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Lossy source coding, or quantization, is a data compression technique used in many
practical voice and image coding systems. The increasing demand to transmit large
amounts of data with very small delay over bandwidth-limited communication channels
calls for efficient and error-resilient solutions for source and channel coding. In this dis-
sertation, structured codes are studied with the aim of reducing complexity but retaining
performance. In particular, structured classes of source codes, channel codes, and index
assignments are investigated.

A thorough study of the index assignment problem is presented for a class of struc-
tured source coders we call binary lattice vector quantizers (BLVQ) and linear error
correcting codes on binary memoryless channels. Distortion formulas of affine index as-
signments are derived and their performances compared. The asymptotic performance of
index assignments with increasing blocklengths is studied for BLVQ on a uniform source
with no channel coding. A “worst” assignment in terms of mean squared error is derived
and shown to be affine. The expected distortion of a randomly chosen index assignment
is shown to be asymptotically equivalent to that of the worst index assignment, as the
blocklength grows. In this sense, randomly chosen index assignments are asymptotically
bad for uniform sources.

Bounds for the optimal rate allocation between source and channel coding are de-
veloped for the cascade of “good” quantizers and channel codes that meet the Gilbert-
Varshamov or Tsfasman-V1adut-Zink bounds. Corresponding high-resolution distortion
formulas are also given. High-resolution distortion bounds based on a rate allocation for

the cascade of BLVQs and classical linear block channel codes are also obtained. The
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distortion of these practical systems decays to zero exponentially fast as the transmis-
sion rate grows, although the exponent is a sublinear function of the transmission rate.
As a result, the performance increase per unit rate increase is diminishing for larger
transmission rates.

Necessary conditions for the optimality of binary lattice vector quantizers with respect
to the mean squared error distortion criterion are derived for both noiseless and noisy

discrete memoryless channels.
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CHAPTER 1

INTRODUCTION

This thesis concerns the use of structured codes in a digital communication system to
transmit analog data over a noisy communication channel, subject to a fidelity criterion.
Given the statistical description of a data source, the statistics of the noisy channel, and
a measure of distortion, the goal is to transmit the source samples with minimal average
end-to-end distortion, and to do so under practical constraints on delay and complexity.

This introductory chapter describes the results of the dissertation in a broader context,

illuminating their relationship with each other and with other work in the field.

1.1 Communication System Model

A standard model which effectively describes many practical digital communication
systems, such as speech and image coders, includes a source encoder and decoder, a chan-
nel encoder and decoder, and a discrete memoryless channel, as shown in Figure 1.1. The
first detailed mathematical analysis of this model was given by Shannon in 1948 [1,2].
While a more general model might include fully analog systems, or digital systems inter-
facing an analog channel with a modulator/demodulator pair, the model in Figure 1.1 is
sufficiently general to cover a wide range of digital telecommunication applications and
allows certain mathematical analyses.

The task of the source encoder is to efficiently represent the source data as a sequence

of bits (or symbols) allowing the source decoder to accurately reconstruct the original data
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Figure 1.1 Communication system model.

from the encoded stream. Lossless source coding schemes (such as Huffman, Lempel-Ziv,
or arithmetic coding) create invertible bit streams, and thus reproduce an exact replica of
the original source. Lossy source coding methods, on the other hand, aim to recover only
an approximation of the original data, either to produce a more compact representation
than lossless coding would make possible, or because the source cannot be represented
exactly with a finite number of bits, as is the case for analog sources. The accuracy of
a lossy source coder’s reproduction is measured by a fidelity criterion, a mathematical
function that quantifies the distortion between a source sample and the corresponding
approximation. For a fixed transmission rate (i.e., number of bits per source sample),
the performance of a lossy source coder is generally measured by the expected value of
this distortion. Shannon’s source coding theorem with respect to a fidelity criterion [3,4]
says that for a given source and source coding rate, the performance of a source coder
with a fidelity criterion can be made arbitrarily close to the theoretical optimum (for
that source and rate) by coding increasingly longer blocks of source samples. In this
dissertation, the source samples are assumed to be random vectors of fixed dimension

and known statistics, and the source encoder/decoder is a vector quantizer (VQ). The



distortion is given by some positive power of the Euclidean norm of the difference between
a source vector and a reconstructed vector. When this positive power is two, one gets
the frequently studied mean squared error distortion criterion.

Vector quantization is a powerful lossy block source coding technique [5]. The VQ
encoder is characterized by a finite partition of the multidimensional input space of
source vectors. For each input vector, the output of the VQ encoder is the index of
the encoder region to which the given source vector belongs. To each region of the
encoder partition, the VQ decoder associates a reconstruction vector or codevector from
a preselected set known as the codebook. Thus, for each received index, the output
of the VQ decoder is the codevector corresponding to the encoder partition the given
index represents. The blocklength of the source for a VQ is the dimension of the input
space and the source coding rate, which is defined as the number of index bits per
vector component, is referred to as the quantizer resolution. For norm-based distortion
measures, the encoder is commonly implemented as a nearest neighbor search of the
codevectors and the decoder as a table lookup operation.

In a traditional setting, the task of the channel encoder is to map the source encoded
stream into a stream of channel symbols in such a way that even after possible trans-
mission errors on a noisy channel the channel decoder can with high probability recover
the original source encoded stream. In this case, for a fixed channel code rate (the ratio
of source encoded symbols to channel symbols), the performance of channel coders is
usually measured by the average or expected probability of decoding error. The channel
coding theorem [2,6] says that for channel code rates below the capacity of the channel,
the probability of decoding error can be made arbitrarily small by coding increasingly
larger blocks of channel symbols. The theory and design of channel coders is a thoroughly
studied field of research with various branches, and numerous effective coding methods
are found in the literature [7-9].

In quantizer systems operating on noisy channels, the role of the channel coder is
to reduce the effect of transmission errors on the end-to-end average distortion of the

communication system. In this thesis, the channel encoder/decoder is a linear block



channel coder with maximum likelihood decoding. Asymptotically good codes satisfying
the Gilbert-Varshamov or Tsfasman-V1adut-Zink bounds, and families of classical error
correcting codes such as BCH and Reed-Muller codes are studied in conjunction with

vector quantization for a noisy channel.

1.2 Joint Source-Channel Coding

Traditionally, source coders are designed for an ideal noiseless channel, channel coders
are designed to minimize the average probability of decoding error irrespective of the
actual source, and the resulting encoders and decoders are cascaded as suggested by
Figure 1.1. The “separation principle” of Shannon states that in the limit of increasing
blocklengths there is no loss of optimality in using the cascade of a block source coder
optimized for a given source independent of the channel coder and a channel coder opti-
mized for a given memoryless channel independent of the source coder. However, under
practical delay and storage constraints, independent design of source and channel coders
is not optimal. This motivates a coupled design of source coders and channel coders. One
approach is to use a combined source-channel coder to replace the cascade of a source
coder and a channel coder. The complexity of the joint optimization of a combined
source-channel coder, however, quickly becomes prohibitive for systems of practical size.
Thus, not only does the traditional separation approach require infinite complexity for
optimality, but a completely coupled design is also infeasible. This dissertation therefore
investigates low complexity techniques which increase the performance of cascaded sys-
tems by introducing some amount of coupling between the source coder and the channel
coder. In particular, index assignments and source/channel rate allocation are studied
for structured codes, from a vector quantization perspective.

Historically, quantization theory was first developed without concern for channel er-
rors. Necessary conditions for the optimality of noiseless quantizers along with an it-
erative design algorithm based on these conditions were obtained for the scalar case

by Lloyd [10] and Max [11], and later generalized for vector quantizers in [12]. The



generalized Lloyd algorithm is a useful technique for obtaining good vector quantizers,
but the resulting quantizers are often only locally optimal. Sufficient conditions for op-
timality have been obtained for the scalar case [13,14], but the optimal design of a
vector quantizer in general is unknown. An analytic description of the performance of
an optimal system is also lacking. Bennett’s integral [15] and Zador’s formula [16] pro-
vide analytic performance descriptions for asymptotically high resolution quantizers. For
large vector dimensions and source coding rates, unstructured quantizers generated with
the Lloyd algorithm require extremely large computational complexities (exponential in
both dimension and rate) for full-search nearest neighbor encoding. As a result, much
recent research has focused on structured (but suboptimal) quantizers which trade off
reduced complexity for reduced performance [5]. Examples of structured quantizers in-
clude “tree-structured” and “multistage” (or “residual”) vector quantizers. The focus of
this dissertation is a class of robust structured quantizers we call binary lattice vector
quantizers (BLVQ). These are a special case of multistage VQ, with two codevectors per
stage.

Several studies have considered combined source and channel coding with vector quan-
tization. The three main avenues of research in this field are summarized in the next

subsections.

1.2.1 VQ with index assignment

When a vector quantizer operates on an ideal noiseless channel, the index produced by
the VQ encoder is received by the VQ decoder unaltered. On a noisy channel, however,
the transmitted index may get changed to a different index, resulting in increased distor-
tion. The most direct low-complexity technique for noisy channel quantization is to use a
quantizer designed for an ideal noiseless channel and, instead of cascading it with a chan-
nel coder for error protection, to find an index assignment (i.e., an ordering of quantizer
reconstruction vectors) which minimizes the expected distortion given that the codevec-
tor indices may get corrupted by channel noise. The idea is to assign indices, which

are likely to be mistaken due to transmission errors, to codevectors which are “close”



with respect to the given distortion measure. An index assignment can be thought of as
a nonredundant channel code which, instead of minimizing the probability of decoding
error, minimizes the expected distortion. Finding an optimal index assignment is made
difficult by the combinatorial explosion of the number of codevector orderings with in-
creasing transmission rate. Several greedy methods have been proposed for index assign-
ment design including “pseudo-Gray coding” [17], simulated annealing [18,19], Hadamard
transform based algorithms [20], and others [21-23]. Other nonredundant methods ex-
ploiting a specific quantizer structure are described in [24-26]. Less is known about index
assignments analytically. Yamaguchi and Huang [27], Huang [28], and Huang et al. [29]
derived mean squared error formulas for the Natural Binary Code and the Gray Code
for the case of uniform scalar sources, uniform scalar quantizers, and binary symmetric
channels. Huang also asserted the optimality of the Natural Binary Code under these
assumptions [28]. The first published proof of Huang’s result was given by Crimmins
et al. [30], and later extended from uniform scalar quantization to binary lattice vector
quantization by McLaughlin, Neuhoff, and Ashley [31]. Optimal index assignments for
other sources, quantizers, and channels are not presently known. Analytic bounds on the
performance of an optimal index assignment under fairly general conditions are derived
in [32].

This thesis advances index assignment research in two directions. Chapter 2 gives
a detailed study of structured index assignments for binary lattice vector quantization,
including distortion formulas for both symmetric and nonsymmetric channels, a com-
parison of various useful index assignments, and an extension of the index assignment
paradigm to include linear error correcting codes. Chapter 3 revisits the well-studied
case of uniform sources, binary lattice quantizers, and binary symmetric channels, and
further motivates intelligent index assignment design by showing that the majority of

index assignments are asymptotically bad in a certain sense.



1.2.2 Cascade of VQ and channel coder

The traditional “separation approach” of source and channel coding, although not
optimal for bounded blocklengths, is still useful and attractive because of its modularity
and relatively low complexity. The “independent” design principle of cascaded systems
based on the channel coding and source coding theorems of Shannon suggests that the
channel coder should operate at a rate close to the capacity of the channel and that
the remainder of the available transmission rate should be allocated to the source coder.
Experimental results for the cascade of a variety of efficient but suboptimal source coding
schemes, such as DPCM and transform coding, with channel codes have been reported in
the literature [33-36]. These indicate that given a constraint on the delay and complexity
of a cascaded system trading off source coding bits for channel coding bits can result in a
significant improvement in performance. Thus, under practical constraints, the optimal
channel code rate may be well below capacity. Asymptotic bounds on this optimal rate for
the cascade of vector quantizers and binary linear channel coders have been determined
for binary symmetric channels by Hochwald and Zeger [37] and for Gaussian channels
by Hochwald [38]. However, both of these works exploit the availability of channel codes
which achieve the reliability function of the channel. While random coding arguments
show the existence of such codes, actual code constructions are presently lacking. Hence,
it is of interest to find similar bounds for good but suboptimal channel codes.

In this dissertation, the optimality requirements on the channel coder in [37] are
relaxed to include less powerful structured codes. Chapter 4 provides bounds on the
asymptotically optimal tradeoff between source and channel coding for classes of chan-
nel coders that attain the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds. These
families of codes are asymptotically good, and their resulting rate allocation bounds,
while weaker than those in [37], are very similar in nature. Polynomial constructions for
algebraic geometry codes that achieve the Gilbert-Varshamov bound are known [39,40],
but their complexities render them impractical at present. Thus, in Chapter 5 families

of error-correcting codes, such as repetition codes, BCH codes, and Reed-Muller codes



are considered, and the source coders are taken to be BLVQs. Asymptotic upper bounds
on the mean squared distortion of these systems are obtained based on a rate allocation
between source and channel coding.

Since channel coding can only provide perfect error-correction in the limit of increasing
blocklengths, finding an optimal index assignment is relevant for any practical cascaded
system. Also, since channel coders are generally designed to minimize the probability of
decoding error, an index assignment is important to map the vector quantizer indices to
channel codewords with the aim of minimizing the end-to-end distortion. The channel
encoder, the channel, and the channel decoder can be thought of as a new (hopefully
less) noisy channel. This effectively reduces the problem to that of a vector quantizer
followed by an index assignment on a noisy channel. This is the approach taken in
Chapter 2, where results are also given for the performance of cascaded systems using

BLVQs, structured index assignments, and linear error-correcting codes.

1.2.3 Channel-optimized VQ

Similar to the necessary conditions for the optimality of unstructured quantizers for
an ideal noiseless channel, necessary conditions for the optimality of the encoder and
the decoder of noisy channel quantizers (with no explicit index assignment or channel
coder) have been derived for the scalar case by Kurtenbach and Wintz [41], and for
the vector case by Dunham and Gray [42] and Kumazawa et al. [43]. Source coders
satisfying both optimality conditions are often referred to as “channel-optimized vector
quantizers” (COVQ), despite the fact that these optimality conditions are not sufficient.
In contrast to the noiseless case, sufficient conditions for optimality are not known even
for scalar quantizers on a noisy channel. Various studies described modified versions of
Lloyd’s suboptimal iterative design algorithm for channel-optimized quantizer design and
the properties of the resulting quantizers [19,44-51]. The implementation complexity of
channel-optimized vector quantizers is at least that of full-search vector quantizers for
noiseless channels, but they do not use a channel coder for protection against channel

transmission errors. Even so, for large source coding rates and large vector dimensions,



the use of unstructured channel-optimized vector quantizers is severely limited by their
complexity. To overcome the complexity of unstructured COVQ, Phamdo et al. [52]
considered tree-structured and multistage vector quantizers, and Jafarkhani and Far-
vardin [53, 54] considered hierarchical table-lookup vector quantizers “matched” to a
noisy channel. The resulting structured vector quantizers are called “channel-matched”
instead of channel-optimized, because in addition to the suboptimality implied by the
structural constraints, the various channel-matched design algorithms are also greedy.
Since BLVQs are a subclass of multistage vector quantizers, the above channel-matched
approach is also applicable to BLVQs. The special structure of BLVQ, however, also
admits a locally optimal design algorithm. Necessary conditions for the optimality of
BLVQ for the ideal noiseless case and the noisy channel case (i.e., channel-optimized
BLVQ) are derived in Appendix A. A modified Lloyd-algorithm based on these optimal-
ity conditions can be used to design locally optimal BLVQs and CO-BLVQs. However,
the optimality conditions for noisy channels place increased storage requirements on the
CO-BLVQ encoder. Also, CO-BLVQ suffers from the channel-mismatch problem: regular
BLVQ outperforms CO-BLVQ for a wide range of channel parameters that do not match
the parameters of the channel for which the given CO-BLVQ was designed. Therefore,
CO-BLVQ is not studied in this dissertation. There are also open questions in the the-
ory of unstructured COVQ, which are left for future research. Obtaining high-resolution
distortion formulas for COVQ, for example, would enable a more thorough comparison

with cascaded techniques.

1.3 Thesis Contributions

This section describes in more detail the contributions of this dissertation. The unify-
ing theme of the thesis is the use of structured codes to solve the communication problem
outlined in Section 1.1. The perspective chosen is that of noisy channel quantization.
Except for Chapter 4, all source coders in this work are binary lattice quantizers. The

results of Chapter 4 are also applicable to a large class of BLVQs, but the structure of



BLVQs is not exploited there. The structure and properties of BLVQs are summarized
in Section 1.3.1. All channel coders in this dissertation are linear block channel coders.
Standard references on error-correcting codes (including other types of channel codes)
are [7-9]. The majority of index assignments studied in this thesis are also structured.
The rationale for using structured index assignments and the results of the thesis for
the index assignment problem are summarized in Section 1.3.2. Finally, Section 1.3.3
contains a summary of rate allocation results for structured codes. Since each chapter is
self-contained and includes material previously published or submitted for publication,

this thematic presentation of contributions is believed to be illuminating to the reader.

1.3.1 Binary lattice vector quantization

A vector quantizer is commonly decomposed into an encoder given by a partition of
the input space and a decoder given by a collection of codevectors. Naturally, BLVQs
share this basic VQ structure, but there is an additional constraint on the placement
of BLVQ codevectors. The codevectors are required to be a linear combination of their
index bits with vector “coefficients” called generator vectors. An additional offset vector
allows a nonzero choice for the codevector with index 0. Thus, a b-bit d-dimensional
BLVQ codebook is completely specified by b generator vectors and an offset vector, or
equivalently by a dx (b+1) matrix. In contrast, to describe a b-bit d-dimensional unstruc-
tured VQ all 2° of its codevectors must be given, which amounts to a matrix of size d x 2°.
Of course, there is a penalty for the reduction of complexity as illustrated in Figure 1.2,
which shows a 4-bit two-dimensional unstructured VQ and BLVQ designed for the same
independent Gaussian source. Note how the unrestricted V(Q allows a closer match with
the circular symmetry of the source. The linear structure of BLVQ, however, turns out
to be an advantage on a noisy channel. In [20], Knagenhjelm and Agrell observe a high
correlation between the linearity and performance of the index assignments obtained by
their algorithms for general sources and quantizers. This motivates the study of binary
lattice quantizers on a noisy channel. Also in [20], another view of linear codebooks (that

is, BLVQs) is introduced as a linear projection of the b-dimensional hypercube spanned
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Figure 1.2 Unstructured VQ (left) and BLVQ (right) trained on the same two-dimensional
independent Gaussian source.

by the b-bit binary indices to d-dimensional space. Figure 1.3 illustrates the structure of
the BLVQ of Figure 1.2. The set of generator vectors is drawn by solid lines, and the
dashed-line copies indicate how each point is obtained as a binary linear combination.
The two-dimensional projection of a four-dimensional hypercube is easily identifiable.

BLVQs include a large class of useful source coders. A number of equivalent formula-
tions of BLVQ as direct-sum VQ, VQ by a linear mapping of a block code, and truncated
lattice VQQ are derived in Chapter 2. Figure 1.4 presents two examples: a 3-bit uniform
scalar quantizer with a set of generating vectors and an explicit hypercube projection,
and a 5-bit BLVQ with generator vectors which span a truncated piece of the well-known
hexagonal lattice.

Necessary conditions for the optimality of vector quantizers obtained by a linear map-
ping of a block code and a corresponding modified Lloyd-algorithm were presented by
Hagen and Hedelin in [55]. Since a BLVQ can be viewed as a linear mapping of a nonre-
dundant code, the same algorithm applies for BLVQ design. Appendix A provides a new
derivation of the optimality conditions for binary lattice vector quantization not only for

the ideal noiseless case but also for noisy channels (i.e., channel-optimized quantization).
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Figure 1.3 The hypercube structure and generator vectors of the BLVQ in Figure 1.2.

The development closely follows the familiar steps of obtaining similar conditions for
unstructured quantizers.

Fast nearest neighbor search algorithms developed for unstructured quantization are
also applicable to BLVQs. Although the BLVQ structure permits significantly faster
greedy encoding algorithms used for general multistage VQ, these algorithms are all
suboptimal. Certain subclasses of BLVQ admit a faster nearest neighbor encoding, but no
fast uniformly optimal encoding algorithm is presently known. The situation is similar to
that of lattice quantizers: very efficient algorithms can be devised for particular lattices,
but no known fast algorithm can handle every imaginable lattice equally well. This is
not surprising given that the “closest point problem” (the term used for the problem
of finding a nearest neighbor in the lattice literature) for lattices is known to be NP-
hard [56], and that the class of BLVQs includes appropriately truncated lattice vector
quantizers.

Binary lattice vector quantization for noisy channels is extensively studied in Chap-
ters 2, 3, and 5. Chapter 2 treats the index assignment problem for BLVQ with or
without error correcting codes. Chapter 3 investigates the asymptotic performance of

index assignments for uniform scalar quantization of a uniform source, and shows how
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Figure 1.4 The hypercube projection and generator vectors of a 3-bit uniform scalar quantizer
(left), and the generator vectors for a 5-bit truncation of the well-known hexagonal lattice
(right).

the results extend to general BLVQ. Finally, Chapter 5 obtains high-resolution distortion
bounds for the cascade of BLVQ with families of classical algebraic error-correcting codes

based on a rate allocation between source and channel coding.

1.3.2 Affine index assignments

When the output of a quantizer encoder designed for an ideal noiseless channel is
transmitted to the corresponding quantizer decoder on a noisy channel with no explicit
channel coding, the assignment of codebook indices to codevectors becomes important.
To minimize distortion, the quantizer codebook should be reordered such that indices
that are mistaken with high probability due to channel errors correspond to codevectors
whose distance according to the distortion metric is as small as possible. Figure 1.5 shows
a best and a worst index assignment for the 3-bit uniform scalar quantizer of Figure 1.4
in terms of mean squared error for a uniform source and a binary symmetric channel.

Note, for example, the placement of the 1-bit neighbors of the all-zero index.
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Figure 1.5 A best (left) and a worst (right) index assignment for the 3-bit uniform scalar
quantizer of Figure 1.4 in terms of mean squared error for a uniform source and a binary
symmetric channel.

A good index assignment can significantly reduce the distortion of a vector quantizer
designed for a noiseless channel but used on a noisy channel with no additional trans-
mission rate for error protection. Also, since the entire codebook of an unstructured
quantizer must be stored, an index assignment can be implemented with no additional
storage in this case by simply reordering the codevectors accordingly. However, when the
increased complexity associated with large source coding rates and vector dimensions
forces the use of (suboptimal) structured vector quantizers, the codebooks are generally
not explicitly stored, and the cost of specifying an arbitrary index assignment separately
can be prohibitive. This motivates the study of structured (but possibly suboptimal)
classes of index assignments with reduced storage complexities.

Several families of structured index assignments have been studied in the past, includ-
ing the well-known Natural Binary Code, Folded Binary Code, Two’s Complement Code,
and Gray Code [57]. Experimental results for the Natural Binary Code, the Folded Binary
Code, and the Gray Code were reported in [58-60], for example, for speech sources, but
the only analytical results previously available were those of Yamaguchi and Huang [27],
Huang [28], and Huang et al. [29] for the mean squared error performance of the Nat-
ural Binary Code and the Gray Code for the case of a uniform source, uniform scalar
quantizer, and binary symmetric channel. Traditionally, these index assignments were
specified recursively, but in fact, all four of them are affine functions in a vector space
over the binary field. Affine index assignments can be represented by an invertible binary

matrix and a translation vector (also binary). This allows a significant storage reduction
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compared to unstructured index assignments. For a b-bit quantizer, an affine assignment
can be specified by only (b + 1)b bits as opposed to the 2°b bits required to describe an
arbitrary unstructured index assignment. Generator matrices and translation vectors for
the Natural Binary Code, the Folded Binary Code, the Two’s Complement Code, and
the Gray Code are given in Chapter 2.

Chapter 2 presents a detailed study of affine index assignments for binary lattice vec-
tor quantization with or without a binary linear block channel code. An exact analytic
expression for the mean squared error performance of such systems with an arbitrary
source and a binary symmetric channel is derived based on the Hadamard transform (a
version of the Fourier transform for finite groups). The expression is given in terms of the
generator vectors of the BLV(Q, the generator matrix of the affine index assignment, and
the Hadamard transforms of the source and channel statistics. The Hadamard transform
of the channel transition probabilities depends on the channel crossover probability and,
if a linear block channel code is used, it also depends on the coset weight distribution of
the dual code. A similar result is also obtained for the mean squared distortion of a BLVQ
for a uniform source followed by an affine index assignment to transmit across a nonsym-
metric channel with no explicit channel coding. The general formulas are specialized to
the case of the Natural Binary Code, the Folded Binary Code, the Two’s Complement
Code, and the Gray Code, and the performances of these well-known assignments are
compared under various conditions. In particular, it is shown that, although optimal on a
binary symmetric channel, the Natural Binary Code is outperformed by the Two’s Com-
plement Code on any nonsymmetric channel (and a uniform source). Also, the Folded
Binary Code is shown to perform better than the Natural Binary Code for low-variance
sources (on a binary symmetric channel). This confirms the experimental findings of
Noll [59] for certain speech sources. The material in Chapter 2 appears in part in [61-63]
and has been published as [64].

Chapter 3 examines the range of performances achievable using index assignments
and BLVQs to transmit a uniform source across a binary symmetric channel. A lower

bound on the achievable distortion of these systems is given by the Natural Binary Code,
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which is known to minimize the mean squared error for the given assumptions [28,30,31].
To obtain an upper bound, a distortion maximizing affine index assignment we call the
Worst Code is derived. For uniform scalar quantizers and a subclass of BLVQs, the Worst
Code is not only the “worst” affine index assignment, but it also maximizes the mean
squared error over the set of all possible index assignments. However, a counterexample
proves that this property does not extend to the entire class of BLVQs. The main result
compares the mean squared error of the Natural Binary Code, the Worst Code, and
an “average” index assignment (an index assignment chosen uniformly at random from
all possible index assignments). For a given binary symmetric channel in the limit of
increasing quantizer resolution, the performance of a randomly chosen index assignment
is asymptotically equivalent to that of the Worst Code. This shows that the majority of
index assignments perform rather poorly, and thus the search for a good index assignment
is indeed very important. The material in Chapter 2 appears in part in [65] and has been
accepted for publication as [66].

As shown in [32], the asymptotic performance of any index assignment is bounded
away from zero in the limit of increasing resolution. In fact, from the results of Chap-
ter 5 it follows that, depending on how bad the channel is, for a randomly chosen index
assignment this limit can be larger than the variance of the underlying source. But a
distortion as low as the variance can be achieved with no data transmission by simply
reporting the mean of the source to the receiver. Thus, without explicit channel coding,
a good index assignment is essential for system performance. Using powerful channel
codes, the end-to-end distortion can be forced to decay to zero in the limit of increasing
transmission rates independent of the index assignment by properly adjusting the amount
of redundancy. How to allocate the available transmission rate between the source coder
and the channel coder is the topic of the next subsection. Note, however, that for a fixed
transmission rate and source/channel rate allocation, finding a good index assignment is

still very important.
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1.3.3 Rate allocation for structured codes

Although cascading the best source coder and the best channel coder is not (necessar-
ily) optimal for a fixed transmission rate, the development of source coding and channel
coding as virtually independent disciplines over the past few decades shows how wide-
spread the separation approach has become. Solving the two problems independently
is conceptually simpler, and the resulting coders have lower complexity than a jointly
optimal design would allow. A fundamental question for this modular approach is how
to allocate the available transmission rate between source coding and channel coding.
Hochwald and Zeger [37] and Hochwald [38] obtained bounds on the asymptotically opti-
mal rate allocation for the cascade of vector quantizers and channel coders operating on
binary symmetric channels and Gaussian channels, respectively. Both of these works con-
sider sequences of “good” vector quantizers whose distortion on a noiseless channel decays
at the Zador rate and families of channel codes that achieve the reliability function of the
channel, which we call “Shannon-optimal” channel codes for easier reference. Various
structured classes of quantizers are “good” vector quantizers including certain BLVQs,
such as uniform quantizers and lattice-based quantizers. However, no structured classes
of Shannon-optimal channel codes are presently known. Therefore, this thesis examines
the rate allocation problem for families of structured codes with known constructions.

Chapter 4 extends the existing results of [37] to g-ary symmetric channels, and pro-
vides new bounds on the asymptotically optimal tradeoff between source and channel
coding for classes of channel coders that attain the Gilbert-Varshamov or Tsfasman-
Vladut-Zink bounds. As a by-product, error exponents including the random coding,
sphere packing, and expurgated exponents for g-ary symmetric channels are derived, and
appear to be new. Since the channel codes that meet or exceed the Gilbert-Varshamov
bound are asymptotically good (i.e., both their channel code rates and their relative
minimum distances are bounded away from zero in the limit of increasing blocklength),
the rate allocation bounds obtained for these codes reflect only a small penalty when

compared to the rate allocation bounds of [37] for Shannon-optimal codes. Similar to the
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asymptotic behavior of good vector quantizers on a noiseless channel, the overall distor-
tion of the cascade of good vector quantizers and asymptotically good channel coders also
decays to zero exponentially fast as the available total transmission rate increases, but
the rate of decay is slower due to the noisy channel. Thus, the constant 6 in the famous
“6 dB/bit” rule for the distortion decay rate of ideal noiseless quantization is replaced by
a smaller constant dependent on the channel, but independent of the transmission rate.
The material in Chapter 4 appears in part in [67] and has been submitted for publication
as [68].

From a strictly practical perspective, the assumptions of Chapter 4 are still somewhat
optimistic. Although infinite families of polynomially constructible codes better than the
Gilbert-Varshamov bound are known [39], the complexity of the best known algorithms
is presently prohibitive. Chapter 5 investigates the rate allocation problem for known
structured codes, namely BLVQs and families of practical binary linear block channel
codes, including repetition codes, BCH codes, and Reed-Muller codes. High-resolution
distortion bounds based on a rate allocation are derived for these cascaded systems. Since
the channel code rates of these families of channel codes approach zero with increasing
blocklength, a rate allocation in this case is a decay schedule of how the channel code rate
should approach zero as a function of the overall transmission rate. It is shown that by
carefully choosing such a decay schedule the mean squared distortion of these systems can
be made to decay to zero exponentially fast, although the exponent is a sublinear function
of the overall transmission rate. As a result, in contrast to the case of Shannon-optimal
or asymptotically good channel codes, there is no fixed dB/bit performance increase.
Instead, a case of diminishing returns is observed as the transmission rate grows. The

material in Chapter 5 has been submitted for publication as [69].

1.4 References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, pp. 379-423, July 1948.

18



2]

9]
[10]
11)
12)
13)

[14]

[15]
[16]
[17]

18]

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, pp. 623-656, October 1948.

C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” in
IRE National Convention Record, Part 4, pp. 142-163, 1959.

T. Berger, Rate Distortion Theory;, A Mathematical Basis for Data Compression.
Englewood Cliffs, New Jersey: Prentice-Hall, 1971.

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Boston:
Kluwer Academic Publishers, 1992.

R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley,
1968.

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications.
Englewood Cliffs, New Jersey: Prentice-Hall, 1983.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North-Holland, 1977-1993.

M. A. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes. Dordrecht: Kluwer
Academic Publishers, 1991.

S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Info. Theory,
vol. I'T-28, pp. 127-135, March 1982.

J. Max, “Quantizing for minimum distortion,” IEEE Trans. Info. Theory, pp. 7-12,
March 1960.

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,”
IEEFE Trans. Communication Technology, vol. COM-28, pp. 84-95, January 1980.

P. E. Fleischer, “Sufficient conditions for achieving minimum distortion in a quan-
tizer,” in IEEE Int. Conv. Rec., Part 1, pp. 104-111, 1964.

A. V. Trushkin, “Sufficient conditions for uniqueness of a locally optimal quantizer
for a class of convex error weighting functions,” IEEE Trans. Info. Theory, vol. IT-
28, pp. 187-198, March 1982.

W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, pp. 446
472, July 1948.

P. Zador, “Asymptotic quantization error of continuous signals and the quantization
dimension,” IEEE Trans. Info. Theory, vol. IT-28, pp. 139-149, March 1982.

K. Zeger and A. Gersho, “Pseudo-Gray coding,” IEEE Trans. Communications,
vol. COM-38, pp. 2147-2158, December 1990.

D. J. Goodman and T. J. Moulsley, “Using simulated annealing to design trans-
mission codes for analogue sources,” Electronics Letters, vol. 24, pp. 617-618, May
1988.

19



[19]
[20]
[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

N. Farvardin, “A study of vector quantization for noisy channels,” IEEE Trans.
Info. Theory, vol. IT-36, pp. 799-809, July 1990.

P. Knagenhjelm and E. Agrell, “The Hadamard transform — a tool for index assign-
ment,” IEEE Trans. Info. Theory, vol. IT-42, pp. 1139-1151, July 1996.

N. Rydbeck and C.-E. W. Sundberg, “Analysis of digital errors in nonlinear PCM
systems,” IEFE Trans. Communications, vol. 24, pp. 59—65, January 1976.

J. D. Marca and N. Jayant, “An algorithm for assigning binary indices to the code-
vectors of a multi-dimensional quantizer,” in Proceedings IEEFE Inter. Conf. on Com-
munications, vol. 1, (Seattle), pp. 1128-1132, June 1987.

H.-S. Wu and J. Barba, “Index allocation in vector quantisation for noisy channels,”
Electronics Letters, vol. 29, pp. 1318-1320, July 1993.

N. Moayeri, “Joint source and channel coding based on tree structured vector quan-
tization,” in CISS-89, (Baltimore, MD), pp. 729-734, March 1989.

K. C. Chua, W. C. Wong, and K. N. Ngan, “Error detection and correction of vector
quantised digital images,” IEE Proceedings, vol. 137, pp. 417-423, December 1990.

R.-Y. Wang, E. A. Riskin, and R. Ladner, “Codebook organization to enhance max-
imum a posterori detection of progressive transmission of vector quantized images
over noisy channels,” in ICASSP-93, vol. V, (Minneapolis, MN), pp. 233-236, April
1993.

Y. Yamaguchi and T. S. Huang, “Optimum binary fixed-length block codes,” Quar-
terly Progress Report 78, M.I.T. Research Lab. of Electronics, Cambridge, Mass.,
July 1965.

T. S. Huang, “Optimum binary code,” Quarterly Progress Report 82, M.I.T. Re-
search Lab. of Electronics, Cambridge, Mass., July 1966.

T. S. Huang et al., “Design considerations in PCM transmission of low-resolution
monochrome still pictures,” Proceedings of the IEEE, vol. 55, pp. 331-335, March
1967.

T. R. Crimmins, H. M. Horwitz, C. J. Palermo, and R. V. Palermo, “Minimization of
mean-square error for data transmitted via group codes,” IEEE Trans. Info. Theory,
vol. IT-15, pp. 72-78, January 1969.

S. W. McLaughlin, D. L. Neuhoff, and J. J. Ashley, “Optimal binary index assign-
ments for a class of equiprobable scalar and vector quantizers,” IEEE Trans. Info.
Theory, vol. I'T-41, pp. 2031-2037, November 1995.

K. Zeger and V. Manzella, “Asymptotic bounds on optimal noisy channel quanti-
zation via random coding,” IEEE Trans. Info. Theory, vol. IT-40, pp. 1926-1938,
November 1994.

J. W. Modestino and D. G. Daut, “Combined source-channel coding of images,”
IEEFE Trans. Communications, vol. COM-27, pp. 1644-1659, November 1979.

20



[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

48]

J. W. Modestino, D. G. Daut, and A. L. Vickers, “Combined source-channel cod-
ing of images using the block cosine transform,” IEEE Trans. Communications,
vol. COM-29, pp. 1261-1274, September 1981.

D. R. Comstock and J. D. Gibson, “Hamming coding of DCT-compressed images
over noisy channels,” IEEE Trans. Communications, vol. COM-32, pp. 856-861,
July 1984.

K. Sayood, F. Liu, and J. D. Gibson, “A constrained joint source/channel coder
design,” IEEFE J. Sel. Areas Comm., vol. JSAC-12, pp. 1584-1593, December 1994.

B. Hochwald and K. Zeger, “Tradeoff between source and channel coding,” IEFE
Trans. Info. Theory, vol. IT-43, pp. 1412-1424, September 1997.

B. Hochwald, “Tradeoff between source and channel coding on a gaussian channel,”
to appear in IEEFE Trans. Info. Theory.

G. L. Katsman, M. A. Tsfasman, and S. G. Vladut, “Modular curves and codes
with a polynomial construction,” IEEFE Trans. Info. Theory, vol. 1T-30, pp. 353—
355, March 1984.

C. Voss and T. Hgholdt, “An explicit construction of a sequence of codes attaining
the Tsfasman-Vladut-Zink bound the first steps,” IEEE Trans. Info. Theory, vol. IT-
43, pp. 128-135, January 1997.

A. J. Kurtenbach and P. A. Wintz, “Quantizing for noisy channels,” IEEE Trans.
Communication Technology, vol. COM-17, pp. 291-302, April 1969.

J. Dunham and R. M. Gray, “Joint source and noisy channel trellis encoding,” IEEE
Trans. Info. Theory, vol. IT-27, pp. 516-519, July 1981.

H. Kumazawa, M. Kasahara, and T. Namekawa, “A construction of vector quantizers
for noisy channels,” Electronics and Engineering in Japan, vol. 67-B, no. 4, pp. 39—
47, 1984.

E. Ayanoglu and R. M. Gray, “The design of joint source and channel trellis wave-
form coders,” IEEFE Trans. Info. Theory, vol. IT-33, pp. 855-865, November 1987.

N. Farvardin and V. Vaishampayan, “Optimal quantizer design for noisy channels:
an approach to combined source-channel coding,” IEEE Trans. Info. Theory, vol. I'T-
33, pp. 827-838, November 1987.

K. Zeger and A. Gersho, “Vector quantization design for memoryless noisy channels,”
in Proc. IEEE Int. Conf. Commun., (Philadelphia, PA), June 1988.

N. Farvardin and V. Vaishampayan, “On the performance and complexity of channel-
optimized vector quantizers,” IEEFE Trans. Info. Theory, vol. IT-37, pp. 155-160,
January 1991.

D. Miller and K. Rose, “Combined source-channel vector quantization using de-
terministic annealing,” IEEE Trans. Communications, vol. COM-42, pp. 347-356,
February /March/April 1994.

21



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]

[62]

K. Chang and R. W. Donaldson, “Analysis, optimization, and sensitivity study of
differential PCM systems operating on noisy communication channels,” IEEE Trans.
Communications, vol. COM-20, pp. 338-350, June 1972.

Q. Chen and T. R. Fischer, “Robust quantization for image coding and noisy digital
transmission,” in Proc. Data Compression Conf., (Snowbird, UT), pp. 3—12, March
1996.

Q. Chen and T. R. Fischer, “Image coding using robust quantization for noisy digital
transmission,” IEEFE Trans. Image Processing, vol. 7, pp. 496-505, April 1998.

N. Phamdo, N. Farvardin, and T. Moriya, “A unified approach to tree-structured
and multistage vector quantization for noisy channels,” IEEE Trans. Info. Theory,
vol. I'T-39, pp. 835-850, May 1993.

H. Jafarkhani and N. Farvardin, “Channel-matched hierarchical table-lookup vector
quantization for transmission of video over wireless channels,” in Proc. IEEE Int.
Conf. Image Proc., vol. 3, (Lausanne, Switzerland), p. 755, September 1996.

H. Jafarkhani and N. Farvardin, “Channel-matched hierarchical table-lookup vector
quantization for finite-state channels without feedback,” in Proc. IEEE Int. Symp.
Information Theory, (Ulm, Germany), p. 512, June 1997.

R. Hagen and P. Hedelin, “Robust vector quantization by a linear mapping of a
block-code,” to appear in IEEE Trans. Info. Theory.

P. van Emde Boas, “Another NP-complete partition problem and the complexity of
computing short vectors in a lattice,” Report 81-04, Mathematical Institute, Uni-
versity of Amsterdam, Amsterdam, 1981.

N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications
to Speech and Video. Englewood Cliffs, New Jersey: Prentice-Hall, 1984.

L. Dostis, “The effect of digital errors on PCM transmission of compandored speech,”
Bell Syst. Tech. J., vol. 44, pp. 2227-2243, December 1965.

P. Noll, “Effects of channel errors on the signal-to-noise performance of speech en-
coding systems,” Bell Syst. Tech. J., vol. 54, pp. 1615-1636, November 1975.

R. Zelinski, “Effects of transmission errors on the mean-squared error performance
of transform coding systems,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-27, pp. 531-537, October 1979.

A. Méhes and K. Zeger, “Redundancy free codes for binary discrete memory-

less channels,” in Proc. Conf. Information Science and Systems, (Princeton, NJ),
pp. 1057-1062, 1994.

A. Méhes and K. Zeger, “On the performance of affine index assignments for redun-
dancy free source-channel coding,” in Proc. Data Compression Conf., (Snowbird,
UT), p. 433, March 1995.

22



[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Méhes and K. Zeger, “Affine index assignments for binary lattice quantization
with channel noise,” in Proc. IEEE Int. Symp. Information Theory, (Whistler, BC,
Canada), p. 377, September 1995.

A. Méhes and K. Zeger, “Binary lattice vector quantization with linear block codes
and affine index assignments,” IEEE Trans. Info. Theory, vol. I'T-44, pp. 79-95,
January 1998.

A. Méhes and K. Zeger, “Randomly chosen index assignments are asymptotically bad
for uniform sources,” in Proc. IEEE Int. Symp. Information Theory, (Cambridge,
MA), August 1998.

A. Méhes and K. Zeger, “Randomly chosen index assignments are asymptotically
bad for uniform sources,” to appear in IEEE Trans. Info. Theory.

A. Méhes and K. Zeger, “Tradeoff between source and channel coding for codes
satisfying the Gilbert-Varshamov bound,” in Proc. Conf. Information Science and
Systems, (Baltimore, MD), March 1997.

A. Méhes and K. Zeger, “Source and channel rate allocation for channel codes satis-
fying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds,” submitted to IEEE
Trans. Info. Theory.

A. Méhes and K. Zeger, “Performance of quantizers on noisy channels using struc-
tured families of codes,” submitted to IEEE Trans. Info. Theory.

23



CHAPTER 2

BINARY LATTICE VECTOR QUANTIZATION
WITH LINEAR BLOCK CODES AND
AFFINE INDEX ASSIGNMENTS

In this chapter, we determine analytic expressions for the performance of some low-
complexity combined source-channel coding systems. The main tool used is the Hadamard
transform. In particular, we obtain formulas for the average distortion of binary lattice
vector quantization with affine index assignments, linear block channel coding, and a
binary symmetric channel. The distortion formulas are specialized to nonredundant
channel codes for a binary symmetric channel, and then extended to affine index as-
signments on a binary asymmetric channel. Various structured index assignments are
compared. Our analytic formulas provide a computationally efficient method for deter-
mining the performance of various coding schemes. One interesting result shown is that
for a uniform source and uniform quantizer, the Natural Binary Code is never optimal for

a nonsymmetric channel, even though it is known to be optimal for a symmetric channel.

2.1 Introduction

A useful and frequently studied communication system model includes a source en-
coder and decoder, a channel encoder and decoder, a noisy channel, and a mapping of

source codewords to channel codewords (known as an index assignment). We consider

The material in this chapter has been published as: A. Méhes and K. Zeger, “Binary lattice vector
quantization with linear block codes and affine index assignments,” IEEE Transactions on Information
Theory, vol. IT-44, pp. 79-95, January 1998.
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the situation where the source encoder/decoder is a vector quantizer (VQ), the channel
encoder/decoder is a binary linear block code with maximum likelihood decoding, and
the channel is binary and memoryless, as shown in Figure 2.1. The source is assumed
to be a random vector of a fixed dimension and whose statistics are known a priori. The

end-to-end vector mean squared error (MSE) is used to measure the performance.

X Quantizer k bits Index k bits Channel n bits
Encoder Assignment Encoder
Lo Tt e
Binary
Memoryless
Channel n
Q(X) Quantizer Inverse Index Channel
Decoder K bits Assignment K bits Decoder n bits
DQ TE DC

Figure 2.1 Communication system model.

Ideally, one would optimize the end-to-end MSE over all possible choices of source
encoders and decoders, channel encoders and decoders, and index assignments. But
because of the large computational complexity of this task, it is presently unknown how
to perform the joint optimization. The most common approach to finding good, but
suboptimal, systems is to assume that all but one component of the system is fixed and
then to optimize the choice of that component. Even this suboptimal approach is often
algorithmically very complex, and it is generally difficult to quantify the performance
analytically. Finding good algorithms and acquiring theoretical understanding of their
performance are two of the most important research goals in this field.

Even when the channel is noiseless, the optimal design of a source coder is in general
unknown, as is an analytic description of the performance of an optimal system. The
well-known generalized Lloyd algorithm is a useful technique for obtaining good, but

possibly suboptimal, vector quantizers, and the Bennett-Zador formulas give analytic
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performance descriptions for asymptotically high resolution quantizers [1]. For large
vector dimensions and source coding rates, quantizers generated with the Lloyd algorithm
can require extremely large computational complexities (linear in the codebook size) for
full-search nearest neighbor encoding. As a result, much recent research has focused on
structured (but suboptimal) quantizers which trade off reduced complexity for reduced
performance [1]. One example of a structured quantizer is a “multistage vector quantizer”
(sometimes called a “residual quantizer”). A special case, with two codevectors per stage,
is referred to here as a “binary lattice vector quantizer” and is studied in this chapter.

A number of studies have considered the communication system in Figure 2.1 when
the channel is noisy. Optimality conditions and a suboptimal design algorithm for the
quantizer encoder and decoder (with a nonredundant channel coder) have been derived
for the scalar case by Kurtenbach and Wintz [2], and for the vector case by Dunham
and Gray [3] and Kumazawa et al. [4], and were further studied in [5-13]. The resulting
source coder is often referred to as “channel optimized vector quantization” (COVQ) and
obeys generalized versions of the well-known Nearest Neighbor Condition and Centroid
Condition. Very little is known analytically about the performance of these quantizers,
and their implementation complexity is at least that of a full-search vector quantizer for
a noiseless channel. Thus, their usefulness diminishes as the source vector dimension
increases.

A useful technique to combat channel noise and avoid the large complexity of COVQ is
to design a source coder for the noiseless channel and cascade it with an error control code.
Results for the cascade of a variety of efficient but suboptimal source coding schemes,
such as DPCM and transform coding, with channel codes have been reported in the
literature [14-17], but few similar results exist for vector quantizers followed by channel
coding. For a given transmission rate and fixed vector dimension, the optimal tradeoff
between source and channel coding is examined in [18] for high-resolution quantization.
However, little else is known theoretically about this problem, other than Shannon’s

rate-distortion theorem, which assumes unboundedly large source vector dimensions [19].
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Also, little is known about good index assignments when error control codes are used,
i.e., assignments of quantizer codevectors to channel codewords.

Another approach to source coding in the presence of channel noise has been to use, on
a noisy channel, a source coder designed for a noiseless channel, but with an optimized
index assignment and with no explicit channel coder [8,20-24]. Other nonredundant
methods exploiting specific quantizer structures can be found in [25-27]. In [28], a
random coding argument is used to give analytic bounds on the performance of an optimal
index assignment. One appealing feature of index assignments is that they require no
extra channel rate or any extra storage to implement; index assignments are implicitly
contained in the ordering of the codevectors in the vector quantizer codebook. However,
for large source coding rates and high vector dimensions, the increased complexity of full-
search vector quantization often forces system designers to implement structured (and
thus suboptimal) source coders. In this case, quantizer codebooks are generally not stored
explicitly, and the cost of specifying an index assignment can be equally prohibitive.

This motivates the study of structured (but possibly suboptimal) index assignments
with low implementation complexities. Various families of recursively defined index as-
signments have been extensively studied in the past, including the well-known Natural
Binary Code, Folded Binary Code, Two’s Complement Code, and Gray Code [29]. Yam-
aguchi and Huang [30], Huang [31], and Huang et al. [32] computed distortion formulas
for the Natural Binary Code and the Gray Code for uniform scalar quantizers and uni-
form scalar sources. Huang asserted that the Natural Binary Code was optimal among
all possible index assignments for the uniform source [31]. This was proven by Crimmins
et al. [33] and later in the more general setting of binary lattice vector quantization by
McLaughlin, Neuhoff, and Ashley [34]. The exact performance of structured classes of
index assignments has not been generally known except for the Natural Binary Code and
the Gray Code, and with a uniform source. Experimental results for the NBC, FBC,
and GC can be found in [35-37], for example, for speech sources. One of the interesting
features of the four index assignments above is that they are all “affine” functions in a

vector space over the binary field. In fact, affine index assignments are relatively easy to
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implement with low storage and computational complexity. Specifying an affine index
assignment requires only O(k?) bits for a 2¥-point quantizer, as opposed to O(k2*¥) bits
for an unconstrained index assignment.

Affine index assignments have been studied for several decades as an effective zero-
redundancy technique for source coders that transmit across noisy channels. Linear index
assignments are special cases of affine index assignments. They are also special cases of
nonsystematic linear block channel codes whose minimum distance is 1, and their purpose
is to reduce end-to-end MSE instead of reducing the probability of channel error. Crim-
mins et al. [33], Crimmins and Horwitz [38], and Crimmins [39] showed that for uniform
scalar quantization of a uniform source, using a linear block code and standard array
decoding for transmission over a binary symmetric channel, there exists a linear index
assignment that is optimal in the MSE sense. They use a binary alphabet and assume
that both the encoding and the decoding index assignments are one-to-one mappings.
Redinbo and Wolf extended these results in two directions. In [40] they generalized to
g-ary (prime-power) alphabets, and in [41] they allowed the decoder mapping to produce
outputs outside the codebook (e.g., linear combinations of codevectors). Ashley consid-
ered channel redundancy for uniform scalar quantizers [42], and obtained a formula for
the MSE in terms of the weight distribution of the cosets of the dual code. Khayrallah
examined the problem of finding the best linear index assignment when an error control
code is used with a uniform scalar quantizer on a uniform source [43].

In this chapter, we derive exact formulas for the performance of general affine index
assignments when explicit block channel coding is used on a binary symmetric channel.
We also derive related formulas for the performance of index assignments on binary
asymmetric channels, with no explicit channel coding. These are specialized to several
known classes of index assignments. As an interesting special case, we show that while
the Natural Binary Code is optimal on the binary symmetric channel for uniform sources,
it is inferior in general to the Two’s Complement Code on the binary asymmetric channel.

In order for a channel optimized quantizer to perform optimally, a good estimate of

the channel’s bit error rate is required. In this chapter we study a reduced complexity
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structured vector quantizer combined with an affine index assignment, which together
give enhanced channel robustness over a wide range of error rates. We consider binary
lattice vector quantizers (BLVQs), the class of source coders studied in [34], and a variant
of the VQ by a linear mapping of a block code introduced by Hagen and Hedelin [44-46].

Another motivation for studying BLVQ is its inherent robustness to channel noise,
in particular under “channel mismatch” conditions, i.e., when the exact level of channel
noise is not perfectly known. While channel-optimized vector quantization is an optimal
encoding technique if the statistics of a noisy channel are known, a quantizer designed
for a noise-free channel using the generalized Lloyd algorithm, referred to here as source-
optimized VQ (SOVQ), delivers nearly optimal performance for small effective (i.e., after
channel coding) bit error rates. As an example, Figure 2.2 compares the performance
of SOVQ, COVQ, and BLVQ for a Gauss-Markov source with correlation coefficient 0.9
using a (16,11, 4) extended Hamming code. The plot displays signal-to-noise ratio versus
the bit error rate of the binary symmetric channel. The signal-to-noise ratio is defined as
10log;q g—;d, where o2 is the variance of the source components, D is the average vector
distortion, and d is the vector dimension of the source. The source vector dimension of
the Hamming coded system is 16. All three quantizers were obtained using appropriate
variants of the generalized Lloyd algorithm. The COV(Q was designed for the coded
channel at the uncoded (BSC) bit error rate of 0.1 (a bit error rate that can occur in
certain low-power radio channels and near cell boundaries in cellular telephony).

A trade-off between structured (e.g., BLVQ) and unstructured (e.g., SOVQ) quan-
tizers can be observed over the range of error probabilities where the channel code is
effective (i.e., the coded channel can be considered practically noise-free). But as the
coding advantage disappears the BLVQ outperforms the SOVQ. The COVQ is inferior
to the SOVQ and BLVQ under channel mismatch for small BERs and outperforms the
SOVQ and BLV(Q for large BERs. Thus BLVQ can offer a reasonable compromise. The
BLVQ is uniformly robust and close to optimum over a large range of error rates. The

price paid for the memory savings resulting from the structured codebook of the BLVQ
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Figure 2.2 The channel-mismatch performance of source optimized VQ, channel optimized
VQ, and binary lattice VQ. The input vectors are taken from a Gauss-Markov process with
correlation 0.9. The COVQ was designed for BER = 0.1. The 16-dimensional 2048-point
quantizers are followed by a (16,11,4) extended Hamming code.

is relatively small. Figure 2.2 is not meant to be a comprehensive comparison between
SOVQ, BLVQ, and COVQ), but rather is to partially motivate the study of BLVQ.

In this chapter we generalize much of the previously mentioned work to the case of
redundant channel codes and BLVQs. We make extensive use of the Hadamard trans-
form, which has been used either implicitly or explicitly in many previous works. The
Hadamard transform is also the main tool used by Hagen and Hedelin to construct im-
plicit index assignments without error control coding [44-46]. Also, Knagenhjelm [47],
and Knagenhjelm and Agrell [23] use the notion of “Hadamard classes” to search for an
optimal index assignment in the Hadamard transform domain. The main contributions

of this chapter include: (1) a generalization of the analytic performance calculations of
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Hagen and Hedelin for BLVQ, to include error control coding (equivalently, a general-
ization of the Crimmins et al. formulas to nonuniform sources and to vector quantizers);
(2) analytic performance calculations for nonredundant channel coding, which extend the
formulas obtained by Huang, by Crimmins et al., and by McLaughlin, Neuhoff, and Ash-
ley from the NBC and GC to any affine index assignment and nonsymmetric channels;
(3) comparison between the performances of NBC, FBC, GC, and TCC.

In Section 2.2, we give the necessary notation and terminology. In Section 2.3, we
prove Theorem 2.1, which gives a general formula for the channel distortion of a BLVQ
using an affine index assignment, a linear error correcting code, and transmission across
a BSC. The formula is given in terms of the Hadamard transforms of the source and
channel statistics. Our formula reduces the complexity of computing the distortion from
O(N?) to O(Nlog® N), where N is the vector quantizer codebook size. In Section 2.4, we
consider quantization systems without the use of redundancy for error control. For binary
symmetric channels, Corollaries 2.2-2.4 give explicit formulas for the channel distortions
of the NBC, FBC, and GC in this case. Corollary 2.5 characterizes the class of sources for
which the NBC outperforms the FBC. For binary asymmetric channels, Theorem 2.2 gives
a general formula for the channel distortion of BLVQ using affine index assignments and
no channel coding redundancy. Corollaries 2.6-2.8 give explicit formulas for the channel
distortions of the NBC, TCC, FBC, and GC in this case. Corollary 2.9 identifies the best
assignment among all affine translates of the NBC for a nonsymmetric channel. Finally,
Theorem 2.3 gives explicit comparisons between the performances of the NBC, TCC,
FBC, and GC for all possible binary asymmetric channels. In particular, it is shown that
the TCC outperforms the other three codes for most useful bit error probabilities, when

the channel is nonsymmetric.
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2.2 Definitions

2.2.1 Noisy channel VQ with index assignment

For any positive integer k, let Z denote the field of k-bit binary words, where arith-

metic is performed modulo 2. The results in this chapter are given for binary channels
(although generalization to more general channels can be made).
Notation For any binary k-tuple i € Z% we write 4 = [ij_1,%k_o9,... ,%1,40], Where
i; € {0, 1} denotes the coefficient of 2 in the binary representation of 4, i.e., i = Zf;ol 2L
For any Euclidean vector x € R?, we write x = (z1,%9,...,%4)!, where z; is the 7'
component of x.

In this chapter we assume for convenience that elements of any Euclidean space R?
are column vectors, whereas we assume that elements of any Hamming space Z% are
binary row vectors. We denote the inner product of two binary vectors i,j € Z& by
it = Z;:ol iij; € {0,1}, and the inner product of two Euclidean vectors x,y € R¢ by
(xly) = 27:1 z1y; € R. The following definition corresponds to Figure 2.1.

Definition 2.1 A d-dimensional, 2¥-point noisy channel vector quantizer with codebook
Y = {y; € R*: i € Z%}, and with an (n, k) channel code C = {¢;: i € Z§} C Z3, is a

'oDcono&comoly, where Eg: R — ZE is a

functional composition Q = Dg o 7~
quantizer encoder, Dg: Z5 — Y is a quantizer decoder, Ec: 75 — C is a channel encoder,
De: 75 — 7% is a channel decoder, w: Z5 — 7% is an index assignment (bijection), and

n: Zy — Z7% is a random mapping representing a noisy channel.

When n = k, we say that the noisy channel vector quantizer has a nonredundant chan-
nel code. Let X be a random vector in R?. Let p; = P [£g(X) = 7] denote the probability
that the quantizer encoder produces the index ¢, and define p;; = P [Dc(n(Ec(7))) = 1],
the transition probabilities of the coded channel, i.e., the probability that the channel
decoder emits the symbol j given that the input to the channel encoder was 7. Let xs

denote the indicator function of a set S.
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In Figure 2.1, the quantizer Q = Dg o &g is assumed to be designed for a noiseless
channel with an optimal (i.e., nearest neighbor) encoder £g. (To allow for low-complexity
structured codebooks, the decoder is not required to be optimal.) The index assignment 7
is a permutation of the set ZX. The channel encoder £ maps a k-bit binary source index
to an n-bit binary channel codeword. This codeword is then transmitted across a binary
memoryless channel 7, where it may get corrupted by noise. The channel decoder D¢
maps the received n-bit word back to a k-bit source index, which then goes through the
inverse index assignment 7~'. The quantizer decoder Dg then generates the associated
output vector in Y C R? from the resulting index.

We measure the performance of the noisy channel vector quantizer for a vector source
X by its mean squared error D = E||X — Q(X)||>. We define the source distortion (the

~ 2
distortion incurred on a noiseless channel) as Dg 2E HX - Q(X)‘ , and the channel

- 2
distortion (the component due to channel errors) as D¢ 2E HQ(X) - Q(X)H . If the
Centroid Condition is satisfied (i.e., y; = E[X|Eg(X) =], Vi), then D = Dg + Dg.
If the codevectors are not the centroids of their respective encoding regions then D =

Ds + D¢ + 2D, where Dy, = E [<X ~ 9(X)

Q(X) — Q(X) >] The magnitude of the

cross-term Dy, is usually very small in practice, and in [28] is shown to asymptotically
vanish for regular quantizers (see also [48]). As an example, Table 2.1 lists the three
components of D for the BLV(Q example of Figure 2.2. It can be seen in these cases that
D, is negligible compared to Dg and Dg.

Table 2.1 The three components of the distortion (normalized by the dimension) for the
BLVQ of Figure 2.2.

€ 107° 1074 1073 1072 1071
De || 4.08 x 1078 | 4.08 x 1075 | 4.06 x 10~* | 3.83 x 102 2.17
D,. 11231 x107 231 x107" [ 230 x 1079 [ 2.20x 1077 | 1.34 x 10~°
Dy 0.52

Hence, under the assumption D,. = 0, for a given quantizer one should minimize D¢

to optimize the overall performance. This chapter determines the value of D for various
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noisy channel vector quantizer systems. With no redundancy (i.e., ¥ = n), an approach
to this problem is to find a reordering of the codevectors (i.e., the best index assignment
m) that yields the lowest D¢. Indices that are likely to be mistaken due to channel errors

should correspond to code vectors whose Euclidean distance is small.

Fact 2.1 Let X € R? be a random vector encoded by a noisy channel vector quantizer.
The channel distortion can be written as

Do=)_ > vty I¥i =35l (2.1)

i€Zk jeZk
2.2.2 Linear codes on a binary symmetric channel

Definition 2.2 A binary (n, k) linear code C with k X n binary generator matriz G is
the set of all 2% n-bit binary words of the form iGc, for i € Z5. The dual code of C is
defined as Ct = {i € Z2: ij' =0, Vj €C}.

We assume a linear code is used with standard array decoding. The channel encoder
is given by Ec(i) = iG¢, and we denote the set of coset leaders by S. Note that S =
D' ({0}), the set of n-bit binary words decoded into the all-zero codeword, and that
by linearity the set of all n-bit words decoded into an arbitrary channel codeword u is
S, = S + u, a translate of S.

Notation The probability that the error pattern v € Z% occurs on a binary symmetric

channel with crossover probability € is denoted by
A _ _ w(u) _ \n—w(u)
pu=Pnw)=v+u] =" (1—¢ :

where v is an arbitrary element of Z%, and w(-) denotes Hamming weight.
Notation The probability that the information error pattern j € Z% occurs when an

(n, k) linear block code is used to transmit over a binary symmetric channel is denoted

by

pz+g|z Z Pu+jGo i,] € ZIQC- (2'2)
u€eS
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2.2.3 Affine index assignments

Definition 2.3 An affine index assignment w: Z5 — Z% is a permutation of the form
(i) =iGr+t, 7w (@) =(G+t)G

where G is a binary nonsingular k X k generator matriz, t is a k-dimensional binary
translation vector, and the operations are performed in Z5. If ¢ = 0, then 7 is called

linear.

The family of affine index assignments is attractive due to its low implementation
complexity. An unconstrained index assignment requires a table of size O(k2F) bits to
implement for a 2¥-point quantizer, whereas affine assignments can be described by O(k?)
bits. The number of unstructured index assignments is (2¥)!, whereas the number of affine
index assignments is (2%) [[*2; (2% — 27). Many well-known useful redundancy free codes
are linear or affine, including the Natural Binary Code (NBC), the Folded Binary Code
(FBC), the Gray Code (GC), and the Two’s Complement Code (TCC):

e Natural Binary Code

e Folded Binary Code (or Sign-Magnitude Code)

-1
G,(FBC) = , t=1[01---1], (GI(FBC)> = G;FBO),

L1
0

e Gray Code (or Reflected Binary Code)

(1 1 0 - 0]
0 :
GG = 0|, t=[0---0],
1
| 0 0 1
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(GI(GC)) - = 0

e Two’s Complement Code

G =1, t=[10---0].

o Worst Code
It has been shown [33,34] that the Natural Binary Code is a “best” index as-
signment on a BSC for any source resulting in a uniform distribution on the BLV(Q
codevectors. In Chapter 3, we show that a “worst” affine assignment (i.e., maximiz-
ing D¢ under the same conditions among affine index assignments) is the following

linear code:

GI(WC) —

(GI(WC)> B = 1 )

1

where a;, = 0 if k is even, and a;, = 1 if k is odd; and Z,_; is the one’s complement

of the identity matrix Z; ;.

Table 2.2 gives an explicit listing of these affine index assignments in both decimal
and binary. The following recursive relationships between these index assignments can

be used to obtain formulas for D¢ (e.g., see [49]).
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Table 2.2 Examples of 4-bit index assignments.

Li [ m 00 | m 6 | M6 [ 106 [ m ) |

0| 0 0000| 7 0111} 0 0000 | & 1000| O 0000
111 0001} 6 0110 1 00019 1001| 9 1001
212 0010} 5 0101} 3 0011 |10 1010 ]| 10 1010
313 0011} 4 0100} 2 001011 1011 | 3 0011
4 14 0100 3 0011} 6 0110 |12 1100|112 1100
5|5 0101} 2 0010 7 011113 1101 | 5 0101
6 | 6 0110 1 0001} 5 0101 |14 1110| 6 0110
7|7 0111 ] 0O 0000 | 4 0100 |15 1111 |15 1111
8 | 8 1000 | 8 1000 |12 1100 | O 0000 | 7 0111
919 10019 1001 |13 1101 | 1 0001 |14 1110
10 | 10 1010 | 10 1010 | 15 1111 | 2 0010 |13 1101
11 11 1011 (11 1011 |14 1110 3 0011 | 4 0100
12 112 1100 | 12 1100 |10 1010 4 0100 |11 1011
13|13 1101 |13 1101 |11 1011 5 0101 | 2 0010
14114 1110 |14 1110 9 1001 | 6 0110 | 1 0001
1515 1111 |15 1111 | 8 1000 | 7 0111 | 8 1000

0 Tt (d) 0<i<2# 1

1) =

k=1 4 gNBO)(j _gk=1y  gh=l <<k 1
0 261 _ 1 — gNBO;) 0<i<2'—1
1) =

s P(0) = 0.

k=1 4 p(VBO) (j _gh-1y gkl <<k

GC)y - . _
7.‘-/5:—1)(1) 0 S ? S 2k b 1 W(GC)(O) 0
) 0 -
bl Ok —1—4) 2Pl <i<2k -1

24+ mIPOG)

,N(NBC) (’L _ 21971)

k—

1

0<i< 211

ol <i<ok_1
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we) Xtw(i) 0aay 28+ Ty () 0<i<obl_q

m (i) =
X{w(2k ~1-i) even}2k_1 + WIEJX?C)(QIC —1—1) 2 <i<2k -1

2.2.4 Binary lattice VQ

Definition 2.4 A d-dimensional, 2*-point binary lattice vector quantizer is a vector

quantizer, whose codevectors are of the form
k—1
Yi =Yo+ E Vil
1=0

for i = [ig_1, k-2, ... ,%1,90) € Z&, yo € R, and where V = {v;}/~} C R? is the generating

set, ordered by ||vol| < ||vi|l < ... <||vi-1]|-

A BLVQ can be considered a direct sum quantizer (or multistage, or residual quan-
tizer) with two codevectors at each stage, when the codebook is written as @y {yo/k,
(yo/k) + v;}. Conversely, any direct sum vector quantizer with two vectors per compo-
nent codebook, @f;ol{al,bl}, can be viewed as a BLVQ by setting yo, = Zf:_ol a; and
v; = b; — a; VI, and reordering the generating set if needed.

Given an arbitrary lattice with basis vectors {u;}}; C R?, any set {k;}}_; of non-
negative integers satisfying Efﬂ k; = k defines a 2*-point lattice vector quantizer with

codebook .
A= {ijUjI m; € {0,1, ,ij —1}}
j=1

For each j, the vectors in the direction of u; are addressed with k; bits.

The class of BLVQs includes lattice VQs (or any of their cosets). In this case, the
BLVQ’s generating set is V = {24u;: I; € {0,... ,k; — 1},j € {1,...,L}} and the index
1 of the vector y; = Zle mju; is the concatenation of the binary representations of the
lattice coefficients mq,msg,--- ,my. The codebook of this BLV(Q contains the origin
(yo = 0). By choosing yo # 0 (while keeping the same generating set V), other BLVQs
can be obtained corresponding to truncations of cosets of the original lattice. A 2*-level
uniform scalar quantizer with stepsize A and granular region (a, b) is a special case of a

binary lattice quantizer, obtained by setting yo = a + A/2, and v; = A2..
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A BLVAQ is similar to the nonredundant version of the “VQ by a linear mapping of
a block code” (LMBC-VQ) presented in [44-46]. The j*® codevector of an LMBC-VQ is
defined as
y; = Obj,

where © is a d x (n + 1) real matrix with columns {6;}%', and the (n + 1)-dimensional
column vector b; € {—1,1}"! is obtained from the j* codeword of a systematic (n, k)
linear code by the mapping b — (—1)® = 1 —2b for each bit, and a leading 1 is prepended
to allow translation of the codebook by #y. In the nonredundant case (i.e., n = k),

b; = [1,(=1)%-1,...,(=1)"]". Hence

k
y; = bo+ Z (1 — 2j5—1)
I=1

k

= Z&H—Z 29kl

Thus, setting yo = Zf:o 0, and v; = —260,_; gives the codevector y; in the form of a
BLVQ codevector. Conversely, given a BLVQ we obtain a nonredundant LMBC-VQ by
setting 0y = yo + & Zz oV and 6 = —Iv,  forl=1,... k.

Hagen and Hedelin [44-46] adapted the generalized Lloyd algorithm for the design
of LMBC-VQs, and obtained locally optimal “noiseless” LMBC-V(Q codebooks. Their
scheme does not include error control coding, nor do they explicitly mention index as-
signments. They use a linear block code exclusively as a tool for quantizer design. When
this “design code” is nonredundant, their scheme can only implement index assignments
corresponding to bit-permutations of the indices (since the 2" codevectors uniquely de-
termine the n + 1 columns of © up to sign and order). On a memoryless channel these
index assignments all have the same value of Ds as the NBC. However, by increasing
the redundancy of the “design code,” more general index assignments can be obtained.
Indeed, in the maximum redundancy case (i.e., n = 2¥ — 1), the matrix of codevectors
is related to © by the Hadamard transform as described in [47], and thus any index

assignment (reordering of the codevectors) can be modeled by choosing © accordingly.
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An optimal and a fast suboptimal algorithm for finding a good assignment in that case

are presented in [23].

2.2.5 The Hadamard transform

Definition 2.5 For each i,5 € Z& let h;; = (—=1)"" and let f: Z5 — R The Hadamard
transform f: Zk — R of f is defined by
fi=2_ fihij
iczk
and the inverse transform is given by
fz' = 27’c Z fjhj,z'-
jezk

We refer to the numbers h; ; as Hadamard coefficients. The transform equations can

be expressed in vector form using the 2% x 2¥ Sylvester-type Hadamard matrix H =

[hi;] (1,5 € Z%) and viewing the functions as 2*-dimensional row vectors (i.e., f =

[anfla <. :kafl]):
f=fH f=2*fH

The Hadamard transform extends to vector valued functions f: Z5 — R? in a straight-

forward manner:

fj = Z thZ,J fz = Q_k Z fjh]’l

i€zt jezk
or equivalently

F=FH F=2"%FH,

where F = [fy, 1, ... ,f5_1] is a d x 2* real matrix.
The Hadamard transform is an orthogonal transform, and the convolution and inner
product properties (e.g., Parseval’s identity) of Fourier transforms also hold for Hadamard

transforms. The following useful identities also hold:

hi,j = hj,i Z,j € ZIQC
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hz’,lhi,m = hi,l+m i, l, m € ZIQC
e The bits of any binary word i € Z% are related to the Hadamard matrix entries by
iy = ——— me{0,1,...,k—1}, (2.3)

where e,, € Z% is the binary row vector with its only nonzero component in the

m™ position.

2.3 Results

The following lemma gives an expression for the channel distortion of a noisy channel
vector quantizer in terms of the Hadamard transforms of the source distribution (the
7's), the quantizer codebook (the 2’s), and the channel statistics (the ¢’s). A similar

expression is found in [50], and a concise proof is provided here for completeness.

Lemma 2.1 Let X € R? be a random vector that is quantized by a 2*-point vector quan-
tizer with encoder Eg and decoder Dg, index assignment 7, and using a linear block chan-
nel code on a binary symmetric channel. Let r; = P [n(Eg(X)) =i, z; = Do(m (4)),
and g; = pjyq);- Then the channel distortion in the Hadamard transform domain is
Do =473 " " (2;12;) isj (do — Gi — G + Gins) -
i€zk jezk

Proof

Using a linear block channel code on a binary symmetric channel the transition prob-

abilities p;; only depend on the (modulo 2) sum ¢ + j. With the notation g¢;4; = pjj,,
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Equation (2.1) can be written as

2
Do =YY pillyi = vl eciyno

i€Zk jezk
_ 2
= ril|zi — 24" gi+
iczk jenk
2
= ; 278N g — b || giny
= T; zZ)\ 1y 1,j Gitj
i€zl jezk lezk
—k A A
=4 E Ti E Gitj E E (21 |2m ) (Pigmyi — Pijhms — hiibmj + Piym;)
i€zl jezk 1€zl mezk
_ 4k 5 1s
=4 E E (21 |2Zm ) E Tilitm,i E Qiri (1= hiivj — Pmjivj + Pugmiivs)
lezk mezk iczZk jezk
_ 4k Z Z 5 15 Z Z
=4 <Zl |Zm> T’ihl—l—m,i QC(hO,c - hl,c - hm,c + hl+m,c)
1€zt mezk i€zt A

=4 Z Z (20 |2m ) Prom (Go — @ = Gm + Qirm) -

€2k mezk

[ |

In Lemma 2.1 “complete” channel decoding is assumed. That is, every received word
from the channel is decoded to a nearby channel codeword (to the one in the same
coset as the received word), as opposed to incomplete decoding (or bounded distance
decoding), where a received word is decoded only if it is within a prescribed Hamming
distance (usually, the code’s minimum distance) to a codeword — otherwise it is deemed
uncorrectable. The form of the expression for D¢ for incomplete decoding of a linear
block code is similar: D has an additional term 0%, (1 —go), where 0’%; is the codebook
energy, and (1 — gp) is the probability of an uncorrectable error. Since this additional
term is independent of 7, it is not significant in determining the optimal index assignment.

The following theorem specializes Lemma 2.1 to BLVQs and affine index assignments.
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Theorem 2.1 The channel distortion of a 2F-point binary lattice vector quantizer with
generating set {vl}l "o, affine index assignment with generator matriz Gi, (n,k) linear
code C with generator matrix Gg, and a binary symmetric channel with crossover proba-

bility €, is given by

1 k—1 k—1
Z v'l |Vm pel—|—em (@0 - CjelFI - (jemFI + qA(el—l—em)FI) ; (25)
=0 m=0
where
G=2" 0 (1= 20", (2.6)
a€(CL+iFo)

F; = (GI_l)t, Fc is a k x n binary matriz satisfying GeFo! = Iy, C is the dual code of
C, J» = Xyres) 18 the characteristic function of the set S of coset leaders of C, py is the [th
component of the Hadamard transform of the distribution on the quantizer codevectors,
w(-) denotes Hamming weight, and e, is the binary row vector with its only nonzero entry

in the U™ position.

Theorem 2.1 makes explicit the dependence of the channel distortion on the BLVQ
structure, the affine index assignment, and the channel code. Also, computing D¢ based
n (2.1) requires O(N?) complexity for a codebook of size N = 2¥, whereas using (2.5)
reduces the complexity of computing D¢ to O(Nlog? N). (In (2.1) each of the nested
sums contributes a factor of N, whereas in (2.5) the corresponding sums only require
log N steps, but each of the Hadamard transforms inside the sums takes O(N) steps.)
Note that on a binary symmetric channel the translation vector ¢ of the affine as-
signment is irrelevant. Thus without loss of generality we may assume that the index
assignment is linear. A linear index assignment can be incorporated in the channel en-
coder by setting G'¢c = G;Gg. Then F'¢ = F{F¢, the transpose of an inverse of G'c.
To obtain §r,, the sum in (2.6) is taken over the coset of the dual code containing

eFiFc = ¢F'¢, the I'® row of F'¢.
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Proof

We find expressions for the Hadamard transform quantities of Lemma 2.1. The trans-

form of the BLVQ codevectors is

Z, = E Zihi,a

iczZk
= Z Zw(i)hﬂ(z),a
i€zk
= Z Yihﬂ'(z),a
i€zZk
k—1
- Z (yO + Zvlil> hﬂ'(l) a
i€zZk =0
k: 1 k—1 1— h
= X{a:o}Qlc <YO + 3 ZW) + X{az£0} Vi b ———hx(i)a
=0 ezk
1 k—1 k—1
= X{a=0} 2" <YO + 9 Z Vl) X{a;éo} Vi h; €1 hn (4).a-
1=0 =0 jezk

Since 7 is an affine index assignment, for a # 0 we have

D hiehria = Y hiehicitda

ieZk i€zZk

= hd,a§ hi,el—l—aGIt

i€Zk
= 2k,
- X{aGIt:el} d,a-

Thus
k-1

ia = _Qkilhd,a ZVZX{a:elFI}
=0

for a # 0. Exactly one term in this summation is nonzero. The transform of the discrete

distribution on the codevectors is

= Zpihﬂ'(i),a = ZpihiGI+d,a = hd,aﬁaGIt-

i€zl iezk
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If either a or b equals 0, then gy — G, — ¢» + Gurp = 0, so without loss of generality we

can write
k—1 k-1
Dc = 4_k Z Z <—2k_1hd7a ZVZX{G»ZWFI} —Qk_lhd,b Z VmX{a:emF1}>
acZk bezk 1=0 m=0
* haar6P(atp)crt (G0 — Ga — @b + Gats)
1 k—1 k-1
= Z Z <vl ‘Vm>ﬁel+em (@0 - (jelFI - CjemFI + (j(el—l—em)FI) .

=0 m=0

Since ¢; = ), s Pr+jGo, the ¢i's for an (n, k) linear code can be expressed in terms

of the p;’s and the Hadamard transform of J = xs as

G =Y, (Zpr+jc;c> hij (2.7)

jEZ’f resS
= Z hi,j Zan Z ﬁaha,r—kj(}c
jEZlg resS a€Zy
= 2" Z ﬁa (Z hr,a) Z hi,jha,j(}c
acZy res jeZI2c
= 2_n Z ,5(1 Z J,,.hr’a Z hj,i-f—aGct
a€’ly r€Ly JETE
= 2—71 Z ﬁGJGQkX{i:aGCt}
a€ly
= 22" N pala, (2.8)
aE(CJ‘+ti)

where

fa = Z /D1 — )" vOp,,

iczZk

-y ¥ % (n_lei,(1_€)1n> (ﬁ(_l)i,al)

i0€{0,1}i1€{0,1}  in_1€{0,1} \I=0

= f[ Z ei’(l _ 6)1_il(—1)i’“’

=0 216{0,1}
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(1—e+e(~1)%)

n

~
I
)

= (1 —2¢)*@),

which completes the proof. |

2.3.1 Uniform output distribution

If the quantizer codevectors are equiprobable, then p; = 2% for all i € Z%, and
Pi = Xti=0}- In this case the channel distortion of BLVQ with an affine assignment

simplifies to

k—1
Do = Z ||Vl||2 (do — Geyry) -
1=0

N | —

Since §p is independent of the index assignment, minimizing D¢ is equivalent to maxi-

mizing

B

-1

||Vl||2qe1F1'
l

Il
=)

By assumption, the v,’s are ordered by their norms. Thus an affine assignment which

minimizes Dc must satisfy

qekleI 2 Qek,2F1 2 <. Z Qeon

as observed in [23,33,43]. This is achieved by making the k-bit index of a maximal ¢;
(i # 0) the first row (corresponding to e;_1) of Fi. Then the I'® row is selected to be the
index of a largest ¢; that is linearly independent of the first [ — 1 rows. More formally,
fi = argmax ¢,
i&span[fj]g._:ll

where f; denotes the [** row of F7.

In [33] it was shown that among all possible index assignments the best affine index
assignment achieves the minimum MSE possible for a uniform scalar quantizer and a

uniform distribution. We conjecture that the same result is valid for BLVQs. It is known
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to be true for nonredundant channel codes [34], and we have verified that it is true
for some simple codes such as the (7,4,3) Hamming code and the (8,4,4) first order
Reed-Muller code, and it trivially holds for all (n,1,n) repetition codes. One can also
use a result in [38] to determine the best choice of a coset leader set S and an affine
index assignment (even if the best affine assignment does not coincide with the global

optimum).

2.4 Nonredundant Codes for the BLVQ

2.4.1 Binary symmetric channels

Theorem 2.1 can be specialized to nonredundant codes (i.e., n = k, C = Z%§, C*+ =

S = {0}, G¢ = F¢ = i), giving the following result (similar to a result obtained in [46]).

Corollary 2.1 The channel distortion of a 2%-point binary lattice vector quantizer with
generating set {vl}fz_ol, which uses an affine index assignment with generator matriz G,
and nonredundant channel coding, to transmit across a binary symmetric channel with

crossover probability €, is given by

kol

-1

S

-1

DC = <Vl |Vm ) ﬁel—kem

B~ =

I (2.9)

(1= (1= 26) @) — (1 — 2¢)(emE) 4 (1 — 2¢)w(lertem)I))

I
(=)
3
I
o

Y

where w(-) denotes Hamming weight, F = (G_l)t, Py is the I™ component of the Hadamard
transform of the distribution on the quantizer code points, and e; is the binary row vector

with its only nonzero entry in the I™ position.

2.4.1.1 Formulas for common index assignments

One useful consequence of Theorem 2.1 is that exact expressions for the channel
distortion D¢ can be obtained for certain well-known structured classes of index assign-

ments, such as the NBC, the FBC, and the GC. Since on a binary symmetric channel
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the TCC and the NBC have the same channel distortion, the NBC formula also holds for
the TCC. In the formula for the GC the double sum of Theorem 2.1 cannot be further
simplified, since (1 — 2¢)=™ is not a separable function of / and m. For the NBC and
the FBC we can express D¢ in terms of the means and the component variances of two
discrete random variables as follows. Let Y be a random vector distributed according to

{pi} over the quantizer codevectors with mean Y and 0% = E||Y - Y| ? and let U be

a random vector uniformly distributed over the quantizer code points with mean U and

0% = E||U — U]|]”. Then

U = TkaZ‘

iczk
k—1
= 2_k Z (yO + ZVﬂ;l)
i€zl =0

=
= Yo+ 5;"7-

op = 2 |y -TIf

iezk

k—1 =
= 25 llyo+ > viis —yo — §Zvl

2

2

1
= Z Z <Vl |Vm> 27k Z h’i,elhi,em (210)

0 m=0 ieZ?j

2
vl (2.11)

where (2.3) and (2.4) were used to obtain (2.10) and (2.11), respectively.

Note that U and 0% do not depend on the index assignment or the input distribution.
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Corollary 2.2 Given the conditions of Corollary 2.1, the channel distortion of the Nat-

ural Binary Code is
DéNBC) = 4e ((1 —eoy +eloy +||¥ - I_JH2)) .

A related formula also appears in [46], and we provide a short proof for completeness.
Proof Using Corollary 2.1, and the fact that w (e, F(NB)) = 1 and w((e; + e,,) FNVEC)) =

2X1#m}, for all [ and m, we have

k-1 k—1
pwEe) _ Z”Vl” €+ > (VilVin) EPerren
=0 m=0
l#m
k-1 k-1
= 4eal2j+62 ZZ Vﬂw)ZPz ietem Z”Vl”
1=0 m=0 i€Zk

2

Z (26, — 1)

=0

= 4de( 1—60U+6 Zp,
zeZk

= 4e(1 — €)of + 4€°E ||Y - [_J'H

= (1 - o+ B[y =¥ +¥ - Of)

= 4e ((1 — ol +e(o% + ¥ - GHQ)) .
|

Corollary 2.3 Given the conditions of Corollary 2.1, the channel distortion of the Folded

Binary Code is
D(FBC) — 46(1 _ 6) (UU + UY + HY UH ) — e 1 — 26) max||vl||

Proof The Hamming weights of the rows of F(¥BC) are

w(@FFPO) = 1 l=k-1
2 l<k—-1
0 l=m
w((e; + ey) FEFED) = 1 m<l=k—1 or I<m=k-1,
2 l<k—-1, m<k-1, l#m
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and thus

(1= (1= 2)"F) — (1 — 2¢)(em) 4 (1 — 2¢)wUertem)E))

=~ =

€ l=m=k—-1
=19 2(1—¢) l=m<k-1.

e(1—¢) l#m
Substituting these into (2.9), and using (2.11) we obtain
k-1
DEFD =3 [[wil* 26(1 — €) — ||vi 1]* (2€(1 =€) — ¢)
1=0
k=1 k—1
+ Z (Vi |Vin) Perten€(1 —€)
=0 m=0
l#m
= 8¢(1 — €)og — (1 — 2€) || v |
k=1 k—1
1= | DD Vi) D pihicrren — E:HwH
1=0 m=0 iczk

2
— (1= 2¢) [lvia]*

k—1
=4de(1 —€)og +e(1 —¢) Z Zvl (24, — 1)
iezk 11 1=0

= 4e(1 =) (o5 + B[ Y = O) = e(1 = 26) e 1|1
=4e(1— ) (B +E[Y =¥+ ¥ = O) = (1 = 26) [vea I

= 4e(1—¢) (aU +o%+|[¥ -0 ) — e(1 — 26) max v,
where ||vg_1|| = max; ||v;|| follows, since the basis vectors are ordered by their norms. W

Corollary 2.4 Given the conditions of Corollary 2.1, the channel distortion of the Gray

Code is

1 k—1
= 3 S Ivall” (1= (1= 2¢)*)
=0

+i: i: (vi |Vm>]3el+em (1 -(1- 26)’64 -(1- Qe)k*m +(1— 2€)|l*m|) .

=0 m=0
l#m
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Proof
Substituting w(e; F(¢)) = k — [ and w((e; + €,) F(G)) = |l — m| in (2.9), the result

is immediate. |

2.4.1.2 Comparison of the NBC and the FBC

While the NBC is known to be optimal for the binary symmetric channel with a
uniform source, little is known about optimal codes for nonuniform sources. Corollary 2.2
and Corollary 2.3 can be used to compare the MSE performance of the NBC and the
FBC for nonredundant source-channel coding. Noll found that for certain speech data
the FBC achieves better performance than the NBC when used in conjunction with the
optimal noiseless quantizer [36]. Corollary 2.5 characterizes sources for which the FBC
outperforms the NBC, using BLVQ. The variance of the source determines which code

is better.

Corollary 2.5 Given the conditions of Corollary 2.1, and for all e < 1/2,

_ _ 1
D(CFBC) < D(CNBC) PN 0%{ + ”Y _ UH2 < ZInlaXHvl”?.

2.4.2 Codes for binary asymmetric channels

Definition 2.6 For i € Z%, let B; = {l € {0,1,... ,k — 1}: {(i|e;) = 1}, i.e., the set of

positions where the binary row vector ¢ has nonzero coordinates. Then
1<7& B, C Bj

defines a partial ordering “<” of the elements of Z%. Equivalently, i < j < w(i +j) =
w(j) —w(@)  Vi,j € Zs.

Theorem 2.2 If a 2*-point binary lattice vector quantizer with generating set {vl}fgol
induces equiprobable quantizer codevectors, and an affine index assignment with generator

matriz G and translation vector t is used to transmit across a binary asymmetric channel
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with transition probabilities pio = € and poj1 = 6 and with a nonredundant channel code,

then the channel distortion is given by

k—1 k—1 k-1
1 e 1 wi(erte
Do = 53 Wil (1 =7"P) £+ 13037 (v Vi) B4
=0 =0 m=0
l#m
(1= Xt(ertemP<am?" ™" = Xertem<enmy 7)) (2.12)

where y =1—€—08, 3 =0 —¢, w(-) denotes Hamming weight, F = G™, ¢; is the binary
row vector with its only nonzero entry in the ™ position, and h;; = (—l)ijt denotes a

Hadamard transform coefficient.

Note that at most one of the two indicator functions in Theorem 2.2 can be nonzero
for any pair [ and m (I # m).
Proof

For nonsymmetric channels, p;; does not depend only on the (modulo 2) sum 7 + j,
so an approach different from the one used in the proof of Theorem 2.1 is necessary. Let
the random variable I = £¢(X) denote the k-bit source coded index, and let W denote
the k-bit binary channel error vector. The decoded k-bit index J is then

J=1"tnrD)) = (IG+t)+W]+t)G ' =T+ WG,

as depicted in Figure 2.3.

T n T®
I Kbits | G /] i K bits i T i K bits l ‘ G i kbits _ 5
| roorrE T |
t W ot |

Figure 2.3 Channel subsystem with affine index assignment.
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Thus, the channel distortion of a BLVQ (with codevectors y; = yo + Z;:Ol vy, for

i € Z%) can be written as

Dc =E|ys —yill?
2

k—1
= E Zvl(Jl — Il)
=0
= E g 1- hI+WG71,el 1- hI,ez :
— e 2 2
1 k—1 k-1
=1 D Vilvim) Elhue (1= hwer) bre, (1= Pave, )]
=0 m=0
1 k—1 k-1
= Z <Vl |Vm> E [hI,el—}-emE [(1 - hVV,elF - hW,emF + hW,(el—I—em)F) |IH . (213)
=0 m=0

The k bits of W are conditionally independent given I, and satisfy

PW,=1/(IG+1);=0] = e
PW,=1|UG+1t),=1 = §

on a binary asymmetric channel. Thus,

1 h e 1 - h e
1 = —FGte 19 (1 — 2¢) 4 ——2 0 (1 — 25)

= (I1—€=06)+ (0 — €)higtte,

E [hw,

= v+ Bhrgite, -

Hence, for any k-bit binary row vector f,

Elhwsll] = ]]Elhwe 1]

er<f

= H (v + Bhic+te,)

er<f

= Y @ gy

a<f
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With equiprobable codepoints, the k£ bits of I are independent and are equally likely to

be 0 or 1. Hence, E [h;,] = 0 for any nonzero k-bit binary row vector a, and we have

E [hl,el-l-emE [hW,f|I” = Z ’Yw(f)_w(a) /Bw(a) ht,aE [hI,el+em+aGf]

a<f

= Z ,yw(f—l—a)ﬂw(a) h't,a X{a=(e;+em)F}
a<f

w(ftetem)F) gu((eitem)F)

X{(et4+em)F<f}Y ht,(el—l—em)F-

Substituting e, F, e, F', and (e;+ e, ) F for f, the last three terms within the expectations

in (2.13) are obtained. Noting that E [ te,,] = X{i=m} and factoring out common terms

gives
1 Rk k 1 k—1
Do = 4 Z Z Vi |Vm X{i=m} + 7 Z Z <Vl |V ﬂw el+em)F)ht S(er+em)F
1=0 m=0 1=0 m=0
. (_X{(el+em)F-<€lF}’Yw(emF) _ X{(el+em)F-<emF}'Yw(elF) + 1)
1541 1 kol kot
= 5 ”Vl” (1 ezF) Z Z v, |V ﬂw ((e1+em) F)h e ten)F
1=0 1=0 m=0
l#m
' (1 B X{(el+em)F<ezF}7w(emF) - X{(el+em)F<emF}7w(elF)) )
and the proof is complete. .

2.4.2.1 Formulas for structured index assignments

Here we specialize Theorem 2.2 to the FBC, the GC, the NBC, and the affine trans-
lates of the NBC. The formulas presented generalize those given in [49] for the uniform
scalar quantizer case (the «, (3, v notation is consistent with [49]), and generalize those
given in [30, 32] to nonsymmetric channels. Also, by letting ¢ = §, the special cases of

Corollaries 2.2-2.4 for the uniform output distribution case are recovered.

Corollary 2.6 Given the conditions of Theorem 2.2, the channel distortion of the affine

translate of the Natural Binary Code corresponding to translation vector t is

k—1 -1
DEreTy = —(aZHvln + )2, kv ( )

=0 m=0

= (2a— o} + 4 HYt -oJf,
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where a =€+90=1—7, and y; = yo + Z;:OI vit;. In particular, the channel distortion
of the NBC (t=1[00...0]) is
2

D(CNBC) _

| =

k-1
(20— %)Y [Ivill* + 62
1=0

k-1
>V
1=0

and the channel distortion of the TCC (t =[10...0]) is

k—2

Vi-1— E Vi

=0

k-1

(20 = 5% Iwll” + 5

=0

Dgco)

NI

Proof Since w(e;FVB)) =1 and w((e; + e,) FNBY)) = 2x (143, for all [ and m, no

(NBC) can precede the sum of two rows in the partial ordering. Using this and

row of F'
Theorem 2.2, the statement follows. |
For a uniform scalar quantizer with step size A, we have v; = 2'A and the above

expressions simplify to

2
pevEo %(a(4’°—1)+ﬂ2(4k—3'2k+2)):
and
2
pIree) _ %(a(4k—1)—2/32 (4 = 1)).

The formula for DéNBC) generalizes results in [31,33] to the asymmetric channel case.

Corollary 2.7 Given the conditions of Theorem 2.2, the channel distortion of the Folded

Binary Code is

k— k—2
FBC 2 2
Dy ( S il +a - ) S vl

k=2 1—-1 k—2
5 zwmwwszQ,
=0 m=0 =0

wherea =e+6=1—1.
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For a uniform scalar quantizer with step size A, we have v; = 2!A. Thus, (v; |v,) =

4+mA? and the above formula becomes

2
DR = 2 (0 (4~ 1)+l - a) (4 - 1)

+67 (4571 = 3. 2571 4 2) — 3ap (4871 — 2F7T)).

Proof Forl # m,

e m=k-—1
(e + ep) FFED) = & ¢ l=k-1 ,
e+ en otherwise

and thus the indicator functions in Theorem 2.2 will only be nonzero if either [ =k — 1
or m =k —1. Using this and ¢ = [01...1], and substituting the Hamming weights of the

rows of F(F5C) in (2.12), one gets

k—2 k—2

1 1
DI = vl (1 - ) + 5 Z all® (=% + 722D iV v 57
=0 m=0
l#m
1 k—2 1 k—2
+ 3 D (Vi lVie1) b B7(1 =) + 1 D (Vi1 Vi) B B2(1 = )
=0 m=0
1 k—1 k—2
2 2
S ORI o
=0 =0
k-2 -1 k—2
+6 (Vi |Vim) — (vi |Vk—1>>
=0 m=0 =0

Corollary 2.8 Given the conditions of Theorem 2.2, the channel distortion of the Gray
Code is

D(CGC

N | —

(Z vl (1 = ~*) + kZl Ii (vi v ) 87 (1 - 7’”)) :

=0 m=0
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For a uniform scalar quantizer with step size A, we have v; = 2!A. Thus, (v; |v,) =

4+mA? and the above formula becomes

D(GC’):A_2 4k_1_74k—7k
¢ 2 3 4 — v

Bo(4h—1 APk (28 -1 (28)° -
2—5( 35 Ya—y " 2p-1 Vo, ))

Proof The statement follows by observing that the precedence (e; + €,)F < e, F is

+

satisfied if and only if [ > m, and substituting w(e,F) = k — [, w((e; +en)F) =1 —m
for I > m, and t = 0 in (2.12). [

2.4.2.2 Affine translates of the NBC

The family of affine translates of the NBC is known to perform optimally for BLVQs
with a uniform output distribution on a BSC. If, however, the channel is asymmetric,

different translates result in different distortions. The best one is identified next.

Corollary 2.9 If a 2¥-point binary lattice vector quantizer induces equiprobable quantizer
codevectors for a given source, and if it transmits an affine translation of the Natural
Binary Code across a binary asymmetric channel with crossover probabilities pyjo = € and
poj1 = 0 and with a nonredundant channel code, then the channel distortion is minimized
if and only if the translation vector t satisfies
t = argmin HyZ — [_J'H ,
{iezk}
where U = 27% Zz’ez’g y; 1s the arithmetic mean of the codebook. In particular, the Two’s

Complement Code is optimal among the NBC translates for uniform scalar quantization.

Proof Immediate from Corollary 2.6. [ |

For a uniform scalar quantizer with step size A, v; = 2'A, and U = yo + (257! — 3)A.
Thus both t =[01...1] (ys = yo+ (251 —=1)A), and ¢t = [10...0] (y; = yo + 2¥ *A) have
the same performance (optimal among the translates of the NBC). The latter translate

is the Two’s Complement Code (a rotation of the Odd-Even Code of [49]).
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2.4.2.3 Comparisons for uniform scalar quantization

Based on the formulas presented in Corollaries 2.6-2.9 for uniform scalar quantization,
the structured index assignments we have considered can be compared. First, we define
the one’s complement of an index assignment. This corresponds to changing 0’s to 1’s
and 1’s to 0’s in the binary representation of the indices. Unless the performance of an
assignment is symmetric in € and ¢, it is advantageous to use the one’s complement of

the assignment instead of the assignment itself, either when € < § or € > 4.

Definition 2.7 The one’s complement index assignment X, of an index assignment X,

is defined by
X)) =@ +1  VieZk
where 1 = [11---1] (the vector of weight k).

The one’s complement of an affine index assignment can be obtained by replacing
its translation vector ¢ by ¢, the one’s complement of ¢ (the generator matrix remains
unchanged). The distortion formulas are also easily updated, as only the roles of ¢ and
d have to be exchanged (or equivalently, 5 is to be replaced by —3). Hence, the one’s
complement of an index assignment whose distortion formula includes only even powers of
B (e.g., NBC, TCC) has the same performance as the original assignment. Furthermore,
since odd powers of  change sign when € = ¢§, the one’s complement outperforms the

original assignment either when € < § or € > 4.

Theorem 2.3 Given a uniform 2*-level scalar quantizer for a uniform source, the chan-
nel distortions of the Natural Binary Code (NBC), the Folded Binary Code (FBC), the
Gray Code (GC), and the Two’s Complement Code (TCC) on a binary memoryless chan-
nel with pip = € and poy = 6 and with a nonredundant channel code satisfy (assuming

0#0>eande+6<1):

(i) DUP) <« DIFO k> 1, Ve#s
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@)  DEY < plE) Vk>1, VYe#0
(i) DI < DIBO) VE>1, Ve#6
(i) DUWFO < plEo) Vk > 2, Ve, 6

(v) DI < DIFPD Wk >1  if e4+6+5&—8ed—0%>0
(€+8)(e+6—1)

€+ 0+ He? — 8ed — 02

if e+6+5e2—8e0—62<0

Vk <1+ log,

and €4 +2€* —5e¢6 — 6% >0,

(vi) DWPD <« DIBD YE>1 if 46— +4e6—T6° >0
(e+d)(e+d—1)
€+ — e +4ed — 762
if e+6—€4+4e6—T62<0

Vk <1+ log,

and €+6 — e 4+ €6 — 462 >0,
The inequalities (i), (i), (iii) hold with equality if € = 6.

The above inequalities follow from Corollaries 2.6-2.8 by straightforward algebraic ma-
nipulations; thus, their proofs are omitted. The code comparisons of the above theorem
are shown in Figure 2.4. In each graph two index assignments (and/or their one’s com-
plements) are compared for binary asymmetric channels (each point (¢, d) corresponds to
a different channel). The region where one code is uniformly better (i.e., Yk > 2) than
the other is marked by the name of the superior one. In the unmarked area (between the

thick and the thin curves, where applicable) the winner depends on the value of n.
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0. 0.25 0.5 0.75 1€
(a) TCC versus NBC (b) TCC versus FBC
5 5
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0.5} FBC
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(c) NBC versus FBC (d) FBC versus GC

Figure 2.4 Performance comparisons of various nonredundant codes for a uniform scalar
source on a binary asymmetric channel with p; o = € and py; = d, and € +J < 1. The region
where one code is uniformly better (i.e., Yk > 2) than the other is marked by the name of the
superior one. In the unmarked area (between the thick and the thin curves, where applicable)
the winner depends on the value of n. The thick curves correspond to ties between the codes.
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CHAPTER 3

RANDOMLY CHOSEN INDEX ASSIGNMENTS
ARE ASYMPTOTICALLY BAD
FOR UNIFORM SOURCES

It is known that among all redundancy-free codes (or index assignments) the Natural
Binary Code minimizes the mean squared error of the uniform source and uniform quan-
tizer on a binary symmetric channel. In this chapter, we derive a code which maximizes
the mean squared error, and we demonstrate that the code is linear and that its distor-
tion is asymptotically equivalent, as the blocklength grows, to the expected distortion of

an index assignment chosen uniformly at random.

3.1 Introduction

An index assignment is a mapping of source code symbols to channel code symbols.
The usual goal of index assignment design for noisy channel vector quantizers is to mini-
mize the end-to-end mean squared error (MSE) over all possible index assignments. The
MSE is computed with respect to the statistics of both the source and the channel. Pre-
vious work has examined the theoretical and practical aspects of index assignment in
noisy channel vector quantizer systems. In particular, it is known that the performance
of such a system can be significantly affected by the choice of index assignment.

The problem of algorithmically finding good index assignments has been previously

studied in [1-6], and analytic formulas have been found for binary symmetric channels

The material in this chapter will appear in the IEEE Transactions on Information Theory as: A.
Méhes and K. Zeger, “Randomly chosen index assigments are asymptotically bad for uniform sources.”
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and certain sources [7—12]. The optimality of the Natural Binary Code was conjectured
in [8] and proven in [10] for uniform scalar quantization of a uniform source, and later
extended to binary lattice vector quantizers (BLVQs) with equiprobable quantization
points in [11].

In this chapter we derive an index assignment which mazimizes the MSE for a uniform
scalar source, and we show that the worst case performance thus obtained is asymptoti-
cally equivalent to the expected performance of an index assignment chosen uniformly at
random. This indicates that the majority of index assignments are asymptotically bad.
Also, this result analytically reveals the entire range of possible performances achievable
by different index assignments.

The overall mean squared error of a quantizer optimized for a noiseless channel can
be decomposed into a “source distortion” due to quantization and a “channel distortion”
due to channel noise [13]. The source component is a result of representing the source
with a finite number of quantization points, and thus is independent of the index assign-
ment. The channel component, on the other hand, results from confusing the indices of
quantization points because of channel errors. Hence, we focus on the channel distortion
when evaluating index assignments. With this in mind, the index assignment problem
can be reformulated as a discrete problem with no direct reference to quantization. The
usual index assignment problem is to assign indices to quantization points to minimize
the mean squared error within the finite set of quantization points. For n-bit uniform
scalar quantization of a uniform source, this finite set of points is a scaled and translated
version of the set {0,...,2" — 1}. In this chapter, however, we maximize the MSE.

This chapter is organized as follows. Section 3.2 gives notation and definitions. In
Section 3.3, we derive a distortion-maximizing index assignment (the Worst Code) for
uniform scalar quantization of a uniform source (Theorem 3.1), and we compare the
performances of the best, worst, and randomly chosen index assignments (Corollary 3.1).
A counterexample in Section 3.4 shows that the MSE-maximizing property of the Worst
Code does not extend to arbitrary BLVQs (Corollary 3.3), even though it is known
that the MSE-minimizing property of the Natural Binary Code does extend to BLVQs.
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We establish, however, that among all affine index assignments the Worst Code does

maximize the MSE of arbitrary BLVQs (Corollary 3.2).

3.2 Preliminaries

For any positive integer n, let Z3 denote the field of n-bit binary words, where arith-
metic is performed modulo 2. Every integer i € S = {0,...,2" — 1} has a unique binary
representation 7 = Z?;Ol 2'4;, where 4; € {0,1}. We denote by i € Z2 the binary n-tuple

(row vector) corresponding to i, i.e.,

i=[in_1,0n—2,..-,01,00]-

The transpose of i € Z% is denoted by i’. For i,j € Z%, i’j is a binary matrix, while
ij7 = Y7 i € {0,1} is the binary inner product of the two vectors. We denote by
e(™ the binary vector corresponding to 2, i.e., el(m) = Iyp—1y, where I is the indicator

function. The all-zero vector is denoted by 0, and the all-one vector by 1.

Definition 3.1 An index assignment is a mapping 7: Z% — Z§ which is a bijection.
An index assignment is a permutation of Z%, and thus there are (2")! different index
assignments.

An affine index assignment m: Zy — Z% is an index assignment of the form
(i) =iG + t, i) = (i+t)G 1,

where G is a binary nonsingular n x n generator matriz, t is an n-dimensional binary

translation vector, and the arithmetic is performed in Z%. If t = 0, then 7 is called linear.

The family of affine index assignments is attractive due to its low implementation
complexity, and was first systematically studied in [12,14-16]. An unstructured index
assignment requires a table of size O(n2") bits to implement, whereas affine assignments
can be described by O(n?) bits. Many useful index assignments are known to be affine,
including the Natural Binary Code, Folded Binary Code, Gray Code, and Two’s Com-
plement Code [12].
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Definition 3.2 The Natural Binary Code my is the identity index assignment 7y (i) = i.
It is a linear index assignment with generator matrix Gy = |, the identity matrix.

We define the Worst Code my to be the linear index assignment with generator matrix

-n11 1-
111 0 0
Gw=1]1]0 "-. . [,
0

110 -« 0 1

where the “n” in the top-left component of Gy is taken modulo 2. The inverse of the

generator matrix is

BIERE u

110 1 1
Gy =1|1]1

1

101 - 1 0

Table 3.1 gives an explicit listing (in both decimal and binary) of these two index assign-
ments for n = 4.
Let the channel transition probabilities of a binary symmetric channel be denoted by

(for e < 1/2)

1—c¢ ifa=1b
plapy = 79 wbe{01).
€ ifa#b

Definition 3.3 The Hamming weight of a binary n-tuple a € Z7 is the number of its

nonzero components,

n—1
A
w(a) =) Iaz0)-
1=0
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Table 3.1 A 4-bit example of the Natural Binary Code and the Worst Code.

i | @) || mw() |
0 0 | 0000 || O | 0000
1 1 10001 9 | 1001
2 2 | 0010 | 10| 1010
31 31]0011] 3 |o0011
4 4 10100 | 12 | 1100
5} 5 10101 5 | 0101
6 6 | 01101 6 | 0110
701 7 lo111 | 15| 1111
8 8 | 1000 | 7 | 0111
9 9 (1001 ] 14 | 1110
10 | 10 | 1010 || 13 | 1101
11| 11| 1011 4 | 0100
12 | 12 | 1100 || 11 | 1011
1313|1101 2 | 0010
14 | 14 | 1110 || 1 | 0001
15[ 15 | 1111 | 8 | 1000

The transition probabilities for binary n-tuples on a binary symmetric channel are

n—1
P(afb) = [ [ p(alb) = @)1 — @) a b ez

1=0
We denote the probability that an error pattern a € Z% occurs on a binary symmetric

channel by
pa 2 P(b+alb) =@ (1 — )" *@  bezm (3.1)

Definition 3.4 Let 7 be an index assignment and suppose an element ¢ is chosen uni-
formly at random from the set S = {0,...,2" — 1}, where the binary n-tuple 7 (i) is
transmitted over a binary symmetric channel with error probability €. The end-to-end
mean squared error is defined as

A oln o
D=2 ZZ(@ - ])2pn(i)+7r(j)- (3.2)

i€S jES
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It may be assumed without loss of generality that 7(0) = 0, which for an affine index
assignment 7(i) = iG + t, is equivalent to setting t = 0. Thus, we omit the translation

vector t in what follows.

Definition 3.5 For each i,j € Z2, let hy; = (—1)¥". The Hadamard transform f: 73 —
R of a mapping f: Z5 — R is defined by

and the inverse transform is given by

fiy=2" F@)hs

JE

N
o3

The Hadamard transform provides a tool for analyzing the mean squared distortion [5,
12,16-19]. The following properties of Hadamard transforms were given in Chapter 2,

and are repeated here for convenience. For any i,j,a,b € Z7,

(i) hig = hy;
(ii) hiatb = hiahip
AL ifj=0
(iii) > hiy= ]
iz 0 otherwise

o=l ifj=0
(iv) Z imhig =14 —2"!  ifj=el™ m e {0,1,... ,n—1}

iezn )
0 otherwise

The first two properties are straightforward. Property (iii) follows from the fact that
exactly half of the binary vectors in Z% are orthogonal to any fixed nonzero vector j € Z7.
To see Property (iv), let i,j' € Z5 ™! respectively denote the binary vectors i,j € Z3 but
with the m'™ component removed. Then we can rewrite Property (iv) as
SN i)y = (<1 ST hey = (<1)m 20 g,
iezy time{0,1} iezn!

where the last equality follows from Property (iii) for Z5~".
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Lemma 3.1 The Hadamard transform p of the error pattern distribution p is

Proof

3.3 Construction of the Worst Code

The following lemma gives an expression for the distortion D in the Hadamard trans-

form domain. Variants of this result were used to show the optimality of the Natural

pi = (126”0

Z Gw(i)(l . 6)n—w(i)hi,j

iczy

Z Z - Z (f[ Gil(l _ 6)1—i1(_1)i1j1

ioE{O,l} ile{o,l} in_le{o,l} =0

n—1
H Z 62'1(1 _ 6)1—1'1(_1)1'17'1
=0 116{0,1}

n—1

H (1 — e+ 6(—1)jl)

)

Binary Code in [10,11]. The lemma is useful for identifying a “worst” code.

Lemma 3.2 Let n(i) = 7~ '(i) for all i € Z%. Then the distortion in the Hadamard

transform domain is

D=2 Y [2i(a)’ (1 —(1- 2€)w(a)> .

acZ2\{0}
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Proof
Rewriting (3.2) using 7 yields

D=27"% % (n) —n())* pis;

iezy jery
2
=270 2 (27 D (@) (hai = hag) | piss
i€Zy JELY acZy
= 8 Z Z p1+‘] Z Z 77 a+b,i - ha,ihb,j - h/a,jh/b’i + ha+b,j)
i€Zy JELY acZP beLY

=8" Z Z n(a)n(b) Z haibi Z Piti (hoiti — hair; — Pb ity + Patb,itj)

acZ? beLy iczy jezy

=43 ST @A) [ 2773 haswi | | Y pe (hoe — hae — Ane + hasb)

a€Zl beZ} ez c€Zy

=47 ") " H(a)i(b)azb} (Po — Pa — Pb + Patb)

acZy beZy

=2 [27"(a)]” (o — pa)

acZy
=2 Y ] (1 —1- 26)”’(*‘)) .
acz\{(0}
n

The following bounds on D follow from Lemma 3.2 using 1 < w(a) < n for a €

z; \ {0}:
€ Y 2@ <D<200-(1-2)") Y. [27i(a)]. (3.3)
acz\{0} acz\{0}

The lower bound was established in [10] and can be achieved with equality if 77(a) = 0 for
every a € Z% with Hamming weight w(a) > 1. For example, the Natural Binary Code
satisfies this requirement [10,11]. To achieve the upper bound with equality, we must

have 7j(a) = 0 for every a € Z% such that w(a) < n, i.e., 7(1) must be the only nonzero
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Hadamard transform component. Note, however, that for any index assignment 7,

Yo @] = | Y {wzn(i)hi,z,} - {Q"Zﬂ(i)hi,o}

acZy\{0} acZy icZy ieZy
2

SRR DI FRD SYRIN B [z]

i€S jeS aczZy i€S

2

= 2"y i?— [2"221 (3.4)

1€S S

4" -1
— 3.5
B (3:5)

= o3,

the variance of a random variable chosen uniformly at random from S. On the other

hand, for any ,
- 2

2a)]” = |27 n()hia

iczp

— 9—n Zi(_l)w(i)lT]

1€S

[ 2" —1 2= -1
| i:2n_1 =0

— |:27n4n71] 2

= 42 (3.6)
4m —1
12

for every n > 1. Thus, the upper bound given in (3.3) is not achievable when n > 1. The
next tightest upper bound from Lemma 3.2 is obtained using w(a) <n—1for alla # 1,
i.e.,

D <2(1-(1~2¢")max [27"0(1)]”

+2(1-(1-290"") | Y [270()]" — max [27(1)]”
acZ3\{0}
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Indeed, the Worst Code achieves (3.7). To prove this, consider the Hadamard transform

components 7(a) of an arbitrary linear index assignment 7 (i) = iG, for any a € Z \ {0}:

i@ = Y n(ihia

i€z
= Zihw(i),a
i€S
n—1
= Z (Z Qlil) hic,a
i€S \i=0
n—1
= D 2D ihijaer
1=0 icz?
n—1
= 2" M er_eoy, (3.8)
1=0

where (3.8) follows from Property (iv) since aGT # 0 for a # 0 by the nonsingularity of
G. Therefore, the only nonzero Hadamard transform components are those corresponding
to a =e® (GT)_I, for | =0,...,n — 1. Thus, to achieve the lower bound given in (3.3)
every row of (GT)_1 must have Hamming weight 1, as with the Natural Binary Code.
Similarly, the upper bound given in (3.7) can be achieved by setting e~ (GT) o1
(i.e., the first row of the inverse of the transposed generator matrix must be all ones),
and choosing the remaining n — 1 rows of (GT)71 to have Hamming weight n — 1. An
example is G;Vl, given in the definition of the Worst Code. Note that the all-one vector

has to be the first row of (GT)_1 to ensure the maximization of
[2—nﬁ(1)}2 _ [Q—n (_Qn—12n—1)]2 — 2

Thus, combining the lower bound from (3.3) and the upper bound from (3.7), and us-
ing (3.5) and (3.6) to eliminate the remaining Hadamard transforms from the expressions,

we obtain the following theorem.

Theorem 3.1 Suppose an integeri is chosen uniformly at random from S = {0, ... ,2"—
1} and the n-bit word w(i) is transmitted over a binary symmetric channel with bit error

probability € € [0,1/2], using an index assignment 7. Then the resulting mean squared
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error D satisfies

4 —1
6 7

4 —1

s <D<e(l- 2)" 4" 4 (1— (1 —2¢)"7)

€

where the lower bound is achieved by the Natural Binary Code and the upper bound by
the Worst Code.

Let us denote the distortion of the Natural Binary Code and the Worst Code respec-
tively by Dmin = € “5 and Dy = € (1 — 2¢)"” Tgnt 4 (1-(1- 2e)n_1) £ If an
index assignment is chosen uniformly at random, then the average distortion is

ave: 2n 'Z —nzz 2_] p7r (i)+7(J)- (39)

1€S jES

Since pp = (1 — €)", and

1
W;pﬂi)ﬂﬁ) = Z Z Patb ( D) ‘ZI{W(I)_aW b})

acZy beZy
= D> pasw (I{l—J,a b}( @ )1)' +I{1¢Jaa¢b}(2227;)!2)!)
acZy bely
= I{izj}/)0+f{i¢j};n_7_pg’
this gives
Dae = - on 21:6 22 (- =0-0-e )4”2;2"'

i€S jes

The values of Dy, and D,y were apparently first reported in [7].

Clearly, the inequalities Dmin < Daye < Dmax hold for every € € [0,1/2] and n > 1.
It is interesting to examine the asymptotic behavior of the minimum, maximum, and
average distortions, both as the blocklength n grows and as the channel error probability
€ decreases. The partial derivatives of D:‘?", g::i, and %, with respect to € are all
strictly negative for all e € (0,1/2) and for all n > 1. Hence, the largest performance
gain of a best index assignment over a worst index assignment or over an average index

assignment occurs in the limit as ¢ — 0. Asymptotically as ¢ — 0, for a fixed blocklength

n, these gains are given by
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. Dpax 1+ 3 1
im = n-— —
30 Do " 1)1—4n

li Daye n
im = —
=0 Dynin 2(1=2"7)’
D 3 1
lim —= = 2(1-n"")(1-27" =) .
iy 2 a2+ (3) s
On the other hand, for a fixed bit error probability e, letting n — oo yields
1- Dmax _
nl_glo Din B 2¢’
lim Dae = —
n—>00 Dmin 26’
. Dmax _
Do

ave

Thus for asymptotically large block lengths, the performance gain of a best index assign-
ment over a worst index assignment or an average index assignment is 1/2¢, which can be

very large. In this sense, a large fraction of index assignments can be considered “bad.”

Corollary 3.1 For any fized large n, as € — 0 the relative mean squared errors of worst,

average, and best index assignments for the uniform source obey the following ratios:
Drax i Dave : Dmin = 1:1/2:1/n,
and for any fized €, as n — oo the relative mean squared errors obey the ratios:
Dpox : Dayve : Dpin =1 : 11 2e.

That is, for any € > 0, the expected distortion of a randomly chosen index assignment
asymptotically equals (as the blocklength grows) that of the worst index assignment.
If an integer chosen uniformly at random from S is normalized to have zero mean and
unit variance then the resulting distortions corresponding to the best, worst, and random

index assignments are given by

~ Dmin
Dmin é > = de
0s
~ A Dmax n—1 (]. — 26)”71
Do 2 —2(1—(1-2 el T2
ax 0_‘29 ( ( 6) ) + ¢ 1 _ 4—n

~ D 1—(1—ér

Dy 2 Dre 17079
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Figure 3.1 The best, worst, and average performance achievable by index assignments for a
unifogm source. The solid line corresponds to Dpyi,. The dashed and dotted curves show Dy«
and Djye, respectively, for n = 4,12. The horizontal line represents the variance of the source,

an achievable distortion at zero transmission rate.

Figure 3.1 compares f)min, f)max, and ﬁave. The horizontal line at normalized distor-
tion 1.0 represents the distortion achievable with no information transmission (by simply
reproducing the mean of the source at the receiver). Thus, the usefulness of any index
assignment is limited to values of € smaller than the bit error probability determined by

the intersection of this horizontal line and the distortion curve corresponding to the index

assignment. Since limy, o0 Dimax = limy, 00 Dave = 2 for any € € (0, 1/2], the useful region
of bit error probabilities for the worst and average index assignments shrinks steadily as

the blocklength increases. If ne << 1, then we obtain the approximations (linear in ¢)

. 3 ~ 2n
Dpax = | 4(n—1 —_— Dyer~ | ——— e
( (n—1)+ 1_4n>e and (1_2n)e
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These hold for small € on the curves in Figure 3.1 for which n is not too large. Suppose
these linearized approximations hold, and suppose that n is large but not too large (i.e.,
if 27" << 1 while maintaining ne << 1). Then the useful regions of the worst and
average index assignments can be approximated as € € (0,1/(4n)) and € € (0,1/(2n)),
respectively. These intervals are obtained by examing which values of ¢ yield distortions
less than 1. Note that l~)min = 4e is independent of n and linear on the full range
€ € [0,1/2]. Thus, the useful region of the best index assignment is (0, 1/4) irrespective
of the blocklength n.

3.4 (Generalization to Vector Quantizers

The Natural Binary Code was shown to minimize the distortion D for a uniform scalar
quantizer and a uniform source in [10] and was generalized to a class of vector quantizers
in [11]. The class of vector quantizers in [11] is the same class studied in [12,17-19] and
was referred to in Chapter 2 as “binary lattice vector quantization.” In contrast, we
demonstrate by means of a counterexample that the distortion maximization property of
the Worst Code for a uniform scalar quantizer cannot be generalized to arbitrary BLVQs.
We do, however, show that the Worst Code maximizes the distortion among all affine
index assignments for arbitrary BLVQs.

For any positive integer d, let R¢ denote d-dimensional Euclidean space. We use a
horizontal bar to distinguish between real vectors X € R? and binary vectors i € Z3.
The Euclidean norm of a vector X € R? is denoted by ||X||. As in Chapter 2, we define a

BLVQ as follows.

Definition 3.6 A d-dimensional, 2"-point binary lattice vector quantizer is a vector
quantizer with codevectors of the form y;, = ¥y, + Zl”:_()l v,i; for i € S, where y, € R?,

and V = {¥,}]) C R is a generating set, ordered by |[%o|| < [|#1]] < ... < ||[¥nzal-
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Analogous to (3.2), the channel distortion of a BLVQ with equiprobable codevectors

is defined as
DE27 S S5 = 5l et nty: (3.10)
€S jeS
A uniform scalar quantizer with step size A is a special case of a BLVQ with d = 1
and v; = 2!A for 1 € {0,1,... ,n — 1}.
The results of Section 3.3 also apply for binary lattice quantizers if we replace (i)

by Z(i) = ¥-1(;)- In particular, Lemma 3.2 becomes
=2 Y |2z (1 —(1- 2e)w<a)) , (3.11)
acZp\{0}
and thus (3.3) becomes
—na 2 n —na 2
de > |l2"z(a)| < D<200-(1-29") Y [27z(a)||. (3.12)
acZj\{0} acZ\{0}

We also have by (3.4) that

Yo 2z =2 gl -

acZ3\{0} 1€S

-1

1
ZZ P, (3.13)

=0

2" Z Yi

1€S

for any choice of index assignment 7. It is difficult, however, to find max, H2_”%(1)H2
for an arbitrary index assignment. For affine index assignments, we have by (3.8),

n—1

%(a) = _27L—1 Zvll{aGT:e(l)}a
=0

and thus

1
max [[27%(1)||* = 2 9. (3.14)

7 affine

Using (3.14) and (3.13), the same argument that led to the upper bound in Theorem 3.1

yields the following corollary.
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Corollary 3.2 The channel distortion of a binary lattice vector quantizer, with genera-
tors vy, ... ,V,_1, followed by an affine index assignment and a binary symmetric channel
with bit error probability € € [0,1/2] satisfies

n—2

(1= (=207 s+ 5 (1= (1 =207 S [,

=0

D<

| =

and the Worst Code achieves the upper bound with equality.

Note that from (3.14) Corollary 3.2 can be generalized to all (i.e., affine and non-affine)
index assignments if max, }‘2‘"%(1)“2 = i||\7n_1||2. However, in general Corollary 3.2

cannot be generalized in this manner, as demonstrated in the following corollary.

Corollary 3.3 The Worst Code does not mazximize the mean squared error of an arbi-
trary binary lattice vector quantizer over all index assignments for a binary symmetric

channel.

Proof We show by means of a counterexample that in general there exists an index
assignment 7y yielding a higher MSE than that of the Worst Code 7. Specifically,

define the non-affine 3-bit index assignment 7x by

mw(100)  if i= 011,
mx(i) = 7w (011)  ifi= 100,

7w (1) otherwise.

Table 3.2 explicitly lists the index assignments 7y, and 7y, along with the Hadamard

transform vectors Zy and zx. The identity
[a+w|”+la—wl* =2[a)* + 2w ©§w%eR

will be used frequently in what follows. Also, to simplify notation we set v = 1 — 2e.

By (3.11) the channel distortion of the Worst Code is

Dw = 2(1=7")I(=4/8)%2]” +2(1 = 7*) (I(=4/8)%0|” + [|(=4/8)¥:])

1
= 5 [l + 1% + 19l”) = 22 (1920 + 1%0]1%) = 2 19:11°]
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Table 3.2 Hadamard transform vectors of the Worst Code and a non-affine index assignment
which performs even worse.

L i [ mw() ] zw (i) [ mx (i) | zx (i) |
000 || 000 |8yo+4(Vo+Vi+Vs) | 000 |8yo—+4(Vo+Vi+Vs)
001 | 101 0 101 0
010 || 110 0 110 0
011 | o011 0 111 0
100| 111 0 011 +2 (Vg — V1 — ¥)
101 | 010 —4v; 010 —2 (Vo + V1 — Vo)
110 | 001 —4%, 001 —2 (V9 — V1 + V)
111 || 100 —4%, 100 —2 (Vo + V1 + Vo)

and the channel distortion of the index assignment 7y is

Dx = 2(1=7")[I(=2/8)(%; +¥1 + %)|”
+2(1 = %) (I1(=2/8)(F2 — 1 + %) |I* + [|(=2/8) (¥2 + ¥1 — %0)|[*)

+2(1 — ) [|(2/8) (%2 — %1 — %) |I?

1 _ _ _ _ L
=3 [4 (I[F201? + [194]1* + [90]”) = 7[[¥2 — (F1 + %)

—27? (||‘72||2 + [|¥1 = ‘70||2) Y [Ve+ (%1 + ‘_’0)||2} .

2
I

Thus, Dx > Dy whenever
0 > (%2 + @1+ %)|° — 4|%[)
— 2 _ _ 2 _ 2 _ 2 _ _ _
+29 (9201 + 91 = %oll* = 2 (4] + [90]1%)) + 192 — (%1 + ¥o)|I”
= Y219+ %ol* = [[%211%) = %1 + %0 — %]
-2y (|91 + ol® — ||‘7'2||2) + |91 + ¥ — %
= ([2(][v:+ ol|” — ||‘72||2) —[[¥1+ Vo — ‘72||2] Y= [[V1+ Vo — ‘72||2) (v—1).
Hence, for any 8-point BLVQ satisfying
191 + ¥ol|> > ||%2]|° + |91 + 0 — 2%, (3.15)

the index assignment 7y is worse than the Worst Code if
191 + %o — %5

2 (191 +%olI” = [9:]") = 191 + 0 — 9"

<y <1,
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or equivalently, whenever

(IIv1 + ol” — ||‘7'2||2) — 191 + %o — %o’

2 (|[%1 + Vol” = [[%2]”) = |91 + %o — |

0<e< (3.16)

In particular, if ¥, + ¥y = a¥, for a > 1, then (3.15) is satisfied and (3.16) reduces to

2wl 2
|91 + %ol + 3 [|¥2l] a+3

0<e< (3.17)

The right-hand side of (3.17) can be arbitrarily close to 1/2 as @ — 1. Thus, for any
e € (0,1/2) a BLVQ can be found for which the index assignment 7x is worse than the
Worst Code. [}
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CHAPTER 4

SOURCE AND CHANNEL RATE ALLOCATION
FOR CHANNEL CODES SATISFYING
THE GILBERT-VARSHAMOV OR
TSFASMAN-VLADUT-ZINK BOUNDS

In this chapter, we derive bounds for optimal rate allocation between source and
channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-
Vladut-Zink bounds. Formulas giving the high-resolution vector quantizer distortion of
these systems are also derived. In addition, we give bounds on how far below channel

capacity the transmission rate should be for a given delay constraint.

4.1 Introduction

One commonly used approach to transmit source information across a noisy channel is
to cascade a vector quantizer designed for a noiseless channel, and a block channel coder
designed independently of the source coder. A fundamental question for this traditional
“separation” technique is to determine the optimal allocation of available transmission
rate between source coding and channel coding. Upper [1] and lower [2] distortion bounds
on the optimal tradeoff between source and channel coding were previously derived for a
binary symmetric channel. They exploit the fact that optimal source coding and optimal

channel coding each contribute an exponentially decaying amount to the total distortion

The material in this chapter has been submitted to the IEEFE Transactions on Information Theory
as: A. Méhes and K. Zeger, “Source and channel rate allocation for channel codes satisfying the Gilbert-
Varshamov or Tsfasman-Vl1adut-Zink bounds.”
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(averaged over all index assignments), as a function of the overall transmission rate of
the system.

In practice, there is usually a constraint on the overall delay and complexity of such
a system. This constraint limits the lengths of source blocks and of channel codewords.
As a result, the classical approach of Shannon, to transmit channel information at a rate
close to the channel’s capacity and to encode the source with the corresponding amount
of available information, cannot be used in practice. Instead, one must often transmit
data at a rate substantially below capacity. The amount below capacity was deter-
mined in [2] for binary symmetric channels and in [3] for Gaussian channels. However,
the results in both [2] and [3] exploit the existence of codes which have exponentially
decaying error probabilities achieving the expurgated error exponent. Although such
codes are known to exist, no efficiently decodable ones have yet been discovered. Various
suboptimal algorithms do exist for vector quantizer design for noisy channels, but their
implementation and design complexities generally grow exponentially fast as a function
of the transmission rate of the system.

In this chapter we determine bounds on the optimal tradeoff between source and chan-
nel coding for classes of channel codes that attain the Gilbert-Varshamov bound. It is
known that, asymptotically, a random linear code achieves the Gilbert-Varshamov bound
with probability one [4,5], although most known structured classes of codes fall short of
the bound. The existence of certain Goppa codes, alternant codes, self-dual codes, and
double circulant or quasi-cyclic codes, all of which meet the Gilbert-Varshamov bound,
has been discussed in [6, p. 557]. A significant breakthrough was achieved by Tsfas-
man, VIddut, and Zink [7], where sequences of algebraic-geometry codes over GF(q)
(with ¢ = p™ and p prime) were constructed from reductions of modular curves. These
codes exceed the Gilbert-Varshamov bound (in an interval of rates) if ¢ > 49. Katsman,
Tsfasman, and VIadut [8] showed that there is an infinite family of polynomially con-
structible codes better than the Gilbert-Varshamov bound, although the best presently
known (polynomial) algorithms are not yet practical. Another explicit construction of

codes above the Gilbert-Varshamov curve was given recently in [9], but a detailed analysis
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of the algorithmic complexity of the construction is presently lacking. No binary con-
structions of codes with parameters exceeding the Gilbert-Varshamov bound are known.
In fact, it is widely believed that the Gilbert-Varshamov bound is the tightest possible
for ¢ = 2. The best known binary codes are obtained from good g¢-ary codes by con-
catenation. Corresponding bounds are also available, but are generally weaker than the
binary version of the Gilbert-Varshamov bound. There are several other bounds for the
parameters of both linear and nonlinear, and both binary and nonbinary codes based on
algebraic-geometry codes. A summary of these bounds is found in [10] and a standard
reference on algebraic-geometry codes is [11]. In [12]| variable inner codes and an alge-
braic geometry outer code are concatenated to obtain exponentially decaying probability
of error.

Due to the current lack of practical constructions for channel codes attaining the
Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds, the results of this chapter are
presently of theoretical nature. However, with advances in the field of algebraic ge-
ometry codes, we anticipate the discovery of more efficient construction algorithms in
the future. In addition, the results obtained for codes of this type broaden the class of
known channel codes for which quantizer distortions decay to zero exponentially fast with
increasing transmission rate. We demonstrate that this class includes certain suboptimal
coding schemes. Note that families of channel codes which are not asymptotically good
need not have a constant asymptotic decay rate as a function of the overall transmission
rate. Indeed, repetition codes and other classes of codes with asymptotically vanishing
channel code rates do not possess this property.

To obtain results for families of channel codes attaining the Gilbert-Varshamov or
Tsfasman-Vladut-Zink bounds, we only use the property that a positive monotone de-
creasing function g (in Proposition 2) exists describing the relationship between the
channel code rate and the relative minimum distance of these codes. Thus, the same
method of derivation could potentially be used to obtain similar bounds for other classes

of asymptotically good channel codes, some of which (e.g., Justesen codes, Blokh-Zyablov
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codes) are practical. However, it is often difficult to exhibit the function ¢ in an analyt-
ically tractable form.

The main results of this chapter are as follows. In Theorem 4.1, upper and lower
bounds are given for the optimal tradeoff between source and channel coding for channel
codes satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink inequalities. Theo-
rem 4.2 extends a result of [2] for the optimal source-channel coding tradeoff over an
unrestricted class of channel codes. Theorems 4.1 and 4.2 enable a comparison of chan-
nel codes that achieve the reliability function of the channel (and in this sense are optimal
for the given channel) and certain asymptotically good channel codes that are indepen-
dent of the underlying channel. Figure 4.4 (on page 112) presents an example of the
penalty in channel code rate for suboptimality. Note that the bounds compared need not
be the tightest possible in all cases. Theorem 4.3 gives the large dimension performance
of the optimal tradeoff determined in Theorem 4.1. In [2], the upper and lower bounds on
the optimal rate allocation for “optimal” channel codes were shown to coincide for large
enough dimensions (dependent on the bit error probability). Thus, we do not derive the
large dimension performance corresponding to Theorem 4.2, but in the example shown
in Figure 4.7 (on page 117) we include bounds for both optimal and suboptimal channel
codes for comparison.

Throughout this chapter we assume a randomized index assignment (i.e., a uniformly
random mapping of vector quantizer codevectors to channel codewords). While this as-
sumption is certainly suboptimal from an implementation standpoint, it provides a pow-
erful mathematical tool for obtaining tight performance bounds, analogous in spirit to the
classical randomization techniques used to prove Shannon’s channel coding theorem. The
same index assignment randomization method was used in [1-3] as well. Furthermore, it
is not presently known if randomization of index assignments is in general asymptotically
suboptimal.

Section 4.2 gives necessary notations, definitions, and lemmas and Section 4.3 presents

the source/channel coding tradeoff problem. Section 4.4 gives basic results on bounds
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and error exponents. The main results of this chapter are given in Section 4.5, and one

technically complicated proof is left to Section 4.7.

4.2 Preliminaries

The following notations will be useful in our asymptotic analysis.

Notation Let f(n) and g(n) be real-valued sequences. Then, we write

e f =0(g), if there is a positive real number ¢, and a positive integer ng such that

|f(n)| < clg(n)|, whenever n > ny;
e f=0(g),if g has only a finite number of zeros, and f(n)/g(n) — 0 as n — oc;

e f = 0O(g), if there are positive real numbers ¢; and ¢y, and a positive integer ny,

such that ¢1|g(n)| < |f(n)| < ezlg(n)], for all n > ny.

We obtain bounds on the optimal rate allocation for the cascaded system depicted in

Figure 4.1. Similar to Chapter 2, the source coder is a vector quantizer.

k dimensional vector Quantizer kRr bits Index kRr bits Channel kR bits
X Encoder i Assignment (i) Encoder
TU
gay
Symmetric
Channel
k dimensional vector Quantizer kRr bits Inverse Index kRr bits Channel kR bits
Y, Decoder i Assignment () Decoder
Tfl

Figure 4.1 Cascaded vector quantizer and channel coder system.

Definition 4.1 A k-dimensional, M-point vector quantizer is a mapping from k-dimen-

sional Euclidean space R* to a set of codevectors {yi...,yu} C RF. Associated with
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each codevector y; is an encoder region R; C RF, the set of all points in R* that are
mapped by the quantizer to y;. The set of encoder regions forms a partition of R¥. The

rate (or resolution) of a vector quantizer is defined as R; = (log, M) /k.

A vector quantizer is commonly decomposed into a quantizer encoder and a quantizer
decoder. For each input vector, the encoder produces the index i € {1,..., M} of the
encoder region R; containing the input vector. For each index 7, the decoder outputs the
codevector y;.

The p*-power distortion of a vector quantizer is

m=3 / e wilPdut) (4.1

where || - || is the usual Euclidean norm, and p is the probability distribution of a k-
dimensional source vector. The subscript 0 is used to distinguish the distortion on an
error-free channel from the distortion due to a noisy channel (to be discussed later). The

high-resolution (i.e., large R;) behavior of Dy can be described by Zador’s formula.

Lemma 4.1 (Zador [13]) The minimum p**-power distortion of a rate Ry vector quan-

tizer is asymptotically given by

D() = prRs—}—O(l).
This is often referred to as the “6 dB/bit/component rule” for p = 2, since
101og;, (277 /2 P(Ret1)) » 3p.

In addition to the minimum distortion achieved by optimal quantizers, the asymptotic
distortion of several other classes of vector quantizers, including uniform quantizers and

other lattice-based quantizers, has the same high-resolution decay rate.

Definition 4.2 We call a vector quantizer that achieves the asymptotic distortion of

Lemma 4.1 a good vector quantizer.
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Motivated by the (nonbinary) alphabet size requirements of algebraic geometry codes,
we consider channel codes over GF(¢) and use a g-ary symmetric channel in our system
model shown in Figure 4.1. The following two definitions formally introduce ¢-ary sym-

metric channels and g¢-ary linear block channel codes.

Definition 4.3 A discrete memoryless channel is a probabilistic mapping from an input
alphabet A to an output alphabet B characterized by channel transition probabilities
P(bla), i.e., the probability that the channel maps an input symbol a € A to the output
symbol b € B. A g-ary symmetric channel with symbol error probability € € [0,1 — ¢7]
is a discrete memoryless channel having A = B = {0,...,¢ — 1} and channel transition
probabilities

€

P(a|b) = I{a:b}(l — 6) + I{a;ﬁb}q —

a,be{0,...,g—1}, (4.2)
where I denotes the indicator function.

Definition 4.4 An (n, k) block channel code is a set of length n strings of g-ary symbols,
called codewords. A linear q-ary [n,k,d], block channel code is a linear subspace of
[GF(q)]", containing M = ¢* codewords, each with at least d nonzero components. The

number 7 = £ € (0, 1] is the channel code rate.

Associated with a channel code is a channel encoder and a channel decoder. The
channel encoder is a one-to-one mapping of messages (e.g., quantizer indices) to channel
codewords for transmission. The channel decoder, on the other hand, is a many-to-one
mapping. It maps received sequences of channel symbols (not necessarily codewords) to
messages. Denoting the channel codeword corresponding to m by ¢(™), and the set of
length n sequences decoded into [ by S;, the transition probabilities of the coded channel

are

Bim =3 [T Puil ™),

’LLESI =1
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where u;, cgm) € {0,...,g—1} are the i*" symbols of u and ™), respectively. The average

probability of decoding error (for a uniform source) is

P, = % 1221 (1—Bu) - (4.3)

Although we never assume a uniform source, this definition of P, is notationally conve-
nient in what follows. The following two lemmas state classical asymptotic upper and

lower bounds on P,.

Lemma 4.2 [14, pp. 140, 153] For every r < C, there exist sequences of (n,rn)

channel codes such that

Pe < eanmax(r)—ko(n)’

where C denotes the capacity of the channel, and Enya(r) = max (Ew(r), Fex(r)) is the

mazimum of the “random coding” and the “expurgated” error exponents.!

Lemma 4.2 characterizes the class of channel codes considered in [2]. For easier

reference, we introduce the following terminology.

Definition 4.5 We call a block channel code that achieves the asymptotic error exponent

in Lemma 4.2 an efficient channel code.

Lemma 4.3 [14, p. 157] Any sequence of (n,rn) channel codes on a discrete memo-

ryless channel must satisfy

P, > e~nFan(r)-+o(m)

b

where Eg,(1) is the “sphere packing” error exponent.

While Lemma 4.2 is an existence result, Lemma 4.3 holds for all channel codes. The
error exponent functions depend on the channel statistics. Definitions of F., Ee, and Eg,

in terms of the transition probabilities of a discrete memoryless channel, and a derivation

1The notation E.. is used instead of the usual E, to avoid confusing the subscript and the rate r.
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of closed-form expressions for g-ary symmetric channels are given in Section 4.7. All
three of these error exponent functions are known to be positive and convex in the range
0<r<C.

Another element of our system model shown in Figure 4.1 is an index assignment.
Definition 4.6 An index assignment 7 is a permutation of the index set {1,..., M}.

The purpose of an index assignment is to match a vector quantizer and a channel coder
in a cascaded system in order to minimize the end-to-end distortion. Distance properties
of channel codewords and quantizer codevectors should be aligned, so that on average a
likely channel error (small Hamming distance) results in a tolerable quantization error

(small Euclidean distance).

4.3 Problem Formulation

Consider a k-dimensional vector quantizer cascaded with a channel coder operating
over a g-ary symmetric channel with a fixed overall transmission rate R measured in bits
per vector component, as shown in Figure 4.1. For each k-dimensional input vector a
channel codeword consisting of n g-ary symbols is transmitted across the channel to the
receiver. The transmission rate is R = (nlog, q)/k. Let r € [0, 1] denote the rate of a ¢-
ary [n,rn, d], linear block channel code, where d is the minimum distance of the code (in
g-ary symbols). The source coding rate and the overall transmission rate are related by
Rs; = Rr. Let M denote the number of quantizer codevectors (equivalently, the number
of channel codewords). Then, M = 2*Fs = 2kRr — g™ For each input vector x € R¥, the
quantizer encoder produces an integer index i € {1,..., M}, which in turn is mapped
to another index 7 (i) by an index assignment. The channel encoder transmits the ()™
channel codeword through a g-ary symmetric channel (n g-ary symbols corresponding
to kR bits). At the receiver, the channel decoder reconstructs an index 7(j) from the
(possibly corrupted) n g-ary symbols received from the channel. Then the inverse index
assignment is performed and the quantizer codevector y; € R* corresponding to the

resulting index j is presented at the output.

92



For a given index assignment 7, the average p™®-power distortion can be expressed as

Zﬂm i / Ix — ;P ds(x). (4.4

i=1 j=1

There are no known general techniques for analytically determining min, D(7). As
an alternative, we randomize the choice of index assignment. This technique serves as a
tool in obtaining an existence theorem, and also models the choice of index assignment

in systems where index design is ignored. Hence, we examine the following distortion:

D=1 S b Zle,zam]/nx—ymdu() m

where the sums over 7 are taken over all M! permutations of the integers {1,...,M}.
The averaging effectively replaces the original ¢g-ary symmetric channel by a “new” M-
ary symmetric channel whose symbol error probability equals the average probability of
channel decoding error P, of the underlying channel. We have

1 1 M M
Vil Z Br(j)xi) = iVl Z Z Z Brnitd e (6)=t,7(5)=m}

T =1 m=1

—f{z—a}zﬁluM.Zf{w l}+f{z¢;}ZZﬁmuM,Zf{w<z =l ()=m}

=1 m=1
m#l
(M 2)!
= f{z—a}zﬂlu +I{sz (L= Bu)
P,
Substituting (4.6) into (4.5) yields
(1- Z / Ix - yillPdu(x ylPdux).  (47)
i=1 j=1
J#i

The sum in the first term of (4.7) is the distortion for a noiseless channel. We assume

that the source has compact support, in which case
M

1
p — —v.P
> P < 3y 3001 s =il [ dnGo
1=1 j= = i
J#e
< diam(p),
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where diam(u) is the diameter of the support region. Unless the source is deterministic,

a nonzero lower bound on the same double sum can be obtained using the p'"-moment

type quantity v,(u) = miny [, ||x — y[|Pdu(x). Namely,

M_1ZZ b =iy = 57— 1; =il

=1 j=1 =1
J#1
M

a2 ki)
> M vp(p) — DO

Note that both the upper and lower bounds above depend solely on the source and not

on the channel. Thus, returning to (4.7) we have
D =(1-P,) Dy + P.O(1). (4.8)

We assume a vector quantizer and an efficient channel code. Then, using Lemma 4.1 to
bound Dy, and Lemma 4.3 and Lemma 4.2 to bound P,, the average p'-power distortion
D of a cascaded source coder and rate r channel coder, with transmission rate R can

asymptotically (as R — 0o0) be bounded as

9—pRr+0(1) + 9—kREsp(r)+o(R) <D< 9—pRr+0(1) + 9~k REmax(r)+o(R) (49)

where the error exponents have been scaled by a factor of In ¢ as compared to Lemmas 4.2
and 4.3, in order to change the unit of block length from symbols to bits. The minimum
value of the right side of (4.9) over all » € [0,1] is an asymptotically achievable (as
R — o0) distortion D, and the minimum value of the left side of (4.9) is a lower bound
on D for any choice of 7. Let rm,c and rg, respectively denote the values of r which
minimize (asymptotically) the right and left sides of (4.9). Then ryay < r* < ry,, where

r* is the optimal rate allocation. It can be seen that to minimize the bounds in (4.9), the
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exponents of the two decaying exponentials in each bound have to be balanced, so that

Ex(rx) = %«X +o(1), (4.10)

where formally X € {sp, max} and o(1) — 0 as R — oo. The distortion achieved with a

channel code rate r* in this case is

D= prR'r*—}—O(l) )

The values of 7yax and 75, were determined in [2] for efficient binary channel codes.
We investigate the problem of optimal rate allocation for channel codes that attain the
Gilbert-Varshamov bound and/or the Tsfasman-VI1adut-Zink bound (or “basic algebraic-
geometry bound”). Such codes are in general weaker than those in [2], but are potentially

less algorithmically complex. Our results also generalize those in [2] to g-ary channels.

4.4 FError Exponents

In this section, we present the classical channel coding error exponents FE,., Fe,
and Fj, specialized to a g-ary symmetric channel, and we derive two new g-ary error
exponents Fgy and FEryz for channel codes that satisfy the Gilbert-Varshamov and
Tsfasman-Vladut-Zink inequalities, respectively. All five of these error exponents can be
concisely written using g-ary versions of the entropy, the relative entropy, and Rényi’s

entropy of order 1/2. We start with the general definitions of these information measures.

Definition 4.7 Let P and P be probability distributions on a finite set.

The entropy of P is
ZP ) log, P(x). (4.11)

The relative entropy between P and Pis

D(P|P) = ZP )log, (P(2)/P(x)) . (4.12)

95



The Rényi entropy of order oo of P is

1
11—«

H,(P) = log, ¥ [P(x)]*, (4.13)

for « > 0, @ # 1. Jensen’s inequality implies H,(P) > H(P) for a € (0,1), and

H,(P) < H(P) for a > 1. Details of Rényi’s information measures are given in [15].

Next, we introduce the various g¢-ary entropy functions defined for one-parameter

distributions related to the transition probabilities of a g-ary symmetric channel.

Definition 4.8 Let ¢,0 € [0,1 — ¢ !], and let P, and P; be probability distributions on

{0,...,g—1} with respective probabilities (1 —e, q_Ll, e q_Ll), and (1—96, q%l, e q%l).

The g-ary entropy function is defined as
A
H,y(€) = H(P.)/logyq = elog,(q — 1) — elog, € — (1 —¢) log,(1 — ¢). (4.14)

For ¢ = 2 this gives the binary entropy function h(e) = —elog, € — (1 —¢€) logy(1 —€). The

derivative of H, with respect to € is
H,(€) = log,(q — 1) — log, € +1og,(1 —¢), (4.15)
and the second derivative is

log, e
" _ q
'Hq(e) - e(l—e)

Thus, H,(e) is concave, strictly increasing on [0,1 — ¢~'], and achieves its maximum

(4.16)

Hy(1 —¢7") = 1 and its minimum #,(0) = 0. The notation #_' denotes the inverse
of H,: [0,1—¢ '] — [0,1]. Clearly, ’H;l is convex, from (4.16). The capacity of a ¢-
ary symmetric channel with symbol error probability € € [0,1 — ¢ '] expressed in g-ary

symbols is
Cy=1—H,(e). (4.17)

The (q-ary) relative entropy (information divergence) function is defined as

1-9¢

1—¢€’

0
D, (3] ) = D(Ps|[P.)/ logy a = §log, * + (1 - &) log, (4.18)
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which can also be expressed in terms of the g-ary entropy function as
Dy (Ol €) = Hqle) + (0 — €)H, (€) — Hq(0). (4.19)
For |§ — €| small, a Taylor series approximation of H,(d) around e gives
D, (5] €) = -%(5—6)27{;'(6) L0 (I5—epP). (4.20)

We restrict attention to Rényi’s entropy of order 1/2, and the corresponding channel
capacity of order 1/2 for a g-ary symmetric channel. The g-ary entropy function of order

1/2 is defined as

/2 (€)

q

H, (Pe)/logy g = 2log, (\/1 — e+ elg— 1)) . (4.21)

The capacity of order 1/2 of a g-ary symmetric channel with symbol error probability

€ €[0,1 — g '] expressed in g-ary symbols is
CM? =1—-HJ(e), (4.22)
which Csiszédr [15] showed to equal the “cutoff rate” of the channel.

The error exponents of Lemmas 4.2 and 4.3 can be specialized to a ¢g-ary symmetric

channel as follows (the proof of Proposition 1 is given in Section 4.7).

Proposition 1

Ep(r) = Dy (H,'(1—7)|¢) re (0,C,) (4.23)
Epe(r) = Gt re(n (4.24)
Dy (M, (1 =1 ¢) r € [, Cy)

_ —1
H'(1—r)log, W r € (0,7] (4.25)
CMo —r r € [ry, C37?)

p g—1)e
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Also, since 7y < C{? < Cy, and 1y <1y for e < 1 — g~!, we have

7-((1—1(1 —r)log, W}LLI r € (0,7]
Erax(r) = cem r€[r,m) - (4.26)
D, (H'(1=7)| ¢ 7 € [r9, Cy)

The lower bound on P, given in Lemma 4.3 holds for an arbitrary code. The upper
bound of Lemma 4.2, however, is an existence result. Analogous upper bounds and
corresponding error exponents can be obtained for “asymptotically good” families of
codes.

For a sequence of (n,nr,d) codes to be asymptotically good, both the rate r and the
relative minimum distance d/n must be bounded away from zero as the block length n
increases. Usually, bounds are given in the form d > ng(r) or r > ¢g~(d/n), for some
monotonic decreasing function g. In this chapter we consider two of the best known such
bounds, the Gilbert-Varshamov bound and the Tsfasman-V1idut-Zink bound (see [11,

p- 609] for a summary of these and several related bounds).
Definition 4.9 An [n,nr,d], code is said to satisfy the
o Gilbert-Varshamov bound, if
r>1—"MH,(d/n),
o Tsfasman-Viadut-Zink bound, if
r>1—d/n—(yVg—1)""
The following lemma provides a bound on the tail of a binomial distribution.

Lemma 4.4 ( [14, p. 531]) For§ >¢€ >0,

n

Z <”) 61(1 _ e)nfi < 9 nD2(dle),
7

i=nd
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Proposition 2 If an [n,rn,d], linear block channel code has minimum distance d >
ng(r) for some positive monotone decreasing function g, then the average probability of

decoding error on a q-ary symmetric channel with symbol error probability € satisfies
P. < 9=nP2(39(r)|<) r € (0,97 "(2¢)).

Proof

Since a code with minimum distance d can correct at least [%J errors,

rs > (Na-va-o (05 (1.27)

—1
i=| 45t +1 1
< Z (n) €(l—e)" (4.28)
7
i=ng(r)
< 27P2(390)]|e) (4.29)

where inequality (4.28) follows from |41 | +1 > d/2 > ng(r)/2, and inequality (4.29)
from Lemma 4.4. [

The bound on P, in (4.27) used to obtain Proposition 2 may suggest the use of
bounded distance decoding in the channel decoder. Since this is generally suboptimal,
using maximum likelihood decoding is preferable and yields a lower probability of de-
coding error in most cases. While using tighter bounds on P, may also improve the
rate allocation bounds derived later in this chapter, we opted for the “standard” bound
(inequality (4.27)) because it depends only on the minimum distance. This enables us to
directly apply the function g relating the rate and the relative minimum distance, with-
out any further assumptions on the structure of the channel codes. The upper bound
on P, given in Proposition 2 only depends on the code parameters n and r, the symbol
error probability €, and the function g. The following two corollaries follow immediately

from Proposition 2 and will also be useful in what follows.

Corollary 4.1 Consider the cascade of a good k-dimensional vector quantizer, a q-ary
linear block channel coder that achieves the Gilbert-Varshamov bound, and a q-ary sym-

metric channel with symbol error probability € and overall transmission rate R. For every
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r <1—%H,(2¢) = C,(2¢), the average probability of channel decoding error satisfies
pP< Q_kREGV(T)7
where

Eav(r) =D, (—’Hq‘l(l —7)

e) (4.30)
1s the Gilbert-Varshamov error exponent.

Corollary 4.2 Consider the cascade of a good k-dimensional vector quantizer, a q-ary
linear block channel coder that achieves the Tsfasman-Viadut-Zink bound, and a q-ary
symmetric channel with symbol error probability € and overall transmission rate R. For

everyr < 1—(\/q— 1)~ — 2¢, the average probability of channel decoding error satisfies

Pe < 2—kRETvz(1‘)’

where

Broalr) =, (5 (== (Vi- 07 | (131)

18 the Tsfasman-Viddut-Zink error exponent.
Analogous t0 Emax (1) = max (Ere(r), Fex(r)), we define
Eax(r) = max (Egv(r), Erva(r)) -

For ¢ <49, E! . (r) = Egv(r). For ¢ > 49,

B ()= D, (5 (1 —r— (/71— 1)_1) H e) r € [rh,r)
D

¢ (3H; (1 =1)[¢) r € (0,11 Ulrs, Cq(2¢))

where r{ < rf are roots of H;'(1—7) = 1—r+(,/g—1)"". (In [7] this equation is shown

to have two distinct roots for ¢ > 49.)
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4.5 Optimal Rate Allocation

The bounds we obtain on the optimal rate allocation in a cascaded vector quantizer
and channel coder system are functions of the vector dimension &, the channel symbol
error probability €, and the parameter p in the distortion criterion. These bounds do not
depend, however, on the source statistics. We obtain analytic bounds on the optimal rate
allocation for two important cases of interest: a large vector dimension k, and a small
symbol error probability €. In each case the remaining parameters are assumed fixed but
arbitrary. To obtain these bounds, we analyze the error exponents Egp, Emax, and E! .

First, we note that on the interval [r, 73], the function Epnay(r) = C§'/? — r is linear.
Let ry;, be a solution of (4.10) (for X = max) such that ry, € [rq,rs], whenever such a

solution exists. Then,

1/2 p
C(;/)_Tlin = Erlina

or equivalently, ry, = C{"?/(1+ (p/k)). If k is fixed, and ¢ approaches zero, then
Tin — (1+ (p/k))f1 and 7, — 1. Hence, r;, < r; for € sufficiently small. Thus, for e
sufficiently small, r,,x < 71 and it therefore suffices to restrict attention to F,, instead
of Emax (see Figure 4.2(a)).

If € is fixed and k increases, then ry, — C{/*. Hence, ry, > 7o for k sufficiently large.
Thus, for k sufficiently large, rmax > 79 and thus it suffices to restrict attention to E,.
instead of Eay (see Figure 4.2(b)). Also note that E,.(r) = Eg,(r) for all r € [rq, Cy).
Thus, the upper and lower bounds coincide as k increases, and hence, it suffices to
consider Egp,.

3 !
Next, we examine F| .

For ¢ < 49, E! . = Egy for all r. For ¢ > 49, note that 7 is

max

independent of both k£ and € and depends only on g. Thus, for k fixed, and € decreasing,
Erl, (the right-hand side of (4.10)) is constant, whereas D, (H, (1 —15)/2| €) (the left-
hand side of (4.10)) increases without bound. Hence, for ¢ small enough,

Dy (H, (1 —15)/2| &) > %«;. (4.32)

Since £r is a monotone increasing function of r, and E] , (r) is monotone decreasing in

r, (4.32) implies that if E} (7!

max

) = Brlax then 7 > 75 (see Figure 4.3(a)).

max
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Channel Code Rate

(a) Small bit error probability
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Channel Code Rate

(b) Large vector dimension

Figure 4.2 A graphical solution to (4.10) for Emax (p = 2, ¢ = 64). The solid curves show
Emax(r) for different values of €, and the dashed lines have slope p/k. The two dots on each
error exponent curve correspond to r; and 7o.
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Channel Code Rate

(a) Small bit error probability
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Channel Code Rate

(b) Large vector dimension

Figure 4.3 A graphical solution to (4.10) for E! .. (p = 2, ¢ = 64). The solid curves show
E] .« (r) for different values of €, and the dashed lines have slope p/k. The two dots on each

max
error exponent curve correspond to 7} and r4.
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For ¢ fixed and k increasing, 275 (the right-hand side of (4.10)) is decreasing, while
D, (H;'(1—7%)/2| €) (the left-hand side of (4.10)) is constant. Hence, for k large
enough, (4.32) holds, and by the same monotonicity argument used above, 7/ > 7}
(see Figure 4.3(b)). Consequently, it suffices to work with Egy instead of E] ... Thus,
we henceforth omit Ervz from our analysis.

We note that a slightly more complicated differentiable bound relating d/n and 7 is
also known. This bound, called “Vldduts bound” [sic] in [16], effectively “smoothes the
edges” of the maximum of the Gilbert-Varshamov and Tsfasman-Vladut-Zink bounds.
Applying Proposition 2, a “Vladut error exponent” could also be obtained, but there
exists a rate, analogous to 7} (independent from € and k), beyond which the Vliddut and

Gilbert-Varshamov error exponents coincide. Hence, by the same argument given above,

it suffices to restrict attention to Fqy instead of the Vladut error exponent.

4.5.1 Small bit error probability

In this section we determine the behavior of the solution to (4.10) for small ¢, and

fixed k and p. First, we set § = H_'(1 — r) and rewrite the error exponents as

Ey(6) =D, (6| €) 5€(e,1—q™h) (4.33)
_ ¢—1 R R

Fex(8) = 6 log, 01 5 e [1 g 1—g¢ ) (4.34)

Eav(6) =D, (6/2| €) de(2,1—¢7"). (4.35)

Next we find a real number dx that satisfies

Ex(6x) = cr(dx), (4.36)
where formally X € {sp,ex, GV},

r(0) =1 — Hq(0), (4.37)
and ¢ = p/k. Then, we obtain the solution to (4.10) by setting

ry = r(dx) + o(1), (4.38)
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where the o(1) term vanishes as R — oo.
Observe that the sphere packing and Gilbert-Varshamov exponents can both be writ-

ten as

Ex(8) =Dy (0/ill €)
J b 4 ) ) )
= glogq Z + 3 log, 1/e+ (1 — ;) log, (1 — ;) —(1- ;) log,(1 —e), (4.39)
where ¢ = 1 when X = sp, and ¢ = 2 when X = GV. Using (4.72) and (4.70), the

expurgated exponent can be rewritten as

) = =310, (2,/1- 0 + (42

26[%logq1/e—logq (2 1_€+(q—2)qi>] (4.40)

Since 0 is bounded, the dominant term on the left-hand side of Equation (4.36) (as given
in (4.39) and (4.40)) equals (6/7)log, 1/e in all three cases, while the right-hand side is
bounded between 0 and ¢, independent of €. Hence, as € approaches zero, for equality
to hold in (4.36), 6 has to approach zero at least as fast as (log, 1 /6)71. On the other
hand, the right-hand side of (4.36) approaches the finite constant ¢ if § — 0. Thus, 0
cannot converge to zero faster than (logq 1 /e)_1 for the left-hand side to stay bounded
away from zero. We therefore conclude that the solution to (4.36) must be of the form
_ictoax
log, 1 /€’

where ax — 0 as € — 0, and s = 1 when X = sp, and i = 2 when X € {GV,ex}. To

Ox (4.41)

characterize dx more precisely, ax has to be determined. In what follows all O(-) terms
go to zero as € — 0.

Substituting (4.41) in (4.39), and applying power series expansions yields

1c+ ax 1c+ ax

E =—— 1 —— +log, 1
x(ax) ilog,1/e [quilogql/e+ 84 /6}

ic+ ax 1+ oax
1l———) |1 1— —— 1 1—
* ( ilog, 1/6) [qu ( ilog, 1/6)  log, 6)}
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1c+ ax
ilog,1/e

(4 1c+ ax
ilog,1/e

1c+ ax
ilog,1/e

1
O (logg 1/6) ’ (1.42)

where 7 =1 for X =sp, and 7 = 2 for X = GV.

=c+ (ax/i) - [log, log, 1/ —log, (¢ + (ax /)]

1
log>1/€

1c+ ax
ilog,1/e

) + O(e)

logqe+0(

=c+ (ax/i) — [log, log, 1/¢ — log, (c + (ax /7)) + log, €]

The same steps applied to (4.40) result in

2c+ ex [1 /1—¢€ Ve
Eex ex) = T —1 1/e =1 Q0| —— _
(Cex) log, 1/e [2 ogg1/¢ qu( q—1+(q )q—lﬂ

2+ ey |1
=c+ (Oéex/Q) - W |:§ logq(q — 1) — logq 24+ O(\/E):|
2C 4 Qlex 1
= —— |1 —1)—log 4 — . 4.4
¢+ (Cex/2) Tlog, 1/¢ [log,(¢ — 1) —log, 4] + O <1og§ 1/6> (4.43)

To obtain the right-hand side of (4.36) as a function of ax, we write

ic+ ax 1+ ax
=1 TN (e (g = 1) —log, £ X
rx (aX) logq 1/6 ( qu(q ) qu lqu 1/6)

1c+ ax 1c+ ax
1-— 1 1-—
N ( log, 1/6) Ogg( logql/e)

iC+OzX )
=1- log, 1/¢ (log,(q — 1) — log,(ic + ax) + log, log, 1/€)
ZC+aX) '[/C+CUX 1
—-\1- log, e + O
( log, 1/¢/ log,1/e " (logg 1/e>
7:C+QX .
=1- log, 1/c (logq log, 1/e +log, (g — 1) —log,(ic + ax) + log, e)
+0|( 3oz (4.44)
logg 1/e ) .

Next, we proceed to solve (4.36) for ax. Comparing Equations (4.36), (4.42), (4.43),

and (4.44), we conclude that ax = O (%). Based on this observation, the
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log, (¢ + (ax/4)) terms in (4.42) and (4.44) can be further expanded to obtain

1c+ ax

Ex(ax) =c+ (Ot)(/l) - m

[log, log, 1/€

ax log, e

1
—1 - —— 7 4 0(a? 1 Ol ———
0g, € ic + (aX) + log, e} + <log2 1/6)

=c+ (ax/i) — [log, log, 1 /€ — log, ¢ + log, €]

c
log, 1/e
ax 1
— — |log, log, 1/e — 1 Ol ———
ilog,1/e [log, log, 1/¢ —log, ] + (logil/e)

c

=c— log, 1/¢ [log, log, 1/e — log, ¢ + log, €]

log,log, 1/e — log, c 1
+ ) (1 - 2o : )+0 — ), 4.45
(@x/i) v 2T (4.45)

and

ic+ x .
log, 1/ <10gq log, 1/€ — log,(ic) —

1
O
* (logg 1/6)

ic :
=1- log,1/e (logq log, 1/€ — log, (ic) + log, e(q — D)
ax

a log, 1/e

ax log, e

rx(ax) =1- + O (%) +log, e(q — 1))

ic

) 1
(log, log, 1/€ + log,(q — 1) — log,(ic)) + O (10&371/6> . (4.46)

4.5.1.1 Sphere packing and Gilbert-Varshamov exponents
Substituting (4.45) and (4.46) into (4.36) and rearranging terms yields

0=1i(Fx(ax)—crx(aX))

D (1 —ic) (log,log, 1/e — log, c) — ic (log,(q — 1) — log, i)
log, 1/e

e
log, 1/€

1
Ol —— |-
* (logz 1/6)

[(1 —ic) (logq log, 1/€ — log, c + log, e) —ic (logq(q —1) —log, i)]
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Thus,

_ic(1 —ic) (log,log,1/e —log, ¢ + log, €) — (ic)? (log, (¢ — 1) — log, %)
o= log, 1/e — (1 —ic) (log,log, 1/€ — log, c) + ic (log,(q — 1) — log, %)

1
oO|——].
* (logg 1/6)

Substituting this in (4.46), gives

ic (log, log, 1/e — log, ic 4 log, e(q — 1))
log,1/e — (1 —ic)(log, log, 1/¢ — log, ) + ic(log,(q — 1) — log, ©)

1
Ol ——|-
* (logg 1/6)

Now, using (4.38) the bounds on the optimal rate are summarized in the following two

7”X21

lemmas.

Lemma 4.5 For any p and k, and sufficiently small € > 0,

1 i (logq log, 1/e — log, P+ log, e(q — 1))

sp B log,1/¢ — (1 — 2)(log, log, 1/¢ — log, 2) + Elog,(q — 1)

1
+0 (Tgi 1/6) + o(1),

where the O <m) term goes to zero as € — 0 for any R, and the o(1) term goes to
q

zero as R — oo.

Lemma 4.6 For any p and k, and sufficiently small € > 0,

B 2% (log, log, 1/e —log, (28) +log, e(q — 1))
log, 1/€ — (1 — 2%)(log,log, 1/ — log, £) + 27 (log,(q — 1) — log, 2)

1
+0 (logg 1/6> +0o(1),

) term goes to zero as € — 0 for any R, and the o(1) term goes to

* —
rov =1

where the O <

1
logZ1/e

zero as R — o0.
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Combining Lemmas 4.5 and 4.6 gives the desired bounds for optimal rate allocation for

codes attaining the Gilbert-Varshamov bound, as summarized in the following theorem.

Theorem 4.1 Consider the cascade of a good k-dimensional vector quantizer, a q-ary
linear block channel coder that meets the Gilbert-Varshamov bound or the Tsfasman-
Viadut-Zink bound, and a q-ary symmetric channel with symbol error probability €. The
channel code rate r* that minimizes the p™-power distortion (averaged over all index

assignments) satisfies

B %” (logq logq 1/e — logq %” + logq e(q — 1))
log, 1/e — (1 — 2%)(log, log, 1/€ — log, %) + 2%(log, (¢ — 1) — log, 2)

1
+0 (logg 1/€> +o(1)

1

IN
\3*
IN

. £ (log,log,1/e —log, 2 +log, e(q — 1))
log,1/e — (1 — %)(log,log,1/€ —log, ®) + Zlog,(¢ — 1)

1
+0 (rgg 1/e> +0(1),

) term goes to zero as € — 0 for any transmission rate R, and the

where the O (

1
logZ1/e

o(1) term goes to zero as R — oc.

A crude comparison of the upper and lower bounds in Theorem 4.1 shows a factor of 2
difference in the asymptotically dominant e-dependent term for channel codes that attain
the Gilbert-Varshamov bound. The same phenomenon was observed in [2] for efficient
binary channel codes. Next, we derive more precise bounds for efficient g-ary channel
codes based on the expurgated error exponent, and we present an example comparing
the optimal rate allocation bounds for channel codes that achieve the reliability function

of the channel and channel codes that attain the Gilbert-Varshamov bound.
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4.5.1.2 Expurgated exponent

Substituting (4.43) and (4.46) into (4.36) and rearranging terms yields

0=2 (Eex(a’ex) - Crex(ae)())

1
=g (1- 1 —1) —log 4
o ( o, 1/c [log, (¢ — 1) — log,

—2c (logq log,1/e +1og,(q — 1) — log, 2 — log, c)})

2c

_ W llogq(q -1)— log, 4

—2c (logq log, 1/e +1log,(q — 1) — log, 2 — log, c + log, e)]

1
+0|——].
(logz 1/6)

log,(¢ — 1) —log, 4 — 2c (logq log, 1/e +log,(q — 1) —log, 2 — log, c + log, e)
log,1/e —log,(q — 1) +log, 4 + 2c (logq log, 1/e +1log,(q — 1) — log, 2 — log, ¢)

1
+0| —— 1,
<log§ 1/6)

which when substituted into (4.46), gives

Thus,

Qex =

) 2¢ (log, log, 1/€ — log, 2¢ + log, e(q — 1))
log, 1/e + 2c(log, log, 1/¢ — log, 2¢c + log,(g — 1)) — log,(q — 1) + log, 4

1
Ol ——1.
* (logg 1/6)

Now, using (4.38) the bound on the optimal rate is summarized in the following

Tex -

lemma.

Lemma 4.7 For any p and k, and sufficiently small € > 0,

=1 2 (log, log, 1/¢ — log, 2% + log, e(q — 1))
ex log, 1/€ + 2% (log, log, 1 /e — log, 2% +log, (¢ — 1)) —log,(q — 1) + log, 4

1
+0 (71(%2 1/6) +0(1),
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where the O (ﬁ) term goes to zero as € — 0 for any R, and the o(1) term goes to
q

zero as R — oo.

Combining Lemmas 4.5 and 4.7 establishes bounds for the optimal rate allocation

based on “random coding.” These extend the results of [2] to g-ary channels.

Theorem 4.2 Consider the cascade of a good k-dimensional vector quantizer, an effi-
cient q-ary linear block channel coder, and a q-ary symmetric channel with symbol error
probability €. The channel code rate r* that minimizes the p™*-power distortion (averaged

over all index assignments) satisfies

- %p (logq log, 1/€ — log, Zk—” +log, e(q — 1))
log, 1/e + 2% (log, log, 1/€ — log, 2% +log,(¢ — 1)) — log,(¢ — 1) + log, 4

1
+0 | —— | +o(1
(logg 1/6) o)
L (log,log, 1/e —log, & +log, e(q — 1))

1—
log, 1/e—(1— %)(logq log, 1/e — log, %) + %]ogq(q - 1)

1
+0 (logg 1/6) +o(1),

) term goes to zero as € — 0 for any transmission rate R, and the

where the O (

1
logZ1/e

o(1) term goes to zero as R — oc.

The dominant e-dependent terms in the upper and lower bounds of Theorem 4.2
differ only by a factor of 2. This was derived in [2] for efficient binary channel codes and
observed in Theorem 4.1 for general g-ary channel codes that meet the Gilbert-Varshamov
bound. The upper bounds of Theorems 4.1 and 4.2 are identical, since they both derive
from the sphere-packing error exponent. The lower bounds, however, are identical only
to the precision afforded in [2]. The main rationale for our more complex formulas

is to pinpoint the difference between the two categories of channel codes (i.e., those
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that achieve the reliability function of the channel and those that attain the Gilbert-
Varshamov bound). Figure 4.4 compares the rate allocation bounds of Theorems 4.1
and 4.2 for ¢ = 64. The choice of alphabet size is motivated by the requirement on
algebraic geometry codes needed in order to lie above the Gilbert-Varshamov bound, but
the bounds for other values of ¢ display similar behavior. The solid curves correspond to
Tsp, the upper bound in both Theorem 4.1 and Theorem 4.2. The dotted curves represent
T'max, the lower bound in Theorem 4.2. The dashed curves show 7, , the lower bound in
Theorem 4.1. Thus, the dark shaded regions represent the uncertainty of the bounds of

Theorem 4.2, and the corresponding light shaded regions show the discrepancy between

the bounds of Theorems 4.1 and 4.2. The curves plotted do not omit any O(-) terms.

09

08 F

0.7 L

06

o
3l

04

Optimal Channel Code Rate r-
o
w

01

1077 1078 0 1073 1072 107t

10° .
Bit Error Probability €

Figure 4.4 A comparison of the upper and lower bounds on the optimal channel code rate
as given in Theorems 4.1 and 4.2 for p = 2, ¢ = 64. For k = 1,4,16,64, the solid curves
show 7gp, the dotted curves rmay, and the dashed curves rl,., respectively. For k = oo,
Tsp = Tmax = Cq(€) and 7}, = Cy(2¢) are displayed. The corresponding triplets of bounds are

indicated by shading. The lightly shaded regions illustrate the penalty for suboptimality.
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Note that by substituting ax = O (%) directly into (4.41), simpler expres-
q

sions for rx can be obtained at the expense of precision. Figures 4.5 and 4.6 provide
additional motivation for the more intricate analysis. The curves obtained numerically

without omitting any O(-) terms are denoted by rx. The approximations (omitting the

O(-) terms) given in [2] are denoted by rg(HZ), and those given in Lemmas 4.5 and 4.7 by

(MZ)

. (12)

. The expressions we used for r}, “’ (see Theorem 1 in [2]) are

FHZ) 1 _ 810g2 log, 1/€ and (HZ) _ 1 _ @Ing log, 1/6'

sp k  logy,1/e Tex © = k  log,1/e
The illustrations in Figures 4.5 and 4.6 are for ¢ = 2, p = 2, and k£ = 8. We note that
the curve for rg, is closely approximated by Lemma 4.5. The situation is similar for rqy

(not plotted here).

1 T T T T T T
09
08
. 07
Q
©
PR
e)
Q
()
T o5
8
<
()
© .
§ 0.4
js8
e}
0.3
02 [~ -
ri2)
o1 [ T
0 | L L | L L | L L | L L | L L |
10° 107 10° 10° 10 10° 107 10"
Bit Error Probability €
. . . . . HZ
Figure 4.5 Approximations to rg, given by Theorem 1 in [2] (dashed curve rgp )), and by

(MZ

our Lemma 4.5 (dotted curve rgp )). The solid curve rg, was obtained by numerical solution
of (4.10) for g =2, p=2, and k = 8.

113



09 .

0.8

0.7

0.6

0.5

0.4

Optimal Channel Code Rate r*

0.3

02 [ -

10" 10 10° 10° 107 10° 10° 10"

Bit Error Probability €

Figure 4.6 Approximations to 7ex given by Theorem 1 in [2] (dashed curve réXHZ)), and by
(MZ

our Lemma 4.7 (dotted curve rex )). The solid curve 7oy was obtained by numerical solution
of (4.10) for g =2, p =2, and k = 8.

4.5.2 Large source vector dimension

In this section, we analyze the optimal rate allocation for large source vector dimen-
sions. As noted earlier, it suffices to examine the sphere packing and Gilbert-Varshamov
exponents for k sufficiently large. Solutions of (4.10) based on these two exponents pro-
vide upper and lower bounds for the optimal rate allocation for systems using asymptot-
ically good codes that meet the Gilbert-Varshamov bound. The upper and lower bounds
on the optimal rate coincide for efficient channel codes, since Eg, and E,. are identical for
k large. Hence, an exact asymptotic solution of the rate allocation problem is possible,
if the channel codes used obey Lemma 4.2. Thus, in what follows we concentrate on the

Gilbert-Varshamov case.
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We combine (4.23) and (4.30) to obtain

Ex(r) =D, (3.%(11(1 )

]

6) r € (0,C,(%€)), (4.47)
where C,(i€) = 1 — H,(i€), and i = 1 when X =sp, and ¢ = 2 when X = GV. First, the

value of rx satisfying

1
Dq (—%q_l(l - Tx)

]

e) = %TX (4.48)

is found, and then a solution to (4.10) is obtained by setting
ry =rx +o(1), (4.49)

where o(1) — 0 as R — oc.

The error exponents are decreasing functions of the rate and vanish for rates above
C,(i€). As k increases, the right-hand side of (4.48) decreases, so rx — Cy(i€) as k — 0.
Thus, for large k, ' (1 —7x) can be approximated by its Taylor series around 1 — Cj(i€)

as

+ Cq(ZG) —Tx
Hy(Hg ' (1 = Cylie)))

where H;, is the first derivative of the g-ary entropy function, given in (4.15).

H (1 —rx) =H, (1 — Cylie))

q

+ O((C,(i€) — rx)?), (4.50)

Let (z;) = C,(ie) — rx (note that rx depends on k via (4.48)). Then (z;), > 0,

and (z;)r — 0 as k — oo. Thus, using H_ ' (1 — Cy(ie)) = H ' (H,(ic)) = ie we can

rewrite (4.50) as
1 -1¢1 _ _ (i) 2
i%q (1—rx)=€+ i?—[;('lﬁe) + O((z)%)

which approaches €, as k — oco. Applying (4.20), gives

6) _ _%(12(6) (Z,?(Z"()Z,’Z)JFO((%)%)) +O((x:)3)
Hy(e) (i) 3

I CICY S 451

2 [H! (i€ + Olede) o

where H; is the second derivative of the g-ary entropy function, given in (4.16). Let
A [ ()]

1
D, (EHq_l(l —7rx)

%= e Substituting (4.51) and rx = C,(i€) — (z;); in (4.48), yields
()i = %(Cq(ie) — (@) + O((x:)i)- (4.52)
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The nonnegative root of the quadratic in (4.52) is

IR e vy _ i
(‘/LIZ)]C - \/4k2+ qu(Ze)—i_O((mZ)k) 2%k

-G o (1),

Then, by (4.49) we have

ry = Cylic) — m\q/%e)l (%’Z‘fq,((i:)))% +0 (%) +o(1),

and we can state the following theorem.

Theorem 4.3 Consider the cascade of a good k-dimensional vector quantizer, a q-ary
linear block channel code that attains the Gilbert-Varshamov bound or the Tsfasman-
Viadut-Zink bound, and a q-ary symmetric channel with symbol error probability €. The
channel code rate r* that minimizes the p™-power distortion (averaged over all index

assignments) satisfies

Co(26) - 2H,(2¢) <2pcq(26)>é o <1> toll)

vk —Hg(e) k
<r*<
oS0 (558 w0 (g o

where the O (%) terms approach zero as k — oo for any transmission rate R, the o(1)
terms approach zero as R — oo, H, is the q-ary entropy function, and C,(x) is the

capacity of a g-ary symmetric channel with symbol error probability x.

Figure 4.7 illustrates the upper and lower bounds of Theorem 4.3. As before, the solid

!/

curves represent the upper bound rg,, and the dashed curves show the lower bound 7 ,..

For the sake of comparison we also plotted the corresponding lower bounds for efficient
channel codes using dotted curves. As shown in [2] for the binary case, the dotted and
solid curves converge for k sufficiently large. The light shading illustrates how the bounds
for codes attaining the Gilbert-Varshamov bound compare to the bounds obtained for

efficient codes. The curves plotted do not omit any O(-) terms.
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Source Vector Dimension k

Figure 4.7 Upper and lower bounds on the optimal channel code rate as given in Theorem 4.3

for p = 2, ¢ = 64 are shown by solid (upper bound, rg,) and dashed (lower bound, r},,,) curves

for e = 1071,1072,104,10~8. For comparison, lower bounds (rmax) corresponding to efficient
channel codes are plotted by dotted curves. The matching triplets of bounds for the same value
of e are indicated by shading. The lightly shaded regions illustrate the penalty for suboptimality.

4.6 Conclusion

To determine the optimal tradeoff between source and channel coding for certain
structured linear block channel codes, we have derived upper and lower bounds on the
channel code rate that minimizes the p*'-power distortion of a k-dimensional vector
quantizer cascaded with a linear block channel coder on a ¢-ary symmetric channel.
We have presented bounds based on the Gilbert-Varshamov and Tsfasman-VI1adut-Zink
bounds as well as random coding arguments for g-ary alphabets. Comparisons of the two

types of results were also given.
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4.7 Proof of Proposition 1

We use definitions and notation from [14], but we scale the error exponents by a
factor of Ingq. We denote by Q = (Q(0),Q(1),...,Q(g — 1)) the input distribution, and
by P(il7), i,7 € {0,1,...,q — 1} the transition probabilities of a ¢g-ary channel.

Random Coding and Sphere Packing Exponents:
Let us slightly reformulate some definitions from [14, pp. 144, 157]:

-1 14p
Fo(p,Q = (Z Q(j)P(i] )/ C+0) ) (4.53)
=0
Eo(p, Q) = —log, Fo(p, Q) (4.54)
Eo(p) = —pr + max Fo(p, Q) (4.55)
Ey(r) & Dax Eo(p) (4.56)
Eyp(r) £ sup Ei(p). (4.57)
p>

Since the expressions for Fy, and E,. differ only in the range of p, much of our forthcoming
derivation is common to both. Clearly, argmaxq Eo(p, Q) = argming Fy(p, Q). For a ¢-

ary symmetric channel (see (4.2)),

-1 ¢\ Vo]t
/040 4 (1 ( ) .
2 [ (1=QEN | =
Thus, the Jacobian is a diagonal matrix
62
st )
aawaG) Y

= diag ¢ p(1 + p)
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which is positive definite for € € (0,1 — ¢ !). Hence, setting

0
M<Fﬂ P, Q )\ZQ )

yields a minimum. By symmetry, the minimizing distribution is uniform (this is also

easily verified using Theorem 5.6.5. of [14]). Then,

(1— V0 + (¢ 1) (¢/(a — WmMrﬂ

Ey(p) = —pr — log, q .

= p(1— 1) — (14 p)log, [(1 = /) 4+ (g = 1) (¢/(g — 1)O], (458)

and thus
d -
d—pEo(p) =1—r—log, [(1 — )0 4 (g —1) (¢/(q — 1)) 1+p)}
1/(1+p) 1/(1+p)
(1 - 6)1/(1+p) logq(l _ 6)1/(1+P) + (q _ 1) (L) P logq <q_L1> p
+
(1—€)V/0+0) + (¢ — 1) (¢/(q — 1))/*+P)
=1=71=H,(0), (4.59)
where

.\ Y0+
5= a- 9 (5) (4.60)

(1—e)V0+0) 4 (g — 1) (e/(q — 1))/ P

Then, since

%= " {(q‘ ! (q——l)/( ( 1

3 1/(1+ ) € 1/(1+p)
< [0 = 009 4 (g = 1) (e/ g - P] a-1(.5)

« a-&ﬂﬂmm—o+q—1< — A ( 1]}

x [= 0 4 (g 1) (e/ta - 1))
= 5(11_:;) (log,(¢ — 1) — log, 6 + log,(1 —6)) Ing
_o(1-9)

1+p

H! (5) Ing,
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we obtain

d? - , 8(5
B 5(1 —90) ..., 2
= — 1) ('Hq(é)) Ing
<0

for all values of ¢ corresponding to p > 0. Thus, the stationary point p*, found by setting
dE, /dp = 0, is a maximum. Instead of solving explicitly for p*, we obtain a parametric

expression for the error exponents in terms of * = 4| _ .. From (4.59), we have
r=1—H,(0%), (4.61)
which when substituted into (4.58) gives
Eo(p") = p"Ha(67) — (1+ p*)og, | (1 = /07 + (g = 1) e/ (g — 1))/
= —M,(0") + (1 + p*) {6 log,(¢ — 1) — 6" log, 6" — (1 — 6%) log, (1 — &%)
—log, [(1 = Y0+ 4 (g = 1) (¢/ (g - 1))/ 7]}

*

qilhl—ow“f%+m—1xdm—1»““¢q>Hw

—(1- 6 log, ((1 _ 5 [(1 — &)Y 4 (g — 1) (¢/(q - 1))1/(1+p*)D1+p*

—H,(6") — 6" log, (

=0 logqq_ + (1 —06")log,(1—6") -0 logqq_—l—(l—é )log,(1 —¢)
(4.62)

=Dy (0"l )

=D, (H;'(1—71)|¢), (4.63)

where (4.62) follows by (4.60), and (4.61) was used in the last equality. Since 4| _; =€,

D
Vs = ey 40

€ (0,C,) and the random coding exponent for r € [ry, C,), where

ra=1-H, ( lg-1) ) . (4.64)

~1. (4.63) gives the sphere packing exponent for

p—)oo_ _q

V1I—e+/e(g—1)
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As shown in [14], p = 1 maximizes Ey(p) for rates less than ry. Hence, for 7 € (0, 75],
E.(r) = Eo(1)

=-—r+1-2log, [\/1—e+\/e(q—1)]

— (/)
—Cq -,

which completes the proof of (4.23) and (4.24). [

Ezpurgated Exponent:
Let us define (see [14, p. 153)):

q-1 q—1 q—1 Le
Fi(p,Q) = ZZQ(i)Q(j) [Z P(l[e)P(1]7) (4.65)
Ey(p, Q) = —plog, Fy(p, Q) (4.66)
Ex(p) £ —pr +max Eo(p, Q) (4.67)
Eex(r) = sup Ealp). (4.68)

Again, argmaxq Eo(p, Q) = argming Fy(p, Q). For a g-ary symmetric channel (see (4.2)),

a1 1 1=173
> V/P(i)P(l]5) = T (4.69)

= 2 /0= 5+ (-2 i#]

Let us define

A € €
=2,/(1—- -2 . 4.
R e P (4:10)
Alternatively, w can be expressed in terms of H{/?(¢). Using
14+ (g—Dw=14+2/(1—¢€)e(qg—1)+ (¢ —2)e
2
- (\/1 —e++(a- 1)6)
= "o, (4.71)
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we obtain
w=--— (4.72)

Using w, (4.65) can be rewritten as

q—1 qg—1
R @) = S0+ (1- 007

i=0 i=0

Thus, the Jacobian is a diagonal matrix (in fact, it is the identity matrix scaled)
32

[OQ(i)aQ(J’)
which is positive definite for ¢ € (0,1 — ¢7'), since (4.72) implies that w < 1, unless
e =1 — ¢ !. Hence, setting %(j) (Fo(p, Q) — A2, Q(3)) = 0 yields a minimum. By

Fy(p, Q)] =2(1 - W)L,

symmetry, the minimizing distribution is uniform. Thus,

A

E:c(p) = —pr — plqu [q_l + wl/P(l _ q—l)]
= (1 —r —log, [1 + (g — l)wl/p]) ’ (473)

which implies

d -
d—pEz(p) =1—r—log, [1+(¢— l)wl/p}
1

1+ (¢—1wllr
1—r+ ! 1 =
=1-r 0
1+ (¢ — Dwe S \1+ (q— Lw'e

(q — ]_)wl/p wl/P
+ log
1+ (g —1w'/r ™\ 1+ (g — Dw'/?

=1—1—H,6), (4.74)

1
+p (g — 1)w1/”? log, w

where

(¢ — Dw'/
1+ (¢—1w'/r’

5= (4.75)

Now, since

@ _ (i) ((q — 1)w1/p In w) [1 + (g — 1)w1/”] —(qg— 1)w1/p [(q _ 1)w1/p lnw]
dp [1+ (g — Lwi/e)?

0
5(1—96)_,
26y g
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we obtain

a? . o 00
d—pQEm(p) = _Hq((s)a—p
0(1—90
= — ( ) (’H;(é))QInq
P
<0

for all values of ¢ corresponding to p > 1. Thus, the stationary point p*, found by setting
dE, /dp = 0, is a maximum. Instead of solving explicitly for p*, we obtain a parametric

expression for the error exponent in terms of 6* = 4| _ .. From (4.74), we have

which when substituted into (4.73) gives

A

E,(p") = p* (Hq(5%) — log, [1 + (¢ — Dw'/7"])

= p" (5" log,(g — 1) — 6" log, 6" — (1 — 6") log, (1 — 6*) — log, [1 + (¢ — Dw'/""])

*

* 0" WP ’
=4 logq(q 1[1—!—(q—1) })

—p (1 =6 log, (1 —6") [L+ (¢ — L)w"/*"]) (4.77)
= —6"log,w
—H, (1 —r)log,w, (4.78)

where (4.77) follows by (4.75), and (4.78) follows by (4.76) and (4.71). Since

1 (1/2)
S,y =1l—-————=1—q ™"
|p:1 1 + (q _ 1)w q )

and J| ~1, (4.78) gives the expurgated exponent for r € (0,7;], where

p—>oo:]'_q

rn=1-%, (1 g Z)@) . (4.79)

For r > r1, E,(p) is a decreasing function of p, since dE,/dp < 0 in this case (see (4.74)).

Hence, for r > rq,

E(r) = Ex(l) =1l-r—log,[1+(g—1w]=1-7r— 7‘[;1/2)(6) = Cél/” —r.  (4.80)
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Combining (4.78) and (4.80), we obtain (4.25). [

Maximum of the Random Coding and Expurgated Exponents:
It is easy to argue that both

E.(r) > C;l/” —r and Eu(r) > Cél/” —r (4.81)

for all rates r € (0,1), since for every r, the value p = 1 corresponding to C{/* —r is in
the range of maximization in both (4.56) and (4.68). Hence, provided that 0 < r; <1y <
C3® < Oy holds, (4.26) is obtained. Consulting (4.79), the properties of the entropy

function imply that 0 < r;. To see that r; < ry, we rewrite equation (4.79) as

7"1:1—%,1 1- 1 ) s
<\/1—e+\/6(q—1))
and (4.64) as
. _ V1—e€
2 =1 Hq(l V1—€e+ e(q—l)).

Then r; < ry is equivalent to

\/1—6(\/1—€+ e(q—1)) =l—e+el-e(g-1)

e < (1-¢(¢g—1)

-1

—_
IA

[}
IN

l-¢q
Next, we show 7, < C{/?. By the concavity of log, for any ¢ € [0, 1],

1
H,(6) = —dlog, %1 — (1 —0)log,(1—6) > —log, (—52 +(1- 5)2) :

q q—1
Substituting this with § = #ﬁiﬁ in (4.64), we can upper bound 7, as

e(g—1) N l1—e¢
¢—1 (\/1 —6-{—\/e(q—1)>2 <\/1 —e++/elg— 1))2
= 1-2log, (\/1——6+ e(q—l))

_ 1/2
= M,

re < 1+ logq
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which is what we wanted to prove. The remaining inequality C{/* < C; can be equiva-

lently stated as H{/® (e) > H,(¢), which follows by Jensen’s inequality. [ |
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CHAPTER 5

PERFORMANCE OF QUANTIZERS
ON NOISY CHANNELS USING
STRUCTURED FAMILIES OF CODES

In this chapter, we derive achievable distortion bounds for the cascade of structured
families of binary linear channel codes and binary lattice vector quantizers. It is known
that for the cascade of asymptotically good channel codes and asymptotically good vector
quantizers the end-to-end distortion decays to zero exponentially fast as a function of
the overall transmission rate, and is achieved by choosing a channel code rate that is
independent of the overall transmission rate. We show that for certain families of practical
channel codes and binary lattice vector quantizers, the overall distortion can still be made
to decay to zero exponentially fast as the transmission rate grows, although the exponent
is a sublinear function of the transmission rate. This is achieved by carefully choosing a
channel code rate that decays to zero as the transmission rate grows. Explicit channel

code rate schedules are obtained for several well-known families of channel codes.

5.1 Introduction

Lossy source coding, or quantization, plays an important role in many practical data
compression systems such as voice and image transmission devices. The primary mathe-

matical apparatus for obtaining an analytical understanding of the properties of optimal

The material in this chapter has been submitted to the IEEE Transactions on Information Theory
as: A. Méhes and K. Zeger, “Performance of quantizers on noisy channels using structured families of
codes.”
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quantizers has been the asymptotic theory. Two important types of asymptotic theo-
ries exist: (1) fixed transmission rate and growing blocklength; (2) fixed blocklength and
growing transmission rate. The first type of asymptotic theory was studied by Shannon [1]
and is known as rate-distortion theory. The second type is the study of high-resolution
quantization theory [2,3]. The high-resolution theory indirectly assumes delay and com-
plexity constraints and thus is typically more closely related to practical considerations.
The high-resolution results in [2, 3] specifically assume a noiseless channel. In this chap-
ter, we will exploit results from the high-resolution theory to obtain new quantization
results for noisy channels.

High-resolution quantization theory for noisy channels gives analytic descriptions of
the minimum achievable average distortion, as a function of the transmission rate, the
source density, and the vector dimension. For distortion functions which are powers of
Euclidean distances and with no channel noise, the minimum average distortion is known
to decay to zero exponentially fast as the transmission rate increases [3]. It was shown
in [4,5] that when the source information is transmitted across a noisy channel, the min-
imum average distortion again decays to zero exponentially fast as the transmission rate
increases, although the exponential decay constant is reduced by an amount dependent
on how poor the channel is. In fact, the rate of decay of distortion in the noisy chan-
nel case is closely related to the optimal allocation of transmission rate between source
coding and channel coding (via the channel code rate).

The results in [5] provide mathematical guarantees for a potentially achievable mini-
mum quantizer distortion in the presence of channel noise. However, those results assume
the existence of optimal channel codes, namely those described in Shannon’s channel cod-
ing theorem using random coding arguments. Similar techniques were used to generalize
the results of [5] to Gaussian channels [6] and to certain algebraic geometry codes [7].
Hence, the results in [5-7| are existence constructions and do not necessarily correspond
to achievable performance based on the best presently known implementable channel
codes. There is thus motivation to find a high-resolution theory for quantization with a

noisy channel, using families of structured algebraic channel codes.
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However, finding such a high-resolution theory appears to be a difficult task for general
unstructured source coders, even if the channel coders are structured. In this chapter,
we approach the problem by examining systems with structure in both the source coder
and channel coder. Such systems are practical to implement and also give insight (via
distortion bounds) into the unstructured source coder case.

To illustrate the problem at hand by way of an example, suppose a random variable
uniformly distributed on [0, 1] is uniform scalar quantized, and transmitted across a
binary symmetric channel using a repetition code. For a fixed number of available bits
R per transmission, how many times should each information bit be repeated in the
repetition code to minimize the end-to-end mean squared error? In other words, what is
the optimal rate allocation between source and channel coding? If the channel code rate is
decreased, fewer uncorrected bit errors occur but at the expense of coarser quantization,
and vice versa if the channel code rate is increased.

A key assumption in [5,7] is that by keeping the channel code rate fixed (below
capacity) while increasing the overall transmission rate R, the probability of decoding
error P, can decay to zero exponentially fast as a function of R. This assumption is valid
for “Shannon-optimal” codes and more generally for asymptotically good codes, but most
known structured families of channel codes (e.g., Hamming, BCH, Reed-Muller) do not
have this property. In the repetition code example, keeping the channel code rate fixed
is equivalent to keeping the number of repetitions constant. This in turn implies that
the probability of incorrectly decoding an information bit does not change. Therefore,
P, is bounded away from zero, since the probability of decoding error (i.e., an incorrect
block) is at least as large as the probability of a single bit error. In this chapter, we
investigate the rate allocation problem for structured families of source coders which
are asymptotically good and for structured families of channel coders which are not
asymptotically good, but which can be used in practice.

A common method for lossy transmission of source data across a noisy channel uses
independently designed source coders and channel coders. This follows Shannon’s basic

“separation principle” in source and channel coding, which is known to be optimal for
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asymptotically large blocklengths. An important design parameter is the allocation of
the available transmission rate between source and channel coding. Tight upper and
lower bounds on the optimal tradeoff between source and channel coding are known
for certain codes and channels and pth-power distortion measures [4-7]. These results
exploit the fact that the distortion contributions of optimal source coding and optimal
channel coding decay exponentially fast as functions of the overall transmission rate.
The source coder is taken to be a ‘good’ vector quantizer (one that obeys Zador’s decay
rate) in [4-7], and index assignment randomization is used. In both [5] and [6], the
channel codes are assumed to have exponentially decaying error probabilities achieving
the expurgated error exponent for the given channel (a binary symmetric channel in [5]
and an additive white Gaussian noise channel in [6]). Although such codes are known to
exist, no efficiently decodable ones have yet been discovered. In [7], the results of [5] are
extended to g-ary symmetric channels, and a class of asymptotically good channel codes
(namely those attaining the Gilbert-Varshamov and Tsfasman-V1ddut-Zink bounds) is
examined. Constructions of channel codes better than the Gilbert-Varshamov bound are
known [8,9], but the best known algorithms are not currently practical.

The channel codes considered in [5-7] all have the property that their channel code
rates are bounded away from zero for increasing blocklengths. In this chapter, we in-
vestigate the tradeoff between source and channel coding for structured classes of codes
whose channel code rates approach zero in the limit as the blocklength grows. Hence, we
seek a decay schedule of the channel code rate as a function of the overall transmission
rate which minimizes the overall distortion. The channel codes we examine are classical
binary linear block codes including repetition codes, Reed-Muller codes, and BCH codes.
We call (as in Chapter 2) the structured source coders in this chapter binary lattice vec-
tor quantizers (BLVQs). Vector quantizers with essentially identical structure have been
extensively studied under various different names in [10-15].

The main results of this chapter are collected into Theorem 5.1 in Section 5.4, which
gives achievable bounds on the asymptotic mean squared error performance of BLVQs and

several useful families of binary linear block channel codes on a binary symmetric channel.
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The bounds in Theorem 5.1 show that the minimum distortion with certain structured
codes decays to zero as O (27289(®)) where g(R) — 0 as R — oo. The distortion bounds
are obtained by choosing g(R) = O (ﬁ) for repetition codes and g(R) = O ( @)
for Reed-Muller codes and duals of BCH codes. The constants inside the O(-) depend
on the channel noise level. In contrast, for optimal unstructured vector quantizers and
no channel noise, g(R) = 1 for all R, and for optimal unstructured vector quantizers and
optimal channel codes on a noisy channel, g(R) < 1 (depending on the channel noise
level) and g is bounded away from zero. Since structured source coders are assumed
in this chapter, the distortion bounds given are also upper bounds on the distortion
using optimal unstructured V(Q with the same structured channel codes. In addition,
the derivations of the bounds in Theorem 5.1 may be useful tools for future research
(e.g., see [16]), since they are not specific to the codes used. Section 5.2 introduces

necessary notations, definitions, and lemmas. Section 5.3 gives the framework for the

source/channel coding problem and Section 5.4 gives the results of this chapter.

5.2 Preliminaries

As in Chapter 4, for real-valued sequences f(n) and g(n), we write

e f =0(g), if there is a positive real number ¢, and a positive integer ng such that

|f(n)| < c|lg(n)|, whenever n > ng;
e f =o0(g),if g has only a finite number of zeros, and f(n)/g(n) — 0 as n — oc.

For any positive integer k, let Z& denote the field of k-bit binary words. Arithmetic
in Z% is performed modulo 2. Binary k-tuples i € Z% will be written as row vectors
i = [ig—1,%k—2, .. ,01,%0], where 5, € {0,1} denotes the coefficient of 2! in the binary
representation of the corresponding integer i, i.e., ¢ = ;:01 #12'. We denote by e; the
binary row vector with its only nonzero entry in the [th position, thus i, = ie}]. The

inner product of two binary vectors i, j € Z% is denoted by ij = Z;:Ol iij1 € {0,1}. The
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Hamming weight (the number of nonzero bits) of a binary vector i € Z% is denoted by
w(7).

Euclidean vectors x € R? will be written as column vectors x = (1, s, ... ,74)". The
inner product of two Euclidean vectors x,y € R? is denoted by (x|y) = Z? oy € R
Also, ||x|| = /(x| x) denotes the usual Euclidean norm of the vector x € R?. The
symbols Iy, Pr[-], and E[-] are used to denote indicator functions, probabilities, and

expectations, respectively.

5.2.1 Entropy and relative entropy

For convenience, we restate the definitions of entropy and relative entropy from Chap-

ter 4 specialized to binary alphabets.

Definition 5.1 Let P and P be probability distributions on a finite set.
The entropy of P (in bits) is

Z P(z)log, P(z). (5.1)
The relative entropy between P and P (in bits) is

D(P||P) = ZP B ; (5.2)

Definition 5.2 Let ¢,§ € [0,1/2], and let P. and P; be probability distributions on
{0,1} with P.(1) =1 — P,(0) = € and Ps(1) =1 — P;s(0) = .

The binary entropy function is

hie) £ H(P.) = —elogy e — (1 — €) log,(1 — ¢), (5.3)

and the binary relative entropy function (information divergence) is

5 )
D, (8] €) £ D(Ps[[P.) = dlog, - + (1= 6) log, 5

— €

The following lemma provides a bound on the tail of a binomial distribution.

Lemma 5.1 ( [17, p. 531]) For 0 <e< 6 <1,

Z <n> ei(l _ e)n—i < 9~P2(dlje),
7

i=nd
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5.2.2 The Hadamard transform

As in Chapters 2 and 3, the Hadamard transform will also be a useful tool in this

chapter.

Definition 5.3 For each i,j € Z& let h;; = (—1)%" and let f: Z& — R?. The Hadamard
transform f: Zk — R? of the mapping f is defined by
() =D £()hiy,
iezk
and the inverse transform is given by
£i) =2%> £()h
JELY
We refer to the numbers h; ; as Hadamard coefficients. The Hadamard transform is an
orthogonal transform equipped with the same convolution and inner product properties

(e.g., Parseval’s identity) as other Fourier transforms. For easier reference, we restate

the Hadamard transform identities seen in Chapters 2 and 3. For i, j, j' € Zk:

hi; = hjg,
hihi g = Py
D hig = 2¥I ;). (5.5)
iczZk

The bits of any binary word i € Z& are related to the Hadamard coefficients by

1— hie, =2im me{0,1,...,k—1}. (5.6)

5.2.3 Source coding — vector quantization

Definition 5.4 A d-dimensional, 2*-point vector quantizer (VQ) with index set T =
{0,...,2F — 1}, and codebook Y = {y; € R%: i € I}, is a functional composition Qy =
Dg o €, where Eg: R? — T is a quantizer encoder and Dg: T — Y is a quantizer

decoder. (The subscript 0 denotes association with a noiseless channel.) The elements
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of the codebook y; € Y are called codevectors. Associated with each codevector y; is its
encoder region R; = {x € R%Eg(x) = i}. The set of encoder regions forms a partition of

R¢. The source coding rate (or resolution) of a vector quantizer is defined as Rg = k/d.

The mean squared error (or source distortion) of a vector quantizer Qg for a source

random variable X € R? is

As=E[X = (X" = 3 [ x—ilPdut), 6.7

€T
where p is the probability distribution of the input X.
Necessary conditions for the optimality of a vector quantizer using the mean squared

distortion are (see [18] for example) the Centroid Condition:
y: = E[X|X € R{] Viel (5.8)
and the Nearest Neighbor Condition:
Ri={xeR": [x—yil <|x-yll VieZ\{i}} Viel (5.9)

Locally optimal vector quantizers satisfying both necessary conditions (5.8) and (5.9) can
be obtained using the Generalized Lloyd Algorithm [18].

The high-resolution (i.e., large Rg) behavior of Ag for optimal quantization of a
bounded source is described by Zador’s formula (also given in Chapter 4), which is

stated below in a convenient form for the mean squared error case.

Lemma 5.2 (Zador [3]) The minimum mean squared error of a rate Rg vector quan-

tizer is asymptotically (as Rs — o0) given by
Ag = 27 2Hs+0) (5.10)
This is often referred to as the “6 dB per bit” rule, since

101og,, (272RstOW) /2-2(Rs+UHO0W)  2010g,, 2 ~ 6 dB.
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We say that a sequence of quantizers is asymptotically good if
limsup Ag22s < . (5.11)
RS—)oo
We say that a sequence of quantizers is bounded if the codepoints of the quantizers are

bounded, that is,

1p { may y§'“)H)<oo, (5.12)

sup (max

where 7, denotes the index set and the yz(k)

denote the codepoints of the k-bit quantizer
in the sequence. Lemma 5.2 shows that optimal quantizers are asymptotically good.
In fact, a large class of quantizers including uniform quantizers and other lattice-based
vector quantizers are also asymptotically good, although the limit in (5.11) may be larger
than for optimal quantizers. Unrestricted optimal quantizers for a bounded source are
also bounded, as are large classes of other useful quantizers including truncated lattice

VQs, for example.

5.2.3.1 Binary lattice VQ

Definition 5.5 For positive integers d and k, a d-dimensional, 2*-point binary lattice
vector quantizer is a vector quantizer with index set Z = Z%, whose codevectors are of

the form
k-1
Yi =Yoo+ Z Vil Vi € lec’ (513)
1=0

where y, € R? is an offset vector and {vl}fz_ol C R? is the set of generator vectors, ordered

by [[voll < [lvall < .. < [[vill-

In this chapter, we focus on BLVQs. There are several equivalent formulations of
BLVQ as, for example, truncated lattice VQ, direct sum (or residual) VQ, and VQ by a
linear mapping of a (nonredundant) block code. BLVQs can save in memory requirements
and encoding complexity. They can also be used for progressive transmission and possess

a certain natural robustness to channel noise (see [10] for details).
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BLVQs encompass a broad class of useful structured quantizers. For example, a 2*-
level uniform scalar quantizer on the interval (a,b) is a special case of a binary lattice
quantizer, obtained by setting yo = a + s/2 and v; = 2's, where s = (b — a)27 denotes
the quantizer stepsize. As a consequence, sequences of asymptotically good BLVQs exist.
In fact, for any bounded source, a sequence of increasingly finer (properly truncated
and rotated) cubic lattices containing the support of the source is both bounded and
asymptotically good. Thus, in what follows, we restrict attention to asymptotically good

bounded sequences of BLVQs.

5.2.4 Channel coding — linear codes on a binary symmetric
channel

Definition 5.6 A linear binary [n, k, duyin] block channel code is a linear subspace of ZY
containing 2¥ binary n-tuples called codewords, each with at least dy,;, nonzero compo-

nents. The channel code rate is given by r = k/n, and the relative minimum distance by

6= dmin/n.

Associated with a channel code is a channel encoder £c and a channel decoder Dc.
The channel encoder is a one-to-one mapping of messages (e.g., quantizer indices) to
channel codewords for transmission. The channel decoder, on the other hand, is a many-
to-one mapping. It maps received n-bit blocks (not necessarily codewords) to messages.
Let £(m) denote the channel codeword corresponding to message m and DZ'(l) the
set of n-bit blocks decoded into message . Then on a binary symmetric channel with

crossover probability €, the transition probabilities of the coded channel are

pm= Y et (1 _ gpvterdetm),

ue€DS' (1)

and if the code is linear then py, = piime- In what follows, let g; = pijo denote the
probability that the information error pattern i € Z% occurs when an [n, k] linear block

code is used to transmit over a binary symmetric channel.
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Let Pl(bit) denote the probability that the Ith bit of the decoded block is in error and
let P, denote the probability that the decoded block is in error (i.e., at least one of its
bits is incorrect). Then, Pl(bit) = Ziezg ¢ili=1y, and P, = 1 — qo. Let PP denote the
maximum of the error probabilities for decoded bits. Then PS?;Q = max; Pl(bit) <P,

Since a code with minimum distance dp, can correct all possible [%J—bit errors

and since L%J + 1 > dyin/2, Lemma 5.1 can be used to bound P, as follows.

Lemma 5.3 For any [n,k,dyn| linear block channel code and for any € < duyin/(2n),
the probability of a block error with maximum likelihood decoding on a binary symmetric

channel with bit error probability € satisfies

dmin

P S 277LD2( 2n

<]

‘)

To obtain asymptotic results we consider families of [n, k, dy,) linear channel codes
indexed by the blocklength n. All families of channel codes fall into exactly one of the

following three categories (assuming the limits of dy,i,/n and k/n exist as n — 00):

o limy,_,q dmin =
For codes of this type, the upper bound on the probability of decoding error in
Lemma 5.3 becomes trivial as the blocklength increases. The best known families
of block channel codes in this category have k/n — 1 as n — oco. Examples include
Hamming codes, families of ¢-error-correcting binary BCH codes for any fixed ¢, and
lth-order Reed-Muller codes if [ is an increasing function of the blocklength. From
a source-channel tradeoff perspective, the best codes in these families are those
with small blocklengths. Hence, these codes are not relevant to our asymptotic

investigations, although their duals are.

dmin > 0 and limy, 0 £ > 0

e lim,
Families of codes with both their rate and relative minimum distance bounded away
from 0 are called asymptotically good [19]. Examples include Justesen codes [19,
p. 306 ff] and codes satisfying the Zyablov bound [19, p. 315], the Gilbert-Varshamov
bound [19, p. 557], and the Tsfasman-Vlidut-Zink bound [20]. Bounds on the
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asymptotically optimal source/channel rate allocation were derived in Chapter 4

for some of these codes.

o lim, o min > 0 and limy, o £ =0

n
Codes that fall into this category include repetition codes, [th-order Reed-Muller
codes for any fixed order [, t-error-correcting binary BCH codes with ¢ = O(n),
and duals of t-error-correcting binary BCH families for any fixed ¢. Lemma 5.3
guarantees that the probability of decoding error decays to zero exponentially fast

for families of this type. Since k/n — 0, relatively less information is transmitted

as the blocklength increases, but more reliably.

In this chapter, we focus attention on the third category above. One seeks an optimal

“schedule” of the rate k/n converging to 0 as a function of the blocklength 7.

5.2.5 The cascaded system

The following definition corresponds to Figure 5.1.

Definition 5.7 A d-dimensional, 2¥-point noisy channel vector quantizer with indez set
Z%, codebook Y, and with an [n, k] linear channel code C operating on a binary channel,
is a functional composition @ = Dg o Dgono &g 0 Eg, where Eg: R — ZE is a quan-
tizer encoder, Dg: Z& — Y is a quantizer decoder, £¢: Z% — C is a channel encoder,
Dc: 75 — Z% is a channel decoder, and n: Z3 — 7% is a random mapping representing

a noisy channel.

The mean squared distortion of a noisy channel vector quantizer for a source random

variable X € R¢ is

A=E[X - QEOI" = Y0 Y s [ Ix - wlPdutx), (514
i€ZE jezk Ri
where p is the probability distribution of the input X, and for 4,j € Z§ the ¢;1; =
Pr[Dc(n(Ec(i))) = j] are the transition probabilities of the coded channel.
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d dimensional vector Quantizer dRr bits Channel dR bits

X Encoder i Encoder
Binary
Symmetric
Channel
d dimensional vector Quantizer dRr bits Channel dR bits
Y, Decoder j Decoder

Figure 5.1 Cascaded vector quantizer and channel coder system.
5.3 Rate Allocation Tradeoff

Analogous to the source distortion in (5.7) (i.e., the distortion incurred on a noiseless
channel, due to quantization only), we define the channel distortion of a noisy channel

vector quantizer as
A
Ac = E[|Q(X) — 9(X)|* (5.15)

(the component of the distortion influenced by channel errors). If the quantizer Qj

satisfies the Centroid Condition, then
A=As+ Ac. (516)

As a function of the overall transmission rate R, both Ag and A¢ decay to zero exponen-
tially fast for optimal quantization of a bounded source and with optimal channel coding.
The exact rate of decay is determined by the channel code rate r. An asymptotically
optimal channel code rate implies that both terms in (5.16) must decay at the same

exponential rate [5].
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Structured vector quantizers, however, are often suboptimal. In most cases, the
structure dictates the placement of codevectors and the encoding regions are chosen to
satisfy the Nearest Neighbor Condition (i.e., the Centroid Condition need not hold).
When the codevectors are not the centroids of their respective encoding regions, the

Minkowski inequality can be used to bound the distortion as

A< (JAT+ @)2. (5.17)

For asymptotically good sequences of BLVQs, the source distortion decays to zero
exponentially fast as the source coding rate R¢ — oo. In what follows, we find the
asymptotic behavior of the channel distortion for the cascade of BLVQs and practical
families of channel codes (which are not asymptotically good), and obtain the channel
code rate which asymptotically (in R) minimizes the bound in (5.17) for this system.
This is done by equating the exponents of Ag and A¢. In contrast to [5-7], however,
for this system the minimizing channel code rate is a (decreasing) function of the overall

transmission rate R.

5.3.1 Rate allocation for BLVQ

Consider a d-dimensional 2*-point BLVQ cascaded with an [n, k, dpi] binary linear
channel code on a binary symmetric channel with an overall transmission rate R. The
source coding rate Ry is related to the overall transmission rate R and the channel code
rate r by Rs = Rr. Each d-dimensional input vector is quantized to k = dRr bits and
channel coded with n = dR bits, as shown in Figure 5.1.

For a fixed transmission rate R, increasing the channel code rate results in higher
quantizer resolution and a decrease in the BLVQ source distortion Ag, but leaves less
redundancy to protect against channel errors, which results in an increase in the channel
distortion A¢. There is thus a tradeoff between source and channel coding governed by
the choice of the channel code rate. In order to minimize the right-hand side of (5.17),

we seek an exponentially decaying (in R) expression for the channel distortion A¢ of the
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cascade of a BLVQ with certain practical channel codes (i.e., with £/n — 0 as n — o),
and we wish to find the dependence of Ac on the channel code rate r.

Lemma 5.4 gives a formula for the channel distortion of a binary lattice quantizer
cascaded with the identity index assignment and a linear channel code on a binary sym-
metric channel. In this chapter, we do not use an explicit index assignment. Instead,
the original ordering of the BLVQ codevectors is preserved (the BLVQ basis vectors are
ordered by their Euclidean norms). Not using an explicit index assignment is equivalent
to specializing the result from Chapter 2 to the case of the Natural Binary Code (identity

index assignment).

Lemma 5.4 Let X € R? be a source random variable quantized by a 2F-point binary
lattice vector quantizer with generating set {vl}fz_ol and transmitted on a binary symmetric
channel using the Natural Binary index assignment and an [n, k| binary linear channel
code. Let p; = Pr[X € R;] denote the source distribution on the codevectors, and let
¢; = Pr[Dc(n(€c(u))) = u+ 1] denote the transition probabilities of the coded channel.

Then, the channel distortion is given by
=
AC = Z Z Z <Vl | Vm> ﬁeH—em (qAO - qul - qum + deH_em) , (518)

=0 m=0

where the hats denote Hadamard transforms, and e; is the binary row vector with its only

nonzero entry in the lth position.

Equation (5.18) can be viewed as containing a source-dependent component and a
channel-dependent component. We show that the source component is positive and
bounded for all transmission rates R and that the channel component can be made to
approach zero exponentially fast as R — oo, and thus the desired bound on A is
obtained.

We first examine the channel-dependent component of (5.18). Using the Hadamard

transform definition and its identities gives

Go = Qe — Qe + Gerem = O @i(1 = hie)) (1 — hig,,)

i€zt

141



=4 Z Gililm

i€z
= 4 Pr[lth and mth bits both in error]
< 4 min (Pl(bit), Péloit))

< 4peiv). (5.19)

max

Next, we examine the remaining portion of the sum in (5.18), the source-dependent

component. Again using the Hadamard transform definition and its identities, we obtain

?r

-1 k-1 k—1 k-1

% <Vl‘vm>ﬁel+€m - %ZZ Vl‘vm sz bertem

! 0 1=0 m=0 iczk

k-1
D i1 —2i)
=0

1
= 2 sz' ly: — yz’”2 (5.20)

iczk
1 2

< 3 2 pi(llyill + llyll) (5.21)
iczZk

< P (5.22)

S

Il
(=)
3
|

2

where 7 is the one’s complement of the binary index 7 (i.e., iy = 1—14;), and p is the radius
of some sphere containing every codevector of every quantizer in a sequence of bounded
quantizers (independent of the source coding rate) as guaranteed by (5.12).

Combining (5.19) and (5.22), the channel distortion in (5.18) can be upper bounded

as
Ag < 4P0OY 2. (5.23)

It remains to show that Pélb;?, the largest of the error probabilities for a decoded bit, can
be made to go to zero exponentially fast as a function of the overall transmission rate R.
We consider a family of [n, k, dmin| channel codes satisfying lim, ,, k/n = 0 and

limy, 00 dmin/m > 2¢ > 0, where € is the crossover probability of the underlying binary

symmetric channel. We further assume that k£ is a monotone increasing function of
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n, which implies a one-to-one relationship between the channel code rate r and the
blocklength n (e.g., this holds for repetition codes and Hamming codes). We divide the
Rd bits per sample into blocks of shorter channel codes from the same family of [n, k, duyn)
codes, and assume that each has the same blocklength n (a divisor of Rd). Thus, the
length Rd channel code is the (Rd/n)-ary Cartesian product of identical codes of length
n. This maintains the overall transmission rate of R bits per vector component, and
allows a variety of channel code rates r.

This channel coding scheme is not in general optimal, but it provides a conceptually
simple means of obtaining achievable bounds. Within each n-bit block, the decoding
error probability of any given bit is upper-bounded by the decoding error probability
of that block. Since the n-bit blocks have identical code parameters, the same bound
applies to the decoding error probability of any bit in the overall length Rd code. Then
for each n (and consequently, for each corresponding channel code rate r), Lemma 5.3
can be used to upper-bound the largest bit error probability of decoding in the length

Rd code using the block error probabilities of the length n constituent codes, namely,

ploit) < oo

max

). (5.24)

Thus, PP can be made to decay to zero exponentially fast in R by choosing the con-
stituent blocklength n to satisfy n — o0 as R — oo.

Substituting (5.24) in (5.23) yields

9min

AC’ S 2—TLD2 ( o

) +om), (5.25)

Combining this with the formula for the source distortion of asymptotically good quan-

tizers in (5.11) and using (5.17), the total distortion is bounded as

A< (2—R%+0(1) + 2*%7)2(%2"%

€)+O(”> g (5.26)

The value of the right side of (5.26) for any n that divides Rd represents an achievable
distortion, since there exist BLVQs and families of channel codes that satisfy such a

bound. In particular, we minimize the right side of (5.26) over n. Let ng denote a
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value of n which achieves the minimum. Asymptotically (in R), ng — oo must hold,
for otherwise the second term in (5.26) would be bounded away from zero. In fact, to
minimize the bound in (5.26) the exponents of the two decaying exponentials have to be
asymptotically equal. Since ng — oo as R — oo and the families of codes considered
satisfy lim,, o dmin/n > 2¢ by assumption, the limit of the information divergence in the
exponent of the second term in (5.26) is a finite nonzero constant which we denote by

A . d.
6 =D, (% lim,, o0 I;;m

e). Thus, the asymptotically minimizing ng satisfies

. 2Rk
lim

Let rg denote the channel code rate corresponding to the np which solves (5.27). Then
by (5.26), the overall distortion vanishes at least as fast as 272fr=+0(1)_ The next section

presents the rate allocations rg obtained from solutions to (5.27) for various code families.

5.4 Asymptotic Distortion Decay Rates

First, two lemmas are given that solve (5.27) for different dependencies of k£ on n.
Then, the main theorem describing the behavior of several families of codes cascaded

with BLVQ follows.

Lemma 5.5 If k = cn® for some ¢ > 0 and some o € [0,1), then

e ()

solves (5.27) (asymptotically in R), and the corresponding channel code rate is
8\ 7a
TR =2¢C <ﬁ) .

Lemma 5.5 follows by direct substitution, since

2k _ (20 e
nyp g )" ’

Proof
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and

[ |

Note that o = 1 corresponds to asymptotically good codes (where the optimal rate

is asymptotically constant as shown in Chapter 4) and oo = 0 corresponds to repetition
codes. For a = 0, the channel code rate decays as rp = O(ﬁ), in contrast to the case
in [5] for Shannon optimal codes where 7 is a positive constant. The distortion decays
at least as fast as O(22VR), in contrast to the O(2 2) Zador rate. Many structured
families of codes that satisfy k/n — 0 as n — oo, however, have a logarithmic dependence

between k£ and n.

Lemma 5.6 If k/ (log, n)' — ¢ as n — co for some finite ¢ > 0 and some [ > 0, then

2 (1 :
ng = \/ECR <§ log, R)

satisfies (5.27), and the corresponding asymptotic channel code rate is

TR =

¢ (3 log, R)l
2R ’

Proof

Lemma 5.6 follows by direct substitution:

!
lim 2k = lim <£) ( i (log, )

R—x n% R— /6 10g2 nR)l n%z
!

. I
)
e g 2p (1loe. R)

3 (2 082 )
!
. I
5 log, R + log, [ % (51og, R) }
= i
R1—I>Iolo %log2 R
=1;
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and

k (10g2 ”R)l
1

lim = lim

R—oo NRTR R—o0 (10g2 nR) NRTR

(1og2 [\/R% (Llog, R)lDl
(

= lim ¢
R—o0 i
c l cB(5logy R
%R %logQR) ( SR )
!
(log2 [\/R% (% log, R) })
= lim
R—o0 (% 10g2 R)
=1.

[ |
The case | = 0 corresponds to repetition codes, while larger values of [ correspond to

more powerful codes (Ith-order Reed-Muller codes, for example). For simplex codes (I =

1), the channel code rate rx decays as O(1/'%%). Reed-Muller codes (often punctured)
cover a large range of code families. Zeroth-order Reed-Muller codes are themselves
repetition codes. Simplex codes (the duals of Hamming codes) are punctured first-order
Reed-Muller codes. Punctured Reed-Muller codes are cyclic and as such are related to

BCH codes. See [19, p. 384] for the nesting properties of BCH and Reed-Muller codes.

Theorem 5.1 Let X € R? be a bounded random variable which is transmitted at a rate
R bits per component across a binary symmetric channel with crossover probability .
Suppose the source coder is chosen from a sequence of asymptotically good bounded binary
lattice vector quantizers, and the channel coder is chosen from a family of [n,k, dmin]
linear block channel codes satisfying lim, .o k/n = 0 and lim, o dmin/n > 2€. Then,

the overall minimum mean squared error decays (asymptotically in R) at least as fast as
A < 97 2Rre+0(1) (5.28)

which 1s achieved by a rate allocation rgr between source and channel coding, for various

channel code families as follows:
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(1) for a family of [n,1,n] repetition codes (n > 1)

rg = \/_ log, 22R6(1 —9) e (0,1/2): (5.29)

(17) for a family of lth-order [Qm, 22:0 (™), Zm_l} Reed-Muller codes (m > 1)

Q+1_1\ oTFT l
— | log, 2141 (e (ﬁ) ) (log, R)

I+1y.
TR = l!2l+1R ’ 6(011/2+)’
(5.30)
(134) and for a family of duals of extremal t-error-correcting
[2m — 1, mt, 2™ ! — [log, (2t — 1)]] BCH codes (m > 1)
—t <log2 4 (e (%)3) Z) log, R
TR = , e € (0,1/4). (5.31)

4R

Proof

The inequality in (5.28) is a direct consequence of (5.26) and the ensuing discussion.
The various expressions for 7 are obtained from the solutions ng of (5.27) as given by
Lemma 5.6 (alternatively, Lemma 5.5 for repetition codes) with 3 substituted using the

actual code parameters.

(i) Since dmin/n = 1 for repetition codes, § = D, ( %H = —logy(24/€(1 —€)). Sub-

stituting this in Lemma 5.5 with a = 0 and ¢ =1 (or in Lemma 5.6 with [ = 0 and

¢ = 1), the result follows.

(ii)) An [lth-order length n = 2™ Reed-Muller code has k = ZZ o (M = ( o(1))
information symbols as n — oo. Hence, Lemma 5.6 can be applied with ¢ = ll

Substituting dpi,/n = 2=l in 3 yields the desired expression for 7.

(iii) Often, only bounds are available on the parameters of BCH codes. For simplicity,

we assume a family of “extremal” BCH codes at our disposal, which meet these
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bounds with equality. A t-error-correcting binary BCH code of length n = 2™ — 1
has at least n —mt information bits. Thus, its dual has k¥ < mt = tlog, n(1+o(1))
(which we treat as an equality). This corresponds to Lemma 5.6 with [ = 1 and

¢ = t. By the Carlitz-Uchiyama bound [19, p.280], lim,, dyin/n = The result

1
2

then follows by substitution. |

Figure 5.2 provides an illustration of Theorem 5.1 for the special case of using a
uniform scalar quantizer for a uniform source on (0, 1) and a family of repetition codes on
a binary symmetric channel with e = 1073, For each R =1,2,3,...,128, the repetition
code with the smallest distortion was found by exhaustive search and the resulting rate
was plotted (discrete dots). Since deleting a bit of an even length repetition code results
in an odd-length repetition code with the same bit error probability, using the extra bit
for source coding always results in a smaller overall distortion. Hence, in addition to the
analytic expression for rg from (5.29) (dashed curve), we also plotted the channel code
rate corresponding to the closest odd blocklength (step function).

As with Zador’s lemma, Theorem 5.1 also gives a rule of thumb for the expected gain
in system performance per bit increase in the overall transmission rate. Unlike on an
error-free channel or on a noisy channel using asymptotically good codes (as in [5-7]),
however, there is no fixed increase in the signal-to-noise ratio per “bit investment.”
Instead, the number of “dB’s per bit” of performance gain diminishes as the rate R
grows. For example, increasing the total transmission rate R by 1 bit per component for

a cascaded system using repetition codes yields a signal-to-noise ratio increase of

SNR(R +1) — SNR(R) = 10logy, (2—2\/R+O(1)/2—2\/—R+1+0(1))

= 2(VR+1-VR)10log,2
3
VR

However, the bounds presented might be improved in the future.

Q

[dB].
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Figure 5.2 An illustration of Theorem 5.1 for uniform scalar quantization of a uniform source
on (0, 1) using repetition codes to transmit on a binary symmetric channel with ¢ = 1073, The
distortion minimizing channel code rate r is plotted against the overall transmission rate R.
The dashed curve is obtained directly from (5.29), the solid-line step function is the closest
channel code rate for an odd-length repetition code, and the individual dots represent the rates
of the best repetition codes found by exhaustive search.

5.5 Conclusion

This chapter presented bounds on the performance of implementable communication
systems as a function of the overall transmission rate R. The systems employ a binary
lattice vector quantizer for source coding a bounded random input, and a binary linear
channel code for transmission over a binary symmetric channel. The channel code is
obtained as a Cartesian product of short codes from channel code families with vanishing
rate. Many well studied [n, k] linear channel codes have k proportional to some power
of log,n. We showed that for such codes, using a rate allocation between source and

logh R

channel coding of O(y/~%~) as R — oo, one gets an asymptotic distortion decay of
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_ 1 . . . . . .« . . .
272V Rlog: B Gince the exponent is sublinear in R, we see diminishing returns in the

per-bit performance increase instead of the usual 6 dB/bit for error-free transmission (or

some other constant return for optimal or asymptotically good codes).
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

This thesis has studied low-complexity techniques for the transmission of source data
over a noisy communication channel, subject to a fidelity criterion. The use of structured
codes in most components of a digital communication system, including the source coder,
the channel coder, and the index assignment, was emphasized throughout the disserta-
tion. This chapter summarizes the work and discusses directions for future research in
this area.

The initial part of the thesis treated the index assignment problem. Exact expressions
for the mean squared error performance of affine index assignments were derived when
used with binary lattice vector quantizers (BLVQs) on binary memoryless channels with
or without channel codes for explicit error-control. These results enabled a thorough
comparison of the well-known Natural Binary Code, Folded Binary Code, Gray Code,
and Two’s Complement Code for both symmetric and nonsymmetric channels. No sin-
gle index assignment was found to be optimal for all channel conditions, but the Two’s
Complement Code was shown to be superior to the other three families of index assign-
ments for a wide range of channel parameters. In addition, a Worst Code maximizing
the mean squared distortion of a uniform quantizer with a uniform source and a binary
symmetric channel was derived. Combined with the optimality of the Natural Binary
Code under these conditions, the Worst Code enabled a complete description of the range
of performances achievable by index assignments. The distortion of a randomly chosen

index assignment was also evaluated and found to approach that of the Worst Code for
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increasing blocklengths. The Worst Code was demonstrated to be affine, and it was
shown to maximize the mean squared error among all affine index assignments not only
for uniform quantizers, but also for BLVQs. The Hadamard transform was an important
tool in obtaining results for the index assignment problem.

The second part of the dissertation was concerned with the problem of rate allo-
cation between source and channel coding for cascaded source/channel coder systems.
High-resolution quantization theory was used to obtain rate allocation results for subop-
timal structured codes. Upper and lower bounds on a distortion-minimizing channel code
rate were derived for the cascade of good vector quantizers, linear block channel coders
satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds, and g-ary symmet-
ric channels. The bounds were obtained by balancing the source coding and channel
coding error exponents. Analytic expressions were derived for small channel error prob-
abilities and arbitrary vector dimensions, and arbitrary channel error probabilities and
large source dimensions. The resulting high-resolution distortion was shown to decay to
zero exponentially fast for increasing transmission rates, with the rate of decay bounded
above and below by constants dependent on the channel noise level. Similar techniques
were used to derive high-resolution distortion bounds for cascaded systems of BLVQs,
algebraic codes with asymptotically vanishing channel code rates, and binary symmet-
ric channels. Explicit rate allocations were given for families of repetition codes, BCH
codes, and Reed-Muller codes, which showed that the minimum mean squared distortion
of these systems can be made to decay to zero asymptotically as the transmission rate
grows at least exponentially fast with the square root of the transmission rate.

Optimality conditions for the encoder and for the decoder of BLVQs were also given
for both noisy and noiseless discrete memoryless channels and the mean squared error
distortion criterion. These provide the update equations for a modified Generalized Lloyd
Algorithm to design locally optimal noiseless and channel-optimized BLVQs.

A variety of research ideas can be suggested for future work in the areas investigated
in this dissertation. BLVQs, affine index assignments, and binary linear block channel

codes share the same basic structure. All three types of codes are affine functions over
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the binary field. The same approach followed in this thesis can be extended to obtain
not only channel coders but also new structured source coders and index assignments
over other finite fields.

There are several important open questions regarding channel-optimized vector quan-
tizers. Analytic performance formulas are lacking. Even for the simple case of a uniform
source and a binary symmetric channel the minimum achievable distortion using channel-
optimized quantizers (as a function of the channel error probability and the quantizer
resolution) is presently unknown. There is also a need for a high-resolution theory. In
general, analytic results would enable a more thorough evaluation of the tradeoff between
performance and complexity for unstructured vs. structured, or channel-optimized vs.
cascaded systems. Another long-standing question is to determine under what circum-
stances channel-optimized vector quantizers are regular. The optimal encoder regions
satisfying the weighted nearest neighbor condition are known to be convex, but it is
currently unclear what conditions (on the source and/or channel statistics) characterize
when the codevectors are contained in their respective encoder cells.

A possible direction of future research is to extend the results of this thesis to include
other classes of channel codes. Another well-known question in channel coding is to
develop practical constructions and decoding algorithms for codes that meet or exceed
the Gilbert-Varshamov bound.

In this thesis, noisy channels are modeled as discrete and memoryless. While the
theorems obtained for discrete memoryless channels provide valuable insight, it may be
of interest for real-world applications (including mobile/satellite communication, mag-
netic/laser recording) to generalize the results to different channel models. Several of the
tools and ideas presented in the dissertation provide useful guidelines for future research

in this area.
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APPENDIX A

OPTIMALITY CONDITIONS FOR
BINARY LATTICE VECTOR QUANTIZATION

In this appendix, we follow a unified approach to obtain necessary conditions for the
mean squared optimality of binary lattice vector quantizers (BLVQs) for both noisy and
noiseless discrete memoryless channels. The derivation first treats the familiar case of
unstructured vector quantization, and then applies the same steps to obtain optimality
conditions for binary lattice vector quantization. The relationships between the first two

moments of optimal quantizers and those of the quantized source are also described.
A.1 Preliminaries

The symbols I;y, Pr[-], and E[] will be used to denote indicator functions, prob-
abilities, and expectations, respectively. Euclidean vectors x € R? will be written as
column vectors x = (zy,Zs,... ,Zq)", where the superscript ¢ denotes transpose. Thus,
xty = 31wy € R is the inner product, and xy* € R¥*¢ is the outer product of the
vectors x,y € R%. Also, ||x|| = Vx!x denotes the Euclidean norm of x € R% The
trace of a square matrix A = [a;,,] € R¥? is defined as trace {A} = 3% a;;. Thus,

x'y = trace {xy'} follows. The following standard result will also be needed.

Lemma A.1 For positive integers d and n, let A € R>*". [f trace {AT!} = 0 for every

T € R then A = O4yn, the all-zero matriz in R,
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Proof
Let A = [a;;m] and T = [t;,,]. Then by assumption,

d n
trace {ATt} = Z Z armtim =0

=1 m=1
holds for all choices of the d - n parameters ¢, ,,. Setting
1 if l=4 and m=7

tl,m - .
0 otherwise

yields a; ; = 0. Since ¢ and j are arbitrary, the statement follows. |

A.2 Vector Quantization

For convenience, we review the definition and properties of vector quantizers.

Definition A.1 A d-dimensional, 2f-point vector quantizer (VQ) with index set T =
{0,...,2%F — 1}, and codebook Y = {y; € R?: i € T}, is a functional composition Qy =
B oa, where o: R? — T is a quantizer encoder and 3: T — Y is a quantizer decoder.

(The subscript 0 denotes association with an ideal noiseless channel.)

The elements of the codebook y; € ) are called codevectors. The set of codevectors
completely specifies the decoder, since 3(i) = y; for all i € Z. Associated with each
index i is the encoder region R; = o '(i) = {x € R¢|a(x) = i}. The set of encoder
regions forms a partition of R?. By definition, the encoder partition completely specifies
the encoder.

The mean squared error of a vector quantizer Q for a source random variable X € R¢
is given by

A=BIX - Q@)=Y [ Ik vilaut), (A1)
i€L g

where p is the probability distribution of the input X.
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Necessary conditions for the optimality of a vector quantizer using the mean squared

distortion are (see [1] for example) the Centroid Condition:
yv: = E[X|X € R)] VieZ, (A.2)
which gives the optimal decoder for a fixed encoder, and the Nearest Neighbor Condition:
Ri={xeR": [x—yil’ <lx—yl* VieZ\{i}} Viel (A.3)

which gives the optimal encoder for a fixed decoder. Locally optimal vector quantizers
satisfying both necessary conditions (A.2) and (A.3) can be obtained using the General-
ized Lloyd Algorithm [1].

A.2.1 Binary lattice VQ

Definition A.2 For positive integers d and k, a d-dimensional, 2*-point binary lattice

vector quantizer is a vector quantizer whose codevectors are of the form
k—1
Yi=Yo+ Y viiy Vi€T (A.4)
1=0

where yo € R¢ is an offset vector, {vl}fz_ol C R? is a set of generator vectors, i, is the Ith
bit of the index i (i.e., the coefficient of 2! in the binary expansion of the integer 7), and

Z={0,...,2F — 1} is the index set.

Since only the decoder of a BLV(Q is constrained, the Nearest Neighbor Condition

remains unchanged for BLVQ.

A.2.2 Noisy channel VQ

When a d-dimensional, 2¥-point vector quantizer as given in Definition A.1 is used on a
noisy channel, the defining functional composition becomes Q, = Bonoc, where n: 7 — T
is a probabilistic mapping representing the channel. The mapping n is characterized by
the transition probabilities g;; 2 pr n(i) = j] Vi,j € Z. An ideal noiseless channel is a

special case with q;; = Iy;—j for all 7,5 € 7.
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The overall mean squared error of a noisy channel vector quantizer Q, for a source
random variable X € R? is given by
A=E[X-Q,X)|"= qum/ Ix = ;I° dp(x), (A.5)
i€T jeI R
where p is the probability distribution of the input X.

Necessary conditions for the optimality of a noisy channel vector quantizer using the
mean squared error distortion criterion have been derived by Kumazawa et al. [2]. To
simplify notation, for each 7 let p; 2 Pr [X € R;] and ¢; =8 [X|X € R;] respectively
denote the probability and the centroid of the i¢th encoder region. The centroid of a
zero probability region is not defined, but the product ¢;p; = fRz xdu(x) is always well-
defined. Also, for each j € T let P; = ), _;q;ip; denote the probability that the index j
is received.

If the channel is noisy, the optimal decoder for a fixed encoder is given by the Weighted
Centroid Condition:

y; = % > qjipici Vi E€L: P #£0, (A.6)
T iez
and the optimal encoder for a fixed decoder is given by the Weighted Nearest Neighbor
Condition:
Ri={xeR": Y qulx—yI" <Y g lx -yl Vi’ eI\ {i}} VieI. (A7)
JET JET

The Generalized Lloyd Algorithm can be modified to design locally optimal vector

quantizers satisfying both (A.6) and (A.7). The resulting quantizers are called channel-

optimized vector quantizers.

A.3 Optimality Conditions

Analogous to (A.2) and (A.3), necessary conditions for the mean squared optimal-
ity of a class of vector quantizers including BLVQs were given by Hagen and Hedelin

in [3]. Their result implicitly assumes an ideal noiseless channel. We derive optimality
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conditions for BLVQ for both noisy and noiseless discrete memoryless channels. Since
only the decoder (i.e., codebook) of a BLVQ is constrained, the nearest neighbor con-
ditions (A.3) and (A.7) remain unaffected. We obtain modified versions of the centroid
conditions (A.2) and (A.6) using minimum-variance linear estimation. The development
parallels the familiar method of obtaining the centroid condition for unstructured vector
quantizers [1] and leads to new insight regarding the properties of locally optimal struc-
tured quantizers. The method easily extends to include “VQ by a linear mapping of a

block code” (LMBC-VQ), the class of quantizers treated in [3].

A.3.1 Encoder optimality

Since the BLVQ constraint only affects the decoder, the optimal encoder partition for
a fixed BLVQ codebook is given by the Nearest Neighbor Condition (A.3) for ideal noise-
less channels and by the Weighted Nearest Neighbor Condition (A.7) for noisy channels.
Nevertheless, the BLVQ structure allows alternative expressions for these conditions,
which provide savings in storage and computation. However, these savings are less sig-
nificant for channel-optimized BLVQs.
y (A.4), for a BLVQ we have

k-1 k-1

Ix — ;l* = [Ix — ol —2ZX YO)'Viii + Y Y ViVdijm- (A-8)

=0 m=0

Thus for each 7 € Z, the Nearest Neighbor Condition can be rewritten as

k—1 k—1 k—1
={xeR": 2> (x—y)'"vi(i—i) <D D> ViV (i — itim) Vj € T\ {i}}.
=0 =0 m=0

(A.9)

Since the index bits are readily available, (A.9) suggests that only the offset vector yyg, the
set of generator vectors {vl}fz_ol, and the (’;) inner products v}v,, have to be stored for a
total storage complexity of O (k(d + k)). This approach may also reduce computational
complexity, since the k inner products (x — yo)'v; need not be recomputed for every

different j.
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Using (A.8), the Weighted Nearest Neighbor Condition can be simplified similarly as

i = {x e R%:
k-1 k-1

22 x —yo)'vi ¥ (a0 — aja) i < Vivm 3 (a7 — @1i) Jujm Vi’ € T\ {i}},

jET =0 m=0 jET

(A.10)

for each ¢ € Z. Although (A.10) may also enable savings in both storage and com-
putational complexity, these savings are less significant, because k2¥ “weighted bits”
ZjEI gjs4 and (’2“) 2% “weighted bit pairs” ZjEI gj|si1im also have to be stored, in addi-
tion to the O (k(d + k)) storage required for the offset and generator vectors and the
inner products of the generator vectors. Thus, the total storage complexity of a channel-
optimized BLVQ is O (k(d + k2’“)), which is already comparable to the O (d2k) storage
requirements of unstructured quantizers (channel-optimized or not). In fact, whenever
k? > d it is more memory-efficient to disregard the BLVQ structure, although doing so

also eliminates the possibility of savings in computational complexity.

A.3.2 Decoder optimality

We follow a unified approach for both noisy and noiseless channels. To find the
optimal decoder for given source random variable X and a fixed encoder, we first define
the random variable J 2 n(ca(X)) representing the received index. (For an ideal noiseless
channel, 7 is the identity mapping and thus J = «(X).) By writing a vector quantizer as a
linear estimator of X based on the observables {I;;—;;}, we obtain the optimal codebook
as a minimum-variance linear estimator [4]. We first derive the Centroid Condition and
Weighted Centroid Condition for unstructured quantizers, and then follow the same steps
to obtain the corresponding optimality conditions for BLVQs.

We define the selector vector S as the 2¥-dimensional random vector whose jth com-

ponent is the indicator random variable of the received index j:

A
S = (I{Jzo},I{le}, ce ’I{J:Qkfl})t’
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and the codebook matriz Y as the dx 2* real matrix whose ith column is the ith codevector:

Using this notation, any VQ can be written as
Q(X) =YS, (A.11)

where we omitted the subscripts to emphasize that the same approach is valid for both
the noisy and the noiseless channel case. Finding the mean squared optimal codebook
for a given partition is equivalent to finding the codebook matrix Y which minimizes the

mean squared distortion
A=E|X-YS|’? (A.12)

over all allowable d x 2" matrices. For unconstrained quantizers, Y is a free variable, and
any d x 2" matrix is allowed. Structured quantizers, however, impose constraints on Y.

The codebook of a BLVQ, for example, is constrained by (A.4). To write the con-
straint in matrix form, we define the generator matriz V of a BLVQ as the d x (k + 1)
real matrix whose first column is the offset vector y, and the subsequent £ columns are

the generator vectors v; for l =k —1,... ,0:

and we define the bit-mapping matriz B as the (k + 1) x 2¥ binary matrix whose ith

column is (1,4x_1,%_2,- . ,41,%)" which gives the bits of 7 with a leading 1 prepended:
[ 1 11 e 1 11 ]
0 0O 1 11
B2
0 01 011
I 010 1 01 |
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The codebook constraint in (A.4) can be rewritten as
Y = VB, (A.13)
and (A.11) becomes
Q(X) = VBS. (A.14)

Since B is fixed, a BLVQ is completely specified by its generator matrix V. Thus,
compared to unstructured VQ the BLVQ constraint reduces the free parameters (i.e.,
d-dimensional vectors) of allowable codebooks from 2* to (k + 1).!

First, we re-derive the centroid conditions for unstructured codebooks, and then we
show how the same steps lead to an optimal BLVQ codebook. By the Projection Theo-
rem [4], the codebook matrix Y* which minimizes the mean squared error in (A.12) over

all d x 2¥ matrices Y must satisfy the orthogonality condition
E[(X-Y*S)'YS]=0 VY eR>?. (A.15)
Equivalently,
trace {E [(X = Y*S)S| Y!} =0 VY € R*%, (A.16)
Hence, by Lemma A.1 we have
E[(X = Y*S)S"] = 04xot, (A.17)
which implies
Y* =E[XSY] (E[sSY])”, (A.18)

where we assumed that the inverse exists, since otherwise the observables would be
linearly dependent, and thus a smaller set of linearly independent observables could be

chosen. To evaluate the expectations, we define the following 2% x 2% real matrices:

The LMBC-VQs of [3] can be included in the above framework by adding “parity rows” to the
bit-mapping matrix B and corresponding generator vectors to the generator matrix V.
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e the diagonal matrix of a prior: probabilities p; for 1 € 7

Do 0

y4!

1>

O Dok _q

e the matrix of transition probabilities g;; for i,j € T

qolo q1)0 -e- Gok_1)0
Q A qo|1 q11 <o Gok_1n
| Qoj2k—1 qu2k—1 .- Q2k—12k—1 |

e and the diagonal matrix of a posteriori probabilities P; for i € 7

P, 0
P

jm
>

0 P2k71

In addition, we define the d x 2% matrix of centroids

C() C1 R CQk_l
. |

The expected values in (A.18) can then be written as

2

C

E[XS] =CIQ  and

Substituting these in (A.18) yields

Y* = CIIQIT ™,

163

E [SS'] =11

(A.19)

(A.20)



which is the Weighted Centroid Condition for unstructured VQ in matrix form. For an

ideal noiseless channel, we have

Q=1 and II=T1I, (A.21)

where I is the identity matrix. Hence, (A.20) simplifies to

Y* = CIII ! = C, (A.22)

the usual Centroid Condition for unstructured VQ.

We now derive the corresponding conditions for BLVQ. Equations (A.24), (A.25),
(A.26), and (A.27) below follow the steps taken in (A.15), (A.16), (A.17), and (A.18),
respectively. Finding the mean squared optimal BLVQ codebook for a given encoder is

equivalent to finding the generator matrix V which minimizes the mean squared distortion

A =E|X - VBS|?, (A.23)

over all d X (n + 1) matrices. Although the selector vector S still describes the complete
event space, imposing the BLVQ constraint effectively restricts the set of observables to
BS. By the Projection Theorem, the generator matrix V* which minimizes the mean
squared error in (A.23) over all d x (k + 1) matrices V must satisfy the orthogonality

condition
E[(X—-V'BS)'VBS] =0 VWV e R>*H, (A.24)
Equivalently,
trace {E (X — V*BS)S'| B'V'} =0 VYV € R+, (A.25)
Hence, by Lemma A.1 we have

E [(X — V*BS) S*] B = 04 (5+1), (A.26)
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which implies

V* = CIIQB! (BﬁBf) - (A.27)

where (A.19) was used to replace the expectations, and we assumed that the autocorre-
lation matrix of the observables is invertible.

Substituting (A.27) in (A.13) gives the optimal codebook matrix as

Y* = CIIQB! (BﬁBt) B (A.28)

This is the Weighted Centroid Condition for BLVQ on a noisy channel. The optimal
codebook for the noiseless case is obtained by substituting (A.21) in (A.28) to yield

1

Y* = CIIB (BIIBY) ™' B. (A.29)

This is the Centroid Condition for BLV(QQ on an ideal noiseless channel. For both noisy
and noiseless discrete memoryless channels, the optimal BLVQ codevectors are linear
combinations of the centroids. The actual coefficients are determined by the bit-mapping

matrix and, in the noisy channel case, the transition probabilities of the channel.

A.3.3 Implications of optimality

Proposition 3 If an unstructured vector quantizer or a binary lattice vector quantizer
designed for a noisy or an ideal noiseless discrete memoryless channel satisfies the cor-

responding version of the Centroid Condition, then

E[Q(X)] =E[X], (A.30)
A=E|X|*-E[QX)|*, (A.31)

and
E[|Q(X) - E[QX)]I* = E[|X - E[X]|* - A. (A.32)
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Proof
Equation (A.32) is a direct consequence of (A.30) and (A.31), since for any random

vector Z we have
E|Z - E[Z||* = E|Z|” - 2E [Z] E[Z] + | E[Z]|]”.

Thus, it suffices to show that (A.30) and (A.31) hold.

Equation (A.31) follows from the orthogonality conditions (A.15) for unstructured
VQ and (A.24) for BLVQ (which are valid for both noisy and noiseless channels). To see
this, note that by

A=E|X-oX)|’ =E[X|’ - 2E [X'QX)] + E[l2X)’,

Equation (A.31) is equivalent to E[X!Q(X)] = E [|Q(X)||”, which reduces to

E[(X - QX)) 9(X)] =o0. (A.33)
By (A.11) an optimal unstructured VQ can be written as
Q(X) = Y"S. (A.34)

Hence, choosing Y = Y* in (A.15) yields (A.33) for unstructured VQ. Similarly, by (A.14)

an optimal BLVQ can be written as

Q(X) = V*BS. (A.35)

Thus, choosing V = V* in (A.24) gives (A.33) for BLVQ.
It remains to show (A.30). For unstructured quantizers, substituting (A.34) in (A.17)

and multiplying both sides by 1., a 2¥-dimensional vector of ones, we obtain

0,=E[(X—9(X))S"] 1 (A.36)
=E[(X - Q(X)) S"14] (A.37)
=E[X - 9(X)], (A.38)
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where (A.37) follows by the linearity of expectation, and (A.38) follows from
Stlzk = ZI{J:]} =1.
JjET
The proof of (A.30) for BLVQ is essentially identical. Substituting (A.35) in (A.26)

and multiplying both sides by e = (1,0,...,0)?, a (k + 1)-dimensional vector whose only

nonzero entry is a 1 in the first position, we obtain

04 =E [(X — Q(X))S!] Be (A.39)
=E [(X — 9(X))S"] 1, (A.40)
which is identical to (A.36). [ |

We note that while in the noiseless case we have
E[Q ] _ZP’LYZ and E”Q || _ZPZHYZ”
€T i€l
for noisy channels the corresponding quantities are

X))=) Pyi and  E[QX)" =) Ayl

1€ i€l
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