described in Lemma 5.5.2 for the case

m = 2, s = 3, and α = 2.
a = π2(a) π1(a) 12π2(a) 2π1(a)

0 0 0 0
1 4 4 0
2 1 0 2
3 5 4 2
4 2 0 4
5 6 4 4
6 3 0 6
7 7 4 6

For each a ∈ Z8, the pair (2π1(a), 12π2(a)) ∈ Z2
8 is distinct. Hence a can uniquely be determined from

2π1(a) and 12π2(a).

Lemma 5.5.4. Let m1,m2 ≥ 2 and α ,s ≥ 1 be integers such that m2 = smα
1 and s is relatively prime to m1.

Then network N3(m1,m2) is solvable over an alphabet of size mα+1
1 .
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Proof. Let π1,π2 and ψ be the permutations and mapping, respectively, from Lemma 5.5.2. Define a (1,1)

code for the network N3(m1,m2) over the ring Zmα+1
1

, for each l = 1,2, by:

e
(l)
0 =

ml

∑
j=1

x
(l)
j

e
(l)
i = πl(z)+

ml

∑
j=1
j 6=i

x
(l)
j (i = 1,2, . . . ,ml)

e(l) = πl(z)+
ml

∑
j=1

x
(l)
j .

For each l = 1,2, the receivers within the block B(l)(ml) can recover their respective demands as follows:

R
(l)
0 : π−1

l

(

e(l)− e
(l)
0

)

= z and R
(l)
i : e(l)− e

(l)
i = x

(l)
i (i = 1,2, . . . ,ml).

For each l = 1,2, we have

−mle
(l)
0 +

ml

∑
i=0

e
(l)
i =−ml

ml

∑
j=1

x
(l)
j +mlπl(z)+ml

ml

∑
j=1

x
(l)
j = mlπl(z). (5.36)

The receiver Rz can recover z from its inputs as follows:

ψ

(

−m1e
(1)
0 +

m1

∑
i=0

e
(1)
i , −m2e

(2)
0 +

m2

∑
i=0

e
(2)
i

)

= ψ (m1π1(z), m2π2(z)) [from (5.36)]

= ψ (m1π1(z), smα
1 π2(z)) [from m2 = smα

1 ]

= z [from Lemma 5.5.2] .

Thus the code described above is, in fact, a solution for the network N3(m1,m2). �

Lemma 5.5.5. Let m1,m2 ≥ 2. If network N3(m1,m2) is solvable over alphabet A and |A | divides m2,

then m1 and |A | are relatively prime.

Proof. Assume N3(m1,m2) is solvable over the alphabet A . For each l = 1,2 the block B(l)(ml) together

with the source nodes Sz,S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
ml

forms a copy of N0(ml), so by Lemma 5.2.2, the edge functions

within B(1)(m1) and B(2)(m2) must satisfy Property P(m1) and Property P(m2), respectively. Thus there

exist Abelian groups (A ,⊕1) and (A ,⊕2) with identity elements 01 and 02 for the left-hand side and right-

hand side of the network, respectively, and permutations π
(l)
0 ,π

(l)
1 , . . . ,π

(l)
ml

and σ
(l)
0 ,σ

(l)
1 , . . . ,σ

(l)
ml

of A , such
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that for each l = 1,2 and each i = 1,2, . . . ,ml , the edges carry the symbols:

e
(l)
0 = σ

(l)
0

(
ml⊕

j=1

π
(l)
j

(

x
(l)
j

)
)

(5.37)

e
(l)
i = σ

(l)
i







π
(l)
0 (z)⊕l

ml⊕

j=1
j 6=i

π
(l)
j

(

x
(l)
j

)







(5.38)

e(l) = π
(l)
0 (z)⊕l

ml⊕

j=1

π
(l)
j

(

x
(l)
j

)

where
⊕

in each of the previous three equations denotes ⊕l.

Now suppose to the contrary that m1 and |A | are not relatively prime and |A | divides m2. Then,

since (A ,⊕2) is a finite group, for all a ∈ A , we have

a⊕2 · · ·⊕2 a
︸ ︷︷ ︸

m2 adds

= 02

[
from |A |

∣
∣ m2

]
. (5.39)

Since m1 and |A | are not relatively prime, m1 and |A | share a common factor p. Since p
∣
∣ |A |, by

Cauchy’s Theorem, there exists a ∈ A \{01} such that the order of a is p, and since p divides m1 we have

a⊕1 · · ·⊕1 a
︸ ︷︷ ︸

m1 adds

= 01. Define two collections of messages as follows:

x
(1)
j = π

(1)−1

j (01) and x̂
(1)
j = π

(1)−1

j (a) ( j = 1,2, . . . ,m1)

x
(2)
j = π

(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (01)
))

and x̂
(2)
j = π

(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (a)
))

( j = 1,2, . . . ,m2)

z = π
(1)−1

0 (01) and ẑ = π
(1)−1

0 (a).

Since a 6= 01 and π
(1)
0 is bijective, it follows that z 6= ẑ.

By Properties P(m1) and P(m2), (5.37), (5.38), and (5.39) we have

e
(1)
i = σ

(1)
i



01 ⊕1 · · ·⊕1 01
︸ ︷︷ ︸

m1 adds



= σ
(1)
i (01) (i = 0,1, . . . ,m1)

e
(2)
i = σ

(2)
i







π
(2)
0

(

π
(1)−1

0 (01)
)

⊕2 · · ·⊕2 π
(2)
0

(

π
(1)−1

0 (01)
)

︸ ︷︷ ︸

m2 adds






= σ

(2)
i (02) (i = 0,1, . . . ,m2)
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for the messages x
(l)
j ,z, and

e
(1)
i = σ

(1)
i



a⊕1 · · ·⊕1 a
︸ ︷︷ ︸

m1 adds



= σ
(1)
i (01) (i = 0,1, . . . ,m1)

e
(2)
i = σ

(2)
i







π
(2)
0

(

π
(1)−1

0 (a)
)

⊕2 · · ·⊕2 π
(2)
0

(

π
(1)−1

0 (a)
)

︸ ︷︷ ︸

m2 adds






= σ

(2)
i (02) (i = 0,1, . . . ,m2)

for the messages x̂
(l)
j , ẑ. For both collections of messages, the incoming edge symbols at Rz are the same,

and therefore the decoded value z at Rz must be the same. However, this contradicts the fact that z 6= ẑ. �

Lemmas 5.5.4 and 5.5.5 together provide a partial characterization of the alphabet sizes over which

network N3 is solvable. However, these conditions are sufficient for showing our main results. Lemma 5.5.6

characterizes a necessary and sufficient condition for the linear solvability of network N3(m1,m2) over

standard modules.

Lemma 5.5.6. Let m1,m2 ≥ 2, and let G be a standard R-module. Then network N3(m1,m2) is linearly

solvable over G if and only if gcd(char(R),m1,m2) = 1.

Proof. For any integers a,b,c ≥ 1, we have gcd(a,b,c) = gcd(gcd(a,b) ,c) , so by Lemma 5.1.4 the integer

gcd(m1,m2) is invertible in the ring R if and only if gcd(m1,m2,char(R)) = 1. Thus it suffices to show that

for each m1,m2 and each standard R-module G, network N3(m1,m2) is linearly solvable over G if and only

if gcd(m1,m2) is invertible in R.

Assume network N3(m1,m2) is linearly solvable over standard R-module G. The messages are

drawn from G, and there exist c
(l)
i, j ,c

(l)
j ∈ R, such that for each l = 1,2 and each i = 1,2, . . . ,ml , the edge

symbols can be written as:

e
(l)
0 =

ml⊕

j=1

(

c
(l)
0, j · x

(l)
j

)

(5.40)

e
(l)
i =

(

c
(l)
i,0 · z

)

⊕
ml⊕

j=1
j 6=i

(

c
(l)
i, j · x

(l)
j

)

(5.41)

e(l) =
(

c
(l)
0 · z

)

⊕
ml⊕

j=1

(

c
(l)
j · x

(l)
j

)

(5.42)

and there exist d
(l)
i,e ,d

(l)
i ∈ R, such that each receiver within B(l)(ml) can linearly recover its respective
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demand from its received edge symbols by:

R
(l)
0 : z =

(

d
(l)
0,e · e

(l)
)

⊕
(

d
(l)
0 · e

(l)
0

)

(5.43)

R
(l)
i : x

(l)
i =

(

d
(l)
i,e · e

(l)
)

⊕
(

d
(l)
i · e

(l)
i

)

. (5.44)

Since Rz linearly recovers z from its inputs, there exists d
(l)
z,i ∈ R such that

Rz : z =
2⊕

l=1

ml⊕

i=0

(

d
(l)
z,i · e

(l)
i

)

. (5.45)

For each l = 1,2 the block B(l)(ml) together with the source nodes Sz,S
(l)
1 ,S

(l)
2 , . . . ,S

(l)
ml

forms a copy

of N0(ml), so by Lemma 5.2.3 and (5.40) – (5.44), each c
(l)
i and each d

(l)
i is invertible in R, and for each

distinct i, j ∈ {0,1, . . . ,ml}, we have

c
(l)
i, j =−d

(l)
i

−1
d
(l)
i,e c

(l)
j . (5.46)

Equating message components at Rz yields:

1R =
2

∑
l=1

ml

∑
i=1

d
(l)
z,i c

(l)
i,0 [from (5.40), (5.41), (5.45)]

=−
2

∑
l=1

ml

∑
i=1

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0 [from (5.46)] (5.47)

and for each l = 1,2 and each j = 1,2, . . . ,ml , we have

0R =
ml

∑
i=0
i6= j

d
(l)
z,i c

(l)
i, j [from (5.40), (5.41), (5.45)]

=−






ml

∑
i=0
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e




 c

(l)
j [from (5.46)]

=
ml

∑
i=0
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0

[

from right multiplying by c
(l)
j

−1
c
(l)
0 .

]

(5.48)

Summing (5.48) over l = 1,2 and j = 1,2, . . . ,ml and subtracting (5.47), yields

−1R =
2

∑
l=1

ml

∑
j=0

ml

∑
i=0
i6= j

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0

=
2

∑
l=1

ml

ml

∑
i=0

d
(l)
z,i d

(l)
i

−1
d
(l)
i,e c

(l)
0 . (5.49)

Equation (5.49) implies there exist r1,r2 ∈ R such that

1R = m1 r1 +m2 r2. (5.50)
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Since gcd(m1,m2) can be factored out of both terms on the right-hand side of equation (5.50), the ring

element gcd(m1,m2) is invertible.

To prove the converse, let G be a standard R-module, such that gcd(m1,m2) is invertible in R. Define

a linear code over G for N3(m1,m2), for each l = 1,2, by:

e
(l)
0 =

ml⊕

j=1

x
(l)
j

e
(l)
i = z⊕

ml⊕

j=1
j 6=i

x
(l)
j (i = 1,2, . . . ,ml)

e(l) = z⊕
ml⊕

j=1

x
(l)
j .

For each l = 1,2, the receivers within B(l)(ml) can linearly recover their respective demands by:

R
(l)
0 : e(l)⊖ e

(l)
0 = z

R
(l)
i : e(l)⊖ e

(l)
i = x

(l)
i (i = 1,2, . . . ,ml).

Let m′
1 = m1/gcd(m1,m2) and m′

2 = m2/gcd(m1,m2) . Then m′
1 and m′

2 are relatively prime, so there exist

n1,n2 ∈ Z such that n1m′
1 +n2m′

2 = 1. Thus in R we have (n1m′
1)1R +(n2m′

2)1R = 1R.

Receiver Rz can linearly recover message z as follows:

Rz :

2⊕

l=1

(
(

nl gcd(m1,m2)
−1
)

·

(
ml⊕

i=0

e
(l)
i ⊖

(

mle
(l)
0

)
))

=
2⊕

l=1

((

nl gcd(m1,m2)
−1
)

· (ml z)
)

= (n1m′
1 z)⊕ (n2m′

2 z) =
(
(n1m′

1)1R +(n2m′
2)1R

)
z = z.

Thus the code is a linear solution for N3(m1,m2). �

Corollary 5.5.7 uses Lemmas 5.5.4 and 5.5.6 to show that network N3 is solvable over additional

alphabet sizes.

Corollary 5.5.7. Let m1,m2 ≥ 2 and α ,s, t ≥ 1 be integers such that m2 = smα
1 and s and t are relatively

prime to m1. Then the network N3(m1,m2) is solvable over an alphabet of size tmα+1
1 .

Proof. By Lemma 5.5.4, the network N3(m1,m2) is solvable over an alphabet of size mα+1
1 . Zt is a standard

Zt-module and char(Zt) = t is relatively prime to m1, so by Lemma 5.5.6, the network N3(m1,m2) is scalar

linearly solvable over the ring Zt . By taking the Cartesian product code of these solutions, the network

N3(m1,m2) is solvable over an alphabet of size tmα+1
1 . �
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For each m1 ≥ 2 and α ,s ≥ 1 such that s is relatively prime to m1, let m2 = mα
1 s. By Lemma 5.5.4,

network N3(m1,m2) is solvable over the ring Zmα+1
1

, but in this case we have

gcd
(

m1,m2,char
(

Zmα+1
1

))

= gcd
(
m1,m

α
1 s,mα+1

1

)
= m1 6= 1.

So, by Lemma 5.5.6, the solution is necessarily non-linear.

Lemma 5.5.8 characterizes the linear capacity of N3(m1,m2) and is proved in the Appendix. Since

the characteristic of any finite field is prime, the conditions of (b) and (c) of the following lemma are

complements of one another.

Lemma 5.5.8. For each m1,m2 ≥ 2, network N3(m1,m2) has

(a) capacity equal to 1,

(b) linear capacity equal to 1 for any finite field whose characteristic is relatively prime to m1 or m2,

(c) linear capacity equal to 1− 1
2m1+2m2+3

for any finite field whose characteristic divides m1 and m2.

5.6 Network N4(m)

A disjoint union of networks refers to a new network formed by combining existing networks with

disjoint sets of nodes, edges, sources, and receivers. Specifically, the nodes/edges/sources/receivers in the

resulting network are the disjoint union of the nodes/edges/sources/receivers in the smaller networks.

Remark 5.6.1. The disjoint union of networks N1, . . . ,Nw, has a (k,n) solution over the alphabet A

if and only if each of N1, . . . ,Nw has a (k,n) solution over A .

For any integer m ≥ 2, let ω(m) denote the number of distinct prime factors of m. Denote the

prime factorization of m by m = p
γ1

1 · · · p
γω(m)

ω(m) where γ1, . . . ,γω(m) ≥ 1 and p1, . . . , pω(m) are distinct primes.

The following functions of m and its prime divisors will be used throughout this section. For each i =

1, . . . ,ω(m), let

f (m) = p
γ1−1
1 · · · p

γω(m)−1

ω(m) (5.51)

µ(m, i) = min {α ≥ 0 : pα
i ≥ f (m)} (5.52)

g(m, i) = p
γi−1
i

ω(m)

∏
j=1
j 6=i

p
µ(m, j)
j . (5.53)
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We construct network N4(m) from the following disjoint union3 of networks:

N4(m) =









⋃

prime q
qfflm

q< f (m)

N1(q)









∪

(
ω(m)
⋃

i=1

N2

(
p

γi

i , (m/p
γi

i )
)

)

∪






ω(m)
⋃

i=1
γi>1

N3 (pi, g(m, i))




 . (5.54)

Theorem 5.6.2. For each m ≥ 2, the network N4(m) is:

1. solvable over an alphabet of size m,

2. not solvable over any alphabet whose size is less than m,

3. not solvable over any prime-power-size alphabet, if m is not a prime power,

4. scalar linearly solvable over GF(m), if m is prime,

5. neither linearly solvable over any module alphabet nor asymptotically linearly solvable over any

finite-field alphabet if m is composite.

Proof. The theorem follows immediately from Theorems 5.6.4, 5.6.5, 5.6.8, 5.6.9, and Corollaries 5.6.6

and 5.6.11. �

Example 5.6.3. Consider the special cases of the square-free (i.e. not divisible by the square of any prime)

integer 6, the prime power 27, and the integer 100 which is neither square-free nor a prime power.

• m = 6 = 2131. We have γ1 = γ2 = 1 and f (m) = 2(1−1)3(1−1) = 1, so N4(6) has neither N1 nor N3

components. Thus by (5.54), network N4(6) is the disjoint union of networks:

N2(2,3) ∪ N2(3,2).

• m = 27 = 33. We have f (27) = 3(3−1) = 9 and g(27,1) = 3(3−1) = 9, and the primes less than

f (27) which do not divide 27 are 2,5, and 7. Thus by (5.54), network N4(6) is the disjoint union of

networks:

N1(2) ∪ N1(5) ∪ N1(7) ∪ N2(27,1) ∪ N3(3,9).

3When node (respectively, edge and message) labels are repeated (e.g. N1(m1) and N1(m2) both have receiver

Rx), add additional superscripts to each node (respectively, edge and message) to avoid repeated labels. Each disjoint

network has a set of messages, nodes, and edges which is disjoint to every other network’s set in the union. The

messages, nodes, and edges are not directly referenced in this section, so the additional level of labeling is arbitrary

so long as the networks are disjoint.
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• m = 100 = 2252. We have f (100) = 2(2−1)5(2−1) = 10. Then µ(100,1) = 4, since 24 > f (100) > 23,

and µ(100,2) = 2, since 52 > f (100)> 51. So g(100,1) = 2152 and g(100,2) = 5124, and the primes

less than f (100) which do not divide 100 are 3 and 7. Thus by (5.54), network N4(100) is the disjoint

union of networks:

N1(3) ∪ N1(7) ∪ N2(4,25) ∪ N2(25,4) ∪ N3(2,50) ∪ N3(5,80).

We will use the networks described in Example 5.6.3 as running examples throughout this section

and will refer back to these constructions.

5.6.1 Solvability of N4(m)

The following lemma shows that each disjoint component of N4(m) is solvable over an alphabet of

size m, and therefore N4(m) is solvable over an alphabet of size m. The proofs of Theorems 5.6.4 and 5.6.5

make use of the functions f ,µ , and g defined in (5.51), (5.52), and (5.53), respectively.

Theorem 5.6.4. For each m ≥ 2, network N4(m) is solvable over an alphabet of size m.

Proof. Let p
γ1

1 · · · p
γω(m)

ω(m) be the prime factorization of m. For each prime q < f (m) such that q ffl m, by (5.54),

network N4(m) contains a copy of N1(q). Zm is a standard Zm-module and char(Zm) = m is relatively

prime to q, so by Lemma 5.3.3, network N1(q) is scalar linearly solvable over the ring Zm. For each

i = 1, . . . ,ω(m), by (5.54), network N4(m) contains a copy of N2

(
p

γi

i , (m/p
γi

i )
)
. By Lemma 5.4.4, network

N2

(
p

γi

i , (m/p
γi

i )
)

is solvable over an alphabet of size m. If γi > 1, then by (5.54), network N4(m) contains

a copy of N3(pi, g(m, i)). Also, pi and m/p
γi

i are relatively prime, and by (5.53), g(m, i) is the product of

p
γi−1
i and a term which is relatively prime to pi, so by Corollary 5.5.7, network N3 (pi, g(m, i)) is solvable

over an alphabet of size m. Thus each disjoint component of N4(m) is solvable over an alphabet of size m,

so N4(m) is solvable over an alphabet of size m. �

Each network N1,N2, and N3 requires the alphabet size to meet some divisibility condition in

order to have a solution over that alphabet. The following lemma shows that because of these conditions,

there does not exist an alphabet whose size is less than m over which each component of N4(m) is solvable.
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Theorem 5.6.5. For each m ≥ 2, if network N4(m) is solvable over alphabet A , then |A | ≥ m.

Proof. Assume to the contrary that N4(m) is solvable over an alphabet A such that |A | < m. Then each

disjoint component of N4(m) must be solvable over A . Let m have prime factorization m = p
γ1

1 · · · p
γω(m)

ω(m).

For each i = 1, . . . ,ω(m), by (5.54), the network N4(m) contains a copy of N2

(
p

γi

i , (m/p
γi

i )
)
. Network

N2

(
p

γi

i , (m/p
γi

i )
)

is solvable over A , so by Lemma 5.4.5, pi is not relatively prime to |A |. Since pi is

prime, we have pi

∣
∣ |A |, and thus each of p1, . . . , pω(m) divides |A |. Let

δ =
|A |

p1 · · · pω(m)
.

If m = p1 · · · pω(m) (i.e. m is square-free), then we contradict the assumption that |A | < m. So we may

assume m > p1 · · · pω(m), which implies δ ≥ 2. If δ ≥ f (m), then

|A |= δ p1 · · · pω(m)

≥ f (m) p1 · · · pω(m)

= p
γ1

1 · · · p
γω(m)

ω(m) = m [from (5.51)] ,

which again contradicts the assumption that |A |< m, so we assume δ < f (m).

Consider the prime factorization of δ . Let {q1, . . . ,qρ} denote the set of primes which are less than

f (m) and do not divide m. Each prime less than f (m) either divides m and is in the set {p1, . . . , pω(m)} or

it does not divide m and is in the set {q1, . . . ,qρ}. Thus δ must be a product of q1, . . . ,qρ and p1, . . . , pω(m)

terms, so there exist α1, . . . ,αω(m) ≥ 1 and β1, . . . ,βρ ≥ 0 such that we can write |A | as

|A |= p
α1

1 . . . p
αω(m)

ω(m) q
β1

1 . . .q
βρ
ρ . (5.55)

For each prime q < f (m) such that q ffl m, by (5.54), the network N4(m) contains a copy of N1(q). Network

N1(q) is solvable over A , so by Lemma 5.3.2, we have gcd(q, |A |) = 1. Thus in (5.55) we have β1 = · · ·=

βρ = 0.

For each i = 1, . . . ,ω(m) such that γi > 1, by (5.54), the network N4(m) contains a copy of

N3(pi, g(m, i)). Network N3(pi, g(m, i)) is solvable over A and pi

∣
∣ |A |, so by Lemma 5.5.5, |A | does

not divide g(m, i). Expressing |A | and g(m, i) as their prime factorizations yields:

p
α1

1 . . . p
αω(m)

ω(m) 6
∣
∣
∣ p

γi−1
i

ω(m)

∏
j=1
j 6=i

p
µ(m, j)
j [from (5.53), (5.55)] .
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This implies that for each i ∈ {1, . . . ,ω(m)} such that γi > 1, either αi ≥ γi or α j ≥ µ(m, j)+ 1 for some

j 6= i. If there exists j ∈ {1, . . . ,ω(m)} such that α j ≥ µ(m, j)+1, then we have

|A |= p
α1

1 · · · p
αω(m)

ω(m) [from (5.55)]

≥ p
α j−1

j

(
p1 · · · pω(m)

)
[from αl ≥ 1]

≥ p
µ(m, j)
j

(
p1 · · · pω(m)

)
≥ f (m)

(
p1 · · · pω(m)

)
= m [from (5.51), (5.52)] ,

which contradicts the assumption that |A | < m. So it must be the case that αi ≥ γi, for each i such that

γi > 1. If γi = 1, then αi ≥ 1 = γi. So we have αi ≥ γi for all i, but this implies

|A |= p
α1

1 · · · p
αω(m)

ω(m) [from (5.55)]

≥ p
γ1

1 · · · p
γω(m)

ω(m) = m,

which again contradicts the assumption that |A |< m. Thus there does not exist an alphabet A whose size

is less than m such that each disjoint component of N4(m) is solvable over A . �

Corollary 5.6.6 demonstrates that, in some cases, network N4(m) is not solvable over any prime-

power size alphabets. In particular, such a solvable network is not solvable over any finite-field alphabet.

Corollary 5.6.6. For each non-power-of-prime composite number m ≥ 6, network N4(m) is not solv-

able over any prime-power-size alphabet.

Proof. Let m = p
γ1

1 · · · p
γω(m)

ω(m), and assume network N4(m) is solvable over the alphabet A . It follows from

the of the proof of Theorem 5.6.5 that each of p1, . . . , pω(m) must divide |A |. If ω(m) ≥ 2, then network

N4(m) is not solvable over any prime-power-size alphabet. �

Example 5.6.7. We continue our example networks N4(6), N4(27), and N4(100).

• Suppose N4(6) is solvable over an alphabet A . Since N2(2,3) is solvable over A , we have 2
∣
∣ |A |.

Similarly for N2(3,2), we have that 3
∣
∣ |A |. Hence we have |A | ≥ 6.

• Suppose N4(27) is solvable over an alphabet A whose size is less than 27. Then

– N2(27,1) requires 3
∣
∣ |A |, so |A | ∈ {3,6,9,12,15,18,21,24}.

– N1(2), N1(5), and N1(7) require |A | be relatively prime to 2, 5, and 7,

so |A | 6∈ {6,12,15,18,21,24}.
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– N3(3,9) requires |A | ffl 9, so |A | 6∈ {3,9}.

Therefore N4(27) is not solvable over any alphabet whose size is less than 27.

• Suppose N4(100) is solvable over an alphabet A whose size is less than 100. Then

– N2(4,25) and N2(25,4) require 10
∣
∣ |A |, so |A | ∈ {10,20,30,40,50,60,70,80,90}.

– N1(3) and N1(7) require |A | to be relatively prime to 3 and 7, so |A | 6∈ {30,60,70,90}.

– N3(2,50) requires |A | ffl 50, so |A | 6∈ {10,50}.

– N3(5,80) requires |A | ffl 80, so |A | 6∈ {10,20,40,80}.

Therefore N4(100) is not solvable over any alphabet whose size is less than 100.

5.6.2 Linear Solvability of N4(m)

The following theorems show that network N4(m) is linearly solvable if and only if m is prime.

Theorem 5.6.8. For each prime p, the network N4(p) is scalar linearly solvable over GF(p).

Proof. If p is a prime number, then f (p) = 1 and the power of p is one, so by (5.54), network N4(p) consists

solely of a copy of network N2(p,1). By Lemma 5.4.6, network N2(p,1) has a scalar linear solution over

every finite-field alphabet with characteristic p. �

Theorem 5.6.9. For each composite number m, the network N4(m) is not linearly solvable over any

module.

Proof. Let G be a standard R-module, and assume a linear solution for N4(m) exists over G. Since N4(m)

is linearly solvable over G, each disjoint component of N4(m) is linearly solvable over G. Suppose m is

a composite number. Then m is a product of two or more (possibly distinct) primes. We will separately

consider the cases of prime powers and non-power-of-prime composite numbers.

For each prime p and integer γ ≥ 2, by (5.54), network N4(pγ) contains copies of N2(pγ ,1) and

N3

(
p, pγ−1

)
. Since network N2(pγ ,1) is linearly solvable over G, by Lemma 5.4.6, the characteristic of

R divides pγ . Since network N3

(
p, pγ−1

)
is linearly solvable over G, by Lemma 5.5.6, the characteristic

of R is relatively prime to p. If the characteristic of R both divides pγ and is relatively prime to p, then the
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characteristic of R is 1, which only occurs in the trivial ring (of size one). Thus there is no standard module

over which all components of network N4(pγ) are linearly solvable.

Now suppose ω(m)≥ 2. Then m has prime factorization m = p
γ1

1 · · · p
γω(m)

ω(m), and by (5.54), network

N4(m) contains copies of networks N2

(
p

γ1

1 , (m/p
γ1

1 )
)

and N2

(
p

γ2

2 , (m/p
γ2

2 )
)
. Both of these networks are

linearly solvable over G, so by Lemma 5.4.6, the characteristic of R divides p
γ1

1 and p
γ2

2 . Since p1 6= p2, the

characteristic of R must be 1, which only occurs in the trivial ring. Thus there is no standard module over

which all components of network N4(m) are linearly solvable.

If m is a composite number, then there are no linear solutions for N4(m) over any standard module,

which, by Lemma 5.1.3 implies there are no linear solutions for N4(m) over any module. �

5.6.3 Capacity and Linear Capacity of N4(m)

Theorem 5.6.10. For each m ≥ 2 network N4(m) has:

(a) capacity equal to 1,

(b) linear capacity bounded away from 1 over all finite-field alphabets, if m is composite.

Proof. For each m ≥ 2, by Theorem 5.6.4, network N4(m) is solvable over an alphabet of size m, so its

capacity is at least 1. Network N4(m) consists of disjoint copies of N1,N2, and N3, which each have

capacity equal to 1, so the capacity of N4(m) is at most 1. Thus the capacity of N4(m) is equal to 1.

For composite m, we will again separately consider the cases of prime powers and non-power-of-prime

composite numbers.

For each prime p and integer γ ≥ 2, by (5.54), network N4(pγ) contains copies of N2(pγ ,1) and

N3

(
p, pγ−1

)
. By Lemma 5.4.7, network N2(pγ ,1) has linear capacity upper bounded by 1− 1

2pγ+3
for

finite-field with characteristic other than p. By Lemma 5.5.8, network N3

(
p, pγ−1

)
has linear capacity

equal to 1 − 1
2pγ−1+2p+3

for finite-field alphabets with characteristic p. Whether we select a finite-field

alphabet with characteristic p or characteristic other than p, the linear capacity of N4(pγ) is bounded away

from 1, for fixed p and γ .

Now suppose ω(m) ≥ 2. Then m has prime factorization m = p
γ1

1 · · · p
γω(m)

ω(m), and by (5.54), the

network N4(m) contains copies of networks N2

(
p

γ1

1 , (m/p
γ1

1 )
)

and N2

(
p

γ2

2 , (m/p
γ2

2 )
)
. By Lemma 5.4.7,

network N2

(
p

γi

i , (m/p
γi

i )
)

has linear capacity upper bounded by 1− 1

2m+2(m/p
γi
i )+1

for finite-field alphabets

with characteristic other than pi. Since p1 6= p2, whether we select a finite-field alphabet with characteristic
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p1, p2, or neither p1 nor p2, the linear capacity is bounded away from 1, for fixed m.

Thus for any fixed composite number m, the linear capacity of network N4(m) is bounded away

from 1 over all finite-field alphabets. �

Calculating the exact linear capacity of network N4 over every finite field is left as an open problem.

Corollary 5.6.11. For each composite m, network N4(m) is not asymptotically linearly solvable over any

finite-field alphabet.

Proof. This follows directly from the fact that for any fixed composite number m, by Theorem 5.6.10, the

linear capacity of N4(m) is bounded away from one over all finite-field alphabets. �

5.6.4 Size of N4(m)

Depending on the prime divisors of m, the number of nodes in N4(m) can be dominated by nodes

from N1 networks, N2 networks, or N3 networks. The following theorem makes use of the functions f (m),

µ(m, i), and g(m, i) defined in (5.51), (5.52), (5.53).

Theorem 5.6.12. For each m ≥ 2, the number of nodes in network N4(m) is asymptotically

(a) Ω(m),

(b) O(m) when m is prime,

(c) O

(
m logm

log logm

)

, when m is square-free,

(d) O

(
m2

logm

)

, when m is a prime-power,

(e) O
(

m
logm

loglogm

)

, when m is neither square-free nor a prime-power.

Proof. By Remark 5.3.1, the number of nodes in N1(q) is 4q+ 7. By Remark 5.4.1, the number of nodes

in N2(m,w) is 4mw+9w+2. By Remark 5.5.1, the number of nodes in N3(m1,m2) is 4m1 +4m2+12. By

the construction of N4(m) given in (5.54), the total number of nodes in N4(m) is:









∑
prime q

qfflm
q< f (m)

(4q+7)









+

(
ω(m)

∑
i=1

(4m+9(m/p
γi

i )+2)

)

+






ω(m)

∑
i=1
γi>1

(4g(m, i)+4pi +12)




 (5.56)
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where the first, second, and third terms are the number of nodes from N1, N2, and N3 networks, respec-

tively. In order to find upper and lower bounds on the total number of nodes in N4(m), we will first find

upper and lower bounds on the number of nodes from N1,N2, and N3 networks within N4(m).

If m is a square-free number, then we have f (m) = 1, so in this case, there are no nodes in N4(m)

from N1 networks. Thus for general m, we have

∑
prime q

qfflm
q< f (m)

(4q+7)≥ 0 (5.57)

∑
prime q

qfflm
q< f (m)

(4q+7)< ∑
prime q

q≤m

(4q+7) = O

(
m2

logm

)

[from [27, p. 257]] . (5.58)

The total number of nodes in N4(m) from N2 networks is

ω(m)

∑
i=1

(4m+9(m/p
γi

i )+2)>
ω(m)

∑
i=1

4m = Ω(ω(m)m) (5.59)

ω(m)

∑
i=1

(4m+9(m/p
γi

i )+2)<
ω(m)

∑
i=1

(13m+2) = O(ω(m)m) . (5.60)

For each i = 1, . . . ,ω(m) we have

p
µ(m,i)
i < pi f (m) [from (5.52)] (5.61)

g(m, i) = p
γi−1
i

ω(m)

∏
j=1
j 6=i

p
µ(m, j)
j [from (5.53)]

< p
γi−1
i

ω(m)

∏
j=1
j 6=i

p j f (m) [from (5.61)]

< p
γi

i f (m)ω(m)−1
ω(m)

∏
j=1

p j

= p
γi

i f (m)ω(m)−2 m [from (5.51)] . (5.62)

If m is square-free, then γi = 1 for all i, so in this case, there are no nodes in N4(m) from N3

networks. Thus for general m, we have

ω(m)

∑
i=1
γi>1

(4g(m, i)+4pi +12)≥ 0, and (5.63)
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and

ω(m)

∑
i=1
γi>1

(4g(m, i)+4pi +12)≤
ω(m)

∑
i=1

20g(m, i) [from (5.53)]

< 20m f (m)ω(m)−2
ω(m)

∑
i=1

p
γi

i [from (5.62)]

< 20m f (m)ω(m)−2
ω(m)

∏
i=1

p
γi

i [from ab ≥ a+b, ∀a,b ≥ 2]

= 20m2 f (m)ω(m)−2

< 20mω(m) = O
(

mω(m)
)

[from (5.51)] . (5.64)

To prove part (a), consider the lower bounds of each term of (5.56). By equations (5.56), (5.57),

(5.59), and (5.63), the total number of nodes in N4(m) is lower bounded by:

0+Ω(ω(m)m)+0 = Ω(ω(m)m) = Ω(m),

where the final equality comes from the fact ω(m) = Ω(1), since ω(m) = 1 when m is prime.

It follows from [26, Theorem 11] that

ω(m) = O

(
logm

log logm

)

. (5.65)

To prove parts (b)-(e), we will consider the upper bounds on the number of nodes of each term of

(5.56). However, each term dominates in different cases, depending on the prime factors of m. To prove

parts (b) and (c), consider a square-free integer m = p1 · · · pω(m). Since γi = 1 for all i, we have f (m) = 1, so

there are neither N1 nor N3 components in N4(m). Thus there are 0 nodes from N1 and N3 components.

Then by (5.56) and (5.60), the number of nodes in N4(m) is O(ω(m)m). If m is prime, then ω(m) = 1, so

we have the desired bound. If m is not prime, then the number of nodes is O(ω(m)m), which, along with

(5.65), yields the desired bound.

To prove part (d), consider a prime power m = pγ , where γ ≥ 2. We have ω (pγ) = 1, so by

(5.60), the number of nodes from N2 components is O(m), and, by (5.64), the number of nodes from N3

components is O(m). By (5.58), the number of nodes from N1 components is O(m2/ logm). Thus the

number of nodes in N4(m) is O(m2/ logm).

To prove part (e), consider m which is neither a prime power (so ω(m) ≥ 2) nor square-free (so

there are N3 components in N4(m)). By equations (5.56), (5.58), (5.60), and (5.64), The number of nodes

in N4(m) is

O

(
m2

logm

)

+O(ω(m)m)+O
(

mω(m)
)

O
(

mω(m)
)

[from ω(m)≥ 2] ,
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which, along with (5.65), yields the desired bound. �

Example 5.6.13. We continue our example networks N4(6), N4(27), and N4(100).

• N4(6) has 97 nodes: 53 from N2(2,3) and 44 from N2(3,2).

• N4(27) has 256 nodes: 15 from N1(2), 27 from N1(5), 35 from N1(7), 119 from N2(27,1), and 60

from N3(3,9).

• N4(100) has 1691 nodes: 19 from N1(3), 35 from N1(7), 627 from N2(4,25), 438 from N2(25,4),

220 from N3(2,50), and 352 from N3(5,80).

5.7 Open Questions

Below are some remaining open questions regarding linear and non-linear network coding:

1. In [7] it was shown that there exists a network which is not linearly solvable over any module yet is

non-linearly solvable over an alphabet of size 4. We have shown that for each composite number m,

there exists a network which is not linearly solvable over any module yet is non-linearly solvable over

an alphabet of size m. Do there exist networks which are not linearly solvable over any module but

are non-linearly solvable over some alphabet of prime size?

2. There are examples [34], [24] in the literature of solvable networks which are not solvable over any

alphabet whose size is less than some m. For each m ≥ 2, we have demonstrated a network which is

solvable over an alphabet of size m but is not solvable over any alphabet whose size is less than m.

For each m ≥ 2 does there exist a network which is solvable over alphabet A if and only if |A | ≥ m?

Which other “interesting” sets S ⊂ N have the property that there exists a network which is solvable

over A if and only if |A | ∈ S?

3. It is not currently known whether there can exist an algorithm which determines whether a network is

solvable. We have demonstrated a class of solvable networks with no linear solutions (i.e. diabolical

networks). Can there exist an algorithm which detects whether a network is diabolical?

4. We partially characterized the linear capacities of N1, N2, and N3 over finite-field alphabets. How-

ever, the techniques we use do not extend more general ring alphabets. What techniques exist for

upper bounding the linear capacities over ring alphabets?
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5.A Capacity Proofs of N1, N2 and N3

The following definition and lemmas will be used in the proofs of Lemmas 5.3.4, 5.4.7, and 5.5.8.

Definition 5.A.1. Let F be a finite field and suppose a1 ∈ Fs1 , . . . ,aq ∈ Fsq and b1 ∈ Ft1 , . . . ,br ∈ Ftr are

functions of variables x1, . . . ,xw. We write a1, . . . ,aq −→ b1, . . . ,br to mean that there exist t j × si matrices

M j,i over F such that for all choices of x1, . . . ,xw, we have b j =
q

∑
i=1

M j,i ai for all j.

In other words, each of b1, . . . ,br can be written as a linear combination of a1, . . . ,aq. In the context

of network coding, the variables x1, . . . ,xw will always be taken as the network messages. In what follows,

the transitive relation −→ will be used to describe linear coding functions at network nodes.

Lemma 5.A.2 is known from linear algebra [28, p. 124] and will be used in later proofs. In

particular, Lemmas 5.A.2, 5.A.3, and 5.A.4 will be used in bounding the linear capacities of N1,N2, and

N3. Lemmas 5.A.3 and 5.A.4 were proved in slightly different form in [7, Lemma IV.2 and Theorem IV.4].

Lemma 5.A.2. Let F be a finite field. If A : Fm → Fn and B : Fk → Fm are linear maps, then

rank(A)+ rank(B)−m ≤ rank(AB) (5.66)

≤ min(rank (A) , rank (B)). (5.67)

Lemma 5.A.3. If A is an n× k matrix of rank k over finite field F, then there exists a nonsingular n× n

matrix B such that BA =




Ik

0



 .

Lemma 5.A.4. If A is an m×n matrix of rank k over finite field F, then there exists an (n− k)×n matrix Q

over F of rank n− k such that for all x ∈ Fn we have Ax, Qx −→ x.

5.A.1 N1 Capacity Proof

Proof of Lemma 5.3.4. Since a scalar linear solution over a finite-field alphabet is a special case of a linear

solution over a standard module, by Lemma 5.3.3, N1(m) is scalar linearly solvable over any finite-field

alphabet whose characteristic does not divide m, so the network’s linear capacity for such finite-field al-

phabets is at least 1. By Lemma 5.2.4, network N0(m) has capacity equal to 1, and since N1(m) contains

N0(m), the capacity of N1(m) is at most 1. Thus, both the capacity of N1(m) and its linear capacity for

field alphabets whose characteristic does not divide m are equal to 1.

To prove part (c), consider a (k,n) fractional linear solution for N1(m) over a finite field F whose

characteristic divides m. Since char(F)
∣
∣ m, we have m = 0 in F.
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We have xi ∈ Fk and e,ei ∈ Fn, with n ≥ k, since the capacity is one. There exist n× k coding

matrices M j,Mi, j with entries in F, such that the edge vectors can be written as:

ei =
m

∑
j=0
j 6=i

Mi, j x j (i = 0,1, . . . ,m) (5.68)

e =
m

∑
j=0

M j x j (5.69)

and there exist k×n decoding matrices Di,e, Di with entries in F, such that each xi can be linearly decoded

at Ri from the two n-vectors e and ei by:

Ri : xi = Di,e e+Di ei (i = 0,1, . . . ,m). (5.70)

Since receiver Rx linearly recovers x0 from e0,e1, . . . ,em, we can write

e0,e1, . . . ,em −→ x0. (5.71)

We also have

x0,
m

∑
j=1

M j x j −→ e [from (5.69)] . (5.72)

For each i = 0,1 . . . ,m, if we set xi = 0 in (5.70), then we get the following relationship among the

remaining m message vectors (since ei does not depend on xi):

0 = Di,e

m

∑
j=0
j 6=i

M j x j +Di ei [from (5.68), (5.69), (5.70)] , (5.73)

and thus, for each i = 1,2, . . . ,m,

ei −→ Di,e

m

∑
j=0
j 6=i

M j x j [from (5.73)] (5.74)

m

∑
j=1

M j x j −→ D0 e0 [from (5.73)] . (5.75)

For each i = 1,2, . . . ,m, let Qi,e be the matrix Q corresponding to when Di,e is the matrix A in

Lemma 5.A.4. Similarly, let Q0 be the matrix Q corresponding to taking A to be D0 in Lemma 5.A.4. Let L

be the following list of 2m+1 vector functions of x0,x1, . . . ,xm:

Q0 e0,

ei, (i = 1,2, . . . ,m)

Qi,e

m

∑
j=0
j 6=i

M j x j (i = 1,2, . . . ,m).
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For each i = 1,2, . . . ,m, we have

L −→ Di,e

m

∑
j=0
j 6=i

M j x j [from (5.74)] (5.76)

L −→
m

∑
j=0
j 6=i

M j x j [from Lemma 5.A.4, (5.76)] , (5.77)

and






m

∑
j=0
j 6=i

M j x j : i = 1,2, . . . ,m







−→
m

∑
i=1

m

∑
j=0
j 6=i

M j x j

= mM0 x0 +(m−1)
m

∑
j=1

M j x j

=−
m

∑
j=1

M j x j

[
from char(F)

∣
∣ m
]
. (5.78)

Thus we have

L −→
m

∑
j=1

M j x j [from (5.77), (5.78)] (5.79)

L −→ D0 e0 [from (5.75), (5.79)] (5.80)

L −→ e0 [from Lemma 5.A.4, (5.80)] (5.81)

L −→ x0 [from (5.71), (5.81)] (5.82)

L −→ e [from (5.79), (5.82), (5.72)] (5.83)

L −→ xi (i = 1,2, . . . ,m) [from (5.70), (5.83)] . (5.84)

We will now bound the number of independent entries in the list L. By equating message compo-

nents in equation (5.70), for each i = 0,1, . . . ,m, we have:

Ik = Di,e Mi [from (5.68), (5.69), (5.70)] . (5.85)

Since each Di,e and Mi have dimensions k×n and n× k, respectively, and k ≤ n, the rank of each matrix is

at most k, but we also have

min(rank(Di,e), rank(Mi))≥ rank(Di,e Mi) [from (5.67)]

= rank(Ik) = k [from (5.85)] ,

and so rank(Di,e) = rank(Mi) = k, which, by Lemma 5.A.4, implies

rank(Qi,e) = n− k (i = 1,2, . . . ,m). (5.86)
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Since rank(M0) = k, Lemma 5.A.3 implies there exists an n×n nonsingular matrix W such that

WM0 =




Ik

0(n−k)×k



 . (5.87)

Partition each of the k×n matrices Di,eW
−1 into a k× k block Ti to the left of a k× (n− k) block Ui:

Di,eW
−1 = [Ti Ui] (5.88)

and then let V be the following n×n matrix over F:

V =




Ik U0

0(n−k)×k In−k



 . (5.89)

It is easy to verify that

V−1 =




Ik −U0

0(n−k)×k In−k



 . (5.90)

For each i = 0,1, . . . ,m, change the network encoding and decoding matrices from Mi and Di,e, respectively,

to

M′
i =VWMi (5.91)

D′
i,e = Di,eW

−1V−1. (5.92)

We have

T0 = D0,eW
−1W M0 = Ik [from (5.85), (5.87), (5.88)] (5.93)

M′
0 =




Ik

0



 [from (5.87), (5.89), (5.91)]

D′
0,e = [Ik 0] [from (5.88), (5.90), (5.92), (5.93)] . (5.94)

In this case, e′ =
m

∑
j=0

M′
j x j and for each i = 0,1, . . . ,m, the message vectors can be recovered by:

D′
i,ee′+Diei = Di,eW

−1V−1
m

∑
j=0

VW M j x j +Diei [from (5.91), (5.92)]

= Di,ee+Diei = xi [from (5.69), (5.70)] .

Thus, this linear code still provides a (k,n) solution.
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Partition each of the matrices Mi into a k× k block Ri on top of a (n− k)× k block Si:

Mi =




Ri

Si



 (5.95)

and let ρ = rank([R1 · · · Rm]), where [R1 · · · Rm] is the concatenation of the matrices Ri into a k×mk

matrix. Clearly ρ ≤ k. We have

D0

m

∑
j=1

M0, j x j = D0 e0 [from (5.68)]

=−D0,e

m

∑
j=1

M j x j [from (5.73)]

=−
m

∑
j=1

R j x j [from (5.94), (5.95)] .

This gives us D0 [M0,1 · · · M0,m] =− [R1 · · · Rm] , which implies

rank(D0)≥ rank([R1 · · · Rm]) = ρ [from (5.67)]

∴ rank(Q0) = n− rank(D0)≤ n−ρ . (5.96)

Since the matrix [R1 · · · Rm] has rank ρ , there exists a k× k permutation matrix P such that the

first ρ rows of P [R1 · · · Rm] are linearly independent and the remaining k−ρ rows are linear combina-

tions of those first ρ rows. Thus, there exists a (k−ρ)× k matrix X , whose right-most k−ρ columns form

Ik−ρ , and such that

XP [R1 · · · Rm] = 0(k−ρ)×mk. (5.97)

X and P are (k−ρ)× k and k× k respectively, thus the rank of X is at most (k−ρ) and the rank

of P is at most k. Since the right-most columns of X form Ik−ρ , we have rank(X) = k−ρ , and since P is a

permutation matrix, we have rank(P) = k. Since XP has dimensions (k−ρ)× k, we have

k−ρ ≥ rank(XP)

≥ rank(X)+ rank(P)− k [from (5.66)]

= (k−ρ)+ k− k = k−ρ

and thus rank (XP) = k−ρ .

Define a (k−ρ)×n matrix Y by concatenating the product XP with an all-zero matrix as follows:

Y =
[
XP 0(k−ρ)×(n−k)

]
.
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For each i = 1,2, . . . ,m we have

Y Mi =
[
XP 0(k−ρ)×(n−k)

]




Ri

Si



= 0(k−ρ)×k [from (5.95), (5.97)] . (5.98)

Since, for each i = 1,2, . . . ,m, we have Y Mi = 0(k−ρ)×k and by (5.85), Di,eMi = Ik, the rows of Y and the

rows of Di,e are linearly independent. (If v is a nontrivial linear combination of rows of Di,e, then vMi 6= 0; if

v′ is a nontrivial linear combination of rows of Y , then v′Mi = 0, so v 6= v′). Therefore, by Lemma 5.A.4, we

may choose Qi,e such that its first k−ρ rows are the rows of Y . By (5.86), each vector function Qi,e

m

∑
j=0
j 6=i

M j x j

in the list L has dimension n− k, but the first k−ρ components of each such vector function can be written

as

Y
m

∑
j=0
j 6=i

M j x j = Y M0 x0 [from (5.98)] . (5.99)

If we view the message vectors x0,x1, . . . ,xm as random variables, each of whose k components are

independent and uniformly distributed over the field F, then we have the following entropy (using logarithms

with base |F|) upper bounds:

H (Q0e0)≤ n−ρ [from (5.96)] (5.100)

H (e1, . . . ,em)≤ mn [from ei ∈ Fn] (5.101)

H




Qi,e

m

∑
j=0
j 6=i

M j x j : i = 1,2, . . . ,m




≤ m(n− k)− (m−1)(k−ρ) [from (5.86), (5.99)] (5.102)

. (5.103)

Therefore, the entropy of all of the vector functions in the list L is bounded by summing these bounds. So

(m+1)k = H(x0,x1, . . . ,xm)
[
from xi ∈ Fk

]

≤ H(L) [from (5.82), (5.84)]

≤ (2m+1)n− (m+1)k− (k−ρ)(m−2) [from (5.100), (5.101), (5.102)]

≤ (2m+1)n− (m+1)k [from ρ ≤ k and m ≥ 2]

∴
k

n
≤

2m+1

2m+2
.

Thus the linear capacity of N1(m) for any finite-field alphabet whose characteristic divides m is upper

bounded by 1− 1
2m+2

.
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For each y ∈ Fm, let [y]i denote the ith component of y. To show the upper bound on the linear

capacity is tight, consider a (2m+1,2m+2) fractional linear code for N1(m) over any finite-field alphabet

whose characteristic divides m, given by:

[e0]l =







m

∑
j=1
j 6=l

[x j]l (l = 1,2, . . . ,m)

m

∑
j=1

[x j]l (l = m+1, . . . ,2m+1)

m

∑
j=2

[x j] j (l = 2m+2)

[e]l =







m

∑
j=0
j 6=l

[x j]l (l = 1,2, . . . ,m)

m

∑
j=0

[x j]l (l = m+1, . . . ,2m+1)

[x0]m+1 +
m

∑
j=1

[x j] j (l = 2m+2)

[ei]l =







m

∑
j=0
j 6=i
j 6=l

[x j]l (l = 1,2, . . . ,m and l 6= i)

[x0]m+1 +
m

∑
j=1
j 6=i

[x j] j (l = i)

m

∑
j=0
j 6=i

[x j]l (l = m+1, . . . ,2m+1)

[x0]m+1+i (l = 2m+2).

(i = 1,2, . . . ,m)

For each l = 1,2, . . . ,m, we have

m

∑
i=0
i6=l

[ei]l =
m

∑
i=0
i6=l

m

∑
j=0
j 6=i
j 6=l

[x j]l = (m−1)
m

∑
j=0
j 6=l

[x j]l =−
m

∑
j=0
j 6=l

[x j]l
[
from char(F)

∣
∣ m
]
. (5.104)
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For each i = 1,2, . . . ,m, the receivers can linearly recover their respective demands by:

R0 : [e]l − [e0]l = [x0]l (l = 1,2, . . . ,2m+1)

Ri : [e]l − [ei]l = [xi]l (l = 1, . . . ,2m+1 and l 6= i)

[e]2m+2 − [ei]i = [xi]i

Rx : − [e0]l −
m

∑
i=0
i6=l

[ei]l = [x0]l (l = 1,2, . . . ,m) [from (5.104)]

[e1]1 − [e0]2m+2 = [x0]m+1

[el−m−1]2m+2 = [x0]l (l = m+2, . . . ,2m+1).

Thus, the code is in fact a solution for N1(m). �

5.A.2 N2 Capacity Proof

Proof of Lemma 5.4.7. Since a scalar linear solution over a finite field is a special case of a linear solution

over a standard module, by Lemma 5.4.6, N2(m,w) is scalar linearly solvable over any finite field whose

characteristic divides m, so the linear capacity for such fields alphabets is at least 1. By Lemma 5.2.4,

network N0(m + 1) has capacity equal to 1, and the block B(1)(m + 1) together with the source nodes

Sz,S
(1)
1 ,S

(1)
2 , . . . ,S

(1)
m+1 forms a copy of N0(m+ 1), so the capacity of N2(m,w) is at most 1. Thus both the

capacity of N2(m,w) and its linear capacity over any finite field whose characteristic divides m are 1.

To prove part (c), consider a (k,n) fractional linear solution for N2(m,w) over a finite field F whose

characteristic does not divide m. Since char(F) ffl m, the integer m is invertible in F. We have x
(l)
j ,z ∈ Fk

and e
(l)
i ,e(l) ∈ Fn, with n ≥ k, since the capacity is one. There exist n× k coding matrices M

(l)
j , M

(l)
i, j over F,

such that for each l = 1,2, . . . ,w the edge vectors can be written as:

e
(l)
i = M

(l)
i,0 z+

m+1

∑
j=1
j 6=i

M
(l)
i, j x

(l)
j (i = 1,2, . . . ,m+1) (5.105)

e(l) = M
(l)
0 z+

m+1

∑
j=1

M
(l)
j x

(l)
j (5.106)

and there exist k×n decoding matrices D
(l)
i,e and D

(l)
i over F, such that for each l = 1,2, . . . ,w, the message

vector x
(l)
i can be linearly decoded at R

(l)
i from the n-vectors e

(l)
i and e(l) by:

R
(l)
i : x

(l)
i = D

(l)
i,e e(l)+D

(l)
i e

(l)
i (i = 1,2, . . . ,m+1). (5.107)
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Since receiver Rz linearly recovers z from its incoming edge vectors, we have






e
(l)
i :

l = 1,2, . . . ,w

i = 1,2, . . . ,m+1






−→ z. (5.108)

By (5.105) and (5.106), if we set x
(l)
i = 0 in (5.107), then, since e

(l)
i does not depend on x

(l)
i , we get

the following relationship among the remaining message vectors:

0 = D
(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j




+D

(l)
i e

(l)
i




l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 (5.109)

and therefore

e
(l)
i −→ D

(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j









l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 [from (5.109)] . (5.110)

For each l = 1,2, . . . ,w and each i = 1,2, . . . ,m + 1, let Q
(l)
i,e be the matrix Q in Lemma 5.A.4

corresponding to when the matrix A is D
(l)
i,e , and let L(l) be the following list of 2(m+1) vector functions of

the messages:

Q
(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j




 (i = 1,2, . . . ,m+1)

e
(l)
i (i = 1,2, . . . ,m+1).

We have

L(l) −→ D
(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=l

M
(l)
j x

(l)
j









l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 [from (5.110)] ,

which, along with Lemma 5.A.4, implies

L(l) −→ M
(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j .




l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 (5.111)
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For each l = 1,2, . . . ,w, we also ahve

z,







M
(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j : i = 1,2, . . . ,m+1







−→
m+1

∑
i=1




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j




−M

(l)
0 z

= (m+1)M
(l)
0 z+m

m+1

∑
j=1

M
(l)
j x

(l)
j −M

(l)
0 z

= me(l) −→ e(l) [from (5.106) and char(F) ffl m] (5.112)

and

L(1), . . . ,L(w) −→z [from (5.108)] (5.113)

L(l), z −→e(l) (l = 1,2, . . . ,w) [from (5.111), (5.112)] (5.114)

L(l),z −→x
(l)
i




l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 [from (5.107), (5.114)] . (5.115)

Thus it follows from (5.113) and (5.115) that

L(1), . . . ,L(w) −→ z,






x
(l)
i :

l = 1,2, . . . ,w

i = 1,2, . . . ,m+1






. (5.116)

We will now bound the number of independent entries in each list L(l).

By equating message components in equation (5.107), we have:

Ik =D
(l)
i,e M

(l)
i




l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



 [from (5.105), (5.106), (5.107)] (5.117)

Since each D
(l)
i,e is k×n and k ≤ n, the rank of each matrix is at most k, but we also have

rank
(

D
(l)
i,e

)

≥ rank
(

D
(l)
i,e M

(l)
i

)

[from (5.67)]

= rank (Ik) = k [from (5.117)] .

Hence rank
(

D
(l)
i,e

)

= k, which by Lemma (5.A.4), implies rank
(

Q
(l)
i,e

)

= n− k. Therefore each vector

function

Q
(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j






(l = 1,2, . . . ,w)

(i = 1,2, . . . ,m+1)
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in the list L(l) has dimension n− k.

If we view the message vectors as random variables, each of whose k components are independent

and uniformly distributed over the field F, then we have the following entropy (using logarithms base |F|)

upper bounds:

H




Q

(l)
i,e




M

(l)
0 z+

m+1

∑
j=1
j 6=i

M
(l)
j x

(l)
j




 :

l = 1,2, . . . ,w

i = 1,2, . . . ,m+1




≤ w(m+1)(n− k) (5.118)

H



e
(l)
i :

l = 1,2, . . . ,w

i = 1,2, . . . ,m+1



≤ w(m+1)n. (5.119)

Since each message is independent and uniformly distributed over F and z,x
(l)
i ∈ Fk, we have

(w(m+1)+1)k =H



z,






x
(l)
i :

l = 1,2, . . . ,w

i = 1,2, . . . ,m+1









.

≤ H
(

L(1), . . . ,L(w)
)

[from (5.116)]

≤ w(m+1)n−w(m+1)k. [from (5.118), (5.119)]

which implies

k

n
≤

2w(m+1)

2w(m+1)+1
.

Thus the linear capacity of N2(m,w) for finite-field alphabets whose characteristic does not divide m is

upper bounded by 1− 1
2mw+2w+1

. �

5.A.3 N3 Capacity Proof

Proof of Lemma 5.5.8. By Lemma 5.5.6, the network N3(m1,m2) is scalar linearly solvable over any finite

field whose characteristic is relatively prime to m1 or m2, so the network’s linear capacity for such fields

is at least 1. By Lemma 5.2.4, network N0(m1) has capacity equal to 1, the block B(1)(m1) together with

the source nodes Sz, S
(1)
1 , S

(1)
2 , . . . , S

(1)
m1 forms a copy of N0(m1), so the capacity of N3(m1,m2) is at most

1. Thus both the capacity of N3(m1,m2) and its linear capacity over any finite field whose characteristic is

relatively prime to m1 or m2 are 1.

To prove part (c), consider a (k,n) fractional linear solution for N3(m1,m2) over a finite field F

whose characteristic divides both m1 and m2. Since char(F)
∣
∣ m1 and char(F)

∣
∣ m2, we have m1 = m2 = 0

in F. We have x
(l)
j ,z ∈ Fk and e

(l)
i ,e(l) ∈ Fn, with n ≥ k, since the capacity is one. There exist n× k coding
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matrices M
(l)
j ,M

(l)
i, j with entries in F, such that for each l = 1,2 the edge vectors can be written as:

e
(l)
0 =

ml

∑
j=1

M
(l)
0, j x

(l)
j (5.120)

e
(l)
i = M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
i, j x

(l)
j (i = 1,2, . . . ,ml) (5.121)

e(l) = M
(l)
0 z+

ml

∑
j=1

M
(l)
j x

(l)
j (5.122)

and there exist k×n decoding matrices D
(l)
i,e , D

(l)
i with entries in F, such that for each l = 1,2 the receivers

within the block B(l)(ml) can recover their respective demands from their received edge vectors by:

R
(l)
0 : z = D

(l)
0,e e(l)+D

(l)
0 e

(l)
0 (5.123)

R
(l)
i : x

(l)
i = D

(l)
i,e e(l)+D

(l)
i e

(l)
i (i = 1,2, . . . ,ml). (5.124)

For each l = 1,2, by (5.120) and (5.122), if we set z = 0 in (5.123), we have

0 = D
(l)
0,e

ml

∑
j=1

M
(l)
j x

(l)
j +D

(l)
0 e

(l)
0

∴

ml

∑
j=1

M
(l)
j x

(l)
j −→ D

(l)
0 e

(l)
0 (5.125)

and similarly, for each i = 1,2, . . . ,ml , by (5.121) and (5.122), if we set x
(l)
i = 0 in (5.124), we have

0 = D
(l)
i,e




M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j




+D

(l)
i e

(l)
i

∴e
(l)
i −→ D

(l)
i,e




M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j




 . (5.126)

Since the receiver Rz recovers message vector z linearly from its incoming edge vectors, we have






e
(l)
i :

l = 1,2

i = 0,1, . . . ,ml






−→ z. (5.127)

As in Lemma 5.3.4, for each l = 1,2 and i = 1,2, . . . ,ml , let Q
(l)
0 be the matrix Q in Lemma 5.A.4

corresponding to when D
(l)
0 is the matrix A in the lemma, and let Q

(l)
i,e be the matrix Q corresponding to

when D
(l)
i,e is the matrix A.
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Let L(1) and L(2) be the lists from Lemma 5.3.4 (where z plays the role of x0), corresponding to the

left-hand side and right-hand side of the network, respectively. Specifically, for each l = 1,2, let L(l) be the

list

Q
(l)
0 e

(l)
0

e
(l)
i (i = 1,2, . . . ,ml)

Q
(l)
i,e




M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j




 (i = 1,2, . . . ,ml).

For each l = 1,2, we have

L(l) −→ D
(l)
i,e




M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j




 [from (5.126)]

∴ L(l) −→ M
(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j [from Lemma 5.A.4] . (5.128)

and






M
(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j : i = 1,2, . . . ,ml







−→
ml

∑
i=1




M

(l)
0 z+

ml

∑
j=1
j 6=i

M
(l)
j x

(l)
j




= ml M

(l)
0 z+(m1 −1)

ml

∑
j=1

M
(l)
j x

(l)
j

=−
ml

∑
j=1

M
(l)
j x

(l)
j

[
from char(F)

∣
∣ ml

]
, (5.129)

and so

L(l) −→
ml

∑
j=1

M
(l)
j x

(l)
j [from (5.129), (5.128)] (5.130)

L(l) −→ D
(l)
0 e

(l)
0 [from (5.125), (5.130)] (5.131)

L(l) −→ e
(l)
0 [from Lemma 5.A.4, (5.131)] (5.132)

z,
ml

∑
j=1

M
(l)
j x

(l)
j −→ e(l) [from (5.122)] (5.133)

L(l), z −→ e(l) [from (5.130), (5.133)] (5.134)
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Finally, we have

L(1),L(2) −→ z [from (5.127), (5.132)] (5.135)

L(l), z −→ x
(l)
i (l = 1,2 and i = 1,2, . . . ,ml) [from (5.124), (5.134)] . (5.136)

Thus equations (5.135) and (5.136) imply

L(1),L(2) −→ z,






x
(l)
i :

l = 1,2

i = 1,2, . . . ,ml






. (5.137)

We have L(l) corresponding to the same set of vector functions (with a slight change of labeling)

as the list L for N1(ml) in Lemma 5.3.4. Thus the bound on the entropy of the list L in the proof of

Lemma 5.3.4 can be used to bound the entropy of the list L(1),L(2). Since each message is independent and

uniformly distributed over F and z,x
(l)
i ∈ Fk, we have

(m1 +m2 +1)k = H



z,






x
(l)
i :

l = 1,2

i = 1,2, . . . ,ml











≤ H(L1,L2) [from (5.137)]

≤ (2m1 +2m2 +2) n− (m1 +m2 +2) k [from (5.100), (5.101), (5.102)]

which implies

k

n
≤

2m1 +2m2 +2

2m1 +2m2 +3
.

Thus the linear capacity of N3(m1,m2) for finite-field alphabets whose characteristic divides both m1 and

m2 is upper bounded by 1− 1
2m1+2m2+3

.

Consider a (k,n) = (2m1 + 2m2 + 2, 2m1 + 2m2 + 3) fractional linear code for N3(m1,m2) over

any finite-field alphabet whose characteristic divides both m1 and m2, described below. Let the (k + 1)-

dimensional edge vectors on the left-hand-side of the network be given by

[

e(1)
]

l
=







[z]l +
m1

∑
j=1
j 6=l

[

x
(1)
j

]

l
(l = 1,2, . . . ,m1)

[z]l +
m1

∑
j=1

[

x
(1)
j

]

l
(l = m1 +1, . . . ,k)

[z]m1+1 +
m1

∑
j=1

[

x
(1)
j

]

j
(l = k+1)
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[

e
(1)
0

]

l
=







m1

∑
j=1
j 6=l

[

x
(1)
j

]

l
(l = 1,2, . . . ,m1)

m1

∑
j=1

[

x
(1)
j

]

l
(l = m1 +1, . . . ,k)

m1

∑
j=2

[

x
(1)
j

]

j
(l = k+1)

[

e
(1)
i

]

l
=







[z]l +
m1

∑
j=1
j 6=i
j 6=l

[

x
(1)
j

]

l




l = 1,2, . . . ,m1

and l 6= i





[z]m1+1 +
m1

∑
j=1
j 6=i

[

x
(1)
j

]

j
(l = i)

[z]l +
m1

∑
j=1
j 6=i

[

x
(1)
j

]

l
(l = m1 +1, . . . ,k)

[z]m1+i+1 (l = k+1).

(i = 1,2, . . . ,m1)

For brevity, let δ = 2m1 +m2 +2 = k−m2, and let the (k+1)-dimensional edge vectors on the right-hand-

side of the network be given by

[

e(2)
]

l
=







[z]l +
m2

∑
j=1

[

x
(2)
j

]

l
(l = 1,2, . . . ,δ )

[z]l +
m2

∑
j=1

j 6=l−δ

[

x
(2)
j

]

l
(l = δ +1, . . . ,k)

[z]δ +
m2

∑
j=1

[

x
(2)
j

]

δ+ j
(l = k+1)

[

e
(2)
0

]

l
=







m2

∑
j=1

[

x
(2)
j

]

l
(l = 1,2, . . . ,δ )

m2

∑
j=1

j 6=l−δ

[

x
(2)
j

]

l
(l = δ +1, . . . ,k)

m2

∑
j=2

[

x
(2)
j

]

δ+ j
(l = k+1)
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[

e
(2)
i

]

l
=







[z]l +
m2

∑
j=1
j 6=i

[

x
(2)
j

]

l
(l = 1,2, . . . ,δ )

[z]δ +
m2

∑
j=1
j 6=i

[

x
(2)
j

]

δ+ j
(l = δ + i)

[z]l +
m2

∑
j=1
j 6=i

j 6=l−δ

[

x
(2)
j

]

l




l = δ +1, . . . ,k

and l 6= δ + i





[z]2m1+1+i (l = k+1).

(i = 1,2, . . . ,m2)

For each i = 1,2, . . . ,m1, the left-hand-side receivers can linearly recover their demands as follows:

R
(1)
0 :

[

e(1)
]

l
−
[

e
(1)
0

]

l
= [z]l (l = 1,2, . . . ,k)

R
(1)
i :

[

e(1)
]

k+1
−
[

e
(1)
i

]

i
=
[

x
(1)
i

]

i

[

e(1)
]

l
−
[

e
(1)
i

]

l
=
[

x
(1)
i

]

l




l = 1,2, . . . ,k

and l 6= i



.

For each i = 1,2, . . . ,m2, the right-hand-side receivers can linearly recover their demands as follows:

R
(2)
0 :

[

e(2)
]

l
−
[

e
(2)
0

]

l
= [z]l (l = 1,2, . . . ,k)

R
(2)
i :

[

e(2)
]

k+1
−
[

e
(2)
i

]

δ+i
=
[

x
(2)
i

]

δ+i

[

e(2)
]

l
−
[

e
(2)
i

]

l
=
[

x
(2)
i

]

l




l = 1,2, . . . ,k

and l 6= δ + i



.

For each l = 1,2, . . . ,m1, we have

m1

∑
i=1
i6=l

[

e
(1)
i

]

l
= (m1 −1) [z]l +(m1 −2)

m1

∑
j=1
j 6=l

[

x
(1)
j

]

l

=−[z]l −2
[

e
(1)
0

]

l

[
from char(F)

∣
∣ m1

]
. (5.138)
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Similarly, for each l = δ +1, . . . ,k, we have

m2

∑
i=1

i6=l−δ

[

e
(2)
i

]

l
= (m2 −1) [z]l +(m2 −2)

m2

∑
j=1

j 6=l−δ

[

x
(2)
j

]

l

=−[z]l −2
[

e
(2)
0

]

l

[
from char(F)

∣
∣ m2

]
. (5.139)

The shared receiver can recover z as follows:

Rz : −2
[

e
(1)
0

]

l
−

m1

∑
i=1
i6=l

[

e
(1)
i

]

l
= [z]l (l = 1,2, . . . ,m1) [from (5.138)]

[

e
(1)
1

]

1
−
[

e
(1)
0

]

k+1
= [z]m1+1

[

e
(1)
l−m1−1

]

k+1
= [z]l (l = m1 +2, . . . ,2m1 +1)

[

e
(2)
l−2m1−1

]

k+1
= [z]l (l = 2m1 +2, . . . ,δ −1)

[

e
(2)
1

]

δ+1
−
[

e
(2)
0

]

k+1
= [z]δ

−2
[

e
(2)
0

]

l
−

m2

∑
i=1

i6=l−δ

[

e
(2)
i

]

l
= [z]l (l = δ +1, . . . ,k) [from (5.139)] .

Thus the code is, in fact, a linear solution for N3(m1,m2). �
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Chapter 6

Big Picture Discussion

There are many open problems related to network coding theory, and in this chapter, we briefly

discuss how the results in this dissertation fit into the bigger picture of network coding theory. We also

comment on some potential directions for future work.

6.1 Can a Network be Linearly Solvable over Rings but not Fields?

It is known that not all solvable networks are linearly solvable over fields (or even rings or modules),

so it is natural to ask whether rings can ever attain solvability when fields cannot. In Section 3.2.1, we

established that vector linear solvability over some field is equivalent to linear solvability over some module

(which generalizes both scalar and vector linear solvability over rings). We also showed that scalar linear

solvability over some field is equivalent to scalar linear solvability over some commutative ring. Hence it

is possible for a network to be scalar linearly solvable over some ring yet not over any field, but such a

network will also have a vector linear solution over some field. In this sense, allowing for a broader class of

linear codes does not make more networks “linearly solvable.”

In Sections 2.5.1 and 3.3.1, we additionally studied cases where networks do not have scalar linear

solutions over a given field, yet do have a scalar linear solution over some other ring of the same size. We

showed that, for each prime p, there exists such a ring of size pk if and only if k 6∈ {1,2,3,6}. Some examples

of such rings include: when k = 4, the matrix ring M2(GF(p)); when k ≥ 5 is odd, the direct product ring

GF(p(k+1)/2)×GF(p(k−1)/2); and when k ≥ 8 is even, the direct product ring GF(p(k/2)+1)×GF(p(k/2)−1).
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6.2 What is the “Best” Alphabet of a Given Size for Linear Coding?

Many networks evolve over time, as nodes and connections are added and removed, so it may be

desirable to choose the alphabet that makes the most networks linearly solvable over the alphabet. Particu-

larly, does there exist a module G of a given size such that: any network that is linearly solvable over some

module of size |G| also is linearly solvable over G itself. If there exists such a module, then this module

would be, in a sense, the “best” alphabet of a given size for linear network coding.

In Section 3.4, we demonstrated several classes of modules that are “dominated” by vector linear

codes over prime fields. For example, if k ≤ 6, then any network with a scalar linear solution over some ring

of size pk must also have a k-dimensional vector linear solution over GF(p). We showed this result extends

to all k ≥ 2 when the ring is commutative. This suggests that vector linear codes over prime fields may be

the best candidate for linear coding when the alphabet size is fixed. However, it remains to be seen whether

there can exist networks that are linearly solvable only over other modules of size pk.

6.3 What is the “Best” Alphabet for Linear Coding on a Given Network?

Implementing a network code requires computation at intermediate nodes, and the time and space

complexities of implementing a code are generally proportional to the size of the alphabet. In this sense, it

is desirable to minimize the size of the network coding alphabet. We showed in Section 3.2.1 that vector

linear solutions over finite fields yield the smallest alphabet sizes over which a given network can be linearly

solvable (even when allowing for module alphabets). However, the field and the vector dimension are not

always unique.

Of all of the ring and module alphabets to use for linear network coding, vector linear codes over

prime fields appear to be among the best. On the other hand, we have also demonstrated an infinite class of

networks that require non-linear codes to be solvable, and while vector linear codes over fields are desirable,

it is also important to understand their limitations.

6.4 Over What Alphabet Sizes is a Given Network Solvable?

The role between the size of the alphabet and the solvability of networks is a promising direction for

future research. Determining whether a network has a (possibly non-linear) solution over a given alphabet

size is decidable, but it is a difficult problem, in general. The exact alphabet sizes over which a given network

is solvable is only known for a handful of specific example networks. In Chapter 5, we demonstrated an
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infinite class of networks that require non-power-of-prime alphabet sizes (and non-linear codes) to attain

solutions. This particularly contrasts with linear network coding, since any network with a linear solution

over a ring or module must have a vector linear solution over a finite field alphabet (with prime-power

alphabet size). Another interesting direction for future research is studying structured non-linear codes,

i.e. codes that are tractable (to an extent) yet outperform linear codes, such as codes in which edges carry

polynomial functions of the inputs. A fundamental open question in network coding is whether or not

solvability is decidable, and there remains much to discover about the solvability of general networks,

particularly solvable networks that are not linearly solvable.

6.5 Can the Linear Capacity of a Network be Increased Using Rings?

There are now numerous examples in the literature of networks whose linear capacities over finite

fields are strictly less than their capacities. However, we have shown that linear codes over rings and

modules offer no improvement over linear codes over fields with respect to the capacities of networks.

Particularly, we showed in Section 4.4 that any network’s linear capacity over a ring alphabet is upper

bounded by its linear capacity over any finite field whose characteristic divides the ring’s size. This fact also

implies any two fields with the same characteristic will have the same linear capacities on every network.

Linear network coding over rings and modules offers some specific advantages over fields, but it

does not close the gap between linear network coding over fields and non-linear network codes. Whether

there exists a class of low-complexity codes that can do so remains to be seen. A fundamental open question

in network coding is whether or not capacity is computable, and there remains much potential for future

work in the area of non-linear network capacities.
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