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Wireless multimedia devices and services are beginning to emerge and will continue to in-

crease in popularity as capabilities improve. The demand to improve quality and increase the

capacity of such systems within limited bandwidth resources motivates the interest in efficient

and error-resilient image coding methods. An important problem is how to efficiently encode

images for transmission over limited-bandwidth channels while maintaining good decoded im-

age quality and resilience to channel impairments. This thesis investigates the problem of

robust image transmission over memoryless, fading, and packet erasure channels.

First, a system consisting of a high-performance embedded wavelet coder followed by a

concatenated channel code is proposed for transmission over memoryless channels. The sys-

tem maintains the progressive nature of the source coder, has reasonable complexity, and ex-

ceeds the performance of previously known systems. Error resilience and progressivity are

further explored through the problem of channel code parameter (block length and channel

code rate) optimization for progressive transmission. A general performance measure for eval-

uating progressive image coding quality is proposed and a dynamic programming optimization

algorithm is presented. Results are included for erasure channels and bit error channels. In

addition, the performances of turbo codes, low-density parity check codes, and concatenated

channel codes are compared in this context.

For fading channels, the concatenated code proposed for memoryless channels is extended

to a product code structure. The new code shows improved performance on fading channels

and slightly improved performance on memoryless channels. It also has variable amounts of

delay, depending on the level of the channel noise, allowing the progressive performance under
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good channel conditions to remain high. A cumulative distribution of decoded PSNR values

is proposed for evaluating performance on these variable channels instead of the traditional

expected PSNR value. Modifications to the source coder to increase its inherent error resilience

in combination with explicit channel coding are considered for varying channels, including

those that introduce both bit errors and packet erasures. A general performance measure is

proposed to facilitate the optimization of system parameters. Improvements are shown in terms

of robustness to a range of channel conditions.

Finally, methods for introducing an adjustable amount of source redundancy are explored

in the context of erasure channels. The erasure channel can be considered an abstraction of

an arbitrary physical channel as long as reliable error detection is possible, so the methods

are broadly applicable. A multistage coding structure is proposed which offers much flex-

ibility, even in terms of the underlying compression algorithms, as well as low complexity.

The method is demonstrated with two specific image coders. Extensions of multiple descrip-

tion scalar quantizers in combination with erasure correcting codes are proposed as another

method.
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CHAPTER 1

INTRODUCTION

This thesis addresses the problem of source and channel coding of images for transmis-

sion over noisy channels. Image compression has been extensively studied for the past several

decades for both noiseless and noisy channels. However, considerably more progress has been

achieved for the noiseless channel case. Modern communication systems face significant chal-

lenges including such things as multipath fading channels and multiuser interference. Hand-

held wireless devices, for example, must operate in severe channel conditions with limited

bandwidth and good power efficiency. Both hardware capabilities and bandwidth allocations

are beginning to emerge to support multimedia applications on these platforms. It is thus an

important and challenging problem for these channels to design image transmission systems

that perform well in both good and bad channel conditions.

This introduction provides some historical perspective on the relevant aspects of informa-

tion theory to the image transmission problem at hand. A brief history of important events

and key developments in information theory is described. In Section 1.2 the key topics and

organization of the thesis are outlined along with some discussion of related work.

1.1 A Historical Perspective

Transmission of information by electronic means dates back as far as the 1830s when mes-

sages were transmitted using Morse code via the telegraph. Morse code is an early example

of data compression, where more common letters are represented with shorter symbols (e.g., a
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single dot for the letter “E”). While Morse code represents an early application, it was not until

1948 that key ideas of data compression were formally introduced with the birth of information

theory. Because a Morse coded message can be perfectly recovered from the symbols (dits and

dots) it can be referred to as a lossless compression scheme. For many types of messages only

lossless compression is acceptable, but for analog information sources such as audio, image,

video, and voice, some loss is usually acceptable and can often be made imperceptible (audibly

or visually) to humans.

Voice communication by analog signals transmitted over wires became a reality with in-

vention of the telephone in the 1870s. This invention was quickly followed in the 1890s and

early 1900s by the inventions of the wireless telegraph and AM radio. At that point analog

voice messages could be transmitted over wireless links. Transmission of visual information

soon followed with the invention of the television in the mid 1920s.

Until the invention of pulse-code modulation in the late 1930s, no digital methods had been

used to transmit analog continuous-time signals. The digital representation of analog signals

opened up new possibilities for data compression and transmission. One of the first uses of

lossy compression was the Vocoder [1] where the bandwidth requirement of a voice signal

could be reduced at the cost of fidelity.

In 1948, Claude Shannon published “A mathematical theory of communication,” [2] which

describes the fundamental laws of data transmission over noisy channels and data compression.

This publication is considered to mark the birth of the field of information theory. The main

idea in Shannon’s work was to model information transmission from a probabilistic viewpoint.

In terms of source coding, Shannon showed in his 1948 paper that there is a lower bound

(related to the statistics of the source) to the amount a source can be compressed and still be

perfectly reconstructed. This result describes fundamental limits on the capabilities of lossless

compression. Examples of lossless compression methods include Huffman, Lempel-Ziv, and

arithmetic coding. Many texts on information theory such as [3, 4] can provide more details.

In the area of coding for noisy channels, Shannon dispelled the belief that the channel code

rate had to go to zero to achieve arbitrarily small error probabilities. Instead he discovered a

quantity known as the capacity which characterizes the channel’s transmission potential, and
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he showed that arbitrarily small error probabilities could be achieved at any rate below the

capacity. The proof was based on random coding arguments showing that the average over all

possible codes was good, so at least one good code exists. The question of finding practical

codes with the promised performance remained an open problem in his paper. In more than

50 years since Shannon’s seminal paper, much progress has been made in the area of channel

coding and modulation, but the problem of achieving capacity is still not solved.

Shannon also provided the framework for lossy compression in his source coding theorem

subject to a fidelity criterion [2, 5]. The goal of lossy compression is not to perfectly reconstruct

the source, but to reconstruct within a given tolerance. Shannon defines a bound, called the rate-

distortion function of the source, which gives the minimum rate at which the source information

can be encoded within the specified distortion. He then shows that there exist source coders

which can code at rates arbitrarily close to the bound by using long blocks of source samples.

Source and channel coding ideas are combined in Shannon’s “separation principle,” which

states that in the limit of long block length there is no loss of optimality in designing the

optimal source coder without concern for the channel (i.e., noise-free conditions) and optimal

channel coder without concern for the source (i.e., assuming i.i.d. equally likely source bits)

[3]. The result assumes no constraints on delay or complexity. For a practical system, these

asymptotic conditions cannot typically be met, so some type of joint source-channel design can

be beneficial in certain situations.

Applications such as telephone modems, compact disks, computer hard drives, and cellular

telephones have driven many of the developments in the areas of source and channel coding.

For example, the worldwide cellular phone market for handsets was at 160 million units in

1998, 250 million units in 1999, and there are some projections of as many as 500 million units

in 2000. This rapid growth is causing a large demand for improvements. The third generation

wireless standards, called “3G,” will roll out soon and promise much higher bandwidths (e.g.,

2 Mbits/s for stationary indoor, 144 kbits/s for mobile [6]). As capabilities have increased so

have the demands for new and more complex products and services. Most recently, wireless

multimedia products are on the horizon and present many challenges in the area of robust audio,

image, and video coding.
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1.2 Organization and Contributions

Almost all modern image compression algorithms are based on quantizing and coding of

a transformed representation of the image (typically the output of a linear transform). For

example, the current Joint Photographic Experts Group (JPEG) image coding standard [7] is

based on quantization and coding of ����� discrete cosine transform (DCT) coefficients. More

recently coders based on wavelet transforms [8, 9, 10, 11, 12] have been proposed which show

significant improvements over the DCT-based methods, especially at low rates. In addition,

many of these coders are progressive, meaning that the bit stream they produce can be decoded

at more than one rate yielding improved quality with increasing rate. This property allows a

single bit stream to satisfy a number of quality levels. However with the excellent compres-

sion performance typically comes high sensitivity to errors due to the large amount of state

information required for correct decoding and the use of variable length codes. In many cases,

errors or erasures cause the decoder to lose synchronization, causing even correctly received

source information to be useless to the decoder since it cannot be interpreted correctly. If

the coder is very likely to lose synchronization upon suffering an error and resynchronization

typically requires a large number of bits (some coders may never resynchronize), the coder

may be said to have a serial decoding requirement to emphasize the dependencies within the

bit stream. Chapter 2 provides more background information on image coding as well as the

channel models used throughout the thesis.

One approach to joint source-channel coding, often referred to as joint source-channel

matching or concatenated source-channel coding, considers the cascade of known source and

channel coders and determines how to best allocate rate, possibly with unequal error protec-

tion (UEP), between the source and channel codes. Numerous references exist for this ap-

proach, including [13, 14, 15, 16, 17, 18, 19]. Analytic results on the optimal rate allocation

for vector quantizers are presented in [20].

In Chapter 3 a system composed of a high-performance progressive wavelet image coder

and a concatenated channel code is presented for transmission over memoryless channels. The

performance obtained exceeds that of previously known systems. In the same chapter, the
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problem of channel code parameter optimization, both blocklength and rate, is explored for

progressive transmission over noisy channels. A general performance measure is defined and a

dynamic programming solution is proposed. Results are provided for Reed-Solomon codes on

erasure channels and a comparison between turbo, low density parity check, and RCPC/CRC

codes is provided for bit error channels.

The coding method in Chapter 3 is extended to fading channels in Chapter 4 which are a

more accurate model of many wireless environments.

The source-channel matching method may work well for certain known channels as the

results in Chapter 3 will show, and in cases where a standard algorithm is required, it may be

the only option. However, when the channel is unknown or varying, or when there are multiple

simultaneous channels as in a broadcast environment, the designer may have to select a channel

code for the worst-case channel conditions to get reasonable performance in that case. The

reason is that the decoded error probability of most channel codes exhibits a fast transition to

poor performance as the channel conditions become noisier than the design conditions (this

was studied analytically in [21]). In that case, it is important for the source coding algorithm

to degrade gracefully in the presence of errors even if some compression performance must be

sacrificed under noiseless conditions. In a certain sense, this can be accomplished by adding

source code redundancy instead of (or in addition to) channel code redundancy.

A number of methods have been previously developed to improve source reproduction

performance on noisy channels by exploiting source redundancy. The source redundancy is

generally either explicitly inserted or is a byproduct of source coder imperfections. The source

redundancy is most commonly used to maintain synchronization, allow smoothing algorithms

to reduce large distortions, or detect channel decoding errors [22, 23, 24, 25, 26, 27]. Unfortu-

nately, the performance of most robust image coders lags significantly behind that of the best

image compression algorithms designed for noiseless transmission [28]. Also, there is gener-

ally no convenient method for adjusting the level of source redundancy to better match channel

conditions.

Source redundancy has also been used to modify the a priori bit probabilities in the channel

decoding algorithm in [29, 30, 31, 32]. However, it is often not practical to accurately estimate
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the probabilities of source coder output sequences. Also, in sequence decoding there may

be a significant delay before incorrect candidate sequences can be eliminated by the channel

decoding algorithm (because they are improbable source sequences).

In Section 4.3, source redundancy is introduced through the use of a robust source coder

in combination with forward error control (FEC) coding. A general optimization criterion is

proposed for selecting the proper channel coding rate. The coder is shown to degrade gracefully

and perform well on channels with both bit errors and packet erasures.

One problem with the previous coder is that the amount of source redundancy is not ad-

justable. It is desirable to develop coders where both the channel code and source code re-

dundancy can be tuned for the requirements and channel conditions. One goal is to develop

specific and practical methods for high-performance and robust image coding with this idea

in mind. Chapter 5 presents methods and analysis for coders with a tunable amount of source

redundancy.

In summary, contributions of the research in this thesis include:

� A highly flexible and practical image transmission system for memoryless channels con-

sisting of a cascade of the SPIHT image coding algorithm and RCPC/CRC concatenated

channel codes. This system has performance exceeding that of previously published

results [19, 28].

� Extensions of the previous system to fading channels. A new flexible channel coding

technique designed to fit well with the source coder and offer good protection over fading

channels is presented. Although the system is designed primarily for fading channels, it

actually exceeds the performance of the previous system on memoryless channels [33,

34].

� Definition of a general performance measure for progressive coding. A dynamic pro-

gramming optimization of channel code block length and rate for maximizing the per-

formance measure is presented [35].

� Definition of a general optimization criterion for coders operating on highly variable

channels. An error-resilient coder is introduced combining robust source coding and
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explicit channel coding which degrades gracefully and performs well on channels that

introduce both bit errors and packet erasures [36, 37].

� A macroscopic multistage encoding structure which provides a method for tunable source

redundancy. The method is shown to provide improved robustness over recently pub-

lished results [38].

Finally, a summary and some conclusions as well as suggestions for possible future research

directions are discussed in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter presents terminology, definitions, and background information on image com-

pression algorithms and channel models that will be used throughout the thesis. Section 2.2

discusses lossy image coding and Section 2.3 covers the channel models.

2.2 Image Coding

This section presents some background material on lossy image compression which is rele-

vant to the experimental results and specific source coding concepts in this thesis. Terminology

relating to image coding is explained, and a brief description, including a numerical example,

of zerotree wavelet coding is provided.

2.2.1 Lossy image coding structures and terminology

A lossy compression algorithm is not constrained by the requirement that the decoded

image must be identical to the original as in lossless compression. Instead the goal is to achieve

good fidelity according to some measure with as few bits as possible. The distortion and rate

can be traded off according to their relative importance for the application. In image coding,

the rates are typically normalized by the number of pixels in the image and reported as bits per

pixel (bpp) so that reported rates are independent of image dimensions.
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A common distortion measure used in image coding is the mean squared error (MSE). The

MSE for a reconstructed image
�� , of dimension � ��� , with respect to the original image �

is given by

���	��
 �� � � � ���
�� � ����� �

� � ��� �� � � ����� � (2.1)

The value is often converted to a logarithmic scale to make it easier to view large dynamic

ranges. The most common measure is peak signal-to-noise ratio (PSNR) which is the ratio of

the peak amplitude squared to the MSE or��� �"!#
 �%$'&)(+*,(.-/$10323465 71&
� �

��� � � (2.2)

Images used throughout this work were grayscale with resolution of 8 bpp, so in this case the

PSNR equation reduces to �8�	�9!#
 �;:�<�<
� �

��� � � (2.3)

Almost all high-performance image compression algorithms consist of some type of trans-

form (typically a linear transform) followed by quantization of the transform coefficients, and

then lossless entropy coding of the quantized values. Figure 2.1 shows a block diagram of

the basic encoder structure. The specific choices of transform, quantizers, and encoding of

quantization symbols (including any entropy coding) lead to a wide variety of coders such as

DCT-based coders like the JPEG standard [7] to more recent wavelet-based coders like Embed-

ded Zerotree Wavelet (EZW) [11] and Set Partitioning in Hierarchical Trees (SPIHT) [10]. The

transform stage acts to pack the energy into a smaller set which can be coded more conveniently

than direct coding of the original image. All the encoding loss is confined to the quantization

stage where the quantizer resolution provides the tradeoff between rate and distortion. Finally,

the entropy coding removes some of the residual redundancy among the quantizer symbols.

More information on transform coding can be found in [39].

These high-performance compression algorithms tend to use variable length coding as well

as maintain a large amount of state information. Interpretation of input bits depends on the

current state of the coder, which may be a function of many previously received bits. An image
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Image Source Transform Quantization Entropy Coding
1011010

Figure 2.1 Block diagram of typical image coding system.

coder is said to have a serial decoding requirement if the decoder must decode the bit stream

in a sequential and uninterrupted fashion for correct interpretation of the bits. This concept

is basically concerned with the resynchronization time of the decoder after an error (i.e., how

many correct bits after an error before the decoder is correctly decoding symbols). Algorithms

with very long resynchronization times can effectively be considered to have a serial decoding

requirement.

Within the class of lossy image coders, coders can be categorized according to certain

properties of the bit streams they produce. A bit stream is said to be progressive if it can be

decoded at more than one transmission rate to yield potentially coarser image qualities at lower

transmission rates. One bit stream is said to be embedded in a second bit stream if the first bit

stream is a prefix of the second bit stream. An image coder is progressive if the encoder output

bit stream at every transmission rate is progressive. An image coder is said to be embedded

if the encoder output bit stream for every transmission rate is embedded in the encoder output

bit stream for any higher transmission rate. If an image coder is embedded, then it is clearly

progressive. Figures 2.2(a) - 2.2(d) illustrate the progressive concept by showing a series of

images decoded from a single bit stream at increasing rates.

The “amount of progressivity” of an image coder qualitatively refers to the number of dif-

ferent transmission rates that yield progressive bit streams. Similarly, the “amount of embed-

dedness” refers to the number of different transmission rates whose bit streams are embedded

in those of higher transmission rates. Coders that are nonembedded typically produce different

bit streams depending on the rate for which they are optimized.
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(a) Rate � ��� ����� bpp, PSNR ��� �	� 
�� dB. (b) Rate � ��� �� bpp, PSNR ����� � � � dB.

(c) Rate � �	� � � bpp, PSNR ����� � � � dB. (d) Rate � ���� bpp, PSNR ��� 
�� ��� dB.

Figure 2.2 Demonstration of progressive image coding for the < � : � < � : Lena image using
the SPIHT coder.

11



Progressive coders are attractive because they allow a single transmission to provide dif-

ferent levels of service and can help reduce delay in browsing applications by allowing quick

rejection of undesired images. Also the compression performance cost of using a highly pro-

gressive coder is usually not high. A tabulation of recent results on several natural images

shows that current state-of-the-art embedded coders are usually within 1 dB in PSNR and of-

ten much closer to the performance of rate-optimized (nonembedded) coders [40].

2.2.2 Zerotree wavelet coding

The familiar tree-structured dependency of wavelet coefficients is shown in Figure 2.3. The

figure shows a three-stage wavelet decomposition of the 512x512 Lena image with the tree

structure for one particular spatial region highlighted. Coefficients with large magnitudes have

dark gray levels in the image, and each subband has been normalized so the relatively large

coefficients in each subband will be visible. The dependency between the subband coefficients

is clearly demonstrated by the appearance of recognizable elements of the original image in

each subband. Hereafter, a wavelet tree will refer to the set of wavelet coefficients with a

root coefficient in the lowest frequency subband together with its descendants from the other

subbands as depicted in Figure 2.3.

A number of high-performance image coding algorithms have been proposed in recent

years based on exploiting the tree-structured dependency among wavelet subband coefficients

[11, 10, 9, 12]. Shapiro’s EZW [11] algorithm and the refined algorithm, SPIHT [10], by Said

and Pearlman are two examples. Both coders are embedded and have excellent compression

performance.

The term zerotree refers to an efficient method of encoding groups wavelet coefficients. The

main idea is to efficiently encode the regions of insignificance (i.e., wavelet domain regions

with small coefficient magnitudes relative to some threshold) with the zerotree symbol, which

plays a role similar to the end-of-block symbol in JPEG coding. If a coefficient and all its

descendants in a wavelet tree are insignificant with respect to the given threshold, then the

coefficient belongs to a zerotree. Both EZW and SPIHT use this concept to encode the wavelet

coefficients in a bitplane fashion.
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Figure 2.3 An example wavelet domain image demonstrating the tree-structured dependency
of coefficients.

Figure 2.4 shows a numerical example demonstrating one iteration of the EZW coding

algorithm. The wavelet coefficient values of a three-level wavelet decomposition are shown

with the lowest frequency subband in the upper left corner. The table lists the coefficients in

the order they are visited during the first iteration, the symbol value output by the encoder,

and the decoder reconstruction estimate after decoding the symbol. In this example, the initial

threshold was selected to be the largest power of two that is less than the maximum coefficient

magnitude. The coefficients with magnitudes above the threshold (i.e., significant coefficients)

are identified by either the POS or NEG symbols, which also indicate the sign value and result

in a nonzero decoded value for that pass. In subsequent iterations, the previously found sig-

nificant coefficients are further refined by one bit for each coefficient to reduce the size of the

uncertainty interval (referred to as the refinement pass). As the threshold is reduced by a factor

of two at each iteration, the result is a bit-plane encoding of the coefficient values. The encoder

output symbols are then losslessly compressed with an entropy coder.

For the purpose of robust image coding, it is often important to partition an image into

pieces prior to encoding. Each piece is treated like an independent image by the encoding al-

gorithm. Partitioning an image can avoid error propagation by localizing all of the distortions
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Figure 2.4 Coding example of EZW algorithm on a three-level wavelet-domain image.
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caused by losses in any one piece. A subimage refers to a piece (partition element) of an entire

image which is coded independently. For the coders that follow, a subimage specifically con-

sists of an ordered set of wavelet trees. Also, the partition of the original image into subimages

will be called the image partition, and it refers to the partition of an ordered set throughout this

document.

2.3 Channel Models

Different transmission environments (e.g., deep space, terrestrial wireless, packet wireline,

etc.) introduce different impairments on transmitted data. The exact nature of the channel plays

an important role in determining good error protection strategies. This chapter provides some

background information on the types of channels used throughout this work.

2.3.1 Memoryless channels

Memoryless channels are the predominant type of channel model used in communication

system design and analysis. In this class of channels, the noise affects each transmitted symbol

independently. Figure 2.5(a) shows a diagram of the additive white Gaussian noise (AWGN)

channel model where � � �
�

is the transmitted signal, � � �
�

is the white Gaussian noise process,

and � � �
�

is the received signal. Error probabilities for digital communication depend on the

signal-to-noise ratio (SNR) as well as the modulation scheme. For binary phase-shift keying

(BPSK) modulation the bit error probability for the AWGN channel is given by

��� 
�� � 	 :�
 SNR

� 
 �
: erfc � 	 SNR

�
� (2.4)

In some systems the demodulator can provide reliability information about the demodulated

symbol values, which can be useful in decoding channel codes. For those systems that only

provide hard bit decisions, the channel and demodulator together can be modelled by an equiv-

alent discrete channel, the binary symmetric channel (BSC). A diagram of the BSC is shown in

Figure 2.5(b) where the crossover probability � is the bit error probability. This bit error proba-

bility is also referred to as the bit error rate (BER) of the channel. For each bit transmitted, the

correct bit is received with probability � � � ; otherwise, the opposite bit is received.
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Figure 2.5 Memoryless channel models.
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2.3.2 Fading channels

In contrast, fading channels exhibit memory so errors tend to occur in clusters or bursts

when the channel is in a bad state. When designing for a fading channel it is important to

consider the average fade durations of various severities in addition to the average channel

error rate.

2.3.2.1 Gilbert-Elliot channel

The Gilbert-Elliot channel model is a simple two-state Markov model for a discrete channel

with memory. The state diagram of the model is shown in Figure 2.6. Within each state the

channel acts like a BSC of the appropriate error rate ( ��� for the bad state and ��� for the good

state) and at each bit interval the channel changes state with probabilities governed by the

model transition probabilities ����� 
 �	� � 
������� �����
�

and ����� 
 �	� � ������� 
�����
�
. The

average fade duration or mean holding time in the bad state is given by

�� 
 ������ (2.5)

and the average bit error probability is

���� 
 ��� �����
������� ����� � ���

�����
����� � ����� � (2.6)

P
GB

P
BG

ε
B

BER = εBER = 
G

Good Bad

Figure 2.6 Gilbert-Elliot fading channel model.
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2.3.2.2 The Rayleigh channel

The Rayleigh channel is a fading channel where the state varies over a continuous range as

opposed to the two state Gilbert-Elliot model. In wireless transmission systems, the received

signal power varies due to constructive and destructive interference between multiple copies of

the signal arriving at the antenna along different paths. If the delay experienced by all of the

paths is short relative to a bit interval, the channel is said to be a flat-fading channel. In this

case, the signal waveform shape is not distorted, and the effect of the multipath is to introduce

a random multiplicative gain � on the received signal. The random gain � has a Rayleigh

distribution [41]. This document only discusses flat-fading Rayleigh channels.

For BPSK modulation, the error rate or average error probability is given by� � ! 
 �
:
�� � � � �"!� � � �"!��� (2.7)

where � �9! is the average received SNR. Note that the SNR quantities in the equations are on

a linear scale, whereas in the text they are reported in dB according to the usual convention. As

an example, an average SNR of ��� dB implies a BER of � � � :
	 , and an average SNR of 20 dB

implies a BER of � � ��� :�< . Unlike memoryless channels, such as the BSC and AWGN channels,

the errors in the Rayleigh channel tend to occur in bursts. Therefore another channel statistic

of interest is the average burst or fade duration.

Throughout this work, Jakes’ method [42] is used to simulate BPSK transmission over

a Rayleigh channel. With this model, the channel is characterized by two parameters—the

average SNR and the normalized Doppler spread �� . The maximum Doppler shift ��� of a

signal with carrier frequency ��� and mobile speed � is given by��� 
 ��� � � (2.8)

where
�

is the speed of light. For example, if the carrier frequency is � ��� MHz and the mobile

speed is � miles/h, the resulting maximum Doppler shift is �
� 
 < � 	 � Hz. Dividing ��� by the

data rate gives the normalized Doppler spread (i.e., �� 
 ������� where � is the data rate). If the

data rate is 500 kbits/sec and the other parameters are as previously mentioned, the normalized

Doppler spread is �� 
 � � ��� � ������� .
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The average fade duration is also dependent on the fade margin, which characterizes the

amount that the SNR can be reduced before communication becomes unreliable. For BPSK

transmission, the probability of a bit error given a received signal-to-noise ratio SNR � is given

by (2.4) with SNR 
 SNR � . A value � � 
 � � � corresponds to SNR � 
 � � � � <�< � dB while
� � 
 � � � � corresponds to SNR � 
 � � 	 :
	 : dB. Then from [43], the average fade duration in bit

intervals is given by

� 
 ��� �
� �� �� 	 : � (2.9)

where � is the received amplitude normalized by the RMS amplitude and is computed accord-

ing to

� 
 � � �"! �� �9! � (2.10)

With the values � �"! 
 ��� dB and �
 
 ������� , the average fade duration for �
	�� � � � is
� 
 ��� � � < bits and for �	�� � � � � is � 
 :�	 � 	 : bits. Clearly the fade duration depends on

the fade margin designed into the system (i.e., how much the channel error rate can increase

before decoding failures become significant).

2.3.3 Multiple descriptions and the packet erasure channel

The packet erasure channel is different from the previous channels because lost data simply

never reaches the receiver. In the previous channel models, data is lost due to excessive errors

which cause channel decoding failures, but the data always reaches the receiver. The well

known multiple description (MD) problem from information theory is typically focused on the

special case of transmitting source information across two channels, each of which either car-

ries the data without error or completely fails [44, 45]. When both channels are functioning the

resulting reconstruction distortion is referred to as the central channel distortion, and the dis-

tortion resulting from the reconstruction with only one channel is referred to as the side channel

distortion. The goal of the MD problem is typically posed as minimizing the central channel

distortion subject to upper bounds on the side channel distortions. Some of the techniques used

for traditional MD coding can be applied to the problem of coding for packet erasure channels.
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The packet erasure channel can be considered to be a generalization of the MD channel

model where there is an arbitrary number of channels, from which any subset of channels may

fail. This model applies to transmission over a wireline network where packets are lost because

of misrouting, queue overflow, or excessive delay. In the simplest model, packets are erased

independently with a probability given by the channel erasure rate. More sophisticated models

consider the bursty characteristic of erasures during heavy network congestion by introducing

a state model analogous to the extension from the BSC to the Gilbert-Elliot channel.

2.3.4 Combined packet erasure and fading channel

In the channel models described so far, losses were either due to bit errors or dropped data

never reaching the receiver. A natural extension is a channel with characteristics of both. Figure

2.7 shows a situation where this hybrid channel would occur. Data transmitted from servers

on the wireline network to mobile receivers via a wireless connection would experience both

erasure and bit error channels.

Mobile
Receivers

Wireless Network
"cellular links"

Wireline Network
"Internet"

Figure 2.7 Combined packet erasure and fading channel.
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CHAPTER 3

IMAGE CODING FOR MEMORYLESS CHANNELS

3.1 Introduction

The zerotree wavelet coders EZW and SPIHT provide excellent image compression perfor-

mance with reasonable complexity. Also since they are both embedded coders, they produce

bit streams with a high degree of progressivity. A significant problem when transmitting over

noisy channels is that these algorithms are highly sensitive to bit errors. After even a single bit

error, it is highly probable that all remaining bits will not be interpreted correctly. The effect of

an error on decoded quality depends on its location in the bit stream since later bits have less

impact on quality. To demonstrate the sensitivity of the SPIHT coder, Figures 3.1(a) - 3.1(d)

show decoded images after transmission over a BSC of various rates. Clearly, the higher error

rates result in a total collapse of image quality.

This chapter presents a channel coding method to protect the SPIHT image coder for trans-

mission over a memoryless channel. The code has very flexible parameters and reasonable

complexity. The combined system is shown to have better performance than previously pub-

lished results. The results in this chapter related to the RCPC/CRC coding method are from

[19, 28].

The problem of parameter selection (e.g., channel code rate and block length) is also dis-

cussed in this chapter. A natural approach is to consider UEP channel coding of the source

information since it is not of equal importance to the reconstructed quality. In practice the

gains associated with an optimal rate schedule are fairly small as discussed in Section 3.2.3.
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(a) Rate � �	�  bpp, no channel errors,
PSNR ��� �� ��� dB.

(b) Rate � �	�  bpp, BER �  ��� � ,
PSNR �  �	� ��� dB.

(c) Rate � �	�  bpp, BER �  � ��� ,
PSNR �  ��� 
�� dB.

(d) Rate � ���� bpp, BER �  � ��� ,
PSNR � ��	� ��
 dB.

Figure 3.1 Demonstration of bit error sensitivity of the SPIHT (without arithmetic coding)
coder using the < � : � < � : image Baboon.
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For recent high performance channel codes like turbo codes and low-density parity check

(LDPC) codes, there is a strong dependency between the code block length and the error pro-

tection capability. This property adds an interesting dimension to the problem of parameter

selection when one of the design goals is to have the image refine as quickly as possible (i.e.,

a high degree of progressivity) in addition to being resilient to channel noise. The problem of

block length and rate selection for progressive image coding is covered in Section 3.3, and the

results in this section are from [35].

3.2 A Concatenated Channel Code Using RCPC and CRC
Component Codes

One powerful method of error control coding is to use a concatenated code consisting of a

Reed-Solomon outer code followed by a convolutional inner code (e.g., [46]). This approach,

for example, was used in [47] for transmitting JPEG images across noisy channels. It was also

used in [17, 18] for transmission across a Gaussian channel, although the implementation com-

plexity appears extremely large in this case. The results in [17, 18] are also difficult to compare

since it is not clear whether soft-decision decoding was used and some overhead bits seem to

have been neglected in the overall bit rate computation. We adopt a related concatenated cod-

ing scheme with somewhat more flexibility and lower complexity to protect the output of the

SPIHT coder.

The main idea is to partition the output bit stream from the SPIHT image coder into consec-

utive blocks of length � (typically we use � 
 : ��� although its value is completely flexible).

Then a collection of
�

checksum bits are derived based only on these � bits (we use
� 
 � � ).

Finally � zero bits, where � is the memory size of the convolutional coder, are added to the

end to flush the memory and terminate the decoding trellis at the zero state. The resulting

block of � � �
�

� bits is then passed through a rate � rate-compatible punctured convolu-

tional (RCPC) coder [48].

The fact that the outer code is a cyclic redundancy code (CRC) used for error detection has

the advantages of extremely low computational complexity and great flexibility in selecting
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block lengths (block lengths are unconstrained, in contrast to Reed-Solomon block lengths).

The resulting bit stream is transmitted across a binary symmetric channel with bit error proba-

bility � and then is decoded.

The decoder consists of a Viterbi decoder with the added feature that the “best path” chosen

is the path with the lowest path metric that also satisfies the checksum equations. This addi-

tional constraint eliminates certain paths from consideration. In fact, whenever an undetected

error would occur in the ordinary Viterbi decoder without the checksum bits, the correct path

through the trellis is usually the one with the second lowest path metric. When the check bits

indicate an error in the block, the decoder usually fixes it by finding the path with the next

lowest metric. Systems of this type were analyzed in [49].

3.2.1 Decoding complexity

The complexity of the proposed channel decoder is quite reasonable, usually requiring little

computation beyond that of the usual Viterbi decoding algorithm for the convolutional code.

In addition, since punctured convolutional codes are used in this system, the trellis decoding is

simplified because the trellis is that of a � � � rate code for all the punctured rates. For a code

of rate � � � this translates into a computation savings by a factor of : � � � � � per decoded bit.

In order to easily search for other likely trellis paths if necessary, some additional storage

is required over the normal Viterbi algorithm. Usually only the survivor path and its metric

must be stored for each state at the current trellis stage, as the decoding algorithm progresses.

In this case, we store all paths and their metrics for each state and each trellis stage. The

storage requirement amounts to two paths and metrics at each state and each stage of the trellis

because the codes are punctured rate � � � codes. For the packets of length 200 bits and a

convolutional code with memory 6, the resulting memory requirement is about 40 Kbytes,

which is reasonable for an image application.

Each candidate trellis path is checked by computing a 16-bit CRC. The CRC polynomial

was selected from those listed in [50] and [51] based on the number of information bits in a

packet. For example, with 200 information bits in a packet the selected CRC polynomial was� ��� ��� ��� ��� � � � � � � ��������� � ��� � ��� �
� � . Computing the check bits is very simple,
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only requiring bit shift and XOR operations, and table lookups can be used to trade off some of

the computation with space requirements. For a 200-bit path, the byte-based algorithm requires

about 50 XORs, 25 byte shifts, and 25 lookup operations. Typically the CRC only needs to be

computed for the first candidate, but in the � � 	 � 	 � ��� (which means at most about 3-4 packets

of a rate 1.0 bpp image) of cases that require further paths to be checked, the correct path is

among the top 10 candidates � � � � of the time. Figure 3.2 shows a typical distribution of path

search depths given that the output of the Viterbi algorithm did not satisfy the CRC check.

The search for alternate candidate paths is accomplished using a tree-trellis search algo-

rithm. The same algorithm is used in speech recognition with hidden Markov models [52].

First, the maximum number of candidates � that will be decoded is selected since this de-

termines storage requirements of a stack which will contain the � most likely paths as the

search runs. The depth of the stack is selected to provide a good compromise among decod-

ing time, probability of locating the correct path, and the probability of undetected errors due

to an incorrect candidate path satisfying the CRC checks. In general, after determining the

����� best path, the next best path is determined by searching backwards in the trellis along the

� ��� best path starting from the trellis stage where it first branches from a higher ranking path.

The search amounts to comparing the metric of a new path, whose initial segment consists of

the path eliminated at that stage in the Viterbi algorithm and merges with the path in question

thereafter, to the metrics stored on the stack. Since the metric and path values are stored as

the Viterbi algorithm runs, the amount of computation is small. If the metric is low enough,

the path is placed on the stack at the appropriate location according to the metric value. After

searching to the beginning of the � ��� path, the � � � � � � � will be stored at position � � � on the

stack. Also, we note that the search is terminated as soon as a path satisfies the CRC checks,

so usually very few candidate paths need to be determined as indicated by the distribution in

Figure 3.2.
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Figure 3.2 Distribution of path search depths given that the Viterbi decoder output fails the
CRC check.

3.2.2 Performance results

The system was tested on two < � : � < � : images, the standard “Lena” and “Goldhill”

images from the USC database. These particular test images were chosen to allow for some

comparison with existing techniques. Each image was coded at bit error probabilities of � 
��� � � , � 
 ��� � � , and � 
 ��� ��� , and at transmission rates ranging from � bpp up to � bpp, in

increments of � � � < bpp. All the RCPC codes used in testing were selected from tables in [48] or

based on convolutional codes listed in [46]. In particular, a rate : � � memory 6 (punctured rate� ��� ) code was used on the � 
 ��� � � channel, a rate : � 	 memory 6 (punctured rate � � 	 ) code

was used on the � 
 ��� � � channel, and a rate � ��� memory 6 (punctured rate � � 	 ) code was used

on the � 
 ������� channel. This scheme retains the progressive nature of the underlying source

coder allowing almost a continuum of transmission rates. Each increment in the transmission

rate can be as small as about � � �
� � bpp which corresponds to the packet size we selected

containing 200 source bits. Many of the previously reported image coding systems for noisy

channels are not progressive.

For each image and each bit error probability, many thousands of independent trials were

simulated on a computer for the various transmission rates, which translates into millions of

packets. In these tests, the path search depth was limited to 100 candidate paths, and if none
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of these 100 paths satisfied the CRC check, then decoding for that image was stopped at that

packet giving incomplete decoding. The effect of incomplete decoding is often acceptable

since the output is simply the image decoded at a lower source rate. Figure 3.3 shows the

trade-off between typical image PSNR and probability of incomplete image decoding for inner

RCPC code rates of
� � ����� � � 	 � � � � � < � � � : ��� : � � � � � : � � � � � 	 � � � :+< � � � 	 � � These results are for

the Lena image coded at total (i.e., source plus channel coding) rates � � � , � � < , and � � :.< bpp

using a channel with BER = ��� � � . For our purposes, the inner RCPC codes were selected so

that the probability of incomplete image decoding was below � � � � for the highest transmission

rate of interest ( � � � bpp) for each channel BER. The highest incidence rate of incomplete

image decoding in our tests was actually around 0.005. Higher acceptable incidence rates for

incomplete decoding would allow higher typical PSNR values while more stringent incidence

rates would lower typical PSNR values.
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Figure 3.3 Trade-off between the likelihood of incomplete decoding and image quality given
complete decoding, for convolutional code rates from � ��� to � � 	 .

The curves in Figures 3.4(c)-3.5(a) show the resulting PSNR of the cascaded source coding

and channel coding system as a function of the overall transmission rate across the channel.

Figures 3.4(c), 3.4(b), and 3.4(a) are for Lena, and Figures 3.5(c), 3.5(b), and 3.5(a) are for

Goldhill. Each figure is for a fixed bit error probability � on a binary symmetric channel. The
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Figure 3.4 Comparison of the performance of the RCPC/CRC + SPIHT coder with previously
published results for image Lena transmission over a BSC.
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Figure 3.5 Comparison of the performance of the RCPC/CRC + SPIHT coder with previously
published results for image Goldhill transmission over a BSC.
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other points in the plots represent the performances of the best known image codes for noisy

channels, prior to the proposed system. These include those of Tanabe and Farvardin [53],

Chen and Fischer [54], as well as those in [55, 56, 57]. Numerous other results exist in the

literature, but all of them appear to be inferior to the results reported in [53, 54], or else do not

provide results for the test images we considered.

It can be seen from the Lena graphs at a transmission rate of � bpp that our proposed system

improves the performance over the other reported SNRs by at least : � � dB, : � � dB, and � � � dB,

for bit error probabilities of ��� ��� , ��� � � , and ��� � � , respectively. At a transmission rate of � � <
bpp, the gains for these three channels are : � 	 dB, : � � dB, and � � � dB, respectively. At a

transmission rate of � � :.< bpp, the gains for these three channels are : � : dB, � � � dB, and � � �
dB, respectively. For the Goldhill image at � bpp, the gains for these three channels are : � : dB,

: � 	 dB, and < � � dB, respectively. At a transmission rate of � � < bpp, the gains for these three

channels are � � � dB, � � � dB, and � � � dB, respectively. At a transmission rate of � � :�< bpp, the

gains for these three channels are � � 	 dB, � � � dB, and 	 � � dB, respectively.

Example decoded images along with the original are provided in Figures 3.6(a) - 3.6(d) to

demonstrate the visual quality of images transmitted over a BSC with error rates from � � ��� � -� � � .
3.2.3 Parameter optimization and other extensions

Since the output of the embedded image coder does not have uniform importance to the

decoded image quality, applying UEP channel coding seems to be a likely way to improve

performance. For the RCPC/CRC + SPIHT coder presented in this section, the error protection

is modified by selecting different channel code rates for each packet. The output of the source

coder generally has nonincreasing importance so the optimal channel code schedules tend to

have nondecreasing channel code rate profiles.

The graph in Figure 3.3 provides some indication of the difficulty of adjusting the channel

code rate. In this case, the probability of incomplete decoding covers more than three orders

of magnitude while the range of PSNR values only spans 1 dB. Even though the probability

of incomplete decoding is more stringent than the usual criterion of expected MSE, it provides
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(a) Original image. (b) Rate � ���� bpp, BER �  ����� ,
PSNR ��� �� ��� dB.

(c) Rate � �	�  bpp, BER �  ����� ,
PSNR ��� �� �� dB.

(d) Rate � ���� bpp, BER �  ����� ,
PSNR ��� �	�  � dB.

Figure 3.6 Example images demonstrating the performance of the RCPC/CRC + SPIHT coder
over the BSC.
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an indication of how likely there are to be uncorrected errors leading to increased distortion.

Similarly, the curves in Figure 3.7 show the rapid transition of the mean and median decoded

PSNR as the error rate exceeds the design error rate. The combination of the serial decoding

requirement (see section 2.2) of the source coder and the threshold effect of the channel codes

[21] significantly constrains the amount by which the channel code rate can be increased for

later packets.
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Figure 3.7 Variation of coder performance with error rate.

The problem of optimizing the channel code rate to minimize the expected distortion un-

der a total transmission rate constraint was considered in [14] and [58]. In both cases, the

conclusion was that very little can be gained over the best fixed rate channel coding scheme.

The optimal channel code rate for a particular packet depends on the total transmission

rate. Since the bit stream is truncated at the first uncorrected error, an error at packet � is more

important if there are more packets to follow. The embedded structure of the RCPC channel

codes can be used to schedule the transmission of the redundancy bits for each packet so that

the optimal channel code rate is achieved at several subrates up to the total transmission rate.

This approach was used in [59] to optimize the number of available source bits at the decoder.
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The next section discusses an extension of that work where both the block length and rate of

the channel code are optimized.

The embedded structure of the RCPC channel codes can also be used in an ARQ system

if a feedback channel to the transmitter is available. In [60, 61] the problem of designing the

rate schedule was considered including the cost of feedback channel usage. In this system,

additional redundancy bits are transmitted in steps until the packet is successfully decoded, as

indicated by the receiver feedback, or until all bits for that packet have been transmitted. In

this case, significant gains can be achieved over the systems without feedback.

3.3 Block Length and Rate Optimization for Progressive
Coding

Systems composed of embedded wavelet-based image coders followed by channel coding

result in some of the best systems currently known for transmitting images over certain noisy

channels [28, 34, 59, 62]. Selecting the proper channel code rate is important so that bits are

not wasted on unnecessary redundancy, while keeping the error probability sufficiently low.

Adjusting the block length can further improve the performance of certain channel codes.

It is known from information theory that long block lengths can achieve good performance

at rates close to capacity, and many known codes exhibit improved performance as the block

length is increased. Examples include turbo codes, low-density parity check codes, and Reed-

Solomon codes on erasure channels. The results presented in [62] for image transmission on a

packet erasure channel demonstrate that excellent performance at a target transmission rate can

be achieved by using the maximum possible channel codeword block length. For an erasure

rate � and channel code rate � � � � � , a useful upper bound on the block error probability is

[4, p.531]
��� � � � � � �

�
� : �   ��� � � ����� �
	

where � is the block length and �
�
� ���� �

� 
 � 0 ���
�
� � � � � � � �

�
�
�
0 ���

�
� � �

�
�
� � � � � � � � is

the information divergence. This upper bound shows the advantage of long block lengths (i.e.,

large � ) for rates below capacity.
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If decoding at multiple rates is not important, then using long block length channel codes

provides the best performance in many cases. One penalty associated with long block length

codes is increased decoding complexity. For progressive coding, there is the additional penalty

of decoding delay. Since the decoder typically must wait until the entire block has been re-

ceived and decoded before reliable source bits are available, the distortion vs. rate curve flat-

tens out over the duration of a block length and decreases only at the end of the block. The

result is that the curve is staircase shaped, where the size of the steps depends on the channel

code block length as illustrated in Figure 3.8. The trade-off is that long block lengths improve

error protection but they also decrease progressivity.

Source coder performance
over noiseless channel.

Rate

D
is

to
rt

io
n

After adding channel coding.

Rate penalty
(delay)

penalty
D

istortion

Figure 3.8 Distortion vs. rate with and without channel coding.

Previous work [14, 58, 59] has considered methods of selecting the best channel code rate

for image transmission on noisy channels. A gradient-based technique was used in [58] to

determine the best rate allocation between source and channel codes for a given transmission

rate. In [14], Lagrangian methods were used to select the channel code rate schedule for fixed-

length information blocks to minimize distortion at a final target rate. Although progressive

source coders were used, progressive performance was not considered in [14, 58].
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In [59], optimization was also performed for a specific transmission rate, but the optimiza-

tion criterion and rate-compatible properties of the channel codes allowed optimal transmission

at many lower rates. A dynamic programming approach was presented for determining chan-

nel code rate schedules for fixed-length information blocks using optimization criteria based

on MSE, PSNR, and number of available source bits. The optimization based on number of

available source bits was suggested as the best approach since it reduces complexity, eliminates

the need to transmit the rate schedule, and allows a single rate schedule to incorporate the opti-

mized rate schedules for many lower transmission rates as prefixes by using the rate-compatible

properties of the codes considered.

We extend the work in [59] to consider the optimization of block length and channel code

rate, and we use a more general performance function to characterize progressive performance.

Specifically, this section includes the following contributions:

� A general performance measure is presented for evaluation of progressive performance.

� A dynamic programming solution is presented for optimizing block length and rate.

� Results for a number of error rates compare optimizations based on PSNR and optimiza-

tions based on available source bits with and without fixed information block sizes.

� Results for Reed-Solomon codes on erasure channels, and for turbo codes on bit error

channels, demonstrate the importance of optimizing block lengths.

3.3.1 A performance measure for progressive transmission

In order to optimize the channel code parameters, it is necessary to define a performance

measure for progressive transmission. In image coding, typically the expected MSE or PSNR

at a target transmission rate is used. For progressive coding, the desire is generally to maximize

the expected performance at all rates up to the target transmission rate. We propose a family of

performance measures given by

� 
������� � �
	
���

�
	
�
� 	 (3.1)
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where ��� is the terminal transmission rate,

�
�
	
�

is the expected performance for a given

channel at transmission rate 	 , and � �
	
�

is a nonnegative, real-valued “weighting function”

which allows unequal emphasis for different rates. The performance function

�
�
	
�

is large for

good performances and small for poor performances, in contrast to the more typical use of a

“distortion” function. The performance measure � includes, as a special case, the conventional

approach of measuring performance at a single rate (or possibly a small set of rates), by using

impulse functions as part of the weighting function (e.g., � �
	
� 
�� � 	

�
� � � ��� � 	

�
�
� �
�
� � �

where � � 	
�

is the Dirac delta function).

Possible performance measures include the expected MSE, expected PSNR, or number of

available source bits as noted in [59]. The PSNR-based performance is closely tied to image

quality but does not emphasize the large distortions at low rates as much as the MSE-based

performance. Performance based on available source bits assumes all bits as equally important

but it allows simplifications in the optimization and eliminates overhead information. In both

of these cases, the goal (assuming � �
	
� 
 � ) is to maximize the area under

�
�
	
�
. If we define�

�
	
� 
 � � � � � � �
	

�
, where � � 	

�
is the expected MSE at rate 	 , then the goal is also to

maximize � . In the context of dynamic programming algorithms discussed in the next section,� is the reward. Figure 3.9 shows examples of these performance measures where the shaded

region represents the area computed by the integral with � � 	
� 
 � .

3.3.2 Optimization using dynamic programming

The optimal schedule of channel code parameters can be determined using dynamic pro-

gramming where the goal is to maximize the reward based on the progressive performance

measure (i.e., � in (3.1)). The notation is based on that in [63].

Given a transmission rate constraint ��� , the goal of the optimization problem is to deter-

mine the code schedule, � 
 � � � � � � � � � � �
�
�
�
� �
� � � � � � � � ��� 	 � � � �	� 	

��

, that maximizes �

subject to � � ��� 	� ��� � � � ��� . Each component of the code schedule contains a block length

parameter � � and an information size parameter �
�
. For a given system consisting of source

coder, channel coder, and channel, each code schedule � determines an expected performance-

rate function as in (3.1), denoted

�
� � 	

�
. Since the transmitted data consists of a sequence of
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Figure 3.9 Three possible progressive performance measures each equal to the area of the
shaded region.
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codewords, the overall reward will be based on the incremental reward associated with each

codeword. The incremental reward of a codeword with parameters � �
�
�
�

� �
under code sched-

ule � is given by

� � � �
�
�
�

� � 
 ���� �
�� ����� � � 	

�
�
�
� � 	

� � �
� � �� � � � � � � 	

� �
�
� � �� � � � �

� � �� � � � � � � ���
�� � � �
	

�
� 	

(3.2)

where
�� � 
 �

�� ��� � � is the number of transmitted bits up to and including codeword � , and
�� �
	 � . The first term of (3.2) is the incremental reward during transmission of the codeword

while the second term is the accumulated incremental reward from the end of the codeword

to the target rate. The integrals typically simplify to sums due to the discrete nature of the

problem, and for certain performance measures such as the one based on available source bits,

the integrand simplifies due to the constant reward for each bit.

The underlying assumption used in combining the incremental rewards from multiple code-

words into the overall reward is the serial decoding requirement of the source decoder. A source

decoder is said to have a serial decoding requirement if a substantial portion of the bit stream

must be decoded in a sequential and uninterrupted fashion for correct interpretation. Many em-

bedded coders, especially those employing adaptive entropy coding, have this property. The

effect is that decoding terminates at the first uncorrectable (and detected) error so no reward is

accumulated from subsequent correctly received codewords. A “reward-to-go” function asso-

ciated with codeword � is defined as

�
�
� ��� � � � 
 � � � � � � � � �

� � �
�
��� � �

�
�
�

� � �
�
�
� � � � � � � � (3.3)

where ��� � �
�
�
�

� �
is the probability of block decoding error for codeword � . The � �

�
� � � �

�
�
�

� � �
term multiplying �

�
� � is the result of the serial decoding requirement. The goal of the optimiza-

tion problem is to find the optimal code schedule �� that satisfies

�  
 ( � � - ( �� � � � ��� � � � (3.4)

with the condition that �
�
� ��� � � � 
 � for some sufficiently large � under all admissible policies

due to the transmission rate constraint � � .
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In the following sections, this general framework is applied to specific channel conditions

and performance results are provided for the resulting rate schedules.

3.3.3 Progressive transmission over erasure channels

This section considers the problem of transmitting an image over a packet erasure channel

with erasure rate � . The packets are assumed to be fixed length, and this length is a parameter

of the optimization. The information is protected using erasure correcting codes across the

packets (similar to that found in [34, 62]), such as Reed-Solomon codes, which allow for error-

free transmission of � information packets out of a block of length � as long as any � packets

are received.

The codes are systematic with the information packets transmitted first so these packets

are available immediately to the source decoder until the first erasure. After the first erasure,

further source decoding is delayed until � packets of the current codeword have been received,

at which point erasure correction is possible. Assuming the weighting function from (3.2) is

unity (i.e., � �
	
� 
 � ) for simplicity, the incremental reward is derived below for this case.

For the first �
�

packets of the codeword, the incremental reward is based on the expected

number of packets before the first erasure. Let � �
	 � be the performance of the source coder at

transmission rate 	 on a noiseless channel with no channel coding (e.g., number of available

source packets or bits (where � �
	 � 
 	 ), PSNR, etc). Note that the rate parameter is in

units of packets rather than bits, for simplicity, and the conversion to bits involves a constant

multiplicative factor due to the constant packet size. The expected performance over this range

of transmitted packets under code schedule � is given by�
� � � � �� � � � � 
 � � �� � � � � � ��

�
���

�
� �

�
�
� �
� � � � �� �

� � �
� �

�
�
� � � � � � �

�
(3.5)

where
��
� 
 �

�� ��� � �
is the number of cumulative information packets and � is the packet

erasure rate.

During the transmission of the � ��� �

�
parity packets, the performance only changes at the

point where a total of �
�

packets have been received for that codeword (at which point erasure
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correction is possible). The expected performance over this range is given by�
� � � � �� � � � � 
 � � � �� � � � � � 	 � � �

�

� � � � �
�

� � � � �� �
���

�
� �

�
�
� �
�

� � �
�
� � � � �

�

�%� � � � �� �
� �

�%�
�

�
� � � � � � � (3.6)

where � � 	 �
	 ��� � 
 ���
� ��� � ���� � �

�
�
�
� � � � � is the multiple erasure probability (i.e., the probability

of at least � erasures in 	 packets) and � � � � �
�

� � 
 � � 	 � � �
� �

�

�
� � � is the block decoding

error probability of a code with parameters � � �
�

� �
.

Optimization based on number of available source bits is attractive due to the reduced com-

plexity and the elimination of the need to transmit the code schedule (i.e., the code schedule

is image independent and can be computed by the receiver). However, performance measures

based on MSE and PSNR are better indicators of image quality, so experiments were performed

to compare the relative performance of the optimization methods. The overhead required for

transmission of the code schedule in the case of the MSE or PSNR performance measures is

assumed to be negligible so it is not included in the test results. This assumption is reasonable

since the code schedule is typically fairly short (i.e., not many codewords) and can be com-

pressed. Alternatively, the operational distortion-rate function is well modeled in practice by

a function of the form � � � � 
 ��	
� ��� � � � ��
 � � with as few as two or three terms, as noted in

[58]. This functional approximation could be used in determining the code schedule, and the

function parameters could be transmitted instead of the actual schedule which would allow the

receiver to compute the schedule.

Figure 3.10 shows the results of experiments using the SPIHT [10] image coder with arith-

metic coding along with code schedules computed from performance measures based on PSNR

and available source bits or equivalently packets. The resulting code schedules are evaluated

in terms of expected PSNR for two different erasure rates in Figures 3.10(a) and 3.10(b). In

addition, a method similar to that in [59], referred to as packet optimization with “fixed � ,”

is applied to Reed-Solomon codes. Results are provided for code schedules with � 
 < and

� 
 ��� information packets per codeword.
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Figure 3.10 Performance results for the < � : � < � : Lena image transmitted over an erasure
channel.
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In the “fixed � ” method, the information size of each codeword is fixed and the block length

(equivalently rate) is selected, the performance measure is available source bits (packets), and

the optimization is for the final transmission rate so � �
	
� 
 � �
	

� � � � in (3.2). The resulting

code schedules from the optimization are monotonic nonincreasing in block length (or non-

decreasing in channel code rate) due to the serial decoding requirement. Initial information

packets are protected more heavily than later packets, even though every packet contains one

unit of reward, since a packet can only be used if all earlier information packets are correctly

received. The order of transmission of the codeword packets can be altered so that optimal (in

terms of available source bits) code schedules are achieved at certain lower transmission rates

as suggested in [59]. This progressive transmission is achieved by transmitting punctured ver-

sions of the codewords starting with the last codeword parameters in the schedule. Additional

parity packets are sent as needed during transmission to achieve all the intermediate code rates

specified in the schedule between the last codeword and the codeword in question. Optimal

schedules in terms of available source packets are achieved for transmission rates which equal

the cumulative sum of the block lengths starting from the last codeword and proceeding to the

first codeword in the schedule. There are a few points to mention regarding the reordering for

progressive transmission in [59]:

� The optimality is for the particular value of � and it corresponds to available source pack-

ets, not expected PSNR.

� The optimality is only guaranteed at certain transmission rates (equal to the cumulative

sum of block lengths starting from the last codeword), so other transmission orders may

be better at other intermediate transmission rates.

� The best order for performance at all intermediate transmission rates is dependent on the

erasure rate, and it is generally better to transmit according to the natural schedule order

(i.e., all packets of each codeword in sequence) under high erasure conditions.

� The transmission rates of optimality are not selectable, but are instead determined by the

code schedule computed for the final transmission rate.
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The results in Figures 3.10(a) and 3.10(b) show that the optimization based on available

source packets and that based on expected PSNR achieve nearly the same expected PSNR

at the final transmission rate. The code schedules are also listed in the graphs. Generally,

the code schedules for the packet-based optimization consist of codewords with nonincreasing

block lengths and nearly identical rates with the possible exception of the final codewords

due to the transmission rate constraint. The PSNR-based optimization selects a shorter but

lower-rate initial codeword to reduce the delay while still keeping the error probability low,

and then the remainder of the schedule is similar to the packet-based schedule. As the first two

graphs in Figure 3.10 demonstrate, the relative performance of the different methods depends

on the erasure rate. Figure 3.10(c) shows the performance in terms of the expected PSNR

averaged over all the intermediate transmission rates (essentially a normalized version of the

area under the curve) over a range of erasure rates. The PSNR-based optimization has the best

performance at all rates as expected, while the other curves cross at different erasure rates.

Also the spread in relative performance increases with erasure rate.

3.3.4 Progressive transmission over bit error channels

By simply changing the incremental reward function, the same optimization techniques

can be applied when coding for channels that introduce bit errors. For the erasure channel,

information bits can be immediately used by the source decoder up to the first erasure since

any data that arrives on this channel is known to be good. However, in this case, the information

bits cannot be used before the entire codeword has been received since they are likely to contain

errors which cannot be corrected until the remainder of the codeword arrives. The result is that

the incremental reward of a codeword only has the second term from (3.2), and the performance

curves have more of a staircase shape. The incremental reward for a codeword with parameters

� �
�
�
�

� �
under code schedule � is given by

� � � �
�
�
�

� � 
 � �
�
��� � �

�
�
�

� � �
� � � �� �

� �

� � � � � �� � � �
� � � �

�� � � � (3.7)

For the block length optimization to be interesting, the channel code’s error correction

capability should have a significant dependence on block length. Therefore both turbo codes
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and low density parity check codes are considered in this section. Results for the RCPC/CRC

codes from Section 3.2 are also provided for comparison.

Turbo codes, first introduced in 1993 [64], consist of either a parallel or serial concatenation

of convolutional codes with a large interleaver before the input to one of the convolutional

encoders. Decoding is done in an iterative fashion with soft information passed between the

decoders for the constituent codes. Low density parity check (LDPC) codes, introduced in 1962

by Gallager [65], are linear block codes with very sparse parity check matrices. Typically, the

codes are constructed so that each column has the same small weight (e.g., 3), all the rows have

approximately equal weight, and the nonzero are otherwise chosen randomly within the first

two constraints. Decoding is also done by an iterative algorithm. In fact, it has been shown

[66] that the turbo decoding algorithm is an instance of Pearl’s “Belief Propagation” algorithm

used for the LDPC decoding. Recent results [67] have shown performance for LDPC codes to

be quite close to that of turbo codes.

Regardless of which codes are used, it is important that decoding errors are detected, be-

cause the source decoder will lose synchronization and corrupt the image with high probability

if its input contains errors. For the LDPC codes, the decoding algorithm is able to detect fail-

ures with high probability, so no further error detection is required. However, for turbo codes,

an outer cyclic redundancy code (CRC) is used for error detection as well as providing a stop-

ping criterion for the iterative turbo decoding. Also it is the block error probability that is

important here and not the bit error probability so choice of turbo code interleavers becomes

important for large block lengths. For this reason, s-random interleavers [68], which enforce a

minimum spread between adjacent information bits after interleaving, were used because they

result in better block error probabilities than random interleavers.

Experimental results showed that the performance difference between code schedules de-

termined by PSNR-based measures and those based on available source bits were extremely

close. Since the optimization based on available source bits is less complex and eliminates

the overhead of transmitting the schedule, that method was used in results that follow. Also

all decoding used hard decisions from the channel to allow easy comparison to an existing

RCPC/CRC implementation.
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Figure 3.11 shows the performance-rate curves comparing a schedule determined by a

PSNR-based optimization, along with two fixed rate and block length turbo coding schemes.

The turbo codes consisted of a family of punctured codes produced from a rate � � 	 mother

code. Note that using punctured codes allows the possibility of optimizing only the rate (i.e.,

the “fixed � ” method mentioned in the previous section) and using the progressive transmis-

sion order, but recent results suggest that nonpunctured codes perform significantly better for

the same code parameters [69]. The optimized code schedule has a similar structure to those

computed for the erasure channel, where the code rate is essentially constant and the block

length decreases monotonically. As can be seen in the graph, the optimized schedule strikes

a balance between performance at low and high transmission rates relative to the fixed coding

methods. There are also decoding complexity benefits to the shorter block lengths at the end

of the optimized schedule.

Figure 3.12 shows a comparison of the performance of the turbo, LDPC, and RCPC/CRC

codes over a range of error rates. The performance measure displayed is the value of the ex-

pected PSNR averaged over the entire transmission. This measure is simply the area under

the performance-rate curve divided by the total transmission rate, or simply a normalized ver-

sion of the PSNR-based performance measure. The LDPC and turbo codes had very similar

performance for low error rates, and the turbo codes were slightly better for high error rates.

The RCPC/CRC codes performed about � � < to � � � dB worse with the performance difference

generally increasing with error rate.

Finally, a natural question to consider is how much the serial decoding requirement of the

source coder costs in terms of additional required channel coding. Since decoding must ter-

minate at the first uncorrected channel error, bits early in the bit stream will be given more

protection to improve the chance that later correctly received bits can be used by the decoder.

Answering the question would give some insight into the potential benefit of modifying the

source coder to make the bit stream more independently decodable. Presumably such a modi-

fication would cost something in terms of source coding performance. To get an approximate

bound of the benefit for channel coding, we can make the optimistic assumption that any error-

free packet can be used and will lower the MSE by the same amount as corresponding bits
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under error-free conditions. Experimental results showed very small gains using these opti-

mistic assumptions (e.g., typically less than � � � dB), so it appears that such modifications to

the source coder would not be worthwhile, at least for the case of a memoryless channel with

a known error rate. These type of changes to the source coder are more beneficial for channels

with varying conditions.

3.3.5 Conclusion

We have proposed a general performance measure for evaluating progressive image trans-

mission systems operating over noisy channels. Using this performance measure, a dynamic

programming optimization algorithm was presented for determining the best code schedule

where both block length and rate are optimized. While the performance gains of the image-

dependent PSNR-based optimization may not warrant the additional complexity in every appli-

cation, the method is useful for evaluating the relative performance of simpler coding schemes.

Experimental results were provided comparing the performance of turbo codes, LDPC codes,

and RCPC/CRC codes for progressive coding. Even though the progressive goals of the opti-

mization tended to limit the maximum block lengths of the turbo and LDPC codes, they still

performed significantly better across a range of channel error rates. The performance differ-

ence between the LDPC and turbo codes was only really noticeable at high error rates with

turbo codes performing a bit better.
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CHAPTER 4

IMAGE CODING FOR FADING CHANNELS

4.1 Introduction

In Chapter 3 methods and results were presented for image transmission over memory-

less channels where the error rate is known. It was shown that excellent performance can be

achieved by combining a state-of-the-art embedded image coder with strong channel coding.

When the error rate is a known constant, then the channel coding can be closely matched to

the error conditions leaving more rate available for source coding. However, when channel

conditions vary, such as on fading channels or in a broadcast environment, the error conditions

are more challenging.

This chapter presents two approaches to coding for varying channels. First, a product

channel code is presented which can be viewed as an extension of the RCPC/CRC code from

Chapter 3. The new code is designed to work well on fading channels, but it also improves on

the performance of the RCPC/CRC code over memoryless channels. The product code results

presented in this chapter are from [33, 34].

Second, a combination of the Packetized Zerotree Wavelet (PZW) coder [70, 71], a vari-

ant of the zerotree coder which uses data partitioning to introduce error resilience, and the

RCPC/CRC channel codes is presented for varying channel conditions including those com-

bining bit errors and packet erasures. A hybrid of the two methods is shown to degrade more

gracefully than either method alone under severe channel conditions. The results on the hybrid

coding method are from [36, 37].

48



4.2 A Product Channel Code

A product code is often described as a two-dimensional code constructed by encoding a

rectangular array of information digits with one code along rows and with another code along

columns [46]. In the product code used here, the row code is a concatenated code consisting of

an outer cyclic redundancy code (CRC) and an inner rate-compatible punctured convolutional

(RCPC) code while the column code is a systematic shortened and/or punctured Reed-Solomon

(RS) code. The structure of the product code is depicted in Figure 4.1. Note that the RCPC

codes used for the rows are not systematic, and the symbols for the RS codes are constructed

from consecutive information bits of a row prior to encoding with the RCPC/CRC code.

encoded
RCPC

encoded
RCPC

encoded
RCPC

encoded
RCPC

encoded
RCPC

Transmitted by rowsRS encoded by columns

R
S

en
co

de
d

RCPC/CRC Concatenated Code

RCPC/CRC Concatenated Code

RCPC/CRC Concatenated Code

RCPC/CRC Concatenated Code

RCPC/CRC Concatenated CodeCRC

CRC

CRC

CRC

CRC

Information bits

Information bits

Information bits

Check Symbols
Reed-Solomon

Reed-Solomon
Check Symbols

Figure 4.1 Schematic diagram of RCPC/CRC and RS product code.

The RCPC/CRC concatenated code allows substantial flexibility in choosing the code rate

and block length of the rows. The row codes are decoded using the list-Viterbi algorithm which

selects the trellis path with the best metric, that also satisfies the CRC check, from a ranked

list of candidates. The correct path is typically among the first few top candidates so a long

search is rarely necessary. Also a sequential version of the algorithm can reduce computational

complexity by only searching for the next best path after higher ranking candidates have failed.
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More thorough discussions of the list-Viterbi decoding algorithm and applications can be found

in [28, 49], and recent applications of list-based decoding to turbo codes can be found in [72].

An important property utilized by the product code is that the CRC provides a high proba-

bility indication of the decoding success or failure. The decoding failures in the row codes are

treated as erasures when decoding the column RS codes. Since the column codes typically only

need to correct erasures, the computational complexity is reduced and twice as many incorrect

rows can be recovered compared to a decoder without error detection on the rows. The Galois

field of the RS code symbols should be chosen as large as possible to reduce the number of

columns in a block and to give the most flexibility in choosing the block lengths via shortening

and/or puncturing. The RS codes are in systematic format with information symbols trans-

mitted first, so the final rows of the product codeword will be the RCPC/CRC encoded parity

symbols of the RS column codes.

There is no requirement that the rows be consecutive in the bit stream, and, in fact, spread-

ing out the rows is important for good performance over fading channels. Of course, another

design goal is to minimize delay in order to achieve rapid improvement in image quality, and

this will provide some constraints to limit the duration of the code. A useful feature of this

particular product code is that decoding columns is unnecessary unless a decoding failure is

detected in a row code. Therefore, the decoded bits from a row can be used immediately if no

decoding failure is detected in the row, eliminating the delay cost when the channel is clear.

The product code is well suited for burst errors since entire rows can easily be recovered.

This property is important since even a single bit error in a packet of data from the embedded

zerotree algorithms usually renders the entire packet (and also the packets to follow) useless.

The product channel code also performs excellently over memoryless channels like the additive

white Gaussian noise (AWGN) or binary symmetric (BSC) channels. This observation is an

additional side benefit.

4.2.1 Performance on a binary symmetric channel

We illustrate the effectiveness of this code by way of an example on a BSC. The source

and channel were selected to allow comparison with the results from [28] and consist of the
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progressive zerotree wavelet coder with arithmetic coding by Said and Pearlman (SPIHT) [10]

transmitted over a BSC with error rate 0.1. The total block length of the column RS codes

with symbols from GF(256) was limited to 20 symbols to limit the decoding delay, and the

source bit stream was protected uniformly by selecting the combination of RCPC/CRC and RS

code rates which gave equivalent probability of error results as the RCPC/CRC code in [28].

Also the path search depth of the list-Viterbi algorithm was limited to 100 as in [28], but we

note that a search depth of 10 will provide almost all the performance gain of list decoding.

Under these conditions, the same probability of decoding error can be achieved with an overall

channel coding rate of � � : � < for the product code versus a rate of � � :�< � for the RCPC/CRC

code alone. Therefore, nearly � < % more rate is available for source coding for a given overall

transmission rate. This results in a gain in decoded image quality of about � � < dB in PSNR.

The decoded PSNR values for the Lena image as a function of rate for these codes are shown

in Figure 4.2 along with the noiseless channel results for the source coder without any channel

coding for comparison.

Several modifications are possible to tune the properties of the code. In general, more

efficient codes can be created using longer RS codes (i.e., more rows) at the expense of more

delay required to correct row decoding failures. Also, some improvement in error performance

can be obtained at the expense of complexity by using an iterative decoding algorithm (e.g.,

turbo decoding). Finally, while the above results for the BSC use hard decision decoding, soft

decisions could easily be incorporated into the decoding process giving improved performance.

4.2.2 Performance on fading channels

While the performance of the product code is good over memoryless channels, one of its

most important features is its suitability for fading channels which arise in wireless applica-

tions. A typical approach to error control for fading channels is to introduce a bit interleaver

which spreads out adjacent bits by the interleaver depth before transmission over the channel.

The goal is to produce an effective channel, after the de-interleaver, which is almost mem-

oryless and then to use conventional error control coding (e.g., convolutional codes) to deal

with the errors. One problem with this approach is that an interleaver of depth � introduces a
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 � � � .
delay on the order of �

�
, and this delay is constant regardless of the channel conditions. Any

delay impacts the performance of the progressive coder because the goal is to improve quality

(PSNR) as rapidly as possible, and delay shifts the PSNR vs. rate curve to the right, lowering

the PSNR for a given rate. As mentioned earlier there is no significant delay with the product

code unless there is a row decoding failure. In that case, the delay depends on the number of

bits that must be received before the necessary number of RS check symbols are available (i.e.,

equal to the number of erased rows).

4.2.3 Performance on the Gilbert-Elliot channel

A basic channel model incorporating the memory associated with fading channels is the

Gilbert-Elliot two-state model. A description of this channel model is given in Section 2.3.2.1.

This same model was used in [73] to model a channel with memory.

The Gilbert-Elliot channel model was used to compare the effectiveness of the product code

versus the RCPC/CRC code along with bit interleaving. The selected model parameters were

� � 
 � � � , ��� 
 � � �
� � , ����� 
 �
� � � , and ����� 
 �

�

����� . With these parameters, the steady
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state probability of being in the bad state is � � � and the mean burst duration is � ��� bits. The

performance requirement we chose for the codes was the same as that used for transmission

over the BSC—at least ��� % error-free transmission at a total transmission rate of � � � bpp.

These parameters were chosen to illustrate the performance of this system. In practice, more

realistic values would need to be determined.

An RCPC/CRC code of rate � � :.< � used on the BSC with BER 
 � � � conservatively meets

the performance requirement, as it codes for the worst case error rate seen in the bad state.

However, using bit interleaving at the expense of a fixed delay, a higher code rate can achieve

the same probability of error requirements. Fully interleaving the channel so that the errors

appeared memoryless was considered impractical for this channel since the required interleaver

depth would be excessive when considering the goals of low overall transmission rates and

rapid image quality improvement. An interleaver depth of � � was selected as a reasonable

value, and although it does not completely remove the memory, an RCPC/CRC code of rate� � 	 � is able to meet the probability of error requirements.

The product code was designed by starting with a row RCPC/CRC code with a rate of � � � �
which was selected because it met the performance requirement when the channel was in the

good state. The column code was then chosen to handle the row decoding failures that occur

when a portion of a packet is transmitted during the bad state. In order to reduce the necessary

error correction capability (and thus the redundancy) of the column code, several product codes

were interleaved so that a single error burst would not cause multiple row erasures within a

single product code. Although interleaving in this manner does increase the delay when row

erasures occur versus not interleaving, the delay is not fixed as in the case of bit interleaving

and is typically much less than the full extent of the product code. The selected column code

consisted of a (20, 11) RS code over GF(256) with a row spacing of 6 (i.e., 6 interleaved product

codes). The rate of the resulting product code is about � � ��� which yields a :
	 % increase in the

available source rate compared with the interleaved RCPC/CRC code. The higher rate of the

channel code translates into an increase of about � � � dB in PSNR over a range of transmission

rates for the Lena image as can be seen in Figure 4.3.
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4.2.4 Performance on the Rayleigh channel

Further simulations were performed for BPSK transmission over a flat-fading Rayleigh

channel using Jakes’ method [42] to model the channel. A description of this model is given

in Section 2.3.2.2. The results presented are for a channel with average SNR of ��� dB and a

normalized Doppler spread of ��� ��� which is near the low end of many typical applications. An

example leading to a normalized Doppler value of ��� ��� would include a data rate of < ��� Kbits/s

transmitted at � ��� MHz to/from a mobile traveling at about 4 miles/h (e.g., a person walking).

With these parameters, the average duration of a fade with a channel bit error rate exceeding� � � is on the order of � : ����� bits while the average duration of a fade with a channel bit error

rate exceeding � � � � is on the order of : � ���
� bits. The strength of the RCPC/CRC channel

codes in this case will determine the channel error rate which can be handled and thus the fade

margin. Normalized Doppler values lower than ��� ��� result in fade durations that include such

a large portion of the bits that the channel is either good or bad for almost the entire image

transmission—a situation better combatted using spatial diversity, frequency diversity, etc.

The results presented in Figure 4.2 for the BSC essentially had a single decoded PSNR

value at each rate (despite being an “average” value) for each of the two codes since the
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probability of decoding failure was so low. However, when examining the performance of

a code after transmission over a noisy channel, it is often insufficient to consider only the mean

decoded PSNR, especially for time-varying channels. Instead, a distribution of decoded PSNR

values for each rate of interest is more appropriate since it shows the variability of the decoded

image quality. A realistic performance measure should include some combination of the ex-

pected PSNR and a measure of the variability, although the best relative weighting is probably

viewer and application dependent.

Therefore performance results for the fading channel will be presented using a cumulative

distribution of decoded PSNR values at a particular total transmission rate. In this type of

plot, curves with better performance will generally lie closer to the bottom and right edges

of the plot indicating a higher frequency of large PSNR values. The trends are displayed

in Figure 4.4 where the horizontal axis could be any fidelity measure and will be PSNR for

the results presented here. Note that reported mean PSNR values are computed by averaging

decoded MSE values and then converting the mean MSE to the corresponding PSNR value

rather than averaging the PSNR values directly.
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Figure 4.4 Cumulative distribution plot for performance evaluation.
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For the results presented in this section, each of the codes was constructed from the output

of the SPIHT [10] image coder with arithmetic coding. Each cumulative distribution curve

represents at least ������� independent trials. The < � : � < � : Lena image was used in each case

and the total rate (including both channel and source coding) considered was � � :�< bpp. Blocks

of 200 information bits were protected by a 16-bit CRC and encoded by RCPC codes of various

rates. For the product codes, groups of eight consecutive information bits made up the symbol

values for the RS codes over the finite field GF(256). The path search depth of the list-Viterbi

algorithm was limited to 100 paths.

The first set of results shown in Figure 4.5 compares the performance of a RCPC/CRC

concatenated code with RCPC rate � ��� , the same code with a convolutional interleaver of

depth � � , and a product code using RCPC rate � � : , a shortened (16, 10) RS code, and a row

spacing of 4 (i.e., 4 interleaved product codes). The results show that the bit interleaver does

not really improve the performance since the interleaver depth is small relative to the average

fade duration given above. The use of the interleaver does reduce the tail of the distribution

slightly, but the peak PSNR is also reduced due to the interleaver delay so the mean is only

improved by � � � � � dB. The product code performs much better than either of the other two

codes giving both a higher peak PSNR and a lower tail, which results in an improvement in

peak PSNR of � � : dB and in mean PSNR of � � � dB.

As with the BSC, limiting the path search depth of the list-Viterbi algorithm to 10 paths

makes very little difference in the distribution of decoded PSNR values for either the RCPC/CRC-

only code or the product code on the fading channel. For the channel conditions described

above, changing the path search depth from 100 to 10 results in almost no difference in the

PSNR distributions. Figure 4.6 shows cumulative distributions for the RCPC/CRC code with-

out interleaving and the product code shown in Figure 4.5 with trellis search depths 10 and 100

paths. Clearly, the distributions for each code are nearly identical using either 10 or 100 paths.

In fact, limiting the search depth to 10 paths may slightly benefit the product code performance

because searching deep in the list of candidate trellis paths increases the likelihood of mistak-

enly selecting an incorrect path, which is worse for column decoding than simply declaring an

erasure.
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4.2.5 Applying unequal error protection

The results presented in the previous sections were for channel protection applied uniformly

to the source coder output. However, the bits do not have equal importance in determining the

final decoded PSNR. As previously mentioned, the importance of the bits roughly decreases

monotonically throughout the bit stream for the SPIHT algorithm. A better rate-distortion

trade-off can be achieved by tailoring the channel protection based on the importance (i.e.,

UEP).

Because of the serial decoding requirement of the SPIHT algorithm, the decoder must stop

decoding at the first detected but uncorrected error. This situation leads to the long flat tail

in the distributions shown in Figure 4.5 where the minimum decoded PSNR value of � � � <
	
dB represents the case where the first packet was lost and only the image mean was used for

reconstruction. Therefore, providing more protection for the first few packets can result in

improved performance.

The code structure allows several ways to implement a UEP scheme including: varying

the rate of the row RCPC/CRC code, varying the rate of the column RS code, or including

important information rows in multiple product codes. For the channel conditions and codes

used in Figure 4.5, the best approach for reducing the long tail of the distribution is probably to

include the initial information packets in additional product codes. The reason is that additional

RCPC coding may still have problems correcting the errors associated with a deep fade, and

simply increasing the redundancy of the column codes may not allow tailoring the additional

protection to the importance as accurately (i.e., the rows in a given product code can have a

large variation in importance, especially at the beginning).

Results for two UEP schemes as well as the product code from Figure 4.5 are shown in

Figure 4.7. Both UEP schemes were constructed by protecting the first two information packets

with an additional shortened (4, 2) RS column code and transmitting the parity rows after half

of all packets had been sent. In addition, the first 10 information packets were protected by

a shortened (20, 10) RS column code with the parity rows sent as the final 10 packets of the

image. The difference between the two was in the other coding parameters where UEP scheme
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1 used RCPC rate : � 	 , a shortened (15, 8) RS code, and row spacing of 4; and where UEP

scheme 2 used RCPC rate � � : , a shortened (16, 10) RS code, and row spacing of 4.

As can be seen in Figure 4.7, both UEP schemes greatly reduce the tail of the distribution,

which is reflected in the increased mean values with gains of � � � dB and � � � dB compared with

the uniform product code. The fact that the mean for UEP 2 is greater than for UEP 1 comes

at the expense of decreased peak (and typical) PSNR, which makes it difficult to judge which

of the two is preferable and illustrates the point that mean PSNR may not always be the best

metric.
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4.3 Combining Robust Source Coding and FEC for Varying
Channels

The hybrid coder consists of the PZW source coder [71] combined with the RCPC/CRC

FEC coder described in Section 3.2. Figure 4.8 shows a block diagram of the proposed method.

Image data is transformed into the wavelet domain. Groups of coefficient trees are placed into

fixed-length packets (as in PZW). Each packet is then wrapped by a RCPC/CRC code (as in the

SPIHT+RCPC/CRC algorithm). The protected packets are sent across the channel and decoded

by the channel decoder followed by the source decoder. Missing wavelet coefficients in the

low-low band (from packet erasures or channel decoding failures) are replaced by interpolating

values of all available eight-neighbor pixels. Missing coefficients in higher bands are set to zero

before inverse wavelet transforming.

Pack trees into
fixed length packets

Group wavelet
coefficients into

trees

RCPC/CRC
encode

Decode trees
from each packet

RCPC/CRC
decode

FWT

Source Encoder

IWT

channelChannel Encoder

Channel DecoderSource Decoder

Figure 4.8 Block diagram of the proposed coder.

The two approaches used together are intended to help exploit the advantages of each other.

Bit errors occurring throughout the stream (which would devastate the PZW coder) are cor-

rected by the FEC; severe bursts of errors (which would overwhelm the FEC or would impose

too severe a rate penalty if included in the FEC design) are absorbed by the underlying re-

silience of the PZW source coder. The PZW coder also handles packet erasures which would

cause early truncation of the bit stream for the SPIHT coder.
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The proposed coder is designed for a channel (discussed in detail in Section 2.3.4) consist-

ing of a wireline portion and a wireless portion. Losses in the wireline portion consist of packet

erasures where lost packets, due to buffer overflow or misrouting, do not arrive at the receiver.

The wireless portion of the channel causes losses from excessive bit errors due to the fading

channel characteristic.

In particular, the packet length at the output of the source encoder (used on the wireline

portion of the channel) is fixed at 384 bits to match asynchronous transfer mode (ATM) packet

payload sizes. The RCPC/CRC code is not designed for the worst channel, but rather for

conditions in the middle of the expected range for the wireless portion of the channel. Thus,

more transmission rate can be dedicated to source coding than with the SPIHT+RCPC/CRC

coder which would have to be designed for the worst case. The method for selecting the

appropriate channel code is described in Section 4.3.1.

Although the proposed method is not claimed to be optimal, the particular components are

well suited for each other and for the goal of producing a robust coder on the combined packet

erasure / bit error channel. First, the PZW coder works well for the small ATM packet lengths

(i.e., the source coding performance is close to that without segmentation into packets). The

small packet size helps provide robustness since a packet only contains a small portion of the

image information which means the impact of a lost packet is small. Second, the RCPC/CRC

FEC provides good error correction performance for the wireless portion of the channel which

introduces bit errors. As part of the decoding process, channel decoding failures can be de-

tected with high probability so the source decoder can drop uncorrected packets rather than

corrupt the image by decoding those bits. Use of more recent FEC methods such as turbo

codes provides the most benefits in situations where soft decision channel decoding is avail-

able, channel state information is fairly well known, and the added decoding complexity is

acceptable. The improved performance of these codes typically requires longer block lengths,

which may reduce robustness when channel conditions are worse than the design conditions.

Also it is important to detect channel decoding failures, so additional coding would be neces-

sary if this capability is not normally a feature of the code.
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4.3.1 Parameter value optimization

In evaluating the performance of an image coder for noiseless channels, the PSNR versus

bit rate curve is often used. In general, coder A is said to perform better than coder B if the

curve of PSNR versus bit rate for A is pointwise greater than that for B. If the comparison

between coders is performed at a specific bit rate, then the results can always be ordered,

and the system designer has a clear optimization goal. But a single transmission rate does

not capture the overall behavior of a coder used progressively, and may thus be misleading.

Without focusing on a particular bit rate, there may not be a clear winner, since the curves

may cross. Also, the optimization goal is difficult to specify when considering entire curves,

since the performance at low bit rates or at high bit rates may be more important for specific

applications.

In the noisy channel case, the situation is more complicated. Suppose the channel code

rate and total bit rate are fixed. Then the performance of the system is characterized by the

cumulative distribution function (CDF) of the mean squared error (MSE), denoted by

�
�
	
� 
�	� ��� � Decoded Distortion � 	

�
. The goal is to design a system with a high probability of

producing images with low MSE. Thus, a CDF is good if it rises sharply at a low MSE. As

before, we would say that system A outperforms system B if the CDF for A lies everywhere

above the CDF for B. If the two CDF curves cross, the comparative evaluation is more difficult.

As before, one can try to escape this complication by looking at a particular point, say, the

median MSE. But this method is unsatisfactory, since it ignores overall behavior.

In this section, we describe a general class of performance measures which can be special-

ized for the specific design goals of an application. Given a performance measure and a range

of channel conditions, the best choice of channel code for both the SPIHT+RCPC/CRC coder

and the hybrid coder can be found. Let � be a specification of the system free parameters to

be optimized. For our case, � is a channel code (or equivalently the corresponding channel

code rate, when a family of codes parameterized by code rate is used). For any particular

channel code, the performance of the system is characterized by the cumulative distribution

function (CDF) of the MSE, denoted by

�
� �
	

� 
 Prob � � & � � 71& 7 � 2 � 4 � � 462 ��� � 	
�
. In order to
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quantify the performance of a system, it is convenient to reduce the function

�
� � 	

�
to a single

real number. We thus define the fidelity criterion

� � 
 ���� � �
	
�
� �
� �

� �
	
� �
� 	 (4.1)

where � �
	
�

is a nonnegative “weighting” function which allows us to emphasize or de-

emphasize the contribution of a particular MSE region to the total fidelity. In general, it results

in a fidelity criterion which is a weighted conditional mean of the decoded MSE values. The

goal is to minimize � � over all � in some predefined family of codes.

Some specific examples are given below, where the unit step function is � � 	
� 
 � for 	 � �

and � � 	
� 
 � for 	 � � , and where � �
	

�
is the Dirac delta-function.

� Example (i): � � 	
� 
 �

This fidelity criterion is the mean decoded MSE. Figure 4.9 demonstrates this example,

where � � is the shaded area in the graph.

1.0

0

area = MSE

x (distortion)

P
(M

S
E

 <
 x

)

F(x)

Figure 4.9 The shaded area equals the fidelity criterion � � with � �
	
� 
 � which is the mean

decoded MSE in this case.

�
�
	
�

in the graph represents a generic cumulative distribution
function.

� Example (ii): � �
	
� 
 � �

�
	 � 	 �

�
��� � �
	

�
	 �
�

This fidelity criterion assumes a maximum level 	 � of tolerable MSE for a decoded image.

Images decoded with distortion greater than 	 � are useless and therefore should not influ-

ence the optimization with respect to images having smaller MSE. The constant � allows
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the designer to trade off between the weighted conditional expected distortion of images

decoded below 	 � and the probability that images will be decoded above 	 � . Figure 4.10

shows an example with such a weighting function where the fidelity criterion is equal to

the area of the shaded region.

� Example (iii): � � 	
� 
 � �
	

�
	 �

�
This fidelity criterion assumes any MSE below a certain threshold 	 � is essentially equal

to zero. This can be due to limitations of the output device or limits of human perception,

for example. Figure 4.11 shows an example where this fidelity criterion is equal to the

area of the shaded region.
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Figure 4.10 The shaded area equals the fi-
delity criterion � � with � �
	

� 
 � �
�
	 � 	 �

�
.
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Figure 4.11 The shaded area equals the fi-
delity criterion � � with � � 	

� 
 � �
	
�
	 �

�
.

In addition, performance requirements can be incorporated into the optimization by restrict-

ing the set of system parameters. An admissibility function
� � 	

�
is a nonnegative real function

which provides a pointwise lower bound constraint for acceptable MSE CDFs. Specifically,

we require

�
� �
	

� � � � 	
�

for all 	 . Figures 4.12 and 4.13 show two examples of admissibility

functions in relation to distribution functions. An admissibility function can be used to cap-

ture typical constraints such as upper bounds on the number of images with high distortion or

lower bounds on the number of images with low distortion. For example, Figure 4.12 shows

an admissibility function where at least 90% of the images can be decoded with MSE less than

a given value or equivalently where no more than 10% of the images can be decoded with
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Figure 4.12 An admissibility function which
places an upper bound on the acceptable
probability of exceeding a certain MSE. Two
of the three cumulative distributions satisfy
the constraint.
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Figure 4.13 An admissibility function re-
quiring minimum performance levels for
two MSE ranges. Only one of the three dis-
tributions satisfies the constraints.

MSE greater than the same value. Figure 4.13 shows an admissibility function which requires

a minimum probability for low MSE values in addition to the upper bound on the probability

of large MSE values.

The discussion above considers the case of optimizing over a single channel. For systems

that operate over a variety of channels, the optimization might need to include a combination

of the fidelity criteria from the different channels each with possibly unique weighting and

admissibility functions.

We introduce this framework in order to point out how channel code rates were chosen for

the current work. For both the hybrid and SPIHT+RCPC/CRC coders, only a finite number of

channel codes were available. For each channel code, 1000 trials were run over the channel

for which the system was being optimized. The mean decoded MSE (or weighted mean MSE)

was calculated for each code rate and the minimum was used as the optimal code. For both

cases, the admissibility function was
� � 	

� 
 � � � < � �
	 �
� � � � � � which requires that no more

than 5% of the images have an MSE greater than � � � � � ( � � � � � corresponds to �8�	�9! 
 � � 7 � ).

For the mean decoded MSE, the weighting function was unity for all 	 . For the weighted

mean MSE, we used the same type of weighting function as in Example (ii) above with 	 � 
� � � � � and � 
 � . This function was chosen using data collected from perceptual recognition

experiments by Serrano et al. [74] in which no successful recognition occurred for images with
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��� �9! � � � 7 � . For both algorithms, it was found that the optimal available code was the same

for both the weighted and standard mean decoded MSE cases. In practice the admissibility

and weighting functions can be chosen according to the specific constraints of a particular

application.

4.3.2 Results

First we present results for the special case when there are no packet erasures, in order to

demonstrate that the hybrid scheme survives well in this case, and in fact even outperforms

its two component encoders under certain channel conditions. Then results for channels with

packet erasures and bit errors are presented. In all tests, hard-decision decoding was used in

the channel simulation.

To test the robustness of the coders, each was optimized for a fixed channel ( � �"! 
 � 	
dB, �� 
 ��� � � ) and then tested over a range of channel conditions. The optimal code rate

was chosen using the previously discussed parameter selection method (Section 4.3.1). For

the hybrid and SPIHT+RCPC/CRC coders, the bits were interleaved using a convolutional

interleaver prior to transmission over the fading channel to improve decoding performance.

The detailed specifications for the selected codes can be found in Section 4.3.4. All tests were

performed using the < � : � < � : Lena image, and the total transmission rate was fixed at 0.25

bpp. Each channel condition was tested with a minimum of 1000 independent trials and as

many as 3000 trials on the slowest channels.

In evaluating the performance of the three algorithms, the standard measure of mean de-

coded MSE may not be sufficient. To improve the analysis, we looked at three characteristics:

visual quality, mean decoded MSE, and cumulative distributions of MSE over all trials. The

cumulative distributions provide information about the variability of the decoded image quality

from one trial to the next. The visual quality, while more difficult to evaluate, is ultimately the

performance measure of interest.
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4.3.2.1 Visual quality

Figure 4.14 shows how distortion from a noisy channel is distributed over the image for

the hybrid and SPIHT+RCPC/CRC algorithms. Because the hybrid coder groups wavelet co-

efficient trees together, when losses occur these trees are lost as a single unit. This localizes

the region of the image which will be distorted. Trees which are not lost will be decoded with

high relative quality (dependent only on the source coding rate). Furthermore, because the

regions that were received have good quality, the hybrid algorithm can use the correlation of

these neighbors to mitigate the effect of the lost regions. The SPIHT+RCPC/CRC coder dis-

tributes the distortion somewhat uniformly over the entire image. The maximum distortion for

any pixel may be lower than in the hybrid scheme, but for large total distortion, a spatially dis-

tributed error can be perceptually undesirable. This difference in visual quality must be taken

into account when interpreting the numerical results.

Figure 4.14 Images displayed here show the visual effects of loss for the hybrid coder (left)
vs. the SPIHT+RCPC/CRC coder (right) at equal MSE ( ��� �9! 
 :
	 � <+7 � ). As shown in
[74], the reconstructed images with more localized distortions tend to be preferred over the
ones with global blurriness, both in terms of subjective quality and in terms of image content
recognizability.
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These observations are supported by results of a recent study [74]. In [74], human observers

were asked to evaluate a series of images compressed with the SPIHT and PZW algorithms at

equal PSNR values. The distortions in the images were similar to those that would result from

operation over noisy channels. It was found that the PZW sequences allowed observers to make

responses to objective recognition tasks at lower PSNR than the SPIHT sequences. In addi-

tion, subjective rankings on a five-point scale found that PZW images were preferred to SPIHT

images at the same PSNR. From these human observer experiments we conclude that the cu-

mulative distribution plots of PSNR are somewhat conservative on the side of underestimating

the quality of the hybrid and PZW coders.

4.3.2.2 Mean decoded MSE

Table 4.1 shows the mean decoded MSE values as well as the weighted MSE values for a

number of channel conditions which span the range of interest. The largest differences occur

for the most severe channels in the upper left section of the table. In these cases, the channels

were slow enough that interleaving was not effective and error rates were high due to the low

received SNR. The initial packets were often lost for the SPIHT+RCPC/CRC coder which

resulted in very high MSE values, and this greatly increased the mean MSE. The hybrid coder

has the advantage of being able to continue decoding after error bursts have affected the initial

packets (and the initial packets were not more vital to image quality than were later packets).

The hybrid algorithm exhibits superior performance over the SPIHT+RCPC/CRC coder

over many channels in terms of mean decoded MSE (Column A in Table 4.1). The weighted

distortion (Column B) tends to benefit the SPIHT+RCPC/CRC coder more than the others.

In this case, images with very large distortion (above 	 � ) are not included in the average and

therefore do not skew the average. Only the percentage of such images affects this performance

measure. Even with this performance measure, the hybrid shows superior performance on the

most severe channels (upper left) compared with either of the two other algorithms.
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Table 4.1 Distortion values for the three algorithms over a range of channel conditions. HYBR
and RCPC were optimized for the the channel with average SNR of � 	 dB and normalized
Doppler spread of � � ����� � . PZW is the packetized zerotree wavelet scheme [70]. RCPC is the
coder in [19]. HYBR is the proposed combined scheme. Column A shows the mean decoded
MSE and column B shows a weighted mean using the weighting function from Example (ii):� �
	

� 
 � �
�
	 � � � � � �

�
.

Average Received SNR(dB)
10 12 15 20

A B A B A B A B

Normalized
Doppler
( � ����� � )

10
HYBR 160.5 158.6 136.6 135.4 115.7 114.5 96.9 96.6
PZW 458.4 359.4 290.4 251.1 158.7 149.6 92.0 90.0
RCPC 241.0 165.5 196.0 142.8 146.6 120.8 110.3 100.8

50
HYBR 181.9 181.7 147.5 147.2 112.7 112.5 91.4 91.1
PZW 391.6 378.9 303.2 300.4 150.9 150.7 94.6 94.4
RCPC 244.4 188.1 166.0 139.7 123.1 109.4 93.1 91.2

100
HYBR 163.3 163.0 122.0 121.7 99.6 99.3 89.0 88.7
PZW 381.2 379.3 265.1 264.5 158.3 157.5 76.8 76.6
RCPC 180.1 141.4 126.7 113.3 100.8 97.1 91.4 90.2

200
HYBR 126.4 126.2 103.8 103.6 92.3 92.0 88.2 87.9
PZW 784.7 774.6 278.9 278.7 169.6 169.4 87.2 87.0
RCPC 131.8 119.1 106.6 99.6 96.0 92.7 89.7 89.3

4.3.2.3 Cumulative distributions of MSE

Further information on performance is provided in Figures 4.15(a) - 4.15(d). The plots

show the cumulative distributions of the decoded MSE for the four channels whose parameter

values are at the corners of Table 4.1. Curves closer to the left and top sides of the plot have

better performance in this type of graph.

The initial packet losses for the SPIHT+RCPC/CRC coder previously mentioned are visi-

ble as a relatively high tail for the distribution in 4.15(a). Even though fewer than ��� % of the

decoded images have these large distortions (high MSE), the very large MSE values have a

considerable effect on the mean MSE. Notice the performance generally improves for higher

received SNRs (due to fewer channel errors) as well as for faster channels because the inter-

leaver is more effective. By contrast, the PZW coder performance degrades for faster channels
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Figure 4.15 Cumulative distributions of decoded MSE for the < � : � < � : Lena image transmit-
ted over Rayleigh fading channels with a transmission rate of 0.25 bpp.
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because the errors are less bursty, so more packets are lost for a given average error rate. In

addition, because the effective visual performance in the high distortion regions is worse for

the SPIHT+RCPC/CRC algorithm (Figures 4.14 and 4.17), we see that the overall performance

of the hybrid is superior over the channels of interest.

4.3.2.4 With packet erasures

The next set of results includes the effects of the packet erasure channel. Table 4.2 com-

pares the algorithms’ performance over varying packet erasure channels (the wireless channel

parameters are fixed). Notice that the SPIHT+RCPC/CRC performs well for a packet burst

length of 10 (using either mean MSE or weighted mean MSE). The reason for the improved

performance on bursty erasure channels is due to the higher likelihood of the first packet era-

sure occurring late in the transmission for a fixed erasure rate. Both PZW and the hybrid coders

show robust performance over the varying channels, but the hybrid is able to produce higher

quality images on average.

Table 4.2 Distortion values for the three algorithms over a range of channel conditions. For
these channels, the fading parameters were held constant while the packet erasure channel
parameters were varied. HYBR and RCPC were optimized for the channel with average SNR
of � 	 dB and normalized Doppler spread of � � ����� � . PZW is the packetized zerotree wavelet
scheme [70]. RCPC is the coder in [19]. HYBR is the proposed combined scheme. Column
A shows the mean decoded MSE and column B shows a weighted mean using the weighting
function from Example (ii): � � 	

� 
 � �
�
	 � � � � � �

�
.

Burst Length
1 10

A B A B

Packet
Erasure
Rate

0.01
HYBR 137.6 137.3 136.6 136.4
PZW 273.0 272.6 274.0 273.6
RCPC 195.2 167.9 137.5 121.5

0.10
HYBR 206.9 206.7 200.5 200.1
PZW 345.7 345.3 340.8 340.2
RCPC 614.5 439.1 208.0 174.2
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Figures 4.16(a) - 4.16(d) show the cumulative distributions of performance for these dif-

ferent packet erasure conditions. Numerically the hybrid performs competitively with the

SPIHT+RCPC/CRC. After considering the fact that in the high distortion regime the hybrid

visual performance is better than its numerical results might suggest (based on results in [74]),

we see that the hybrid coder is superior over this range of channels. Visual results over two

particular channels are shown in Figure 4.17. We see that the SPIHT+RCPC/CRC coder has

strong performance over the channel dominated by bit errors, but performance is significantly

degraded on the channel dominated by packet erasures. The PZW and hybrid schemes show

consistent performance over both channels. But because of the additional error-correction ca-

pability, the hybrid decodes images at a higher quality on average.

4.3.3 Conclusion

In many applications, the system must operate in a highly variable environment. In these

cases, the source and channel coders must be able to handle a large range of potential condi-

tions. In addition, severe channels can lead to large variations in decoded image quality over

different trials, making it difficult to decisively conclude which coding method is superior.

Using the mean decoded MSE as well as cumulative distribution plots and the visual results

obtained by this research, we conclude that the hybrid coder performs competitively across all

channel conditions and degrades more gracefully under the most severe conditions.

4.3.4 Code Parameters

This appendix lists the channel code parameters used in Section 4.3. All packets consisted

of 384 source bits. The polynomials below will be expressed in octal notation (e.g., octal 13 is��� ��� ��� in binary which translates to the polynomial � �
��� � � ).

All codes used a 16-bit CRC defined by the polynomial :�< �
� � < . All RCPC codes in this

paper were constructed from memory 6 mother codes, and each packet was terminated with

enough zero bits to flush the state of the convolutional coder (i.e., 6 bits in this case). The

search for the correct path in the list-Viterbi algorithm was terminated after 100 candidates as
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in [28]. However, note that limiting the search depth to 10 candidates gives almost the same

performance. The hybrid coder used the rate � �
� RCPC code and the SPIHT+RCPC/CRC

used the rate � � � 	 RCPC code. The puncturing matrices and mother codes are listed in Table

4.3. A convolutional bit interleaver was used for the hybrid and SPIHT+RCPC/CRC coders

for transmission over the fading portion of the channel. This type of interleaver operates in a

more continuous fashion than does a block interleaver, so it can be more easily matched to any

total transmission rate. There is a penalty on the order of �
�

bits for an interleaver of depth � as

initial zero bits in the memory are flushed. Increasing the interleaver depth tends to make the

de-interleaved errors more uniform (helping the decoding performance of the RCPC codes),

but there is a penalty in the total number of source bits received for any total transmission rate.

The interleaving depth for the hybrid coder was 70 and for the SPIHT+RCPC/CRC code was

70.

Table 4.3 RCPC codes.

Rate Mother Puncturing Rate Mother Puncturing
Code Matrix Code Matrix

���
� � <�<� :
	� 	 �� � �
���
�
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

����
� ��� � 	 � <�<� :
	� 	 �� � �

���
�
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

����
�
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Figure 4.16 Cumulative distributions of decoded MSE for the < � : � < � : Lena image over
channels with varying packet erasure parameters and fading parameters �  
 ��� � � , � �9!#
 � :dB. (Total transmission rate 0.25 bpp.)
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Hybrid RCPC/CRC PZW

�� 
 ����� � , � �"!#
 � :+7 � , Packet Erasure Rate 0.10, Burst Length 1.

�� 
 ����� � , � �"!#
 � :+7 � , Packet Erasure Rate 0.10, Burst Length 10.

�� 
 ��� ��� , � �"!#
 ��� 7 � , No packet erasure.

Figure 4.17 Images displayed here show the median quality for the three algorithms under
different channel conditions. The channel used for the top row of images was dominated by
uniform packet erasures. The second row includes representative images over a channel with
packet erasures occurring in bursts. The channel for the bottom row of images has no packet
erasures but has a higher probability of bit errors, which occur in long bursts. The overall
transmission rate was 0.25 bpp.
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CHAPTER 5

IMAGE CODING FOR ERASURE CHANNELS

5.1 Introduction

In Section 4.3, the SPIHT image coder was modified so that each packet was independently

decodable in order to improve the robustness over varying channel conditions. This change

allowed the decoder to use each correctly received packet. The decodability of each packet is

guaranteed since the the algorithm partitions the wavelet domain into wavelet trees and places

the data into packets so that the bits associated with each wavelet tree are fully contained in a

single packet. There is some loss of performance relative to the original SPIHT algorithm (i.e.,

it requires more bits to achieve the same PSNR) that occurs in this partitioning and packing

operation. The additional rate required to achieve a given PSNR can be thought of as source

redundancy to distinguish it from channel code redundancy, but both are intended to provide

some error resiliency. The problem is that the algorithm does not offer a method of tuning the

amount of source redundancy. Ideally, the redundancy would be selectable similar to the way

the channel code rate can be selected to match the set of channel conditions.

When channel conditions can vary over a wide range, the designer is forced to provide

channel coding for the worst case channel conditions which usually significantly sacrifices

performance under good channel conditions. This motivates the desire for a more robust im-

age coder which does not sacrifice too much compression performance. This chapter presents

methods for introducing a tunable amount of source redundancy as a way of improving robust-

ness to errors. The erasure channel mentioned in the title of the chapter can really be considered

76



an abstraction of the actual channel as might be seen by an application at a higher layer in the

network protocol stack. If the channel is not actually an erasure channel, it is simply necessary

that channel decoding failures can be detected reliably such as with the RCPC/CRC codes pre-

sented in Chapter 3. However, the erasure channel applies directly to packet networks where

packets are lost due to misrouting, queue overflow, or excessive delay.

Section 5.2 presents a multistage structure for image coding with results from [38]. Some

analysis of the multistage encoder and decoder is provided in Section 5.3. Finally, a method

employing a multidimensional extension of a multiple description scalar quantizer [45] is pre-

sented in Section 5.4.

5.2 Multistage Coding

This section presents a multistage coding structure for image compression that encodes en-

tire images at each stage rather than the traditional multistage approach of coding relatively

small vectors, so we call the method “macroscopic multistage coding” to emphasize the dis-

tinction. Each stage encodes the residual of the previous stage. The process of multistage en-

coding typically results in additional source redundancy in the end-to-end encoded bit stream,

but the amount of additional redundancy is tunable. The additive structure of the multistage

decoder effectively exploits the source redundancy to provide graceful degradation in cases of

lost packets or uncorrected bit errors.

In addition, any nonprogressive image compression algorithm can be made progressive

(by stages), by using the algorithm at each stage in the multistage structure (although some

noiseless channel performance is generally sacrificed). Whereas the traditional use of multi-

stage coding is for complexity reduction, our purpose of multistage coding is specifically to

improve robustness over a range of channel conditions and maintain progressivity. In fact, the

stages in our proposed scheme can be high-performance image compression schemes them-

selves, in contrast to plain vector quantization used in ordinary multistage coders. Also,

the transmission rate allocated to each stage can be much greater than in more traditional
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multistage applications. We first provide some background on multistage coding, and then

describe two specific applications and present numerical results on some severe channel con-

ditions.

The basic structure of a multistage (or “residual”) coder is depicted in Figure 5.1 and is

characterized by multiple encoders arranged sequentially so that the quantization error signal

from each stage is the input to the next stage. In source coding, this structure is used to reduce

the encoder complexity and storage requirements for vector quantization (VQ) [75]. For ex-

ample, a multistage VQ (MSVQ) consisting of � stages with codebook size � � at stage � , has

search complexity (assuming greedy stage-by-stage encoding) and storage equal to � �� ��� � �
instead of � �� ��� � � (for an equivalent full search vector quantizer). The reproduction vector

is a sum of codevectors, one from each stage (i.e.,
�� 
 � �� ��� �� �

). An example of a predic-

tive image coder based on this structure is [76]. In [77], design algorithms are presented for

channel-matched tree-structured VQ (TSVQ) and MSVQ which improve performance when

operating over noisy channels. The role of the multistage structure was complexity reduction

and not robustness in that work.

+
X̂1Quantizer

Stage 1 -
X E1 +

X̂Quantizer
-Stage 2
2 E2

C1 C2

+
X̂Quantizer

-
m Em

Stage m

Cm

Figure 5.1 Structure of multistage (residual) source encoder.

We proposed to use at each stage in Figure 5.1 a full-image compression algorithm. This

leads to an image coder with the following properties:

1. The coder is progressive at stages.

2. The coder can survive the loss or corruption of one or several stages.

3. The coder performs well if no stages are lost.
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The multistage structure can be applied not only to images but to other sources as well.

Moreover, there is freedom to allocate the transmission rate among the stages and even to

alter the encoding algorithm for each stage. In a more general variation of multistage coding,

each stage can depend on the encoded bit streams of previous stages. In this paper, we do not

specifically consider this variation, but we note that it offers the possibility of better source

coding performance at the expense of increased error sensitivity.

One reason that multistage encoders provide robustness to channel noise is the insertion

of known resynchronization points. The transmitted bit stream has multiple independently de-

codable components which allows all correctly received stages to be used in the reconstruction.

As with most other progressive coders, the stages typically do not have equal influences on the

decoded quality. Instead, importance essentially decreases monotonically with stage number.

This nonuniform importance allows more efficient channel coding through the use of UEP.

An interesting feature of our proposed multistage coder is that it simultaneously has pro-

gressive, embedded, and nonembedded coding characteristics. As noted in Section 5.2, the

multistage structure naturally induces progressivity whether or not the component coders have

this property. Each stage has a constrained transmission rate (by design) regardless of whether

the stage encoder is embedded or not. At the same time, the macroscopic multistage structure

results in some degree of embedded encoding of the source independent of the type of compo-

nent source coders. Only the coding in the final stage within the transmission rate constraint

changes if the transmission rate does not correspond to the end of a stage.

While the multistage structure allows arbitrary source coders to be used at each stage, there

is no guarantee that cascading a particular coder will result in good performance. In fact, if

a good image coding algorithm is used in the initial stages, the input to later stages typically

deviates statistically from that of natural images. Therefore, using the same off-the-shelf image

coding algorithm for each stage will not necessarily work well. In Sections 5.2.1 and 5.2.2 , two

specific examples of multistage coders are discussed. We use wavelet-based coders because of

their good single-stage performance and discuss modifications to improve the performance of

a multistage implementation.
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5.2.1 A multistage zerotree wavelet coder

This section describes a multistage coder based on zerotree wavelet coding. Under known

and memoryless channel conditions, such as a BSC, it has been shown that channel coding

can effectively protect the SPIHT bit stream and that the combined system has performance

superior to most other known methods [19, 28]. However, when channel conditions are worse

than the design conditions, this method does not degrade gracefully [37].

One approach to improving the robustness of the EZW or SPIHT coders is to exploit the

decreasing importance of the bit stream, as the rate increases, by using UEP channel coding.

However, in practice, this results in little improvement due to the combination of the serial

decoding requirement of the algorithm and the rapid transition in performance of channel codes

as a function of the channel code rate (e.g., see [14] and [19]). The multistage coding structure

reduces the serial decoding requirement by only requiring an uninterrupted bit stream within a

stage. The stages tend to have unequal importance (in terms of the decoded image quality) with

the first stages being the most important. However, in this case UEP coding is more effective

since it is possible to continue decoding beyond the first channel error. A multistage version of

the SPIHT coder is discussed in the remainder of this section.

5.2.1.1 The stage schedule

We refer to a “stage schedule” as the ordered list of transmission rates assigned to the stages

of a multistage coder. The rate of the last stage is usually left to absorb any remaining bits in

the rate assignment procedure. We assume that the stage schedule is fixed and known at both

the encoder and decoder. A possible direction of future research is to study the adaptation of

the stage schedule based on the image and the channel conditions, in which case the schedule

could be transmitted as overhead.

The maximum stage length (i.e., the number of packets or total rate in a stage) is con-

strained by the serial decoding requirement within a stage and the effective packet error rate,

after the channel decoder, under the worst channel conditions of interest. If the probability of a

packet error is � under these conditions, then there is little reason to create a stage much longer

than � ��� packets since error-free packets beyond the first packet error are discarded within a
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stage. While each additional stage can offer improvement in robustness under poor channel

conditions, the performance typically decreases under good channel conditions. As the prob-

ability of packet error under the worst channel conditions drives the maximum stage length

down, loss in source coding performance under good conditions leads to the necessity of find-

ing methods to improve performance. The trade-off between performance on good channels

and on bad channels is determined by our choice of stage schedules, the source coders used at

each stage, and the channel coding for each stage.

5.2.1.2 Modifications to improve multistage performance

While the SPIHT algorithm performs well on natural images it is not particularly suited for

coding residual images. The residual image at the output of the first stage (coded by SPIHT)

tends to have coefficients in lower frequency subbands with peak magnitudes about the same

as those in higher frequency subbands. Also, the state information of SPIHT is lost, so extra

bits must be spent at the start of each stage to describe the locations of the large coefficients.

(In ordinary SPIHT this is implicit in the bit stream.) One way to reduce the performance

loss in using SPIHT at every stage of a multistage encoder is to use fewer levels of wavelet

decomposition in later stages. The motivation for this approach is that the coefficients in the

coarser scales have generally been refined beyond their most significant bit and most of the

tree-structured dependency has been exploited at these scales. Also the large coefficients at

fine scales would not be as deeply nested in the tree-structure, so fewer bits are needed to code

their locations. This method is useful regardless of the stage length (i.e., the transmission rate

of a stage), but it is not sufficient to completely remove the problem associated with very short

stages.

A problem associated with using very short stages is that extra bits are spent coding coef-

ficients that have already been refined in earlier stages since the state information is reset at

the beginning of the stage. This is similar to using a repetition channel code where the code

rate is too small (i.e., it is over-coded). An effective solution to this problem is to partition the

image within a stage into subimages (see Section 2.2.2). This method allows the stage length to

increase because serial decoding is only required within a subimage. The visual quality of the
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reconstructed image can be improved under packet loss conditions by ensuring the subimages

consist of spatially diverse sets of wavelet trees. This way, the distortion due to packet loss

will be distributed throughout the image. This goal is accomplished by choosing a good order-

ing of the image wavelet trees prior to partitioning into subimages. The coder mentioned in

Section 5.2.2 uses a similar method except the image is partitioned into many more subimages

(i.e., the number of subimages equals the number of packets). Also with the multistage SPIHT

coder, the partitioning only occurs in later stages with fewer levels of wavelet decomposition

and only in those cases where packet loss rates significantly limit stage lengths.

5.2.1.3 Overhead information

Some overhead information is required for proper decoding of the the multistage version

of SPIHT beyond that required for the original version. First the starting threshold value needs

to be sent for each stage or partition. In the worst case this represents about 5 bits per stage,

but can be reduced by coding differentially from a predicted value which would probably be a

static value based on the stage schedule. In the experimental results that follow, the full 5-bit

encoding was used.

The decoder must also be able to identify the stage and intrastage position of each correctly

received packet. The amount of explicit coding required for this depends on the details of the

system and the packet loss mechanism. For situations where all packets are received and the

only loss is due to channel decoding failures, no extra information is necessary since the correct

location of each packet is evident by counting received packets. If some packets never reach

the receiver (e.g., misrouting or buffer overflow in a wireline network), then each packet must

include enough overhead bits to resolve the uncertainty. For example, if the probability of � or

more consecutive packet erasures is acceptably low over the channel conditions of interest, then

a packet index of � 0 ���
�
� �

���
bits suffices to determine the intrastage position of each received

packet. If packets can arrive out of order, the maximum delay would affect the number of bits

required to resolve the correct position. In some systems packet index information is included

in the packet header along with routing information regardless of the packet payload, so explicit

coding by the source coder would be reduced or eliminated in this case.
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The experimental results in Section 5.2.1.4 focus on systems where packet losses are due to

channel decoding failures, as can happen in wireless links. Therefore no additional information

is necessary to identify the correct position of a received packet. Section 5.2.2.3 considers the

case where packets are lost due to misrouting or buffer overflow, as in a wireline network.

5.2.1.4 Experimental results

In this section we focus on transmission over a BSC with channel error rates between � � � �
and � � � < . The performance is measured by the mean decoded MSE, computed over at least

100 trials on a BSC of the given error rate. The channel conditions were selected to allow

comparison with results in [22].

The output of each stage was protected with an RCPC/CRC concatenated channel code as

described in [19]. A different RCPC rate was selected for each stage to exploit the unequal

importance of their output bit streams. Each RCPC code was based on a memory 6 mother

code, and a 16-bit CRC was used for error detection and as part of the list decoding process

[19]. The packets consisted of 220 information bits.

The multistage coders described in this section use the version of SPIHT with arithmetic

coding. Experiments indicated that arithmetic coding provides about � � : dB better PSNR under

good channel conditions. The gain associated with arithmetic coding is less than usual because

the arithmetic coder did not have time to adapt the model during the short stages (or subim-

ages). These short stages were necessary for robustness under the severe channel conditions.

It might be possible to obtain better source coding performance if the models are initialized

with more accurate probability distributions. Results for two coders are provided to demon-

strate two possible trade-offs between performance under the good channel conditions versus

the performance under bad conditions.

The first coder consisted of three stages with the first stage length equal to 10 packets, the

second stage length equal to 15 packets, and the third stage assigned the remaining rate. The

number of levels of wavelet decomposition was also changed at each stage with 6 levels in the

first stage, 5 levels in the second stage, and 4 levels in the third stage. Finally, for stages 2 and 3

the image was partitioned prior to coding. For stage 2, the wavelet trees were divided uniformly
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into three sets, and each set was coded independently to produce five packets each. Similarly,

in stage 3, the set of all wavelet trees was divided uniformly to give � � 4 ( � & $ ( � *+& 4 � ��� � partition

elements with each coded to produce four packets (except perhaps the last partition element).

The RCPC code rates for the three stages were � � : , � � � , and : � 	 respectively. The second

multistage coder had essentially the same structure except the channel code rates were lower

for the last two stages. The RCPC rates for coder 2 were � � : , � � � < , and � � � .

Figure 5.2 shows the performance of the two multistage coders as well as the results from

[22] for comparison. We note that the results from [22] used different channel coding than the

coders presented here (i.e., RCPC coding alone versus RCPC/CRC), so those results would

probably improve if the same RCPC/CRC were used. However, the comparison shows that

both multistage methods are performing well. To demonstrate the visual quality, two example

decoded images from multistage coder 2 are shown in Figures 5.3(a)-5.3(b) for channel bit

error rates (BERs) � � � � and � � � < .
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Figure 5.2 Comparison of two multistage coders with results from [22] for the < � : � < � : Lena
image at 0.25 bpp total transmission rate sent over a BSC with different error rates.

5.2.2 A packetized multistage image coder

This section describes a multistage version of the PZW coder presented in [71]. The PZW

coder modifies zerotree coding in order to be more robust to lost packets due to buffer over-
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(a) BER=0.01, PSNR = 30.42 dB. (b) BER=0.05. PSNR = 29.24 dB.

Figure 5.3 Example decoded images for multistage coder 2 for channel BER 
 � � � � and � � � < .

flow or misrouting (i.e., lost packets never reach the receiver). Specifically, PZW partitions an

image into subimages as explained in Section 2.2.2 and encodes each subimage with a zerotree

algorithm so that the bits exactly fill one packet. The order of the wavelet trees is fixed accord-

ing to a dither pattern matrix (selected to reduce the visual effect of lost packets) and the exact

image partition is determined for each input image. Header information is included with each

packet to allow independent decoding.

Our multistage modification of PZW obtains improved robustness by distributing informa-

tion about any spatial region into multiple packets (instead of just one) and by introducing

unequal packet importance which allows improved performance by exploiting efficient erasure

correction coding. As a side benefit, the multistage PZW has some progressivity.

Each stage generally uses a different number of levels of wavelet decomposition similar to

the multistage SPIHT coders in Section 5.2.1, with the number of levels typically decreasing

monotonically with stage number. As previously mentioned, changing the number of levels

allows improved coding of the residual images by the zerotree algorithm. A random permuta-

tion is selected for each stage and is fixed at the encoder and decoder to determine the order
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of wavelet trees for the stage. Random permutations at each stage sufficiently create spatially

diverse subimages as well and reduce the chance that two spatial regions are in the same subim-

age at two different stages. The specific permutations selected slightly affect the compression

performance of the algorithm, but experimental trials indicate that this affects the decoded

PSNR by less than 0.1 dB for typical coding rates and 0.2-0.3 dB for short initial stages. The

effect of the specific permutations also diminishes as more stages are used, which is due in part

to selecting good partitions at each stage.

We partition the set of all wavelet trees in an image, ordered according to the permutation,

so the number of subimages equals the number of packets for that stage. Since the encoded

subimage length is small and each stage is partitioned prior to encoding, selecting a good

partition is more important to performance than with the multistage SPIHT coder. Because the

partition is not fixed, each packet contains information about the trees contained within it. To

reduce the dependency between the packets, the partition information is encoded so that the set

of trees in a packet can be determined without information from other packets. This amounts

to encoding the starting tree index which requires 0 ���
�
� �

�
bits (where � is the number of

wavelet trees) and the number of trees in the packet (usually 4-5 bits is sufficient). The next

section considers the problem of finding a good partition.

5.2.2.1 Finding a good image partition

As previously mentioned, the importance of finding a good partition of the image at each

stage increases as the numbers of partitions and stages increase. The process of independently

encoding subimages results in some variation in the rate allocated to individual wavelet trees

compared to the case without image partitioning, which usually results in a loss of perfor-

mance. It is thus of interest to find the best partition of wavelet trees into subimages which are

each encoded with a rate constraint corresponding to the packet length. Typically one would

minimize the reconstructed MSE, but other distortion measures can also be used.

This problem can be solved with dynamic programming [63] by noting that given � wavelet

trees are assigned to the first � subimages, the best partition of the remaining trees is indepen-

dent of the specific initial partition. Therefore, the cumulative number of trees assigned to
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subimages can serve as the state in a trellis diagram, and the subimage (or packet in this case)

number can serve as the trellis stage index. Typically, there are further constraints imposed,

such as the minimum and maximum number of trees per subimage, which limit the search

space. Figure 5.4 shows an example trellis diagram with constraints on minimum and maxi-

mum trees per packet. The constraints limit the search region to the shaded area shown in the

figure.
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Figure 5.4 Trellis diagram for determining the optimal partitioning of wavelet trees into pack-
ets.

The distortion function for each subimage is a complicated function of the packet size and

the set of wavelet trees in this case, but the values can be determined by running the encoding

algorithm. Partial distortion values associated with a particular set of wavelet trees are used

several times during the dynamic programming algorithm, so complexity can be reduced by

storing these values in a table for later use. Also, simpler but coarser approximations to the
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desired metric can be used to trade off complexity and performance within the same dynamic

programming framework.

Our multistage PZW coder uses this dynamic programming approach to optimize the parti-

tion selected at each stage. Experiments indicate that MSE optimized partitions in later stages

can recover some of the performance loss in earlier stages caused by partitioning.

5.2.2.2 Reducing distortion at the decoder

Packet erasures cause distortions in the spatial locations corresponding to the wavelet trees

within the discarded packets. In PZW [71], the decoded distortion is reduced by interpolating

missing wavelet tree roots from neighboring coefficients in the low-frequency subband.

Figures 5.5(a) and 5.5(b) show examples of the typical distortions that result due to missing

tree information. Missing trees at coarser scales cause distortions over larger spatial regions

and interpolation is not effective. At finer scales, the missing trees cause large distortions

in small spatial areas and the distortion can typically be reduced by interpolation. The third

image in Figure 5.5(c) shows a smoothed version of the image in Figure 5.5(b), where the

improvement in quality can easily be seen, and numerically the PSNR is improved from 21.21

to 25.53 dB.

Interpolation is really only effective in the multistage PZW for reducing distortions caused

by lost packets from the first stage. Also if the missing wavelet tree roots are from a coarse

scale (i.e., many transform levels), then interpolating the value from neighbors does not work

better than using the low-frequency subband mean (transmitted separately). However, using

an initial stage with many levels of decomposition can be useful for robustness when UEP

channel coding is feasible. Also if a short first stage is desirable for the purpose of increasing

progressivity, then a coarse scale can be useful for achieving good source coding performance

within that stage.

5.2.2.3 Experimental results

To test the performance of the multistage version of PZW, the channel was selected to match

the conditions in [71]. Packets were erased independently with a probability corresponding to

88



(a) Effect of missing trees at
coarse scale.

(b) Effect of missing trees at
finer scale.

(c) Same image as (b) after
smoothing.

Figure 5.5 Example images demonstrating the effect of erased trees on decoded image quality.

the given packet loss rate, the packet size was 384 bits, and the total transmission rate was

0.209 bpp.

In this channel model, lost packets do not arrive at the decoder (or they dropped due to

errors or excessive delay), and it is assumed that the source coder must provide explicit coding

to determine a packet’s position in the transmitted sequence if necessary. Therefore, overhead

bits are sent with each packet to identify the stage number, which consisted of one bit (i.e., two

stages) for the coders in this section.

The PZW algorithm distributes the image information as uniformly as possible among the

packets so the maximum loss associated with a packet erasure is minimized. For the multi-

stage coder, the packets have unequal importance due to the progressive nature of the encoding

structure. Therefore explicit erasure coding is used to protect the important first stage packets.

Specifically Reed-Solomon (RS) codes are used across packets (similar to the method in [33])

so that erased packets can be recovered if the capabilities of the code are not exceeded. This

method allows more levels of wavelet decomposition in the first stage for better source coding

efficiency while alleviating the problem that smoothing algorithms would be ineffective (as

mentioned in Section 5.2.2.2).
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In order to correctly decode the RS code on the first stage packets, the positions of the

missing packets must be identified. Therefore a packet index needs to be sent as overhead so the

position within the stage can be identified for each received packet. The packet index bits and

the starting tree number contained within each packet for partition information are somewhat

redundant. The starting tree can be predicted from the packet index and stage schedule and

only the error needs to be coded. Also, the starting tree index of the first packet is redundant

since it is always zero, and only the starting tree index is necessary in the final stage packet

since the remainder of the trees must be included.

The multistage encoder uses a straightforward encoding of header bits without the index

prediction. It is composed of two stages with a first-stage length of 12 packets and 6 levels of

wavelet decomposition followed by a second stage using 4 levels of decomposition. The 12

first-stage packets are protected by a systematic (20,12) RS code which was selected to provide

good performance at the highest erasure rate of interest, 0.2, while not sacrificing error-free

performance too much. Using this RS code at the highest erasure rate, the first-stage packets

are available for decoding more than 99% of the time. The overhead in each packet for this

coder includes 1 bit for the stage number, 5 bits for packet index (only in first stage), 5 bits for

starting threshold value, 6 bits first-stage and 10 bits second-stage for the starting tree index,

and 4 bits first-stage and 5 bits second-stage for the tree count. Table 5.1 shows performance

results for the multistage coder and PZW over a range of packet erasure rates. The values in

the table are mean decoded MSE converted to PSNR, and for the multistage coder, they are

representative of the range of values that occurs as different permutations are selected for each

stage’s tree order (i.e., the values in the table are within about 0.2 dB of the performance of a

randomly selected permutation set).

Table 5.1 Performance results for < � : � < � : Lena sent over a packet erasure channel. Values
are PSNR (dB) converted from mean MSE.

Coder No erasures 1% erasures 10% erasures 20% erasures
PZW[71] 32.2 31.3 26.3 24.6

Multistage PZW 31.8 31.6 30.2 28.4
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As the numerical results show, the multistage coder is robust even under high-loss condi-

tions while only sacrificing about � � � dB in PSNR under lossless channel conditions. These

results give an indication of the performance possible with the multistage version of PZW. Im-

plementing more efficient encoding of the packet overhead can yield an improvement of about

0.3 dB in PSNR. Also, the coder can be adjusted for a different trade-off between lossless and

high-loss channel conditions. Example decoded images are provided in Figures 5.6(a)-5.6(c)

for three erasure rates to demonstrate the visual quality.

(a) No erasures. PSNR =
31.96 dB.

(b) 10% erasures. PSNR =
30.50 dB.

(c) 20% erasures. PSNR =
28.45 dB.

Figure 5.6 Example decoded images for multistage PZW under three erasure conditions.

5.3 Multistage Analysis

The general multistage coding structure is shown in Figure 5.7. The functional blocks� � �
	 � � � represent general residual computation functions which are an abstraction of the com-

mon technique of subtracting the estimate from the stage input. The purpose of using alternate

functions here is to propagate source information further down the encoding process to im-

prove robustness in the event of stage loss during transmission. More details on these residual

functions will be deferred until a later section.
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Figure 5.7 Block diagram of a general multistage encoder for the case of two stages.

The basic idea of the multistage structure is to code the image in separate pieces, each

with a particular bit budget, and combine the individual stage estimates to create the final

reconstruction. Such an approach has been suggested in [78] as a method to improve image

compression for noiseless channels. The motivation comes from the fact that an image with a

combination of smooth and textured regions will cause a “best-basis” wavelet packet algorithm

to compromise between matching the two types of regions. Their approach is to instead vary

the basis library within each stage so the first stage can capture smooth characteristics and the

latter stages can handle local textured regions.

Another benefit of multistage coding is the improved robustness to noisy channels. The

multiple stages provide natural resynchronization points which allow the decoder to recover

when errors occur. Furthermore, information can be propagated to later stages by not com-

puting the full residual (i.e., using the � � gain terms in the figure above). In the sections that

follow an erasure channel model is assumed when deriving the optimal decoding rules. There-

fore there are no corrupted codewords - they either arrive intact or are known to be lost. This

model is not overly restrictive since it applies directly to typical packet networks and to other

channels where errors can be detected with high probability via efficient error detection codes.

5.3.1 Analysis of the encoder and decoder design

In this section, the encoder and decoder are analyzed at various levels of detail to gain

insight into the proper designs. Initially the details of the encoder and decoder will be hidden

in order to derive the most general results given the channel model. Therefore general results

will be derived along the lines of traditional vector quantizer (VQ) analysis, and then these
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results will be refined for more detailed models of the multistage encoder. The most general

system model is shown in Figure 5.8 and consists of an encoder which outputs � separate

indices followed by an index erasure channel followed by the decoder. For each � 
 � � � � � � �
let � � be a finite set of channel symbols that can be transmitted at the � ��� stage. The input is a k-

dimensional vector, ������� , which is mapped by the encoder, ���	�
� � � � � � � � � � ��� � 
� ,

into a vector of indices � ��� . The model is essentially the same as that of the generalized

multiple description problem where each index represents a description of the source. Much of

the previous work on multiple description has considered the special case of two descriptions,

but the intended application makes the consideration of an arbitrary number of descriptions

desirable.

X (Original Input)

Λ̂Λ

Index Erasure Channel

D
ec

od
er

Y

(erasure indicator vector)
Z

E
nc

od
er

(reconstruction)

Figure 5.8 Abstract transmission model.

The channel operates by either passing the input index (i.e., the particular component of� ) without error or by erasing the index. The channel state is fully specified by the index

erasure indicator vector � � � � � � � � where the components equal to 1 correspond to the erased

components of � . The components of the received vector �� are elements of the encoder index

sets augmented by the erasure symbol � , �� � � � � � � � � 	 �� � , and �� � �� � � �� � � � � ���� � 	 �� .

The received vector �� is determined by a function of the encoder output � and the channel

indicator vector � according to the mapping � � � ���
� ��� � � � � � � � � �� where the � ���

component of the output is

� � � ���
� � 
 ���� � � 2�� � � 
 �

� 2�� � � 
 � � 
 � � � � � � � � (5.1)

93



5.3.2 Optimal decoder design

With these definitions in place, the goal is to determine the decoder mapping � � �� � � �
which minimizes the expected distortion ��� � � � ���

���
between the input � and the decoder

output � . The expected distortion can be written in terms of the possible received sequences

by first writing it in terms of the encoder output and channel state
��� � � � �	�

��� 

������� � � � �	�
�
� � 
 �

� � 
 � ��� (5.2)
 �

���

�
� �� � � �����

��� � � � ���
�
� � 
 �

� � 
 � � � � � 
 �
� � 
 � � � (5.3)

The distortion can now be written in terms of the decoder input �� by noting that its value

is completely determined by � and � through the mapping � � � � �
�

introduced above (i.e.,�� 
 � � � � �
�
). Also the mapping 
 � � �

� � �� � � � � � � � given by


 � � �
�
	

���� � 2�� � � � 
 �� 2�� � 4 � & ��� 2 � &
� 
 � � � � � � � (5.4)

shows that �� contains all information about � . Furthermore the events
� � 
 �

� � 
 � �
and

� � 
 �
� �� 
 � � � are equivalent. For notational convenience, let �� 
 	 � � � ��� ���

� � ��� 
�
��� � � � � � � � �

be the set of possible decoder input vectors for the encoder output � , and

let ��� 
 	 � � � � � � � � � 
 � � �
� � 
 � � � be the set of possible encoder outputs associated with

decoder input � � . Then, the distortion can be written
��� � � � ���

��� 
 �

���

�
�  � � � �����

��� � � � ���
�
� � 
 �

� �� 
 � � � � � � 
 �
� �� 
 � � � (5.5)


 �

���

��

� ��"!

��� � � � �	�
�
� � 
 �

� �� 
 � � � � � � 
 �
���� 
 � � � (5.6)


 ��

� ��

� � �� 
 � � � �

���$#!

��� � � � �	�
�
� � 
 �

� �� 
 � � � � � � 
 � � �� 
 � � � � (5.7)

The decoder input is fixed with the innermost expectation so the value of the decoder output,

which will be denoted � � 
 , is simply a constant. Furthermore, the source is independent of the

channel state, so the channel can be removed from the conditioning event (since � 
 �
contains

all the information relevant to the source) giving
��� � � � ��� � 


�
� � 
 � � 
%��� � � � ���

�
� � 
 �

� �� 
 � � � � (5.8)
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Substituting (5.8) into (5.7) gives

��� � � � ���
� � 
 ��


� ��
� � �� 
 � � � �


��� #!
��� � � � � � � 


�
� � 
 � � � � � 
 � � �� 
 � � � � (5.9)

For a given decoder input, only one term from the outer sum in (5.9) is relevant and the optimal

decoder rule is given by

� � 
 
 ( � � -/2 �� �

 ��$#!

��� � � � � �
�
� � 
 � � � � � 
 � � �� 
 � � � � (5.10)

The value of � � � 
 � � �� 
 � � � can be computed as follows:

� � � 
 � � �� 
 � � � 
 � � � 
 �
� �� 
 � � �

� � �� 
 � � � (5.11)


 � � � 
 �
� � 
 
 � � �

� �
� � � 
 
 � � �

� �
� 
 � �� # !

� � � 
 � � � (5.12)


 � � � 
 � � � � � 
 
 � � �
� �

� � � 
 
 � � �
� �
� 
 � �� # !

� � � 
 � � � (5.13)


 � � � 
 � �
� 
 � �� # !

� � � 
 � � � � (5.14)

From (5.10) and (5.14) it is clear that the optimal decoder rule is independent of the channel

statistics. Since the channel is an erasure channel, there is no uncertainty about the channel

state given the decoder input. The best decoder output is simply determined from a weighted

sum of conditional expectations over all possible encoder regions for the given decoder input.

This result is simpler than the equivalent result for channels where errors are not detected

(index error channels as opposed to index erasure channels). In that case, the value of �� does

not completely determine the channel state, so the channel probabilities do not cancel as in

(5.13). Index error channels have been considered in work on channel-optimized VQ (COVQ).

For the special case of the common squared error distortion, � � � ���
� 
�� � �

� �
�
, the

expression for the optimal decoder value simplifies to

� � 
 
 �

��� #!

��� � � � 
 � � � � � 
 � � �� 
 � � � � (5.15)
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With the encoder � � 	
�

fixed, the encoding region associated with encoder output � 
 �
is

defined as � 
 	 � 	 ��� � � � �
	
� 
 � �

(5.16)

so

� 
 ����� � � � 
 � (5.17)

Therefore, the decoding rule can also be written as

� � 
 
 �

 �� #!

��� � � ��� � 
 � � � � � � 
 � � � �

 � ��$#!

� 
 � � (5.18)

which is a weighted sum of centroids of the encoder regions corresponding to the given decoder

input.

Proof:

Let �  be the optimal decoder output as in (5.15) and let
�� be the decoder output of any

other rule. Then��� � � � �
��
� � 
 ��� � � �

�� �
� �

(5.19)
 ��� � � �
�

� 
� �

� ��
�

� 
�
�
� �

(5.20)
 ��� � � �
�

� 
�
�
�	�1�

: ��� � �
�

� 
� � � ��

�
� 

���
� ��� � � ��

�
� 

�
�
� �

(5.21)� ��� � � �
�

� 
�
�
� � �

: ��� � �
�

� 
� � � ��

�
� 

���
(5.22)� ��� � � � �	� 

� � �
: ��� � �

�
� 

� � � ��
�

� 
���
� (5.23)

Now considering only the second term,
��� � �

�
� 

� � � ��
�

� 
��� 
 ��� ��� � �

�
� 

� � � ��
�

� 
�
� �� 
 � � ��� (5.24)
 ��� ��� � �

�
� 

�
� �� 
 � � � � � ��

�
� 

� �
(5.25)

since � ��
�

� 
�

is a deterministic function of �� . Then ��� �  � �� 
 � � � 
 � � 
 as in (5.15) and
��� � � �� 
 � � � 
 ��� � � � 
���$#! � � 
 �

� �� 
 � � � � (5.26)
 �

��� #!

��� � � � 
 �
� �� 
 � � � � � � 
 � � �� 
 � � � (5.27)


 �

���$#!

��� � � � 
 � � � � � 
 � � �� 
 � � � (5.28)
 � � 
 � (5.29)
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Substituting back into (5.25) gives

��� � �
�

� 
� � � ��

�
� 

��� 
%��� � � � 

�
� � 

� � � ��

�
� 

��� 
 � (5.30)

which means the last term in (5.23) is � and

��� � � � �
��
��� � ��� � � � ��� 

���
� (5.31)

�

5.3.2.1 Training-set implementation

Vector quantizers are usually designed using a set of data representative of the source

known as a training set. The encoder regions and codebook values are typically designed

from this training set using an iterative algorithm like the generalized Lloyd algorithm (GLA).

Since practical implementations are almost always based on training-set data it is important to

consider how the optimal decoder output value is determined in this case.

The training set consists of representative samples from the source and is denoted � 

� 	 � � 	

�
� � � � � 	 � � � � where � � � is the size of the training set. Finally, for convenience in writing

the optimal decoder output in terms of the training-set data, define an indicator function of an

event � as

��� � 	
�
	

�� � � 2 � 	 � �� � 4 � & ��� 2 � & � (5.32)

Now the conditional probability in (5.14) can be written as

� � � 
 � � �� 
 � � � 
 � �  �
� � ! �
	

�
� 
 � �� #! � �  �

� � ! � �
	
�

(5.33)


 � ��� � 
 �� 
 � ��$#! � �	� � 
 � � � (5.34)

Therefore the conditional probability can be computed by counting the number of training-

set elements in the encoding region � 
 divided by the number of training set elements in all

the encoding set regions associated with the decoder input � � . Furthermore, the conditional
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expectation of the distortion in (5.10) can be written as

��� � � � � � � � 
 � � 
 �
�  �
� � ! � 	

�
� �
	 � �

�
(5.35)
 �

� �� ��� � ! �
� � 	 � �

�
� (5.36)

and combining the expressions in (5.34) and (5.36), the optimal decoder rule can written as

� � 
 
 ( � � -/2 �� �

��� #!

� �	� � 
 �� 
 � �� #! � �	� � 
 � � �
� �� ��� � ! �

� � 	 � �
�
� (5.37)

For the special case of squared error distortion, � � � ���
� 
 � � �

� �
�
, the expression in

(5.15), adapted for the training-set implementation, is

� � 
 
 �

��� #!

� ��� � 
 �� 
 � �� # ! � ��� � 
 � � �
� �� ��� � ! � 	� �	� � 
 � (5.38)


 �� 
 � �� #! � �	� � 
 � � �
 �� #! �
� �� ��� � ! � 	 (5.39)

which is simply the average value of the training set vectors in the encoding regions which

could be mapped into the decoder input � � .

5.3.2.2 Multistage specialization

So far in Section 5.3 nothing about the multistage structure of the encoder has been used in

determining the optimal decoder. The only assumptions used so far are that the encoder outputs

a vector of indices and these indices are subject to erasures by the channel. The practicality

of the most general encoder will depend on the number of indices and the size of each of the

index sets.

In Figure 5.9 the details of the encoder have been included for the multistage structure with

a residual function � � � 	 � � � 
 �
� � � 	 with � � � � � � � � . This residual function represents just

one possible method of propagating source information to later stages. Values of � � near �
result in high redundancy, and values near � result in little information propagation ( � � 
 � is

the usual residual computation). Also the components of output vector � are determined by

the individual stage encoders �
� �	� � � � � � 
 � � � � � � � .
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Figure 5.9 Multistage encoder implementation.

The previous results in Section 5.3.2 for the optimal decoder rule can be written in terms

of the parameters of the stage encoders. Let � �
 � 	 � 	 � � � � �
�
� 	
� 
 � � �

be the encoding

region of stage � associated with stage output
� �

and let ��
�

 � be the estimate used at stage � for

the residual computation. Then the encoding region � 
 associated with the vector of indices
�

can be written in terms of stage encoders as

� 
 
 �
�� ��� �

� � �� � ��� � � ��
�

��
� � �
 � � � (5.40)

Therefore the overall encoding region is the intersection of shifted versions of the individual

stage encoder regions.
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5.3.2.3 Extensions to long stages

The model represents an abstraction of the actual system implementation details. Modern

image coders often consist of simple scalar quantizers acting on individual transform coeffi-

cients. The output indices of these individual quantizers are usually coded in groups using

adaptive entropy coding, so the relationship between the bit stream actually transmitted over

the channel and the individual quantizer indices can be quite complex. However, because the

previous analysis is based on an index erasure channel, the details of the actual index trans-

mission are unimportant as long as errors can be detected. Therefore the model can be applied

to individual quantizers or small groups of quantizers, which allows very long stages to be

considered without quickly running into complexity problems.

It is important to make a clear distinction between the concepts of packets and stages.

Packets, or transmission units, simply represent a method of segmenting the bit stream into

convenient sizes for transmission. Thus they are simply a transport layer mechanism and do not

change the model. Stages, on the other hand, represent independent sections of the encoding

process which can be decoded without information from other stages.

Because a stage typically consists of several packets and decoding within a stage proceeds

until the first packet loss (at which point synchronization is lost and decoding of that stage must

terminate), each quantized transform coefficient is usually partially recovered (i.e., truncated).

Therefore if the groups of coefficients are coded in a progressive fashion within a stage, the

most important information is more likely to occur before the first error. Figure 5.10 shows

a conceptual block diagram of this process of coding, transmission, and recovery of an image

stage. Since the result of the channel losses on each coefficient is a truncation of the quantiza-

tion index, the benefit of using multiple stages can be analyzed by considering the performance

of a scalar quantizer with truncation.

First consider a uniform source on � � ��
�
�� � quantized by a uniform quantizer with the quan-

tization index transmitted progressively (i.e., MSB � LSB) and a squared error distortion.

Assuming that decoding must stop at the first error which occurs on bit � � � , the expected
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Figure 5.10 Single-stage encoding for an image.

distortion of the recovered value using � bits is [75]

� 	

 �� : : �

�
	 � (5.41)

In the high-rate case, early truncation leads to significant distortion compared to the recovered

value using the full index. This is not surprising since only a small portion of the bits can be

used in the reconstruction. Coding multiple stages, or descriptions, allows more bits to be used

since each stage can be decoded independently. In addition, allowing some of the information

to be coded in multiple stages reduces the worst-case distortion at the expense of performance

under noise-free conditions. Consider a situation where two stages are coded to equal rate with
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a structure as depicted in Figure 5.11. The gain term � in the residual computation is used to

allow information to “leak” into the second stage so that the distortion is lower when an error

occurs early in stage 1.

The input to stage 2 is given by� � 
 � � � �� � 
 � �
� �� � � � � �

� � � �� � (5.42)
 � ��� (5.43)

where � is the first stage encoding error and � is a scaled version of the stage 1 estimate.

In order to obtain some tractable analytical results we assume that the quantities � and � are

produced by high-resolution quantization and that they are independent. In practice these are

often reasonable assumptions. Then � will be a nearly continuous scaled version of the original

source. Using these approximations, the pdf of � �
is simply the convolution of � and � as

shown in Figure 5.12 and has a pdf given by

��� � � � � 

�������� �������

����	��
 ���� � � � �� � � ( � � � 2 �
� � � ���� � ���	�� � � �

� ���� � ���	��
����� � ���� � ���	�� � � � ���� � ���	��� ������
 ���	� � � � �� � � ( � � � 2 �

� � ���� � ���	�� � � � ���� � ���	��
� � 4 � & � � 2 � &

(5.44)

where � ( � 	 � ( � � � � � �
� � � � and � 2 � 	 � 2 � � � � � �

� � � � .
Using the resulting pdf for � �

along with Bennett’s integral for the distortion of the optimal

high-resolution quantizer [75, pp.186], the distortion at the output of stage 2 is given by

�
�
� � � 
�� �� �� :

� � ���� � � � � �� � ��� � : �
� � (5.45)

where
���� � � � � 
 � � � ��� � � � � � � � is the normalized pdf which has unit variance.

The variance of � �
is

� �� � 
 � � � � �
� � � �� : (5.46)

and the distortion is given by

�
�
� � � 
 � �� �� :

� ���� � � � � �� ( �
� ��� � � 	

�
: �

�

� � � �� �� ( � 
 � 2 � 	
� � � � � � ( � � � 2 �

�
: 
 � ( � 
 � 2 �

� ��� � � 	 � � : � � �
(5.47)
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where � 
 � � ( �
� � 2 �

� � � : � � � � and � 
 � � ( � �#� 2 �
� � � : � � � � . After some algebra (5.47)

simplifies to

�
�
� � � 
 �� :�� � ( �

� � � � � ( � � ��� � � 2 �
� 	 � ( � � ��� � � 2 � ��� ��� � : � � � � (5.48)

Under the high rate assumption for the two stages as well as some redundancy for robustness,

the relative magnitudes are � �
� � ��� �

and the distortion after combining stages is approxi-

mately

�
�
� � � 
 �� :

� � �
� � ��� � � � � �

� � � � ��� � � � 	 � � � � � � ��� � � ��� � � � : � � ��� � �
� � � �� : : � � � �

(5.49)

The performance with both stages available must be traded off against the performance when

only portions of each stage are available at the decoder. If �� � and �� �
represent the stage recon-

structions with all the information available and �� � and �� �
represent the stage reconstructions

with partial information, then the error can be written as

� 
 � �
� � �� � � �� � � 
 � �

� � �� � � �� � �
� � � �� � � �� � � � � ��

� � �� � �
� (5.50)

Since each of the error terms is approximately independent, the total distortion is given by

� � � � 
 �
�
� � � � � � ��� � �� � � �� � ��� � � ��� � ��

� � �� � ��� �
� (5.51)

For the case where some of the bits are lost from stage 1 introducing a distortion � � � � � 
� � ��� � �� � � �� � � � � , the resulting reconstruction distortion is

� � � � 
 �
�
� � � � � � � � � � (5.52)

Since there is fundamental trade-off between performance when all information arrives and

performance when only a portion of the information is available at the decoder, one common

method is to optimize system parameters so that performance is optimized under no losses

subject to a minimum performance when losses occur. Let �	� be the required worst-case

distortion when some information is lost so that

�
�
� � � � � � � � � � �
� (5.53)
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is the distortion constraint. Using the approximation in (5.49), the problem can be written as

an optimization problem for the parameter � as follows:

-/2 �� � �
� � � �� : : � � � � 5 ��� & � 4 4 � � �

� � � �� : : � � � � � � � � � � � � � (5.54)

Since the error-free distortion decreases monotonically with � , the solution will be the largest

value of � which meets the constraint. The constraint equation can be solved for equality to

yield the following pair of values:

� 
 ����� � � � : � � � � � : �
� � � � �

� � : �
� �: � � � � � : �
� � (5.55)

from which the largest value in the range � � � � � is selected. If there are no values in this range,

then the constraint cannot be satisfied.

Although this approach is attractive in terms of complexity since each stage encodes and

decodes in a fairly independent fashion, the difficulty is that the performance is poor between

the two extremes of zero excess rate and complete redundancy. As seen from the derivation

of the optimal decoder, the optimal decoder combines the stage information by using the in-

tersection of encoding regions for each stage. If these regions are nearly identical (implying

high excess rate), then the estimate using the information from both stages will not be signif-

icantly better than the single-stage estimate. Ideally the distortion of the combined estimate

should decrease at an exponential rate slightly less than the sum of the encoding rates of the

individual stages. Instead the combined distortion is reduced by a constant factor compared

with the single stage 2 estimate. The stage quantizers need to be coordinated so that when all

the information is available, each stage provides new information.

This problem motivates the consideration of multiple description (MD) quantizers which

provide better performance when combining information from the descriptions. In order to

achieve small quantizer cells (i.e., much smaller than with a single description) when all

descriptions are combined, the MD quantizer region associated with a single description in-

dex consists of a union of disjoint cells. When regular quantizers are cascaded in the multi-

stage structure, the encoding regions associated with each index consist of contiguous intervals

which leads to large cell intersections in certain cases when the information is combined. It
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may be desirable to code more than two descriptions depending on the details of the channel,

so extensions to the two-channel MD scalar quantizer are desirable.

In Section 5.4 a multidimensional extension of the two-description MD scalar quantizer is

presented as another method of adding a tunable amount of source redundancy. This method

provides a good way to improve error resiliency, especially when the number of packets (de-

scriptions) to be transmitted is low.

5.3.3 Optimal encoder design

The optimal encoder given a fixed decoder is derived in this section. The encoder is a

mapping � � ��� � � and the goal is to determine a mapping to minimize the expected

distortion between input and decoder output given a fixed decoder which can be represented

by the output value � � 
 for each possible decoder input � � � �� . A lower bound on the expected

distortion can be derived as follows:

��� � � � �	�
��� 
 �

�  � � � ��� �
� � � 
 � � ��� � � � ���

�
� � 
 � � (5.56)


 ��� �
�  � � � �����

� � � 
 � � � � � ��� � ��� � � 	 � � 	 � � (5.57)

� ��� -/2 �
 � ��
�

� �� � � �����
� � � 
 � � � � � ��� � � 
 � � � 	

���
� (5.58)

Furthermore this lower bound can be achieved by defining the regions within � � that are

mapped to encoder output
�

as follows:� 
 	 � 	 � � � � �
�  � � � �����

� � � 
 � � � � � ��� � � 
 � � 	
�

� �
�  � � � �����

� � � 
 � � � � � ��� � � 
 � � � 	
�
� � � ���
 �

�

(5.59)

For the common squared error distortion measure � � � ���
� 
 � � �

� �
�
� the encoding

regions are convex polytopes.
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Proof:

For � � � 
 as defined in (5.59) we have� � � 
 � � �
�  � � � �����

� � � �
� � � 
 � � 	 �

� �
� � �

� � � 
 � � � 	 �
� �
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 �

(5.60)
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(5.62)

where
�


 � 
 � and � 
 � 
 � are constants equal to

�


 � 
 � 
 �
:�
 �

� �� � � ����� � � � � 
 � � 	
�

� � � 
 � � � 	
�
� � � 
 � � (5.63)
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� � � � 
 � � 	 �
���
� � � � 
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Therefore, � 
 
 �


 �
� ����� � ��� � �


 � 
 � ��� 
 � 
 � � � � (5.65)
 �


 �
�


 � 
 � (5.66)

where � 
 � 
 � is a half-plane region
� � 
 is the intersection of half-planes

� � 
 is a convex

polytope.

�

5.4 Multiple Description Coding for Packet Erasure
Channels

The use of multiple description techniques to improve error resilience on packet erasure

channels was motivated in Section 5.3.2.3 to allow a better trade-off between performance

under packet loss and lossless performance. Multiple descriptions provide a way to achieve
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acceptable performance if a minimal subset of descriptions is available and to achieve increas-

ingly better performance if more descriptions are available. Early work on multiple descrip-

tions considered the case of two descriptions. Theoretical results for the achievable rate region

include results in [44, 79]. Currently the achievable rate-distortion is completely known only

for the two-channel memoryless Gaussian source. Recent work in the area of multiple descrip-

tions includes [80, 81, 82, 83, 84, 85, 86, 87].

Previous work on MD coding includes methods which allow a wide range of redundancy

levels to be introduced across a small set of descriptions (usually two descriptions). The MD

scalar quantizer in [45] uses an index assignment to map a regular quantizer index to a pair of

indices with a selectable amount of redundant coding between them. Application of MD scalar

quantizers to image coding is considered in [85] including some discussion of extensions to

more than two descriptions. The first part of [85] considers the application of the usual two-

description MD scalar quantizers to generate two descriptions. The method is extended to

many descriptions by applying FEC coding to the output of MD scalar quantizer to generate

more than two descriptions. In particular an � � � � � �
�

repetition code is presented as a specific

example. Correlating transforms are used to introduce redundancy between pairs of values in

[82, 88]. This method is based on introducing a statistical redundancy between the pair of

values. In [89] quantized overcomplete frame expansions are used to produce a small set of

descriptions with some redundancy. In this case, the redundancy is deterministic and is caused

by using a larger expansion set than is necessary to form a basis.

Data partitioning is another common technique used to add error resiliency to a source

coder, and examples include the work in [38, 71, 90, 91]. High-performance compression al-

gorithms, such as the SPIHT image coder [10], often require the source coder bits to be decoded

in a sequential and uninterrupted fashion for correct interpretation. Carefully partitioning the

data into separate streams prior to coding can improve the error resilience. The idea is that the

source decoder can use more of the correctly received information because independent pieces

of the transmission can be correctly interpreted despite losing other portions. Data partitioning

often also facilitates the application of unequal error protection channel coding. This method

is an attractive technique for situations where the decoder complexity is a primary concern and
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graceful degradation under varying channel conditions is important. The cost is a loss of com-

pression performance because the dependencies among the partition elements cannot be fully

exploited.

For situations where the number of packets is large, applying FEC channel codes to the

output of the source coder works well. When the block lengths of these codes are long, a

large number of rates are possible and thus the code rate can be matched to the channel very

accurately. Also the FEC can be applied in an unequal fashion based on the importance of

the information to provide improved efficiency and some graceful degradation. Examples of

recent work using this method are [62, 92]. The major costs of this method include decoding

complexity, decoding delay (i.e., loss of progressivity), and sensitivity to channel mismatch.

The best choice from the previous methods depends on the number of packets to be trans-

mitted. Large packet sizes are desirable to reduce the overhead from the packet header infor-

mation, but networks typically impose constraints on the maximum packet size (i.e., the path

maximum transmission unit (MTU)). The packet size may also be limited to maintain respon-

siveness of the system. For image transmission over ATM networks, where packet payloads

are 384 bits, the total number of packets to transmit a typical image may be on the order of

hundreds. Alternatively, default maximum packet sizes for Internet routers and good choices

for wireless connections like cellular digital protocol data (CDPD) are around 4600 bits which

may imply from tens up to perhaps 100 packets at very high rates. Finally, Ethernet systems

support even larger packet sizes (e.g., 12000 bits) which may imply a total of only tens of pack-

ets being transmitted for an image. These constraints should be considered when designing the

image source and channel coding.

5.4.1 FEC for erasure channels

One of the first options to consider when designing an image transmission system for packet

erasure channels is FEC methods. As the results from the previous chapters have shown, very

efficient systems can be designed by combining excellent compression algorithms with strong

error correcting codes. Delay and computational complexity are the two main costs of this

approach.
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When delay is not an issue, the output of the image coder can be segmented into pieces,

which will be treated as symbols in the FEC code and interleaved over the length of the trans-

mission. For clarity in the remaining discussion these pieces are assumed to be bytes, but

other sizes are certainly possible. The information is grouped, according to importance, into

codewords and is coded with the level of protection appropriate to the importance of the infor-

mation, the channel erasure rate, and the constraint on the transmission rate. For a progressive

coder like SPIHT, the bytes are approximately ordered from most to least important in terms

of MSE distortion, so sorting the bytes according to importance is straightforward. The idea is

depicted in Figure 5.13. Because the bit stream from the image coder has the serial decoding

requirement, decoding terminates at the first nonrecovered byte. This requirement combined

with the decreasing impact on MSE leads to monotonically nonincreasing levels of protection

for the output bytes.

The coding technique is identical to the outer code of the product code presented in Section

4.2 for fading channels. Corresponding bytes from the packets are the symbols in the particular

Reed-Solomon codeword. The difference here is that each codeword spans the entire length

of the transmission, so that a particular set of information protected with an � � � �
�

code can be

recovered as long as at least any � of the � packets are received. When the number of packets

to be transmitted is large (i.e., the packet size is much smaller than the total transmission size)

and the channel erasure is a known constant, this method works well since the codes have very

low error probabilities at rates near the capacity of the erasure channel. Difficulties arise when

the channel error rate is varying or unknown.

5.4.2 Proposed image coding structure

Most recent high-performance image coding algorithms work by coding the quantized co-

efficients of a linear transform (often a wavelet transform). The coded bits can usually be

divided into two broad classes: the map bits, which describe the locations of the large co-

efficients, and the quantization bits, which describe the quantized values of the coefficients

identified in the map. The quantized values can be transmitted using techniques like multiple

descriptions which allow graceful degradation even if there is partial loss of the information.
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Figure 5.13 FEC coding for an erasure channel.

A multidimensional extension of the usual two-description MD scalar quantizer is described

below.

The map information, however, is not usually amenable to partial recovery like the quan-

tized values. The decoder needs to recover the same sequence of map bits in order to stay

synchronized with the encoder. For this reason, FEC protection seems to be the best choice for

the map sequence. Simple repetition codes (i.e., just repeat the map sequence in each packet)

would provide the maximum protection, since the entire map sequence can be recovered from

a single packet, but result in an excessive redundancy when the number of packets to be trans-

mitted is large. More generally, the map sequence can be split among the packets and coded

with a � � �
�

�
erasure correcting code which guarantees recovery of the map sequence given
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at least � packets are received. A block diagram of this coding structure is shown in Figure

5.14.

FEC

MD Mapping

Map sequence

Quantized Coefficients

Transform

Map sequence

generator and
quantizer

Figure 5.14 Block diagram of an image coder for packet loss channels.

5.4.3 Multidimensional multiple description scalar quantizer

The multiple description scalar quantizer described in [45] consists of a regular quantizer

followed by an index assignment which maps to a pair of indices. The redundancy is tuned

by selecting the number of central quantizer cells relative to the number of bits in the two

description indices. An example of two index assignments is shown in Figure 5.15.

Each of the numbered cells in the mappings represents a cell of the central quantizer, and

each quantized coefficient is mapped into a pair of coordinates which specify its position in the

grid. As seen from these examples, the central quantizer indices are placed along diagonals

of the grid, and the redundancy is controlled by selecting the number of diagonals. The same

concept can be extended to more than two descriptions by using higher dimensional mappings.

A straightforward extension is to create maps where cells from the central quantizer are placed

along diagonals of an � -dimensional hypercube. Figure 5.16 illustrates the concept with a

three-dimensional mapping which includes only the main diagonal resulting in a (3,1,3) repe-

tition code of the central quantizer indices. Adding other diagonals around the main diagonal

reduces the redundancy and allows the channel coding rate to be adjusted.

The redundancy of the mapping is directly related to the amount of empty space (i.e., the

number hypercube cells not assigned a central quantizer index). With � central quantizer
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Figure 5.15 Example MD index assignment mappings for two descriptions.

cells, � indices for each description, and � descriptions, the channel code rate of the mapping

is given by

��� 
 0 ���
�
� �

�
� 0 ���

�
� �
�
� (5.67)

As can be seen from examining (5.67), difficulties arise in creating maps which provide

high channel code rates with a small number of central quantizer cells and a large number of

descriptions. These situations often occur in the context of image coding when coding the

coefficients in the higher-frequency subbands. For these situations, data partitioning can be

applied so that information about a specific high-frequency coefficient is only sent in a subset

of the packets. A similar type of data partitioning was used in the context of image coding for

packet erasures in [90, 91]. Also note that the description indices are typically fed into separate

entropy coders (one for each description), so if the description is not a power of 2, it is not an

inconvenience for coding.

Since these mappings are acting on the quantizer indices, they are similar to traditional

channel codes (i.e., acting on bits). Any one-to-one mapping from the input alphabet of �
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Figure 5.16 Example of a three-dimensional MD mapping.

symbols to the � output descriptions, each with an alphabet of size � , is possible. In particular,

mappings can be generated which allow erasure correction by enforcing a minimum Hamming

distance between the description indices. The main difference between these mappings and

traditional channel codes is that the input symbol (bits) correspond directly to a quantized

value instead of an arbitrary collection of bits, and therefore partial recovery to nearby cells is

meaningful and useful.

Figure 5.17 shows an example three-dimensional mapping consisting of nine central quan-

tizer cells (some cells are obscured in the figure) and description indices with an alphabet size

of 3. The mapping allows any single erasure to be corrected (i.e., only two description indices

are required to uniquely specify any of the central quantizer cells). The figure also helps illus-

trate the general trend that labeled cells tend to be distributed more diversely throughout the

hypercube for mappings that provide more erasure correction capability. This wide distribution

of labeled cells leads to the large distortions that result once the erasure correction capability is

exceeded. In that case, the central quantizer indices cannot be assigned to cells to yield a small

spread for all possible outcomes. Therefore guaranteed correction can be traded off against

graceful degradation after the correction capability is exceeded.

As an example of the possible trade-offs, consider a case where the input consists of a 4-bit

quantized value from a uniform quantizer acting on a uniform source on � � � � � . The value is
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Figure 5.17 An example three-dimensional mapping which is capable of correcting one era-
sure.

mapped into four 2-bit descriptions. The performance of two possible mappings is shown in

Figure 5.18. The first mapping is designed to correct two erasures, and the performance curve

exhibits the sharp transition at three erasures. The second mapping is designed to correct one

erasure, so the performance degrades for two erasures but it is better than the first system for

three erasures.

Basic mappings are generated by assigning central quantizer indices to the diagonals of the

hypercube. The input to the algorithm is the number of diagonals to include and the number

of bits to use for each description index. The quantizer indices are assigned sequentially with

one assignment made for each description axis for each iteration. The order of assignment

within each iteration is based on selecting them in order of decreasing index spread. For those

mappings designed for some erasure correction capability, the hypercube cells are selected

according to the Hamming distance constraint, then the central quantizer labels are assigned so

as to minimize the spread when the correction capability is exceeded.

As another example to illustrate the error resilience properties of the multidimensional MD

quantizer, Figure 5.19 shows the MSE of a five-description quantizer with different levels of

redundancy when between one and five packets are received. The source is a uniform source
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Figure 5.18 An example of performance trade-off for two mappings.

on � � � � � and the central quantizer is a uniform quantizer with 64 cells. The results for two

mappings are shown, one with rate � � � and one with rate � � � . In both cases the performance

improves with each packet that is received, and the lower-rate mapping performs uniformly

better at the cost of more bits to transmit.

5.4.4 Parameter optimization

Coefficients identified as significant in different passes in the coding of the map sequence

have unequal importance in terms of their share of signal energy. The coefficients can be

grouped according to the pass at which they became significant. Then the overall performance

can be optimized by selecting different index assignment parameters (i.e., different amounts

of source redundancy) over different the significance groups. In [85], it is shown that the

optimization over subbands for the two-channel MD problem results in only marginal gains

in performance. However, in this case the coefficients should be more accurately sorted by
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Figure 5.19 Performance for two five-description MDSQ mappings.

importance. Also, in the case of more than two descriptions, there are more possible channel

outcomes, so the appropriate level of redundancy needs to be selected for the channel condi-

tions.

We compute the proper selection via a dynamic programming (DP) algorithm where one

dimension of the trellis is the significance group number and the other is the level of redun-

dancy. In order to enforce the rate constraint during the DP procedure, some sort of pruning

is used. Basically when selecting a survivor each candidate path is tested such that any path

with cumulative bit-rate exceeding the rate constraint is pruned. Generally speaking this is a

suboptimal approach, but for natural images using dyadic wavelet decomposition, in practice

this suboptimal approach would lead to reasonable solutions.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

A number of coding methods for transmitting images over noisy channels have been pre-

sented in this thesis for memoryless, fading, and erasure channels. The results are summarized

in this chapter, and possible future research directions are suggested.

In Chapter 3, a system combining a high-performance embedded wavelet coder and strong

channel coding was proposed for transmission over a memoryless channel with a known error

rate. This system showed excellent results compared to previously known robust image coders.

Even when channel decoding failures terminate the bit stream early, the resulting image quality

is often acceptable due to the embedded nature of the source coder. Only very marginal per-

formance gains can be achieved using optimized channel code rate schedules, exploiting the

unequal importance of the bit stream, compared with the best fixed-rate coding. The limited

improvement can be attributed to the combination of the serial decoding requirement of the

source coder along with the threshold effect of the channel codes.

Since the system combined separate source and channel coders, improvements in either

would improve the overall system performance. In particular, the use of turbo codes for the

channel coding would improve performance at the expense of complexity and possibly loss

of some degree of progressivity due to the long blocks. The second part of Chapter 3 pro-

vided some results comparing performance of the system using RCPC/CRC, low-density parity

check, and turbo codes, which did show improvements based on using the higher-performance

channel codes. Even the product code, described in Chapter 4 and designed for fading channels,

provided some improvement on memoryless channels. These results provided a recalibration
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of the benchmark for comparing the performance of new robust image coders. For memoryless

channels with known error rates it appears difficult to beat a system based on Shannon’s sepa-

ration theorem, especially considering turbo coding methods are able to achieve performance

very close to the Shannon limit by using long blocks. However, real-world systems and chan-

nels have other goals and constraints which provide many new challenges. The remainder of

this thesis considered methods for dealing with fading channels, optimizations that included

penalties for delay, and coding methods for erasure channels.

For progressive image coding, the goal is generally to improve the reconstructed image

quality as much as possible for each transmitted bit. The progressive feature is useful for

applications where many quality levels need to be reconstructed from a single bit stream or if

fast recognition of the image content is important (e.g., browsing a database). The problem of

optimizing channel code parameters for progressive image coding was examined in Chapter 3.

Both the blocklength and rate of the channel code were optimized by dynamic programming

using one of a general class of performance measures that was proposed to reflect the goals of

progressive coding. Results from several images showed that the performance based on number

of available source bits was nearly as good as that based on MSE or PSNR; the complexity is

lower, and no overhead information is needed to describe the code parameters since the decoder

can simply run the same algorithm to determine the schedule. The parameters tended to have

nearly constant channel code rates and decreasing blocklengths over the transmission.

Extensions of this optimization method from still image to video is an interesting area of fu-

ture research. The MPEG4 video encoding standard is based on coding separate video objects

whose composition makes up the scene that is presented to the viewer. These video objects

may include traditional video information, computer generated graphics, cartoon animations,

and still image backgrounds. Each of these may require different levels of error protection

based on the nature of the encoding, importance of content, temporal longevity, etc. Also, for

two-way or interactive presentations, there are strict delay constraints. All of these factors lead

to interesting questions in the context of error protection of visual information where delay is

an issue.
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Since modern systems often have to transmit over a variety of channel conditions, perhaps

simultaneously as in a broadcast environment, it is desirable that the systems have some de-

gree of robustness and degrade gracefully under more severe channel conditions. The work

in Chapters 4 and 5 considered cases where the channel conditions vary and the goal was to

improve the robustness of the system. In Chapter 4 a system combining good data partitioning

with FEC was shown to have robustness under a variety of channel conditions. Proper data

partitioning will continue to be an important tool for error protection by allowing UEP channel

codes and the use of as much correctly received data as possible. New image coders such as

the upcoming JPEG2000 standard will provide new challenges in this area.

The erasure channel considered in Chapter 5 can really be considered an abstraction from

an arbitrary channel where reliable error detection provides the erasure indication. This model

would likely apply to many real-world systems since the details of the physical channel are

often hidden from the software (e.g., multimedia applications) operating at the application

layer in the network protocol stack. This approach makes application development easier and

allows a common software base to support platforms with different physical channels.

The proposed methods were centered around introducing robustness by combining source

coder modifications and explicit FEC. An important aspect of the source coder modifications

was the ability to introduce a tunable amount of source redundancy so the system could be

matched to channel conditions. While simply using FEC for erasure correction works well

when there are a large number of packets to be transmitted and the erasure rate is a known con-

stant, the proposed multistage and multiple description methods are useful when complexity

or delay is an issue or when the number of packets (descriptions) is small. For the multi-

stage coder, improvements in residual coding are important. For the multidimensional multiple

description coder, the challenge is improving the case where a large number of descriptions,

moderate to low redundancy, and low quantizer resolution are simultaneously required for cer-

tain coefficients. Extensions from scalar to vector multiple descriptions as in [84] including

complexity constraints would provide an additional challenge.

The protection of watermarking information is another interesting research direction. Wa-

termarking is used to identify intellectual property ownership. Ideally the watermarking
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information should not noticeably distort the image and should be difficult to remove. The

problem is how to preserve watermarking information under channel loss conditions while not

degrading the image quality too much.

Many of the future research directions in this area will likely be driven by the problems and

requirements of wireless multimedia due to the user demand for this functionality along with

the highly challenging nature of the problems. Low-power wireless devices with constrained

memory and processor resources that have the capability to support multimedia applications

are just beginning to emerge. They must operate in severe multipath fading environments

and will likely have significantly constrained transmission bandwidths (in terms of multimedia

applications) for the quite some time. It is the combination of all these constraints which makes

wireless multimedia extremely challenging.
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LIST OF ACRONYMS

ATM asynchronous transfer mode. Network technology using 53 octet (424 bits) packets with 48 octet
(384 bits) payload.

AWGN additive white Gaussian noise. An analog memoryless channel.

BER bit error rate. Average bit error probability of the channel.

bpp bits per pixel. Unit to express the rate of an encoded image after normalizing by the dimensions.

BPSK binary phase-shift keying. A two-symbol modulation scheme.

BSC binary symmetric channel. A discrete memoryless channel with a single parameter determining
the bit error probability.

CDPD cellular digital protocol data. A method of transmitting data over existing cellular networks.

CRC cyclic redundancy code. A shortened cyclic code typically used for error detection.

DCT discrete cosine transform. A linear transform often used in image coding (e.g., the JPEG standard
coder).

EZW Embedded Zerotree Wavelet. Shapiro’s embedded wavelet-based image coder [11].

FEC forward error control.

JPEG Joint Photographic Experts Group. International group which sets standards on still image com-
pression algorithms. The name is often used to refer to the compression algorithm.

LDPC low-density parity check. Linear block codes with a very sparse parity check matrix introduced
by Gallager [65].

MD multiple description. A robust source coding structure in which source information is sent over
separate channels each subject to failure.

MSE mean squared error. A distortion measure.

MSVQ multistage VQ. A reduced complexity VQ method using a cascade of quantizers.

MTU maximum transmission unit. The largest packet size supported by the network (e.g., the MTU
for Ethernet is 1500 bytes).
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PSNR peak signal-to-noise ratio. A common fidelity measure with a logarithmic scale used in image
coding.

PZW Packetized Zerotree Wavelet. Robust zerotree coder designed for packet erasure channels by
Rogers and Cosman [71].

RCPC rate-compatible punctured convolutional. A class of convolutional error correcting codes which
allow a common encoding/decoding structure for a family of codes of many rates [48].

RMS root mean square.

RS Reed-Solomon. An error correcting block code.

SNR signal-to-noise ratio. A measure of the relative strength of the signal versus the noise.

SPIHT Set Partitioning in Hierarchical Trees. An embedded wavelet-based image coder by Said and
Pearlman [10].

TSVQ tree-structured VQ. A reduced complexity VQ with quantizers arranged in a tree structure.

UEP unequal error protection. Refers to applying different levels of channel coding to the source bits
based on their importance to the decoding.

VQ vector quantization. A quantization / lossy compression technique.
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