UNCONSTRAINED BLOCK TILING
FOR COMPRESSION OF HIGH RESOLUTION
BI-LEVEL IMAGES

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING

AUGUST 1991

by

Gopal Krishna

Thesis Committee:

Kenneth Zeger, Chairperson
Edward J. Weldon Jr.
Norman Abramson
Anthony Kuh

We certify that we have read this thesis and that, in our opinion, it is satisfactory
in scope and quality as a thesis for the degree of Master of Science in Electrical

Engineering.

Thesis Committee

Chairperson

i

©Copyright 1991
b

y
Gopal Krishna

iii

To my parents with love

v

Acknowledgements

I would like to express my sincere gratitude to Professor Zeger for his invaluable
guidance and advice throughout my thesis. Thanks to him, I learned several lessons
which I am sure will come a long way in my life. A big fat mahalo to Professor
Abramson, Professor Weldon and Professor Kuh for agreeing to serve on my thesis
committee. 1 feel privileged to have come in contact with and worked on small
but interesting projects with Professor Abramson and Professor Weldon. Although
not directly related to my thesis, the support and guidance I recieved from Professor
Holm-Kennedy influenced me in more than one way. My conversations with him were
always moral boosters for me. For their help and support in spurring me through,
a sometimes frustrating path of research, I would like to thank all of my friends,
especially Paul, VG, DP, Hari, Marc, Chak and Vik. Special thanks to Dan for
providing a code to display images on X-windows. Last, but not the least, I would
like to thank my parents and family for their confidence in me. I dedicate this thesis

to my parents.

Abstract

In this thesis, a new simple-to-implement technique, called Unconstrained Block
Tiling (UBT), for the lossless compression of bi-level images for facsimile transmission
and storage is proposed that exploits two-dimensional neighboring pixel redundancies.
A bi-level image is initially partitioned into non-overlapping rectangles of arbitrary
dimensions that cover either only white pixels or a mixture of black and white pix-
els. An entropy coded index is used to specify the quantized length and width of
each rectangle. The rectangles containing some black pixels are encoded using spa-
cial prediction and known coding techniques. The idea of partitioning the image into
rectangles extends the notion of run-length coding into two dimensions. The key fea-
ture of the proposed UBT is that it reduces the problem of compression of a bi-level
image to that of coding of pixels in well defined regions which cover a relatively very

small area in a typical facsimile document.

vi

Table of Contents

Acknowledgements v
ADStracto vi
List Of Tables X
List of Figures xi
Introduction 1
1.1 Previous WOTKo 2
1.2 Background.......... 4
1.2.1 Definitions 4
1.2.2 Prediction Techniques i .. 5
1.2.3 Residual Coding 6
1.2.4 CCITT Recommendations 8
1.3 Outline of the thesis i 9
Predictive Compression, 11
2.1 Definitions. . . . oo vt e 11
2.1.1 Prediction Error 11
2.1.2 Prediction Error Probability 12
2.1.3 Prediction Factor 12

vii

2.2 Prediction Techniques 13

2.2.1 Vertical XOR 13
2.2.2 Horizontal XOR. 14
2.2.3 Two-dimensional Prediction 15
Unconstrained Tiling 19
3.1 Introduction 20
3.2 Sequential Tiling e 22
3.2.1 Limitation of Sequential Tiling 22
3.3 Block GIOwingttt 26
3.3.1 Maximal One-Dimensional Growing......................... 26
3.3.2 Omni-dimensional Growing 29
3.3.3 Choice of Birth Location 31
3.4 Non-white Rectangles (NWR) o o i, 32
Coding of Non-white Regions 35
4.1 Entropy Codingt 35
4.2 Block Coding i 36
4.3 Run-length Coding 37
4.4 Run-length Block Coding i i 39
4.5 Conditional Entropy Coding i .. 40
Implementation Issues 41
5.1 Prediction 42
5.2 Covering of Black Pixels: Non-white Regions 43
5.3 Removal of White Rows 44
5.4 Tiling of White Space i 44

viii

6 Results and diSCUSSIONttt i 46

6.1 Prediction e 46
6.2 NWR Compression Ratio............ 49
6.3 Contribution of different techniques 54
6.4 A Comparative Study 65
7 Conclusion and Future Directions 71
Appendix A ... 73
Appendix B. .. 89
Bibliography e 91

X

1.1
2.1
5.1
6.1
6.2

6.3

List of Tables

Test Image Descriptions i 10
Comparison of Prediction Techniques.............................. 14
Gain in the number of all white rows following prediction 44

Compression ratios achieved by various techniques for letter type image 69

Compression ratios achieved by various techniques for roman type

Compression ratios achieved by various techniques for handwriting

type 1mage 70

1.1
21
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
4.3
6.1
6.2
6.3
6.4
6.5

List of Figures

Differential Pulse Code Modulation 5
Definition of immediate and secondary neighbors 16
Two-dimensional predictor 17
A T-pixel prediction window 17
Sequential Tiling Technique i i 21
An example of Sequential Tiling Technique. 23
Modified tiling of the image shown in figure 3.2 24
Limitations of sequential tiling technique 25
Maximal One-dimensional Growing Technique 27
Omni-dimensional Growing Technique 28
An example of Block Growing Technique 30
Covering of black pixels: non-white regions......................... 34
Block Codingo 36
Run-length coding 38
Run-length block coding 39
Prediction window size vs. prediction factor........................ 47
Prediction windows 48
NWR compression ratio vs. length of the square block............ ... 50
NWR compression ratio vs. # of elements in the sliding window 51
NWR compression ratio vs. length of longest run 52

xi

6.6
6.7
6.8
6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17
6.18

NWR compression ratio vs. block length............
Share of WRRC, BT, and CNWR in covering the Letter type image . ..
Share of WRRC, BT, and CNWR in covering the Roman type image . .
Share of WRRC, BT, and CNWR in covering the Handwriting type

Share of WRRC, BT, and CNWR in saving bits: Letter type image . ..
Share of WRRC, BT, and CNWR in saving bits: Roman type image ..
Share of WRRC, BT, and CNWR in saving bits: Handwriting type

Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Letter type image
Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Roman type image
Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Handwriting type image i
Compression ratio vs. techniques for compression: Letter type image . .
Compression ratio vs. techniques for compression: Roman type image .

Compression ratio vs. techniques for compression: Handwriting type

Decimated image of the document generating Handwriting Type image .
A section of Letter type image
A section of Roman type image.........
A section of Handwriting type image

Residual Letter type image after Vertical-XOR

xii

95
96

37

98

99

60

62

63

64

66
67

10
A1
12
13
14
15

Residual Roman type image after Vertical- XOR 81

Residual Handwriting type image after Vertical-XOR 82
Residual Letter type image after Horizontal-XOR 83
Residual Roman type image after Horizontal-XOR, 84
Residual Handwriting image after Horizontal-XOR, 85
Residual Letter type image after 12 element 2-D prediction........... 86
Residual Roman type image after 12 element 2-D prediction.......... 87
Residual Handwriting type image after 12 element 2-D prediction 88

xiii

Chapter 1

Introduction

The need for electronic storage and transmission of bi-level images such as line
drawings, letters, newsprint, maps, and other documents has been increasing rapidly.
Bi-level images contain only one bit per pixel!, or in other words consist of only
black and white pixels. One of the main applications of bi-level images is in facsimile
transmission, where a typical image is represented by several megabits of information.
Lossless data compression techniques attempt to reduce the average number of bits
required to store or transmit images without any distortion to the image. Most bi-level
image compression algorithms exploit the fact that most pixels are white and that
black pixels occur with a regularity, manifested in the form of characters, symbols,
or connected boundaries. There are three basic concepts behind most of the current
compression algorithms for coding of bi-level images: coding only transition points?
between black and white, skipping white, and pattern recognition.

In this thesis a new, simple-to-implement, technique for the lossless compression
of bi-level images for facsimile transmission is proposed which takes advantage of both
transitional point coding, and skipping white. This technique, called Unconstrained

Block Tiling (UBT), divides the problem of encoding for compression into two parts:

LA picture-element or dot is called a pixel.
2A transition point is a pixel whose value is different from the previous pixel in the horizontal
direction.

partitioning of an image into “white” and “non-white” rectangles, and compression
of non-white rectangles or regions. The partitioning of the image is done such that
white rectangles cover only white pixels, and non-white rectangles or regions cover
black pixels and also some of the surrounding white pixels.

This introductory chapter describes the background and motivation for new work,

and outlines the main contributions in the following chapters.

1.1 Previous Work

The compression of bi-level images for facsimile transmission has received consider-
able attention in the literature [1][2][3][4]. Most of the proposed data compression
schemes attempt to reduce the redundancy in the image either by using statistical
codes for encoding the positions of transitive elements[5], or by reducing the number
of transitive elements[6]. A transitive element is defined as one whose value is dif-
ferent from the previous element in the horizontal direction. Run-length coding[7],
predictive coding[8], and READ coding[9] are well-known techniques which encode
the positions of transitive elements. In run-length coding, the length of each black or
white run is encoded by means of Huffman codes[10], Modified Huffman codes|27] or
Wyle codes[11], while scanning a picture sequentially line by line from top to bottom.
In prediction coding, each pixel is predicted by using some function of neighboring
elements and the predicted value is compared with the actual value of the pixel. If the
predicted value is different from the actual value of the pixel, an error is committed.
The error sequence resulting from prediction is then encoded using run-length coding.
READ coding, as well as RAC[12] and EDICJ13], encodes the distance between the
start position of a run® and that of a certain previously scanned run which satisfies

some prescribed conditions.

3A run is a set of consecutive single valued pixels.

These coding schemes contain two common operations. The first operation is to
select the starting position of each run from a given picture. The second operation
is to determine the positions of transitive elements in some way, e.g., the distance
between two consecutive transitive elements, or equivalently, the length of a run. The
data compression in these conventional coding schemes is achieved only through the
latter operation.

On the other hand, a technique called Selective Element Coding (SECT)[14] re-
duces the transitive elments to be selected . Essentially, each selected element corre-
sponds to a “corner” of an object in the picture, but the number of selective elements
is smaller than that of corners. The number of selective elements is bounded by the
number of 0, 45, and 90 degree boundary lines which form the edges of objects in a
picture. Since the number of boundary lines is small relative to the total number of
picture elements, SECT reduces the redundancies.

The limitation with the above schemes is that they use one-dimensional redun-
dancies only, and therefore, lack the capability of exploiting the dependencies of a
pixel in two dimensions.

Kunt[15] and Johnsen[16] proposed a two-dimensional Block coding which parti-
tions each picture into a set of blocks of size n x m. Codeword for an all white block
is 0, whereas codewords for other configurations are composed of the nm bits of the
block preceded by the prefix 1. Cohen, et.al.[17] examined a class of two-dimensional
image coding methods based upon a recursive hierarchical decomposition of the im-
age into uniform areas, which extends the idea of representing pictures by binary
trees[18]. In a binary tree scheme, if the image is uniformly black or white, only one
symbol is transmitted — the grey level of the image. If not, the transmitter sends a
metasymbol which indicates that the picture is not uniform, and that the code that

follows represents two subareas of the picture. The two subareas are created by a

single line (a “cut”) that divides the whole picture into two equal parts. The coding
proceeds in this fashion recursively until the transmitted code exhausts all the uni-
form subareas and sub-subareas of the picture. In the worst case, the coding descends

down to the level of single pixels which are, of course, uniform.

1.2 Background

Some important terms are introduced below in the format of definition for the ease

of reading.

1.2.1 Definitions

Compression Ratio

Compression ratio, as used in this thesis, is defined as a ratio of the total number of

bits in an image to the number of bits required to encode the image.
Entropy

Entropy is a measure of randomness of a random variable. For a random variables with
M outcomes 1, Za, ..., £py with probabilities p; = p(z1),ps = p(x2), ...,pn = p(Tum),
the entropy in bits is defined as
M
H = - pilogaps
k=1
Entropy represents the amount of information associated with the set of coder
input values and gives a lower bound on the average number of bits required to code

those inputs[19].
Block Quantizer

A noiseless source code is a code which maps each of the symbols of a set S into a

fixed sequence of the code set X[20]. These fixed sequences of the code set are called

4

X + Quantizer

X" +

Predictor

Figure 1.1. Differential Pulse Code Modulation

code words.

A fixed length code has a set of code words each of which has the same number
of bits, whereas a variable length code has code words with different number of bits.
If a code has the property that a sequence of codewords can be decoded in only one

way, the code is called a uniquely decodable code.

1.2.2 Prediction Techniques

Prediction techniques exploit the inter-dependencies of the neighboring pixels to cre-
ate a predicted image, based on the original image. The value of each element in the
predicted image is determined by a function, called the prediction function, of some
neighboring elements which form the prediction window. A residual image is obtained
by subtracting the predicted image from the original image. Since binary subtraction
is same as binary addition, residual image is obtained by simply adding the predicted

and original image. The idea of prediction is analogous to that of Differential Pulse-

Code Modulation (DPCM) (Figure 1.1)[21]. If the original image has redundancy,
the residual image will have large runs of 0s (or 1s).

A predicted image can be created by using one of many techniques. Simple one-
dimensional prediction techniques, like vertical-XOR? and horizontal-XOR, are very
easy to implement as the prediction window contains only one pixel, namely the
previous pixel in the vertical or the horizontal direction. Two-dimensional prediction
windows with more than one element reduce the number of prediction errors and thus
achieve better prediction, but are more complex to implement. Chapter 2 deals with

prediction techniques in detail.

1.2.3 Residual Coding

Residual coding is used to encode the residual image after the prediction. There are
several useful coding techniques; some of the most known techniques are outlined in

the following sections.
Entropy Coding

The technique of encoding discrete data into uniquely decodable variable-length code-
words in an invertible manner is called entropy coding. In entropy coding as ap-
plied to noiseless image compression, a block of M pixels with block probabilities p;,

i=0,1,...,L—1,L =2M is coded such that the average bit rate is
Zpi(—logzpz’) =H

This gives a variable-length code for each block, where highly probable blocks (or
symbols) are represented by small-length codes, and vice versa. If —logsp; is not an
integer, the achieved rate exceeds H but approaches it asymptotically with increasing

block size.

4XOR refers to the binary ezclusive-OR operation.

Huffman Coding

For a given block size the most efficient fixed-to-variable length encoding technique
is Huffman Coding[10]. In the Huffman coding algorithm, first all the symbol proba-
bilities p; are arranged in decreasing order and are considered as leaf nodes of a tree.
Then, while there is more than one node the following two steps are executed: two
nodes with smallest probability are merged to form a new node whose probability is
the sum of the two merged nodes; 1 is assigned to the left and 0 to the right or vice
versa to each pair of branches merging into a node. Finally the leaf node where the
symbol is located, is read sequentially from the root node.

This algorithm gives the Huffman code book for any given set of probabilities.

Coding and decoding is done simply by looking up values in a table.
Arithmetic Coding

Arithmetic coding[22] is another variable length encoding technique. The basic idea
of arithmetic coding of a binary source can be described by a binary tree.

The structure of the tree can be viewed as a classification tree[21] for points in the
unit interval [0, 1). The input to the tree is a real number r € [0, 1). Each node makes
a binary decision based on r. The classifier, based on this decision, either outputs a
1 and advances along the (say) right branch emanating from the node or outputs a 0
and advances along the left.

Arithmetic coding is more complicated to implement than Huffman coding, but
its compression is typically greater and hence it is a popular approach for entropy

coding where the extra compression justifies the extra complexity.

Run-length Coding

In run-length coding (RLC), the output of a binary source is coded in terms of the
number of Os between two successive 1s. In other words, the lengths of the runs
of Os are encoded. This technique is simple to implement and is particularly useful
whenever their is a high probability of large runs of Os in the symbols coming out of

a binary source.

1.2.4 CCITT Recommendations

The CCITT (Consultative Committee for International Telephone and Telegraph)
has recommended international standards for Group 1 facsimile to Group 4 facsimile,
and developing recommendations for a new generation of facsimile equipment.
Group 1 and Group 2 are analogue facsimile with transmission times of approxi-
mately 6 and 3 minutes, respectively. Group 3 is digital facsimile with a transmission
time of approximately 1 minute and uses a one-dimensional run-length coding scheme.
An optional data-compression technique specified for Group 3 is a two-dimensional
coding scheme known as the modified READ code (MRC)[23]. The compression
technique for Group 4 recommendations is known as modified READ code IT (MRC
IT), and the recommendations include a mode of operation known as Mixed Mode
where the information printed on a page is divided into two parts — symbols and
graphics[24]. The recommendations being developed use a progressive encoding sys-
tem which transmits a compressed image by first sending the compressed data for a
reduced-resolution version of the image and then enhances it as needed by transmit-

ting additional compressed data[25].

1.3 Outline of the thesis

The proposed Unconstrained Block Tiling (UBT) scheme consists of three major
steps : (i) formation of a predicted image based on the original image, (ii) tiling
of the predicted image with white and non-white rectangles, and (iii) coding of the
pixels covered by the non-white rectangles (NWR). The subsequent chapters follow
this sequence.

Chapter 2 deals with various prediction techniques which exploit the inter-dependencies
of the neighboring pixels to form a residual image containing large runs of Os (or 1s).
Some basic definitions related to prediction are given, followed by the description of
one- and two-dimensional prediction techniques.

Chapter 3 introduces a novel idea of partitioning an image into two types of
rectangles: white and non-white rectangles. Two algorithms for the tiling of white
space, called Block Tiling (BT) (sequential tiling and block growing) along with the
related issues, are described. The key feature of this technique, besides yielding high
compression ratios and being easy to implement, is that it isolates all the black pixels
within well-defined regions. The locations and dimensions of these regions are easily
communicated to the decoder.

Chapter 4 covers some possible techniques for coding of the pixels covered by the
non-white rectangles. It also introduces a new technique called Run-length Block
Coding (RLBC).

Chapter 5 addresses the issues related to the implementation of the proposed UBT
technique. This chapter describes all the steps and the related trade-offs involved in
the implementation of the UBT technique. In addition, the issue of complexity is
addressed.

Chapter 6 discusses the results obtained from the simulations of UBT. A com-

Dimensions % of

No. Type width x height | black pizels
1 | Letter type 3072 x 4352 1.768
2 | Roman type and figures | 3072 x 4352 2.434
3 | Hand writing 3072 x 4352 3.217

Table 1.1. Test Image Descriptions

parative study of various prediction, tiling, and coding techniques is given. Three
standard bi-level images used for the comparison and an evaluation of the proposed
technique are described in the following section.

Chapter 7 draws conclusions based on the results obtained in chapter 6. In addi-

tion, some of the directions for future work in this area are given.
Test Images

Three images from the set of Stockholm JBIG images|26] were selected for the eval-
uation of the proposed technique. These images are summarized in Table 1.1. The
table also shows the percent of black pixels in the each image. The resolutions of all
these images are 400 dots per inch, and the dimensions are 3072 columns x 4352 rows.
In this thesis, these images are referred to by their type, namely letter type, roman
type, or handwriting type. Decimated® versions of the image generating documents

are shown in Appendix A.

5The images were ”decimated” only for the purpose of display

10

Chapter 2

Predictive Compression

Prediction techniques exploit the inter-dependencies of neighboring pixels to create
a predicted image, based on the original image.

The first step of the proposed technique is to obtain a residual image by subtract-
ing the predicted image from the original image. A predicted image can be created by
one of many techniques. Various prediction techniques and the associated prediction

error probabilities are dealt with in this chapter.

2.1 Definitions

Before describing prediction techniques, some important terms related to prediction

are defined in the following sections.

2.1.1 Prediction Error

For a bi-level image u(m,n), m € 1,.., M, n € 1, ... , N, let v(m,n) denote its
predicted value based on the values of pixels in a prediction window W. A prediction
window contains some of the pixels which have already been coded and is defined by

the prediction technique. The prediction error can be defined as

|1, wv(m,n)# u(m,n)
e(m,n) = { 0, wv(m,n)=u(m,n)

The image is reconstructed from e(m,n) simply as

11

u(m,n) = v(m,n) ® e(m,n),

where @ is a binary addition or an exclusive-OR operation.

2.1.2 Prediction Error Probability

One reasonable prediction criterion is to minimize the prediction error probability,
or the maximum likelihood prediction. For an N-element prediction window, there
are 2V different states®. Let Si, k=0,2,...,2Y¥~1 denote the k%" state of the prediction

window W with probability p; and define
qr, = Problu(m,n) = 1|Sk]
Then the optimum hard decision prediction rule having minimum prediction error
probability is

1, if g, > 0.5
0, otherwise

v(m, n) = {

If the random sequence u(m,n) is strict-sense stationary, then the various prob-
abilities will remain constant at every (m,n), and therefore the prediction rule need

not change.

2.1.3 Prediction Factor

For an easy comparison of various prediction techniques, we introduced a quantity

that measures a predictor’s ability to minimize the prediction error probability:

Prediction Fact (number of black pizels in the residual image)
rediction Factor =

(number of black pizels in the original image)

6A state is defined as a valid binary word which characterizes a prediction window.

12

The above definition assumes that the errors in the residual image are denoted by
black pixels (i.e. by 1s). For a predictor to be useful, the value of the prediction factor
should be less than 1. For a binary memoryless source, the smaller the prediction
factor, the better the predictor. Empirically and by heuristics, in general, this is also

the case for a binary source with memory.

2.2 Prediction Techniques

The following sections describe various prediction techniques.

2.2.1 Vertical XOR

”Vertical XOR” is a simple one-step prediction technique. In this technique, the
prediction window contains only one pixel, the pixel above the predicted pixel. If
u(t,j), and u(i,j + 1) are the two pixels in the consecutive rows of an image X, then

vertical XOR is defined as
e, +1) = u(3, j) ®u(i,j+1),

where e(7,7 + 1) is the residual pixel value.

A pixel in the first row of the residual image X is obtained by XORing it with an
imaginary white pixel.

The residual image can also be created by subtracting a predicted image from
the original image. Here, the predicted image is simply the original image shifted
downward by one row. This technique is particularly useful for the prediction of an
image full of vertical lines, for example engineering drawing. Figures A.7-A.9 show
the vertical XORed images. The prediction factors obtained using this technique are

given in Table 2.1.

13

% of black pizels Prediction
Technique Image original image | residual image factor
Letter type | 1.768 0.36 0.2
Vertical-XOR Roman type | 2.434 0.45 0.18
Handwriting | 3.217 0.91 0.28
Letter type | 1.768 0.34 0.19
Horizontal-XOR | Roman type | 2.434 0.43 0.177
Handwriting | 3.217 0.76 0.238
Letter type | 1.768 0.217 0.123
2-D prediction Roman type | 2.434 0.26 0.107
Handwriting | 3.217 0.56 0.176

Table 2.1. Comparison of Prediction Techniques
2.2.2 Horizontal XOR

Horizontal XOR is similar to Vertical XOR, except that the prediction window pixel
is one that is to the immediate left of the predicted pixel. If u(7, j) and u(i + 1, j) are

two consecutive pixels in a row, then the horizontal XOR is defined as

e(t+1,7) = u(t+1,5) ® u(i, 5),

where e(i + 1, j) is the residual pixel value or the prediction error.

A pixel in the first column of the residual image X is obtained by XORing it with
an imaginary white pixel.

In the horizontal-XOR technique, a predicted image is simply the original image
shifted by one column to its right. This technique is particularly useful for the pre-
diction of an image full of horizontal lines. Figures A.10-A.12 show the horizontal
XORed images. The prediction factors obtained using this technique are given in

Table 2.1

14

2.2.3 Two-dimensional Prediction

Simple one-dimensional techniques (e.g. Horizontal- and Vertical-XOR techniques)
do not necessarily take full advantage of a pixel’s dependency on all of its neighbors.
They only consider one pixel while predicting a pixel’s value. In this context, we
define the 'neighborhood’ of a pixel as shown in Figure 2.1. The eight pixels marked
by the a form in the 8-neighborhood of the pixel marked by “7”.

Two-dimensional prediction techniques utilize the predicted pixel’s dependency on
not only the immediate neighbors, but also on one or more secondary neighbors. The
secondary neighbors are defined in Figure 2.1. The sixteen pixels marked by 3 are
the secondary neighbors of the pixel marked by “?”. A two-dimensional prediction
window for the prediction of a pixel p can contain only those neighbors of p which
follow the causality” principle.

A two-dimensional predictor function is shown in Figure 2.2. The function f(a, b, ¢, d)
maps a quadruplet (a, b, c,d) to 0 or 1, whichever has a higher relative frequency con-
ditioned on the event that this quadruplet occurs. The conditional relative frequencies
are obtained from experimental data. If the prediction is correct, e is set to 0, other-
wise e is set to 1. As a result, the original image is transformed into an error image
which contains a significantly smaller number of 1s as compared to the original image
or the XORed image.

Figures A.12-A.14 show the residual images after using a 7-element prediction
window which is shown in Figure 2.3 . The predictor factors obtained from using this
7-element prediction window are given in the Table II.1.

Since for an N-element prediction window, there are 2V different states, in practice

a suitable choice of N has to be made to achieve a trade-off between prediction factor

"The causality principle states that for a system to be causal, the output for any n = ny must
depend on the input for n < ng only.

15

®® 6 ® ®
ORONORONO
ORONORONO
® @ 0w ®
®® 6 ® ®

a: Immediate neighbors
B: Secondary neighbors

Figure 2.1. Definition of immediate and secondary neighbors

16

Prediction function = f(a,b,c,d)

Figure 2.2. Two-dimensional predictor

XX | X | XX

X | X | ?

? . pixel to be predicted
X : elements of prediction window W

Figure 2.3. A 7-pixel prediction window

17

and the complexity of the predictor due to large values of N.

18

Chapter 3

Unconstrained Tiling

Unlike current bi-level compression techniques, the UBT technique divides the
problem of coding for compression into two parts:

(i) isolating the black pixels: all the black pixels in the image are isolated within
rectangles; sizes and locations of which are known to both the encoder and the de-
coder. These rectangles, called non-white rectangles (NWR) or non-white regions,
cover all the black pixels and some of the surrounding white pixels. The regions not
covered by the non-white rectangles are tiled with white-rectangles. The dimensions
of the white rectangles are chosen from a set of pre-defined quantized dimensions.

(i) encoding of covered pixels: pixels covered by non-white rectangles are then
encoded using known techniques described in Chapter 4.

In this thesis, a new technique is introduced for tiling® bi-level images into rect-
angles of quantized dimensions for high data compression is introduced. This chapter
presents the idea of tiling and describes various techniques for the tiling of bi-level

images for data compression.

8In this thesis, tiling refers to covering of an uniform area (i.e. black or white) with non-
overlapping rectangles of pre-defined dimensions.

19

3.1 Introduction

Unconstrained Tiling partitions the image into two sets of rectangles, the dimensions
of which conform to a pre-defined set of quantized dimensions: one covering only
white pixels, and the other covering a mixture of black and white pixels. While
scanning from left to right and top to bottom, first all the black pixels and some of the
surrounding pixels are covered by non-white rectangles (e.g. in a business document,
each letter, word or sentence can be covered by the non-white rectangles). Then, the
remaining pixels are tiled with white rectangles of quantized dimensions, such that
each white rectangle covers the mazimum possible area. The motivation behind tiling
white space with the rectangles of maximum possible area is to maximize the white
region compression ratio® by minimizing the total number of rectangles which tile the
white space. We call this technique of tiling an image with rectangles block tiling. The
idea of partitioning the image into rectangles extends the notion of run-length coding
into two dimensions and utilizes the structured distribution of white space in a typical
facsimile transmission. A similar technique for compression of two-dimensional data
using Peano-Hilbert plane-filling curves [29] was investigated by A. Lempel and J.
Ziv [28].

The following sections describe the algorithms for the covering of non-white regions
and the tiling of white space. Two techniques for the tiling of white space, namely
sequential tiling and block growing, are introduced in the first two sections. The last

section addresses the issue of covering non-white regions.

20

—— starting point

[1 whiterectangles

[1 non-whiterectangles

An Exampl ¢ f
ai,j] bik,j]
Sequential iTing h@. echnique
Origin |
f[i.] k]
_________ W
Gopal Krish|
il g u,I]\d[kJ]

Figure 3.1. Sequential Tiling Technique

21

3.2 Sequential Tiling

Sequential Tiling is a technique for tiling the white space of an image into rectangles
of quantized dimensions. After isolating non-white regions (described in Section 3.4),
the image is raster scanned from left to right. If a pixel a[é, j], shown in Figure 3.1,
where ¢ and j denote the ith column and jth row of the image, respectively, is white
and not covered by any rectangle, it is designated as an origin at a particular time.
The origin is always the left hand upper corner of any valid rectangle. Scanning is
continued starting from an origin until reached (1) a boundary pixel of a non-white
rectangle, or (2) a pixel at the image boundary , or (3) a black pixel, b[k, j]. Starting
from a[t, 7] all the pixels in the ith column are scanned until a boundary pixel c|z, (]
(same as bk, j|) is reached. Now, a rectangle with the origin as its upper lefthand
corner is determined such that it covers the maximum area within the region defined
by the points a[i, 7], b[k, 7], c[i,!] and d[k,], as illustrated in Figure 3.1. The area is
defined as the product of the Length and Width, where the length is the distance of
the upper right hand corner pixel from the origin, and the width is the distance of
the lower left hand corner pixel from the origin. The algorithm for finding rectangles
of maximum area is described in Appendix B.

Figure 3.2 shows an image tiled using this technique. The number on each rect-

angle in the figure indicates the order in which rectangles were tiled.

3.2.1 Limitation of Sequential Tiling

Due to the sequential nature of raster scanning, the area covered by the rectangle
determined by the sequential tiling algorithm is very often not maximized. In order

to achieve high compression ratios it is desirable to tile an image with the minimum

9White region compression ratio is defined as a ratio of the total number of bits in the white
space of an image to the number of bits required to tile the entire white space.

22

____starting point

1
AN Exampl e 9)
6 9 7
4 5
S | g
2 [Sequenti [11ing echnique
13 11 12
14 15

opal Krishpa

[1 whiterectangles

[1 non-whiterectangles

Figure 3.2. An example of Sequential Tiling Technique

23

—— starting point

1
AN 3 [Example 0 5
2 Sequential TilNg Technique
13 11 12
14 15
16 Gopal Krishnf7

[1 whiterectangles

[1 non-whiterectangles

Figure 3.3. Modified tiling of the image shown in figure 3.2

24

**
[] whiterectangles

- curvilinear contour

*x rectangle with area not maximized

Figure 3.4. Limitations of sequential tiling technique

25

number of rectangles. In Figure 3.2 the space between the first two sentences is tiled
with seven rectangles. Figure 3.3 shows the tiling of the same space with only four
rectangles. However, the sequential nature of this technique prohibits the tiling of
the white space as done in Figure 3.3. The rectangles cover even smaller areas if the
black pixels follow curvilinear contours, as shown in Figure 3.4. As the curvature of

the contour increases, the rectangles become increasingly thin stripes.

3.3 Block Growing

Another technique of tiling the white space of the image is called block growing. In
the block growing technique, a rectangle is grown around a white pixel p, called the
birth location of the grown rectangle, until it covers the maximum possible area. A
rectangle thus generated is called a grown rectangle. The four boundaries (left, right,
top and bottom) of the grown rectangle define the scan length and the scan width of
the rectangle. The scan length and width are the x and y dimensions of the grown
rectangle. These scan lengths and scan widths are truncated to the nearest of the
defined quantized lengths and widths. Block growing is a powerful technique for tiling
which doesn’t suffer from the limitations of sequential tiling.

Several methods of block growing were investigated in this research. Two of the

most efficient methods are described in the following sections.

3.3.1 Maximal One-Dimensional Growing

119 growing technique, a rectangle is allowed to grow in

In the maximal one-dimensiona
only one dimension (x or y-direction) until it has grown to its maximum limit in that
dimension (i.e. until it has hit a transition or image boundary element on the both

sides of the birth location) before any growth is allowed in the remaining dimension.

10The word ”dimension” refers to the length and width of a grown rectangle.

26

Image boundary

i

c[l,j] Birth L ocatioreg[i,j] @
\ ,h/ Growth left
- = - aIF_,J_];; and right
Upro

(b)
L] -
upward

L=~ -~~~

/Up row
G tangle ©
rown rectangle Growth
“ downward
y
\Down row
] grown rectangle |:| non-white rectangle
< -. direction of growth

Figure 3.5. Maximal One-dimensional Growing Technique

27

/ Image boundary

[] |
/

Birth location
(a)

- —€)< I:I

one step column growth

[] | |

S 4 one step row growth (b)

R

________ 1 | |

. grown rectangle boundary
Grown rectangle,” ©

. I

...} grown rectangle |:| non-white rectangle
--= direction of growth

Figure 3.6. Omni-dimensional Growing Technique

28

For example, as shown in Figure 3.5a, let a7, j| be a birth location, where 7 and
j denote column and row, respectively. Suppose the algorithm first allows only the
horizontal growth. Then, a rectangle can grow to the left and right directions of
its birth location, such that it meets c[l, j| and d[r, j| as its left and right boundary
elements. c[l, j] is either a transition element left of birth location, or a left hand image
boundary element in the horizontal direction. Similarly, d[r, j] is either a transition
element right of birth location, or a right hand image boundary element. Once the
rectangle has grown to the maximum possible dimension in the horizontal direction,
it is allowed to grow in the vertical direction. Vertical growth can be understood by
imagining that c[l, j| and d[r, j] are connected by a string. The string is moved one
row at a time in the upward direction, until it hits either a row, up row, as shown
in Figure 3.5b, with at least one transition element between the columns ! and r, or
the upper boundary of the image. Similarly, down row can be determined by moving
the string in the downward direction. c[l, j], d[r, j], uprow, and downrow define the

dimensions of the grown rectangle. Figure 3.5¢ shows the grown rectangle.

3.3.2 Omni-dimensional Growing

Unlike maximal one-dimensional growing, omni-dimensional growing allows rectan-
gles to grow in all the dimensions around the birth location (BL) in a round-robin
manner. Sequence assignment for round-robin growth is arbitrary. Each round allows
a rectangle to grow in each dimension by only one step . A step is equivalent to one
column or one row increment depending on whether the step is for a horizontal or
vertical growth. Any directional growth which has reached (i) a transition element, or
(i) an image boundary pixel, or (iii) a non-white rectangle boundary element is elim-
inated from further participation in the round-robin growth. Round- robin growth

terminates when all four directional growths get eliminated. Figure 3.6 illustrates the

29

____starting point

7 |An| 8 |Example 6 |of o

10 [Block| 13 | Growing| 12 [lechnique 14

Gopal Krish
4 11 9

[1 grownrectangles

1 non-whiterectangles

Figure 3.7. An example of Block Growing Technique

30

idea of the omni-dimensional growing technique. In Figure 3.6a, the growing starts
from the birth location with a one step column growth located to the right of the birth
location, followed by a one step column growth located to the left of the birth loca-
tion. Next, (Figure 3.6b) a one step row growth in the upward direction is allowed,
followed by one in the downward direction. The directional growths are eliminated in
the following order: (1) one step column growth in the negative z direction, (2) one
step row growth in the negative y direction, (3) one step row growth in the positive
y direction, and finally (4) one step column growth in the positive z direction.
Figure 3.7 shows an example of the block growing technique. The numbers on the
rectangles represent the order in which the rectangles were grown. In this example,
the entire white space is tiled with only fourteen rectangles. The sequential tiling

technique needs seventeen rectangles to tile the same white space (Figure 3.2).

3.3.3 Choice of Birth Location

The distribution of birth locations across white regions for potential grown rectangles
determines the efficiency of the growing technique in the tiling of the white regions
of an image. The efficiency of a growing technique is defined here by the number
of rectangles required to cover all the white regions in the image. The smaller the
number of rectangles required, the higher the efficiency, as the objective is to reduce
the number of rectangles.

Two techniques for determination of birth locations are described below.
Random Jump

We investigated a technique we call the "random jumping”, in which a pixel is ran-
domly picked and its eligibility as a birth location is checked. If the pixel is white

and is not covered by any other grown rectangle, it qualifies as a birth location.

31

It was found that in some cases the random nature of the selection of birth loca-
tion may reduce the efficiency and may also lead to an undeterministic mode, while

introducing a random delay in tiling of the white regions of an image.
Raster Scan

The other technique investigated determines the birth locations by ”raster scanning”.
In this technique, the image is raster scanned from left to right and top to bottom.
Every pixel which is white and not covered by any other grown rectangle qualifies as
a birth location. This technique of finding birth locations may lead to the problem
faced by the sequentially tiled rectangles — they may not cover the maximum possible
area. This will result in a lower efficiency.

One technique we chose to use to overcome this problem is to grow rectangles in
several passes, with a defined threshold area for each pass. If the area of a grown
rectangle is less than that of the threshold for a pass, then the rectangle is ignored.
The pixels covered by the ignored rectangle are still marked as eligible birth locations
and are available to be covered by other valid grown rectangles. For instance, Figure
3.7 was tiled in three passes. The first pass yielded only one rectangle (#1). The

second yielded #2 and #3. The rest were grown in the third pass.

3.4 Non-white Rectangles (NWR)

In the proposed UBT technique, all the black pixels are covered by non-white rect-
angles, before any tiling of white space is done. The object is to cover each target
with the smallest possible rectangle allowed by the pre-defined quantized dimensions.
Here, a target is a cluster of pixels, and is defined by the UBT algorithm. For in-
stance, in an image consists of only English text a target can be a letter, word or

sentence (including numbers and figures). Pixels belonging to a target are called the

32

target pizels. In contrast to white rectangles which only contain single shaded pixels
(white), non-white rectangles cover a mixture of black and white pixels. Figure 3.8
shows an example of the covering of the black pixels in an image consisting of only
English text, when the target is a letter, word and sentence, respectively.

Isolation of black pixels with non-white rectangles serve two purposes:

(i) It allows a structured and efficient tiling of the white space which results in
high compression ratios, and

(ii) The black pixels are localized within well defined regions, locations and di-
mensions of which are very easily known to the decoder.

Non-white rectangles can be determined by modifying Sequential tiling or Block

Growing techniques discussed in the previous two sections.

33

/ I mage boundary

An Example of

Bixds

Gopal Krishn):

5%

[] Non-white rectangle allowed to cover a compl ete sentence
2 Non-white rectangle allowed to cover individual words

B Non-white rectangle allowed to cover aletter only

Figure 3.8. Covering of black pixels: non-white regions

34

Chapter 4

Coding of Non-white Regions

Once the predicted image is tiled with white and non-white rectangles using the
techniques described in the previous chapter, any of the known bi-level image coding
techniques (e.g. run-length coding, READ coding and entropy coding) can be used
to encode the target pixels (pixels covered by the non-white rectangles). No coding
is required for the pixels covered by the white rectangles. After tiling, the image is
raster scanned and the dimensions of the white and non-white rectangles are entropy
coded and transmitted. Finally, the target pixels are encoded using a modified version
of any of the several known bi-level image coding techniques.

In this chapter several coding techniques to encode pixels covered by non- white

rectangles are discussed.

4.1 Entropy Coding

One of the simplest techniques of encoding target pixels is entropy coding. Assuming
the image to be a discrete memoryless source, the probability of 0 among the target
pixels is ascertained. This probability is used to compute the approximate compres-
sion ratio achieved in encoding the target pixels using Arithmetic coding. We define
the compression ratio in non-white rectangles as the ratio of total number of target

pixels to the total number of bits required to encode all the target pixels.

35

1 1110|100
1 00101 1
1 111 0|1 O
01 111 0
01 11 0 O
01 11 0 O

Image partition by 2x2 blocks or
patterns

14,10,3,13,9,10,5,15,0

Pattern numbers for the corresponding
codeword assignment from the look-up
table

Figure 4.1. Block Coding

4.2 Block Coding

The basic idea of block coding is to partition an image into a set of two-dimensional
blocks or patterns of size n x m. This concept of block coding can be used for the
encoding of target pixels. Each pattern consists of nm bits and can be considered as a
symbol of a set S. Then, there are 2"™ possible symbols in the set S. The probability
of occurrence of each symbol can be determined by raster scanning the non-white
rectangles. Compression is achieved by entropy coding of the patterns. Larger values

of n and m generally yield higher compression ratios. However, with increasing values

36

of n and m, the total number of possible patterns increase exponentially; this results
in an exponential increase in complexity.

A special case of block coding is square block coding in which only square blocks
are used, i.e. n = m. In this case the lengths and widths of the non-white rectangles
are quantized such that they are multiples of n.

Figure 4.1 illustrates the idea of block coding. The image is partitioned by 2x2
blocks (figure 4.1a) and there are 16 possible patterns. On raster scanning, each of the
2x2 block is matched with one of 16 possible patterns and a codeword corresponding to
the pattern matched is assigned to the block. The patterns and their corresponding
codewords are stored in a look-up table. Figure 4.1b shows the pattern numbers

matched to the blocks in figure 4.1a.

4.3 Run-length Coding

In the proposed BCITT technique, the locations of all the non-white rectangles are
known to the decoder. Therefore, all the target pixels can be treated as elements of
a long one-dimensional array. The elements of the one-dimensional array are left to
right and top to bottom raster scanned pixels belonging to the non-white rectangles,
starting from the upper left hand corner of the predicted and tiled image. These
pixels can be encoded by run-length coding using a modified Huffman code[27] with
the advantage that no End-of-Line (EOL) codeword is required. The end-of-line
codeword is required in the known run-length coding techniques to indicate that the
end of the row (or line) being coded has been reached, and that the following codeword
starts a new row.

An example of run-length coding with fixed length codewords is shown in Figure

4.2. Since white (0s) and black (1s) runs alternate, the color of the run need not be

37

0| 000O0jOf2|2)2(0O|O|Of 1/2|O0O|O|O(O]|O]| 1fO 0)

5W 3B 3W 2B 5W 1B1w (D
010] 0011 0011 0010 0101 0001 0001 (i)
(O Data

(i) Run lengths
(iii) Run-length coding, fixed length

Figure 4.2. Run-length coding

coded. If necessary, the first run is always a white run with length zero. If run-lengths
are coded by fixed-length m-bit codewords, each representing a block of maximum
run-length M — 1, (M = 2™) then M can be chosen to maximize compression.

A more-efficient technique is to use Huffman coding. A large code book is avoided
by using truncated or modified Huffman codes[27]. The truncated Huffman code
assigns separate codewords for white and black runs of lengths up to L,, (white run)
and L (black run). Longer runs, which have lower probabilities, are assigned a fixed-
length codeword, which consists of a prefix code plus an 11-bit binary code of the
run-length.

The modified Huffman code, recommended by the CCITT as a one-dimensional
standard code for Group 3 facsimile transmission, uses L,, = L, = 63. Run-lengths
smaller than 64 are Huffman coded to give the terminator code. The remaining runs

are assigned two codewords, consisting of a make-up code and a terminator code[27].

38

BC RLC BC BC BC RLC

BC: Block Code
RLC: Run length Code

Figure 4.3. Run-length block coding
4.4 Run-length Block Coding

Run-length coding yields high compression ratios if the average length of runs is long.
In other words, runs of short length decrease the compression ratio. On the other
hand, block coding increases the compression ratio, if some of the block codes are
more probable than others. Block coding and run-length coding can be combined to
take advantage of the both techniques. We call the combination of run-length and
block coding, Run-length Block Coding (RLBC).

In this technique, pixels are encoded by run-length coding as long as the length of
the run is greater than or equal to a threshold N. If the length of a run is less than
N, then that run is discarded and one of the 2V one-dimensional block patterns is
used to encode N consecutive pixels. The pattern for encoding is selected by simply
finding the one which matches with N consecutive pixels to be encoded. Figure 4.3

illustrates this technique, where N = 4.

39

4.5 Conditional Entropy Coding

Unlike entropy coding, conditional entropy coding assumes that the source has mem-
ory and it can be modeled as a markov process. If W is the size of a one-dimensional
sliding window, then there are 2" possible window patterns. The probability of the
Wth pixel being 0, conditioned on the occurrence of one of 2V patterns is computed.
Probabilities are compiled by sliding the window one pixel at a time over all the

non-white region and then are used to entropy code the non-white regions.

40

Chapter 5

Implementation Issues

The algorithm for the proposed Unconstrained Block Tiling Technique (UBT)

consists of the following six steps:

e A predicted image, based on the image to be encoded, is created using one of

the prediction techniques described in Chapter2.

e All the black pixels of the residual image are then covered by the non-white

rectangles (described in Chapter3).

e All the rows in the residual image which consist of only white pixels are removed

and a White Row Removal Code (WRRC) is generated.

e The white space that remains after the covering of black pixels is tiled with
white rectangles; first by block growing and then by sequential tiling (described

in Chapter3).

e The horizontal and vertical dimensions of white and non-white rectangles are

entropy coded.

e Finally, the target pixels (those covered by the non-white rectangles) are en-

coded using one of the techniques discussed in Chapter 4.

41

This chapter discusses various issues related to the implementation of some of the

steps outlined above and addresses some of the complexity issues .

5.1 Prediction

Most of the compression in the UBT technique is achieved from the tiling of the
white space in an image to be encoded. The image predicted from the original image
generally contains a significantly higher number of white pixels than that in the
original image. This, coupled with the ease of creating predicted images from the
original image, makes prediction a reasonable first step.

Simple one-dimensional predictors, like vertical- and horizontal-XOR predictors
(discussed in Chapter 2), help to remove either vertical or horizontal redundancies
(e.g. vertical and horizontal lines) and are very easy to implement. Two-dimensional
predictors, on the other hand, can remove both the horizontal and vertical redundan-
cies, but are usually more complex to implement. For instance, it has been observed
that a 12-element predictor can result in a prediction factor which is smaller than
that obtained from a one-dimensional predictor by as much as a factor of two.

For an N-element predictor window, there are 2V different states. It has been
observed that for increasing N, the prediction factor decreases linearly. However, on
the other hand, due to the exponential increase in the number of states of predictor
window, the complexity increases exponentially. Therefore, in practice, a suitable
choice of N has to be made to achieve a trade-off between the prediction factor and

the complexity of the predictor.

42

5.2 Covering of Black Pixels: Non-white Regions

The black pixels of a predicted image are covered by the non-white rectangles. The
non-white rectangle dimensions correspond to the quantized dimensions defined by
the UBT algorithm. These dimensions determine the number of non-white rectangles
needed to cover all the black pixels, and hence the number of bits required to specify
all the non-white rectangles. Expanding the set of quantized dimensions, although
increasing the entropy of the dimensions, results in a smaller number of non-white
rectangles. Therefore, this results in a smaller number of total bits required to specify

all the non-white rectangles. The number of bits required is computed as given below:

Number of bits = (entropy of the dimensions of the NW Rs)*(number of NW Rs)

However, increasing the number of defined dimensions increases the complexity.
The pixels covered by the non-white rectangles (or the target pixels) are encoded using
one of the techniques described in Chapter 4 and usually yield a very low compression
ratio as compared to that yielded by the white rectangles. Higher compression ratios
are usually achieved when an image is tiled with a few white rectangles possessing
a larger average area than that achieved when the image is tiled with a large num-
ber of white rectangles possessing a smaller average area. If the dimensions of the
non-white rectangles are small, the effect of the target pixels’ compression ratio on
the overall compression ratio may reduce due to a reduction in the number of target
pixels. However, as a result, the number of white rectangles may increase and the
compression ratio yielded by the white rectangles may decrease. Hence, the overall
compression ratio may decrease. Similarly, if the dimensions of the non-white rectan-
gles are allowed to be relatively large, the influence of the target pixels’ compression
ratio on the over-all compression ratio may increase due to the increase in the number

of target pixels. This in turn may again reduce the over-all compression. Therefore,

43

of all white rows
Image before prediction | after prediction | gain
Letter type 2957 3003 46
Roman type 2227 2553 326
Handwriting 1524 1569 45

Table 5.1. Gain in the number of all white rows following prediction

there is a trade-off between the defined dimensions of non-white rectangles and the

number of white rectangles used.

5.3 Removal of White Rows

The predicted image is raster scanned to generate a White Row Removal Code
(WRRC). Each bit of WRRC corresponds to a row in the predicted image. If a
row being scanned has at least one black pixel, it is retained for further processing
and a code 1 is assigned to WRRC corresponding to this row; otherwise, the row is
removed and a code 0 is assigned. Thus, the number of one bit codes in the WRRC
code for an image is equal to the number of rows in the predicted image.

The all white rows are removed only after the prediction and the covering of black
pixels, rather than from the original image, because in certain types of images (e.g.
business letters) following prediction a few more rows become all white rows. Table
5.1 shows the gain in the number of all white rows following prediction. A 12-element

two-dimensional prediction window was used to compile the table.

5.4 Tiling of White Space

Since block growing with several passes can overcome the limitations of sequential
tiling, we decided to tile the white space first with grown rectangles, as described
in the Chapter 3. The number of passes and the threshold area for each pass are

defined by the UBT algorithm. The efficiency of tiling generally improves as the

44

number of passes increases. The efficiency is defined in terms of the number of white
rectangles needed to tile the entire white space. The smaller the number, the higher
the efficiency. In other words, the smaller the number of rectangles needed to tile the
entire white space, the more the average area covered by each of the white rectangles,
and therefore, the smaller the number of bits required to encode their dimensions.
Hence, the compression ratio will be higher. However, the passes can cause a delay.
For instance, in block growing with 7 passes, some of the grown rectangles cover as
many as 700,000 pixels each. On the average, block growing yields a compression
ratio of 1500 within the grown regions, when the minimum threshold area allowed is
100.

There is a trade-off between the size of the code book for the quantized dimension
and the number of rectangles needed to tile the white space. Increasing the codebook
size generally increases the compression ratio by reducing the number of rectangles
needed to tile the white space. It unfortunately may also exponentially increase the
complexity. The selection of the elements for the set of defined quantized dimen-
sions also determines the total number of rectangles which tile the white space. The
elements are chosen such that they minimize the total number of white rectangles.

Once the major area of the white space is tiled by the block growing technique,it
may be advantageous to fill the remaining white space slots by the sequential tiling
technique, since the sequential tiling technique is faster and the remaining slots are

usually relatively very small in size and number.

45

Chapter 6

Results and discussion

The proposed UBT technique was simulated on a SUN Microsystem SPARCsta-
tion 2 to demonstrate its applicability and to evaluate its performance. The program
code was written in the C' programming language. The major functions of the code
are given in Appendix C. Three standard images (described in Table 1.1) were used
as the test images.

In this chapter the results of these simulations are presented. A comparison of
the results obtained from the UBT technique is done with some known techniques
for the compression of bi-level images. The implications of the results in light of the

issues outlined in Chapter 5 are discussed.

6.1 Prediction

Prediction window size vs. prediction factor

Figure 6.1 shows the variation of prediction factor with the number of elements in the
prediction window for the test images. The prediction windows are shown in Figure
6.2. As can be seen from Figure 6.1, the prediction factor decreases with the increase
in the number of elements in the prediction window. It should be noted that the
positions of the prediction window elements relative to the pixel to be predicted (or

in other words, the shape of the prediction window) have a considerable effect on the

46

Figure 6.1. Prediction window size vs. prediction factor

47

: (i)
X| X | ?:
X| X| X| X | X

. (i)
X| X | 9 i
X| X| X| X | X
X | X| X]| x| X (iii)
X | X| 9

X: prediction window pixels
? pixel to be predicted

Figure 6.2. Prediction windows

48

prediction factor.

6.2 NWR Compression Ratio

In this section, the effect of the change in a variable in each of the four techniques,

implemented for the coding of NWRs on NWR compression ratio, is discussed.
Block coding: length of square block

Figure 6.3 shows that the NWR compression ratio increases linearly with the block
size. As an example, the variation of NWR compression ratio with the block size is

plotted for the letter type image with only a 5-element prediction window.
Conditional entropy coding: size of sliding window

As shown in the Figure 6.4 the NWR compression ratio increases with an increase in
the number of elements in the sliding window. It should, however, be noted that the
NWR compression ratio increases by only 1.96% when the number of elements in the
sliding window is increased from 3 to 10. The letter type image with a 12-element

prediction window was used.
Run-length coding: length of longest run

In the run-length coding technique implemented, one code book for runs of N or
fewer Os was used. An extra code was used to specify runs of Os longer than N + 1.

Figure 6.5 shows the increase in NWR compression ratio with increases in N.
The NWR compression ratio increases rapidly until N is less than 400, thereafter,
its growth saturates. The letter type image with a 5-element prediction window was

used.

49

Figure 6.3. NWR compression ratio vs. length of the square block

30

Figure 6.4. NWR compression ratio vs. # of elements in the sliding window

o1

Figure 6.5. NWR compression ratio vs. length of longest run

52

Figure 6.6. NWR compression ratio vs. block length

93

Run-length block coding: block length

Figure 6.6 is a graph of the NWR compression ratio vs. the length of the block. It
shows that the compression ratio remains almost constant with increases in the block

length.

6.3 Contribution of different techniques

In this section, the contributions of the three different parts of UBT towards the
over-all compression ratio, saving of bits, and the total number of bits covered by
them, are discussed. A 12-element prediction window (Figure 6.2c) and a sentence

blocking technique were used for the results of this section.
Share in covering the image

Figures 6.7-6.9 show the area covered by the three parts of UBT, namely white row
removal code (WRRC), block tiling (BT), and coding of non-white regions (CNWR)
for the three test images.

Most of the area in the letter and roman type images is covered by WRRC - 69%
and 58.66%, respectively. In the letter type image, BT covers 21.76% of the area
leaving only 9.22% of the area for CNWR. On the other hand, in the roman type
image BT and CNWR cover nearly the same amount of area — 21.31% and 19.99%,
respectively. However, in the handwriting type image, WRRC and CNWR cover

about the same amount of area.
Share in saving bits

Figures 6.10-6.12 show the contribution of WRRC, BT, and CNWR, in reducing the
total number of bits needed to be transmitted. For the letter type image the number

of coded bits needed to be transmitted is 1.275% of the total bits in the original

54

Figure 6.7. Share of WRRC, BT, and CNWR in covering the Letter type image

95

Figure 6.8. Share of WRRC, BT, and CNWR in covering the Roman type image

96

Figure 6.9. Share of WRRC, BT, and CNWR in covering the Handwriting type image

57

Figure 6.10. Share of WRRC, BT, and CNWR in saving bits: Letter type image

98

Figure 6.11. Share of WRRC, BT, and CNWR in saving bits: Roman type image

99

Figure 6.12. Share of WRRC, BT, and CNWR in saving bits: Handwriting type

image

60

image. As shown in Figure 6.10, most of the compression (or the savings in the
number of bits to be transmitted) came from WRRC and BT. In the roman type
image the corresponding number of bits needed to be transmitted is 1.69%. WRRC
saves 58.63% of the total number of bits in the original image, followed by BT and
CNWR which save 21.26% and 18.42%, respectively. In the handwriting type image
CNWR saves 32% of the total bits, more than that saved by BT: this occurs because

CNWR covers more area than that covered by BT (Figure 6.9).
Share in the total number of transmitted bits

Figures 6.13-6.15 show the share of WRRC, BT, CNWR, and NWRT (tiling of non-
white regions) in the total number of bits transmitted. In all of these three images,
almost all of the bits transmitted came from CNWR — 94.81%, 95.12%, and 97.9%
for letter, roman and handwriting type image, respectively. It should be noted that
NWRT takes less than 0.3% of the total number of bits to isolate all the black pixels
within non-white rectangles.

On comparing Figures 6.7, 6.10 and 6.13 it can be seen that for the letter type
image WRRC covers 69% of the area but uses only 2.59% of the total number of
transmitted bits, i.e. it yields a compression ratio more than 2119. Similarly, BT
achieves a compression ratio more than 754. Although WRRC and BT cover more
than 90% of the area, they take up less than 5% of the total number of transmitted
bits. On the other hand, CNWR covers only 9.22% of the area but contributes more
than 94% of the total transmitted bits. Similar inferences can be drawn for the roman
and handwriting type images by comparing the other pie-charts.

It can be concluded that the concept of tiling the white space and that of WRRC
results in high compression ratios. The covering of black pixels by non-white rect-

angles requires a negligible number of bits and helps in the structured and efficient

61

Figure 6.13. Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Letter type image

62

Figure 6.14. Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Roman type image

63

Figure 6.15. Share of WRRC, BT, and CNWR in the total number of transmitted
bits: Handwriting type image

64

tiling of the white space. This reduces the problem of bi-level image compression to
that of coding only target pixels (the number of which can be as small as 7% of the
total bits in the original image) which comprise of all the black and some of the white

pixels of the image.

6.4 A Comparative Study

In this section the results obtained from using different algorithms for the UBT are
presented and compared with some of the known techniques. Figures 6.16-6.18 com-

pare each of the test images with some of the known techniques.

The legend for these figures is as follows:
a = Entropy coding of the image
b = Entropy coding of the horizontal-XORed tmage
¢ = Entropy coding of the residual image using a 2-D predictor
d = Sentence blocking and tiling, entropy coding the NWR pizels
e = Sentence blocking and tiling, RLBC of the NWR pixels
f = Word blocking and tiling, entropy coding of the NWR pixels
g = Word blocking and tiling, RLBC of the NWR pixels

In d,e,f, and g a two-dimensional 12-element prediction window was used to cre-
ate the predicted image. Figure 6.16 shows that the UBT technique increases the
compression ratio by more than 56% of that achieved by the predictive coding; i.e.
by more than 929% that of achieved by simple entropy coding only. Similarly, it can
be seen from Figure 6.17 that the UBT technique increases the compression ratio for

the roman type image by more than 42%. Here it needs to be emphasized that these

65

Figure 6.16. Compression ratio vs. techniques for compression: Letter type image

66

Figure 6.17. Compression ratio vs. techniques for compression: Roman type image

67

Figure 6.18. Compression ratio vs. techniques for compression: Handwriting type
image

68

Technique Compression
Step I Step I ratio
Entropy coding 7.798
vertical-XOR entropy coding 28.89
horizontal-XOR | entropy coding 30.43
Prediction 5-elements entropy coding 44.2
7-elements entropy coding 44.76
12-elements entropy coding 51.35
entropy coding 72.39
sentence conditional entropy coding | 74.9
blocking runlength coding 78.8
block runlength coding 79.1
BCITT entropy coding 74.72
word conditional entropy coding | 76.6
blocking runlength coding 80.04
block runlength coding 80.3

Table 6.1. Compression ratios achieved by various techniques for letter type image

increases in the compression ratios are not the best that can be achieved using the
UBT technique.

The compression ratios achieved by all the techniques simulated in this study are
given in Tables 6.1-6.3. Step Iin these tables refers to the prediction for the predictive
compression technique; and to prediction, sentence/word blocking and tiling for the
UBT technique. Step II refers to the coding of the entire image for the predictive

compression technique, and to the coding of the target pixels for the UBT technique.

69

Technique Compression
Step I Step I ratio
Entropy coding 6.053
vertical-XOR entropy coding 23.99
horizontal-XOR | entropy coding 24.88
Prediction 5-elements entropy coding 37.69
7-elements entropy coding 38.33
12-elements entropy coding 43.31
entropy coding 53.56
sentence conditional entropy coding | 57.15
blocking runlength coding 60.26
block runlength coding 60.20
BCITT entropy coding 55.89
word conditional entropy coding | 58.95
blocking runlength coding 61.20
block runlength coding 61.13

Table 6.2. Compression ratios achieved by various techniques for roman type image

Technique Compression
Step I Step IT ratio
Entropy coding 4.87
vertical-XOR entropy coding 13.34
horizontal-XOR | entropy coding 15.38
Prediction 5-elements entropy coding 19.47
7-elements entropy coding 19.85
12-elements entropy coding 23.12
entropy coding 27.13
sentence conditional entropy coding | 28.32
blocking runlength coding 29.44
block runlength coding 29.46
BCITT entropy coding 27.23
word conditional entropy coding | 28.38
blocking runlength coding 29.51
block runlength coding 29.54

Table 6.3. Compression ratios achieved by various techniques for handwriting type

image

70

Chapter 7

Conclusion and Future Directions

In this thesis a new simple-to-implement technique for the compression of high-
resolution bi-level images for facsimile transmission and storage was presented. This
chapter summarizes the work and outlines future directions for research.

The proposed UBT technique divides the problem of coding for compression into
two parts: tiling of the image with white and non-white rectangles, and coding of pix-
els covered by non-white rectangles. The idea of partitioning the image into rectangles
of pre-defined dimensions extends the notion of run-length coding to two-dimensions.

In the first part of this thesis the notion of prediction was presented. It was shown
that increasing the size of a prediction window generally decreases the prediction
factor and results in higher compression ratios.

The second part introduced a new concept of partitioning an image into white and
non-white rectangles. Two new algorithms for tiling the white space, namely sequen-
tial tiling and block growing were presented. In block growing, an omni-dimensional
growing method was found to be an efficient way of tiling the white space. It was
shown that block tiling within the tiled regions yields very high compression ratios.

The third part of the thesis was concerned with coding of the pixels covered by
the non-white rectangles. A number of different simple coding techniques for coding

of the target pixels were discussed. A new technique which combines the concepts

71

of block and run-length coding was also introduced. It was found that of all the
simulated coding techniques, run-length coding and run-length block coding gave the
best compression ratios.

It can be concluded that the concepts of tiling of the white space with rectangles
and that of WRRC yield very high compression ratios. Although the covering of
black pixels with non-white rectangles takes up a negligible part of the total number
of transmitted bits, it results in a higher compression, and reduces the problem of
compression to that of coding of pixels in well defined regions which cover a relatively
very small area of a typical facsimile document.

Although the primary aim of this thesis was compression of bi-level images, it
should be emphasized that the proposed technique can effectively be used for multi-
level image by simply encoding each bit plane independently as though it were itself
a bi-level image.

A number of different directions can be suggested for future work in all the three
parts of the UBT technique. In prediction, instead of using a fixed prediction window
and trying to minimize the prediction factor by increasing the number of prediction
window elements, an adaptive prediction window can be used. The adaptive window
should be able to change the shape and size of the prediction window according to
the local characteristics of the image being predicted.

In this thesis the set of defined quantized dimensions for the white rectangles was
selected by repeated trials. A mathematical base for the selection of the set can
be developed or an algorithm similar to the Generalized Lloyd Algorithm (GLA)[30]
might be developed. The issue of codebook size should be settled by more simulations.

The main focus of any future study of UBT technique should be the development

of an efficient technique for the coding of target pixels.

72

Appendix A

Images

In this appendix, decimated images of the document generating images, and a
section of residual images obtained from prediction are shown. Decimated images

were created only for display purposes.

73

letter_type

Kodak

Septamber 1, 1988

Ms. Jane Do
999 Parkside Avenue
Buffalo, HNY 14214

Dear M=, Ioe:

This is to canfirm our meeting of September 9, 1883, 7 am
enuloszing an Itinsrary and directions for reaching the Elmgrove
Plant.

We look forward te meeting you next week. If you have any

questicns, please feel to contact me at (655) F26-R7aY9.

Sincerely,

Faht

¥rank Weiner
Supervisor
Image Electronics Center

F¥W:pat
Enclosurcs (2}

Figure .1. Decimated image of the document generating Letter Type image

74

roman_type

Information Theory Concepts

Source § > 8085,

Lirce alphabet of size n with probabilities p(s;}, p{ss), -...plaa)-

he information (in bits) provided by the occurrence of

urce symbel s; is given by

bits

I{Sf} =]()g? P(-‘*:)

1e average amount of information obtained per symbol
bm the source is called the entropy H(S] of the source:

n 1
H{5} = EUP(S‘“O%: o)
xample:
S ={A,B.C.D)
1 1 1 1
P(A)ZE» P(B)ZZ‘ P{C) =3, P(D)—é

Figure .2. Decimated image of the document generating Roman Type image

75

handwriting_type

Marchw 1L, (985

LR B[R T

-?}g%ta-{f Etachrome |35 24-20 (PTAY &
ﬁ)‘(”%{.‘?’, YLAM]M»"JW P ii’b ’/br—.'f}'—ii'}iﬂﬁ- .

2ed ¥ B TR oF i ENBTeFe =7 $‘$ WA A
Divacind Ol e 1> M RoLT Bh Ffar FovTao,

i BE el e #Y rakr GGt
Folaar Al BEIU-RS eedalzr T ozt URD AL
e G Tty 2 -

ome v YBHb: PBlnorsy Flbe T RSz ov
L ’1‘4% ".)‘a .

Bre NT O(BES ReDE)F3ene BLEAITER 25d a2
P vt Numinade fbcalz [0B1% (Fpub) chuis
il . 137 3 AR

i amrgrrn cimeper. PEA e et

e oroi ..'.'_/é',-c-_ _yc/‘i;-'-.-/z/;.zlesﬁ /:'2.::«)&;

e ese efen Semveie Zeoles

- - PR AR -
PATI v“y/ﬂ P et AT R VR
AL e -
== e b R
7‘;1(_'4/.&'./-;-??'4 i(('((/jf 2 i,
'h(‘-z.(c.c' E -

Lrges Levr

S Bema el

Figure .3. Decimated image of the document generating Handwriting Type image

76

Letter |

you next week. If
act me at (555) 526-87

Sincerely,

Fack

Frank Weiner
Supervisor
Image Electr

Figure .4. A section of Letter type image

7

bits

\formation obtained I
he entropy H(S) of

1 1
B P(Sz‘) log,
p(s,')

=0

(= \{wmiux@?wtff /é}m
3. e 3 AT

27 /%ZW_. M 4

- %
M,A/ o= Scrrzs
s R AQ

Figure .6. A section of Handwriting type image

79

Letter_type_xorv

o

Figure .7. Residual Letter type image after Vertical-XOR

80

Figure .8. Residual Roman type image after Vertical-XOR

81

il

Handwriting_xorv

Figure .9. Residual Handwriting type image after Vertical-XOR
82

Letter_type_xorh

YOUL IORT. Weol e
act me at (HHH) H26 -8/

Saneerely,

WanK‘VSL
OO LI
I J (I

Figure .10. Residual Letter type image after Horizontal-XOR

83

0

iformnation obtained |

e @ iy H(S) of

Figure .11. Residual Roman type image after Horizontal-XOR,

84

Handwriting_xorh

&

Lo N Uil d e

Figure .12. Residual Handwriting image after Horizontal-XOR

85

Letter_type_12_elements

Figure .13. Residual Letter type image after 12 element 2-D prediction

86

Roman_type_12_elements

Figure .14. Residual Roman type image after 12 element 2-D prediction

87

Handwriting_type_12_elements

7T

Figure .15. Residual Handwriting type image after 12 element 2-D prediction

88

Appendix B

Finding Maximum Area Rectangles

In this appendix, the algorithm for finding rectangles of maximum area using
Sequential Tiling technique is described.

There are two constraints in finding a rectangle of the maximum area: firstly, the
origin must be the upper left hand corner of the rectangle; secondly, the rectangle
must cover white pixels only. Working under these constraints, all the pixels starting
from the origin are raster scanned and the dimensions of the largest area rectangle,
defined by a variable largest_area, are continuously updated until the pixel bk, j] is
reached. At every stage of scanning, only two rectangles need to be compared to find
a rectangle with the largest area: one with the present pixel as its upper right hand
corner, and the other with the pixel to the immediate left of the present pixel as its
upper right hand corner. For example, in Figure 3.1 the two contending rectangles
are defined by the points a[i, j], hlu, j], g[u, (] and ¢[¢,1], and a[3, j], bk,], e[k, r] and

f[¢,7]. The algorithm for finding maximum area rectangles is as follows:

initialize:
previous_ maz_row = bottom boundary of the image (number of rows)
column = current_column

row = current_row

89

last_column = k

while ((column < last_column)and(row < previous_maz_row)){
if (hit by either a black pizel or a boundary pizel){
area_present_pizel = (column — current_column) * (row — current_row);
area_prev_pizel = (column — current_column — 1) * (previous-maz_row);
largest_area = larger(area_present pizel, area_prev_pizel);

previous_maw_row = Tow,

The column and row corresponding to the largest_area found from the above code
determine the lower right hand corner, as well as the scan length and scan width of
the rectangle. These scan length and scan width are then truncated to the nearest of
the defined quantized lengths and widths. Similarly, the sizes and locations of all the

other rectangles that tile the image are determined.

90

1]

3]

Bibliography

L.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic coding for data com-
pression,” Communications of the ACM, vol. 30, no. 6, pp. 520-540, June
1987.

V.R. Algazi, P.L. Kelly, and R.R. Estes, “Compression of binary facsimile
images by preprocessing and color shrinking,” IEEE Trans. Commun., vol.

COM-38, no. 9, pp. 1592-1598, Sept. 1990.

Y.Yasuda, “Overview of digital facsimile coding techniques in Japan,” Proc.

IEFEE, vol.68, no. 7, pp. 830-845, July 1980.

H.G. Musmann and D. Preuss, “Comparison of redundancy reducing codes
for facsimile transmission of documents,” IEEE Trans. Commun., vol. COM-

25, no. 11, pp. 1425-1433, Nov. 1977.

D.C.V. Voorhis, “An extended run-length encoder and decoder for compres-
sion of black/white images,” IEEE Trans. Inform. Theory, vol. IT-22, no.

2, pp. 190-199, Mar. 1976.

F.W. Mounts, E.G. Bowen, and A.N. Netravali, “An ordering scheme for
facsimile coding,” Bell Syst. Tech. J., vol. 58, no. 9, pp. 2113-2128, Nov.
1979.

91

[7]

[10]

[11]

[12]

[13]

[14]

H. Meyr, H.B. Rodolsky, and T.S. Huang, “Optimum run-length codes,”
IEEE Trans. Commun., vol. COM-22, no. 6, pp. 826-835, June 1974.

M. Takagi and T. Tsuda, “Bandwidth compression for facsimile using two-
dimensional prediction,” Syst., Comput., Contr., vol. 4, no. 2 | pp. 16-23,
1973.

“Proposal for draft recommendation of two-dimensional coding scheme,”

CCITT SG XIV Contribution, no. 42, Nov. 1978.

D.A. Huffman, “A method for the construction of minimum redundancy

codes,” Proc. IRE, vol. 40, pp. 1098-1101, Sept. 1952.

H. Wyle, T. Erb, and R. Barow, “Reduced time facsimile transmission by
digital coding,” IRE Trans. on Commun. Syst., vol. CS-9, no. 3, pp. 215-222,
Sept. 1961.

Y. Wakahara, Y. Yamazaki, H. Teramura, and Y. Nakagome, “Data com-
pression factors of relative address coding scheme for facsimile signals,” J.

IIEE Jap., vol. 5, no. 3, pp. 92-100, Oct. 1976.

T. Yamada, “Edge-difference coding — A new, efficient redundancy reduction
technique for facsimile signals,” IEEE Trans. Commun., vol. COM-27, no.

8, pp. 1210-1217, Aug. 1979.

H. Morita and S. Arimoto, “SECT — A coding technique for black/white
graphics,” IEEE Trans. Inform. Theory, vol. IT-29, no. 4, pp. 559-570, July
1983.

92

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

M. Kunt, “Comparaison de techniques d’encodage pour la reduction de re-
dondance d’images facsimile a deux niveaux,” Thesis, Ecole Polytechnique

Federale de Lausanne, Lausanne, Switzerland, no. 183, 1974.

O. Johnsen, “Etude de strategies adaptatives pour la transmission d’images

facsimile a deux niveaux,” AGEN Milteil., no. 20, pp.41-53, June 1976.

Y. Cohen, M.S. Landy, and M. Pavel, “Hierarchical coding of binary im-
ages,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-7, no. 3, pp.
284-298, May 1985.

K. Knowlton, “Progressive transmission of grey scale and B/W pictures by
simple, efficient and lossless encoding schemes,” Proc. IEEE vol. 68, pp.885-
896, 1980.

C.E Shannon, “A mathematical theory of communication,” Bell Sys. Tech.

J., vol. 27, pp. 379-423, July 1948.

N. Abramson, “Information theory and coding,” McGraw- Hill Book Co.,
Inc., New York, 1963.

A. Gersho and R. M. Gray, “Vector quantization and signal compression,”

Kluwer Academic Press, Massachusetts, 1990.

J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J. Res. Develop.,
vol. 23, no. 2, pp. 149-162, Mar. 1979.

Y. Yamazaki, “Standardization activities in image communication for telem-
atic services,” Signal Proc.: Image Commun., vol. 1, no. 1, pp. 55-73, June

1989.

93

[24]

[25]

[26]

[27]

28]

[29]

[30]

D. Bodson, S. Urban, A.R. Deutermann, and C.E. Clarke, “Measurement of
data compression in advanced group 4 facsimile systems,” IEEE Proc., vol.

73, no. 4, April 1985.

“ISO/IEC international standard XXXXX coded representation of picture
and audio information — progressive bi-level image compression standard,”

Early draft, WG9-S1R2, Dec. 1990.

“Description of JBIG evaluation images for July meeting,” JBIG Document

105 Rev. 2, Stockholm, June 6, 1989.

A K. Jain, “Fundamentals of digital image processing,” Prentice Hall, New

Jersey, 1989.

A. Lempel and J. Ziv, ”Compression of two-dimensional data,” IEEE Trans.

Info. Theory, vol. IT-32, no. 1, pp. 2-8, Jan. 1986.
M. Gardner, "Mathematical games,” Sci. Amer., pp. 124-133, Dec. 1976.

S.P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Info. Theory,
vol. IT-28, pp. 129-137, Mar 1982.

94

