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Globally Optimal Vector Quantizer Design by
Stochastic Relaxation

Kenneth Zeger, Jacques Vaisey, and Allen Gersho, Fellow, IEEE

Abstract—This paper presents a unified formulation and study
of vector quantizer design methods that couple stochastic re-
laxation (SR) techniques with the generalized Lloyd algorithm.
Two new SR techniques are investigated and compared: simu-
lated annealing (SA), and a reduced-complexity approach that
modifies the traditional acceptance criterion for simulated an-
nealing to an unconditional acceptance of perturbations. It is
shown that four existing techniques all fit into a general meth-
odology for vector quantizer design aimed at finding a globally
optimal solution. Comparisons of each algorithms’ perfor-
mance when quantizing Gauss-Markov processes, speech, and
image sources are given. The SA method is guaranteed to per-
form in a globally optimal manner, and the SR technique gives
empirical results equivalent to those of SA. Both techniques re-
sult in significantly better performance than that obtained with
the generalized Lloyd algorithm.

I. INTRODUCTION

NE of the most challenging problems in the theory
of source coding is to design vector quantizers that
introduce as little average distortion as possible. Vector
quantization (VQ) is a source coding technique that ap-
proximates blocks (or vectors) of input data by one of a
finite number of prestored vectors in a codebook [1], [2].
The effectiveness of the codebook design is the primary
challenge in constructing vector quantizers. A widely used
design approach defines the data source through the use
of a finite training set, and uses an iterative procedure
called the generalized Lloyd algorithm (GLA) [3] to pro-
duce a codebook giving a locally minimal average distor-
tion. The algorithm is essentially the same as the k-means
algorithm used in pattern recognition. The performance
of a quantizer produced by the GLA is often considerably
inferior to that of a globally optimal quantizer, although
it has certain ‘‘locally optimal’’ properties. An open ques-
tion in communication theory is how to effectively design
quantizer codebooks that are globally optimal in perfor-
mance.
One approach to solving this problem is to consider de-
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sign algorithms that do not share the deterministic nature
of the GLA. The GLA is a descent algorithm, i.e., at each
iteration in the algorithm a positive improvement in per-
formance is achieved over the previous iteration. The
GLA thus has the advantage that it converges to a final
codebook relatively quickly; however, since codebook
design is an off-line operation, its complexity does not
affect the operation or performance of the coder, and the
computational limit is set only by the available computing
power.

Several powerful optimization techniques that intro-
duce elements of randomness into algorithms have been
investigated in the past. Rastrigin [4] discusses ‘‘random
search’’ techniques for obtaining arbitrarily accurate so-
lutions to optimization problems. The basic idea is to ran-
domly perturb the state of the system at each iteration of
the algorithm and determine the resulting change in per-
formance. If the performance increases, the perturbation
is accepted; however, the change is withdrawn if the per-
formance decreases. Rastrigan also analyzes several vari-
ations on this theme. His ‘‘blind search’’ technique con-
sists of repetitively applying the perturbations described
above. If the perturbations consist of choosing the next
state in an arbitrary manner from the current state, then
the globally optimal solution will be found eventually.
However, the computational requirements for this ap-
proach are unreasonable, since finding the global opti-
mum may take an enormous amount of time. A more ef-
ficient ‘‘blind search’> method limits the proposed
perturbations to some small neighborhood of the current
state, with neighborhoods diminishing in size as the al-
gorithm progresses. The ‘‘best trial”” search examines a
collection of potential perturbations at each iteration, and
selects the one that yields the best performance. The
‘‘search with linear scaling’’ technique accepts a pertur-
bation if it increases performance, otherwise it accepts a
perturbation in the opposite direction. This last method,
unlike the previous ones, allows decreases in system per-
formance at each iteration, since a step in the opposite
direction may degrade the performance. An application of
these ideas to antenna array design was made by Widrow
and McCool {5}, who compare a ‘‘linear random search
(LRS)”’ method resembling Rastrigin’s linear scaling
technique to two steepest descent algorithms.

In most of Rastrigin’s techniques, the value of the ob-
jective function must decrease with every additional iter-
ation of the minimization (the linear scaling method is an
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example of where this restriction does not necessarily
hold). To require a monotonic decreasing objective func-
tion is artificial and highly restrictive since there is no
sound reason to always forbid perturbations that decrease
performance. If a random search allows temporary de-
creases in an objective function with nonzero probability,
then the algorithm is in the class of techniques called sto-
chastic relaxation (SR) [6].

One important SR approach is simulated annealing
(SA), a technique which unconditionally accepts pertur-
bations that increase performance, and probabilistically
accepts perturbations that decrease performance, with the
probability depending on the amount of decrease. Under
very general conditions, SA can be guaranteed to yield
globally optimal solutions to combinatorial problems [7],
and has recently been used to solve a variety of engineer-
ing problems (e.g., [8]-[16]). Direct use of SA has been
attempted in several specific VQ design procedures (re-
ferred to as VQ-SA) [14]-[16] as well as some effective
reduced complexity SR techniques [3], [17].

In this paper, we present a unified formulation of vector
quantizer design using stochastic relaxation algorithms
(referred to as VQ-SR). General design procedures are
initially presented that combine the benefits of stochastic
algorithms with those of the GLA. It is shown that the
VQ-SR algorithms divide in a natural way into two dis-
joint classes, those with encoder perturbations and those
with decoder perturbations. Within these classes, there is
another relevant subdivision among the algorithms, those
that strictly adhere to the philosophy of SA, and those that
utilize reduced complexity SR methods. It is shown that
each of the existing VQ-SR design procedures falls into
one of these four subclasses, and that some potentially
promising variations on these have yet to be studied.

Experimental comparisons are made between the var-
ious VQ-SR techniques, and it is concluded that the re-
duced complexity VQ-SR methods generally perform as
well or better in practice as the full complexity VQ-SA
methods, which are theoretically guaranteed to yield
globally optimal performance. This paper describes the
details of these applications of SR to VQ design and pre-
sents experimental evidence indicating that substantial
performance increases can be achieved with these new
techniques over the standard GLA. In some cases, the
performance improvement using VQ-SR is equivalent to
doubling the codebook size using the standard GLA. This
implies a transmission rate reduction of 1 b per vector
index, a significant savings in many low-rate speech and
image coding applications. Equivalently, without sacri-
ficing performance, a reduction in computational com-
plexity by more than a factor of two is obtained in this
way, an important attribute for real-time applications.

The paper is organized as follows. Section II introduces
the general properties of SA and VQ, defining terms and
highlighting the features that are relevant to optimization
problems. Section III presents a general formulation of
VQ-SA design techniques, and Section IV gives simpli-
fied VQ-SR design algorithms. Section V then presents

numerical results that compare the performances of the
algorithms on various speech, image, and Gauss-Markov
sources.

II. SIMULATED ANNEALING AND VECTOR
QUANTIZATION

Simulated annealing [7], [19] is a technique that relates
combinatorial optimization problems to the physical pro-
cess of cooling a molten metal. In this analogy, a random
initial state (or set of parameter values) in the optimiza-
tion corresponds to the melted state, and local minima in
the objective function relate to the formation of different
crystal structures once the metal freezes into a solid. In
metallurgy, a technique called annealing is often used,
where a very fine crystal structure is obtained through
gradual cooling. Too rapid a cooling schedule results in a
coarse structure, similar to a poor local minimum in an
optimization. The correspondence between the two pro-
cesses is created through the Metropolis algorithm [20],
a procedure based on a mathematical description of the
behavior of a collection of atoms under constant temper-
ature.

In an optimization problem, the goal is to find, in a
multidimensional input space, a parameter (or state) vec-
tor S,,;, that minimizes some nonnegative real-valued ob-
jective function. In its most direct form, SA iteratively
searches through the input space in a nondeterministic
manner and attempts to minimize an energy function, E,
which is usually, but not necessarily (e.g., see [8]), equal
to the objective function. The essential idea behind SA is
to add randomness to the search for the global minimum
of the energy function, allowing the algorithm to ‘‘pull”
itself out of local minima.

The system’s state at the mth iteration of an SA algo-
rithm S,, is a random vector that specifies all of the pa-
rameters in the optimization. A perturbation function, m,
maps a system’s state to another state according to some
probability law. In each step of SA, the current system
state S, is tentatively altered to 7(S,,) by a trial random
perturbation, or change, and the resulting energy in-
crease, AE,, = E[n(S,)] — E(S,), is calculated. When
no confusion results we may omit the subscript and sim-
ply write AE. If AE,, is negative, then the system moves
to the new state, 7(S,); however, when AE,, is positive,
a probabilistic decision is made whether or not to imple-
ment the trial perturbation in the state. The state change
is accepted with a probability that decreases exponentially
with the size of AE,,/T,,, where for each m, T, is a non-
negative real number called the temperature. It is assumed
that the sequence {7,,} is monotonic nonincreasing and
that lim,, ., . 7, = 0. More explicitly, if for each m we
define the random variable &, as

1 ifSps1 = 7(S,
3, = +1 (S, W
0 ifS,. = Sn

then &, = 1 if and only if the perturbation at step m is
accepted, and the probability of accepting the change is
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given by

e AEn/Tn  if AE,, = 0
Pr(¢,=1 = ) @)
1 if AE,, < 0O

which we call the SA acceptance rule. If the change is not
kept, then the system simply remains at S,,. When the
temperature is large, almost every proposed state change
will be implemented. A small T,, implies that almost no
perturbations that increase the energy will be allowed. In
the limiting case when T, = 0, the algorithm is no longer
able to escape from local minima. The ability of the sys-
tem to move to states of higher energy gives the SA al-
gorithm its power to avoid nonoptimal local minima.

If a sufficient number of iterations, or trial perturba-
tions, are made at a constant temperature, then the system
eventually attains a state known as thermal equilibrium,
where the relative probability that the system is in any
given state versus any other stabilizes. In fact, if the SA
acceptance rule is used, then at thermal equilibrium the
relative probabilities between two states S, and §, at it-
eration m is

Pr(S, =S) _ [&s)-ES)IT
Pr(S, =S ' ®

Thus, when thermal equilibrium is reached at tempera-
tures close to zero, the lowest energy (the global opti-
mum) is much more probable than any other. However,
it is not feasible to directly run the algorithm at a low
temperature since the number of perturbations needed to
reach thermal equilibrium from a given initial condition
increases dramatically as the temperature is lowered [7].

The fastest way to reach thermal equilibrium at low
temperatures is to start with a high temperature where
thermal equilibrium can be reached quickly {7]. This ini-
tial high temperature ‘‘melts’’ the system, randomizing
the state since almost all the proposed changes will be
accepted. The temperature is held constant until thermal
equilibrium is approached, at which time the temperature
at the next iteration is reduced to the next value in a pre-
determined monotonically decreasing sequence of tem-
peratures, {7}, called the cooling schedule or simply,
schedule. Note that the schedule {T,} is a subsequence of
the temperature sequence {7,} and contains exactly one
copy of each distinct temperature. The algorithm is then
run (for many iterations) at the new temperature until
thermal equilibrium is restored, a process whose duration
is dependent on the amount of temperature drop. If the
cooling is done too quickly, then it may take a very long
time to regain equilibrium after each temperature drop.
With a straightforward application of Markov chains, it
can be shown that for sufficiently slow temperature de-
creases and simple constraints on the allowed perturbation
functions, the probability that the system state has not
reached the global optimum S, can be made arbitrarily
close to zero [7]. A sufficient constraint on 7 is that every
system state be ‘‘reachable’’ in the sense that for a non-
zero temperature, any given state can eventually be ob-

tained from any other state with nonzero probability as a
consequence of perturbations. Connors and Kumar [18]
showed that under a mild set of assumptions, a global op-
timum is attained (with probability approaching one as n
- ) if and only if for a certain constant d* the series
T, exp (—d*/T,) diverges. The schedule

R C

"Tlogn ¥ 1) @

meets this requirement if and only if C = d*, where T,
is the nth temperature in the schedule. In practice, this
schedule is very slow and Kirkpatrick [19] recommends
using a “‘suboptimal’” exponential schedule of the form
T, =T, K" (5)
where K is a positive constant less than unity (equal to
0.9 in [19]). The particular choices of the permutation
function and the temperature schedule are the two major
factors that affect the SA performance for specific appli-
cations, and are often chosen by experimentation.

A vector quantizer Q is a mapping of Euclidean k-di-
mensional space R* into a finite collection of points in R K
called a codebook. A vector quantizer approximates an
input source vector from R* as accurately as possible by
one of the vectors in a predetermined codebook. A vector
quantizer can be decomposed into an encoder C and a de-
coder D. The encoder is specified by a partition of the
input space R* into a finite collection of regions {R,,
-+, Ry}, where for each x € R;, C(x) = i. The decoder
is determined by a codebook, {y;, * - - , yn}, where D)
=y, for each i.

The quantity to be minimized (the objective function)
in VQ is the average distortion per sample

e = E[d(X, Q(X))] ©)

where d is a distortion function, usually chosen as the
squared-error function given by

1
dX,Y) = p lx — Y2 W)

Two necessary conditions on the encoder and decoder of
a vector quantizer are known, in order to obtain a mini-
mum average squared-error distortion [2]. These condi-
tions, the nearest neighbor (NN) for the partition condi-
tion, and the centroid condition for the codevectors, are
utilized in the paper by Linde et al. [3] to generalize the
Lloyd algorithm [21] for quantizer design from scalar
sources to vector sources. The resulting algorithm is called
the generalized Lloyd algorithm (GLA), and is an itera-
tive descent technique that produces a sequence of vector
quantizers with monotonically decreasing average distor-
tions for a given source. A description of the GLA is given
in Fig. 1, where M denotes the number of training vec-
tors, N the number of codevectors in the codebook, x; the
ith training vector, and at the mth iteration y]‘»'") denotes
the jth codevector, R™ the jth partition region, and D,
the distortion.
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(1) Codevector Initialization: y; ), - - - yy®.
m=1

Dy=oco

(2) Nearest Neighbor Repartition (1<i <M):
j=argmin{||x;—y; || : 1SISN}.
Put x; 5R; ™.
Dp =Dy + lIx; —y;™12

(3) Stopping Criterion:
If (Dyy1—D, }D,, <€ Stop.

m=m+1

(4) Centroid Computation (1 <i SN):

y;™=1R,"™| ¥ x;
X,€R;

(3) Gow (2)
Fig. 1. The GLA for codebook design.

Each iteration of the GLA (called a Lloyd iteration) can
be viewed as a nearest neighbor (NN) repartitioning fol-
lowed by centroid computations. Thus, after each Lloyd
iteration is completed, the resulting quantizer satisfies the
necessary centroid condition and produces a MSE less
than or equal to that obtained in the previous iteration.
For a finite training set, the GLA converges to a locally
optimal quantizer in a finite number of iterations; how-
ever, the monotonically decreasing nature of the objective
function may trap the algorithm in a locally optimal so-
lution, perhaps very different from the global optimum
[22].

In a modification of the GLA applied to image
compression, Vaisey and Gersho [14] obtained improved
codebooks by combining SA with the Lloyd iteration. The
perturbation was implemented by randomly moving the
training vectors between neighboring partition regions un-
til thermal equilibrium is reached. In addition, a single
GLA iteration was incorporated each time equilibrium was
achieved to further improve convergence. More recently,
Flanagan et al. [15] investigated essentially the same ap-
proach as in [14], but used a complexity reduction tech-
nique for computing A E after each training vector pertur-
bation, and used no GLA iterations. The technique in [14]
is discussed in detail in Section III.

In their paper describing the GLA, Linde et al. [3] also
present a modified version of their well-known fixed-point
technique for VQ design, with the goal of obtaining the
globally optimal solution. Their idea was to corrupt the
source by additive independent noise, whose marginal
distribution is such that only one locally optimum quan-
tizer exists for it. As the noise power is gradually re-
duced, the modified algorithm converges to a codebook
that is generally better than the fixed-point method. This
approach is similar to the technique in [14] except that
perturbations are added to the source unconditionaily in
[3]. Since the change in energy plays no role in this mod-
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ified technique, the approach is not strictly a form of SA,
but instead belongs to the broader class of SR algorithms.

Further applications of SA and SR to VQ design have
been given by Cetin and Weerackody [16] and Zeger and
Gersho [17], respectively. In [17], results comparable to
those in [14] were obtained with a significantly reduced
computational complexity (presented in detail in Section
V).

III. QuanTizER DESIGN USING SA

As discussed in Section II, quantizer design can be
viewed as an optimization problem, where the objective
is to find the encoder and decoder that give the best per-
formance in coding the training set. Since the GLA de-
creases the distortion at each iteration, the algorithm can
easily get stuck in poor local minima. Questions that need
to be addressed are whether or not we truly end up in a
poor local minimum with the GLA, how much improve-
ment is obtained using SA, and whether the full power of
SA is needed to obtain this performance improvement. In
the following, we present a general framework for apply-
ing SA to VQ design.

To apply SA to VQ design, a definition is needed for
the system state. The state can be specified by an encod-
ing and decoding rule, or, more spegifically, a partition
and a codebook. This description, however, leads to cum-
bersome and inefficient implementations. Since an opti-
mal quantizer satisfies both the NN and centroid rules, a
more efficient alternative representation of the state can
be made by assuming one of these rules always holds.
Thus, there are two natural ways in which this state can
be conveniently viewed: 1) as a specific partition of the
training set (in which case the centroid condition is as-
sumed to always be satisfied) or 2) as the set of code-
vectors (in which case the NN condition is assumed). In
each case, we present a convenient formulation of the per-
turbation operation.

In the first case, the perturbation is implemented by
corrupting the input source by an additive noise compo-
nent prior to each NN repartitioning. Here we regard the
perturbation 7 as a probabilistic mapping that distorts in-
put vectors, and define the ‘‘perturbed’’ quantizer coder
C* as the composition

C*=Com. ()

By following the input perturbation 7 with NN partition-
ing, a perturbation is effectively performed on the quan-
tizer partition associated with the original input. This
method does not sacrifice any generality since any pertur-
bation of a quantizer partition can be realized by choosing
an appropriate mapping 7.

In the second case, a perturbation applies noise to the
reconstructed vectors (‘‘jittering”’ the codevectors). The
perturbation mapping = is again regarded as a function
from R* to R* that maps each old codevector into a new
codevector, and the perturbed quantizer decoder D * is de-
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fined as
D*¥ = xoD, )

We refer to the perturbations in these two cases as encoder
perturbations and decoder perturbations, respectively. A
block diagram of the encoder and decoder perturbations
is shown in Fig. 2. By a perturbed quantizer 0 * we mean
a quantizer with either encoder or decoder perturbations.
Thus, either

Q*=DoC* or Q*=D*oC(C. (10)

Note that since every state is reachable, SA will yield
globally optimal quantizers in both cases.

The issue of computational complexity is of great im-
portance, since it is often the limiting factor in quantizer
design algorithms. The most demanding computational
task is the calculation of the energy change resulting from
a trial perturbation. In all of the applications of SA to VQ
design, the energy is chosen to equal the objective func-
tion, which is the mean-square distortion

E=2 2 dx,y).

Ri xeR;

an

A block diagram of the general computation of AE for
VQ is shown in Fig. 3, where each training vector x;
passes through both the perturbed and unperturbed quan-
tizers to find its contribution, AE; to AE.

There is a fundamental difference between the two per-
turbation methods in terms of the number of computations
required to determine A E. For encoder perturbations, the
centroid condition is assumed, so the centroids of the par-
tition regions affected by a perturbation must be recom-
puted in order to calculate A E. However, this calculation
is not difficult if one imposes the restriction that each per-
turbation affect the encoding of only one training vector.
In this case, a minor modification of the old centroids will
produce the new ones (as noted in [15]). On the other
hand, the computation of AE is generally not computa-
tionally efficient in the case of decoder perturbations. The
problem is that every training vector has a possibility of
being assigned to a new cluster in the NN partition when-
ever any one codevector changes slightly in value. Thus,
an entire repartitioning must be performed following every
decoder perturbation, a procedure that is too cumbersome
in many practical situations, though it may have value for
the design of small size codebooks with small training
sets. In Section V, we introduce a reduced complexity
algorithm that efficiently implements a decoder perturba-
tion. In the remainder of this section, we concentrate on
an SA implementation with encoder perturbations.

A. Encoder Perturbation

In applying SA to the codebook design problem at the
encoder, we seek a way to perturb the partition in a simple
manner. In this case, the state is defined as the quantizer
partition and our task is accomplished by moving a single
training vector from one cluster to another, changing the
centroids of the two clusters involved. Thus, the encoder

T
N
AE
T Accept?
{ e
(a)
'Y
&

AE

T J Accept?

(b)

Fig. 2. The perturbation strategies. (a) Decoder perturbation. (b) Encoder
perturbation.

Q -+ T %2
X, + AE;

+

Q Z X2

Fig. 3. The generation of A E. Each training vector x; is run through both
the perturbed and unperturbed quantizers to obtain the partial distortion
increment.

perturbation SA algorithm, closely based on the method
in [19], consists of picking a training vector from a target
cluster and then randomly switching it to a destination
cluster chosen from one of the N possible clusters.

We next define an important general class of perturba-
tion functions by specifying their probability distribu-
tions. For any set S let || denote the number of elements
in S. For each training vector x, let A(x) denote some
subset of the codebook. The uniform encoder perturbation
« is then defined by the probability distribution

A@x)| ™' ify € AX)
r [w(x) =yl { 0 if y ¢ 4G (12)

where y represents any vector in R*. That is, each training
vector can be perturbed to one of a predetermined set of
different partition regions with equal probabilities. The
set of allowable regions to which a given training vector
can be moved is the ‘‘neighborhood’’ of that vector. For
convenience of implementation, we include the additional
requirement that each A(x) consist of the N nearest code-
vectors (based on Euclidean distance) to x, for some in-
teger N.

If N = N, then each pick and switch is made with all
choices being equally likely, and the perturbation func-
tion can be written as w(x) = y;, where the y,’s are the
codevectors, and i is a uniformly distributed random in-
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teger between 1 and N. In this case, as in {15] we calcu-
late AE as

AE = A, y) A, y0)
xeR — {xs} |R,| -1 xeR4U {X;} lel + 1
d(x, d(x,
_ x5, y) X, Ya) (13)
xeR |R,| x€Ry |R4|

where x; indicates the training vector to be switched, R,
and R, denote the target and destination partition regions
before the perturbation, y, and y, are the centroids of the
target and destination clusters, and y;" and y? are the cen-
troids of the two clusters after the perturbation. The new
centroids can be calculated easily since they are related to
¥, and y, according to

* |Rl|yt — X

yr = _ [Rilys + x
' |Rt| -1

*

and y; R, + 1 (14)
Perturbations are then accepted according to (2). At each
temperature T, a fixed number L of switches is attempted
and then the system is assumed to have reached thermal
equilibrium. The design algorithm terminates when the
number of accepted switches after L attempts in less than
some threshold. When this condition occurs the system is
declared to be frozen.

The above approach should lead to a good solution;
however, since many switches must be attempted at each
temperature, the number of calculations required is ex-
tremely large. The amount of computation required can
be appreciated when one examines the ‘‘chip assign-
ment’’ problem discussed in [19]. In this case, the task is
to place 5000 circuits on one of two VLSI chips with the
objective of minimizing the number of connections and
routing on the chips. Kirkpatrick requires 5000 X 10 ac-
cepted switches (moving a circuit from one chip to the
other) before it is assumed that thermal equilibrium has
been reached. Roughly following his example, we should
need Ny X N X 10 accepted switches at each temperature;
this is approximately equal to 107 when it is desired to
design a codebook of 256 vectors from a training set of
size 8192 and N = N, a task that takes a very long time.

Since many switches may not be accepted, a better
method to reduce the amount of computation is to require
that N << N. The perturbation function is now taken as
7(x) = §;(x), where the y,’s are the closest N codevectors
to x, and i is a uniformly distributed random integer be-
tween 1 and N.

We present an efficient technique (about 20% faster)
called SA-C, that combines the GLA and SA procedures
by following each series of L SA switch attempts by one
iteration of the GLA, where, as in [19], we set L to be
equal to ten times the number of training vectors. The
nearest neighbors are computed after every L switches.
From the perspective of the GLA, the new algorithm al-
lows the distortion to increase between each GLA itera-
tion, hopefully leading to a descent toward a better local
minimum. These modifications allow the algorithm to
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converge to a good solution much faster than the basic SA
approach implemented in [15], when the number of code-
vectors is large.

The size of N seriously affects the amount of required
computation and the final codebook. A large N implies
that most of the perturbations will be rejected at low tem-
peratures where large energy changes are unlikely. To
reach thermal equilibrium faster, we thus monitor the
number of accepted perturbations for the farthest away of
the N codevectors at each iteration (of L trials). The value
of N is decreased by one if none of these switches are
accepted (N is never dropped below a minimum value of
two). Also, the use of relatively small initial values of N
occasionally limits the possible performance improve-
ment. Certain sources have most of their energy concen-
trated in a small region of the input space, and a random
selection of initial codevectors will generally assign many
codevectors to this region—perhaps many more than is
desirable. If all of these vectors are nearest neighbors to
each other, then our perturbation strategy will never move
one of these vectors to other regions of the space, and we
will be trapped in a local minimum. To solve this prob-
lem, a procedure was implemented when the lowest dis-
tortion cluster is deleted after every high temperature it-
eration (where ‘‘high’’ is heuristically chosen to be say
the first 50% of the temperatures in the schedule). The
deleted clusters are then replaced by ‘“splitting”’ the clus-
ter giving the highest contribution to E into two pieces.
Splitting is a standard technique for handling empty clus-
ters in the GLA, and a sample splitting procedure is de-
scribed in [3].

Iterations of the SA-C algorithm are run one after the
other at the current temperature until either the distortion
between GLA iterations changes by less than 0.1%, or ten
iterations have occurred since the last temperature drop.
At this point, the temperature is decreased to the next
value as specified by the schedule. A flowchart describing
this algorithm is shown in Fig. 4.

The last remaining set of parameters to determine is the
annealing schedule. In specifying this schedule, it is im-
portant that the temperature not drop too quickly, since
this may cause the system to be far from thermal equilib-
rium at a low temperature. By experimentation, we have
found that good performance is obtained when the initial
temperature causes 15% to 25% of the switches to be ac-
cepted, and the schedule is of the form given in (5). When
less than 0.1% of the switches are accepted at a given
temperature, we declare the system to be frozen and run
the GLA until the distortion converges to finish the de-
sign.

B. Decoder Perturbation

SA can be applied to VQ design by perturbing the quan-
tizer decoder and representing the state by the codebook.
Each iteration consists of three steps: applying a pertur-
bation to the codebook; determining whether the pertur-
bation is acceptable; and repartitioning the training set ac-
cording to the NN rule. The perturbation is done by
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periorm one
switch attempt

I=)+

k=k+1 n=n+1

yes

Fig. 4. The flowchart for the SA-C algorithm.

randomly selecting a codevector and altering its value in
a probabilistic manner (e.g., by adding zero-mean vector-
valued noise, whose component variances are directly
proportional to the temperature). To determine whether a
perturbation is accepted, the resulting energy change AE
is calculated and the SA acceptance rule is applied using
the current temperature.

For very low temperatures, perturbations will usually
be accepted only when energy reductions result. In this
case, codevectors will migrate towards the partition cell
centroids, the optimal codevector choice for a given par-
tition. In this way, the centroid condition will be ap-
proached with increasing accuracy as the system cools.
Ideally, the single codevector perturbations and subse-
quent repartitions should be repeated at a fixed tempera-
ture until thermal equilibrium is reached, at which time
the temperature can be lowered. If the temperature is re-
duced at a sufficiently slow rate, the probability that the
energy function will not be globally optimal can be made
arbitrarily small.

As was mentioned earlier in this section, computational
complexity in the calculation of AE is a serious problem
with this technique, and we have thus not implemented
this algorithm; however, these problems may be elimi-
nated by modifying the standard SA approach in a manner
that allows an easily implementable algorithm. Reduced
complexity algorithms are the subject of the next section.

IV. Repuced CoMPLEXITY QUANTIZER DESIGN BY SR

As discussed previously, two major disadvantages of
using a SA approach for VQ design are the complexity of
computing the quantity AE and the slowness of reaching

thermal equilibrium. For both the encoder and decoder
perturbation methods, it is possible to avoid the difficul-
ties associated with SA by introducing a SR design algo-
rithm that introduces major complexity reduction tech-
niques. No globally optimal asymptotic convergence
theorem analogous to one for SA is known by the authors
for this SR application and its main justification is empir-
ical success. The approach offers a much simplified ver-
sion of complicated SA algorithms and achieves compa-
rable (usually slightly better) results in significantly less
time.

In our reduced complexity SR algorithms, we assume
the following rules at each iteration:

R1) Accept every proposed perturbation.

R2) Simultaneously either perturb all encoder or all de-
coder parameters (but not both).

R3) Perform a repartitioning and centroid computation.

The first requirement effectively bypasses the selector
blocks in Fig. 2 and eliminates the need to calculate AE,
the second speeds up the algorithm by making many
changes at once, and the third necessitates a Lloyd itera-
tion at the end of every perturbation. In addition, we im-
pose the constraint T, = T,., for all m, so that the tem-
perature sequence and cooling schedule are identical. This
implies that the temperature sequence is strictly decreas-
ing at every iteration, and that the temperature is not kept
constant for many iterations in the hopes of approaching
thermal equilibrium.

It is important to point out how the above technique
differs from the GLA and VQ-SA methods. The GLA
consists only of R3) above, and thus the reduced com-
plexity SR algorithm is equivalent to taking the usual GLA
and perturbing the result unconditionally after each Lloyd
iteration; as the temperature decreases, the behavior ap-
proaches that of the GLA.

The perturbation function = that we have chosen to use
is one that adds an independent, uniformly distributed
zero-mean noise process ¢ defined on R*, to its input.
Thus from (8) and (9) we get

mX) =X +§& (15)
C*X) = CX + §) (16)
D¥*(X) = D(X) + & amn

for the encoder and decoder perturbations, respectively.
Each component of the noise vector has variance a%.
These processes can be viewed pictorially as in Fig. 2.
Other distributions (e.g., Gaussian) can be used for the
noise process; however, the results are not very sensitive
to this choice.

A. Reduced Complexity Encoder Perturbation

An example of a design approach that adds noise to the
training set to improve the ultimate performance has been
proposed by Linde er al. [3], where their strategy is to
add a decreasing amount of Gaussian noise to the training
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set at each iteration of the GLA. The initial noise level is
set high enough to completely dominate the training data.
Their SR technique does not strictly fit the model pre-
sented, as it violates condition R3), since adding noise to
a training vector induces a new encoder mapping. When
the same perturbed training vectors are subsequently used
to compute the cluster centroids, R3) is violated since a
true computation of the centroids based on the unaltered
training set is not performed.

In our approach to the reduced complexity encoder de-
sign, called the SR-C algorithm, we perturb the entire
training set according to (16) to alter the partition, and
then calculate the cluster centroids using the uncorrupted
training vectors associated with each region. The noise
added at the mth iteration is controlled by the following
temperature schedule:

p
m
T,=o0:(1—-—

a=ai(1-7)

where I defines the number of iterations to be run. The
initial temperature is identically equal to o2 (the variance
of the training set components) and a value of p = 3 was
found to give the best performance. Two other types of
schedules of the form

2
Ox

Tt 1y

were investigated; however, (18) was found to give the
best overall performance.

The heuristic justification of why this approach works
can be appreciated by realizing that adding noise to the
training vectors can only affect the distortion in a re-
stricted fashion. If each component of the noise vector £
added to the training vector x, has variance o3, and if the
system energy is defined as in (11), then, on the average,
the total energy contributed by cluster i at the mth itera-
tion will increase by

. 1

BE, = 1B\ % (e v & -yl e - P

= |Ri|0§'

The initial high levels of noise essentially randomize the
state; however, as the noise is reduced, the amount of
energy that can be added also decreases, making it more
difficult for the algorithm to leave deep minima in a single
step. On the other hand, shallow local minima will not
confine the state, and since the added noise goes to zero,
it will be much more probable that the state will be in a
deep minimum of the energy. This approach is closer in
spirit to SA than the SR approach in [3], since the energy
calculated after each iteration is independent of the noise
that was added.

(18)

T, and T, = o2a" (19)

B. Reduced Complexity Decoder Perturbation

A reduced complexity SR algorithm for the decoder
perturbation, called the SR-D algorithm, can be realized
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by perturbing every codevector according to (17) at each
iteration. In other words, the usual GLA iteration is mod-
ified by adding a noise component to the codevectors fol-
lowing each centroid computation. This procedure can be
written as an extra step in Fig. 1 as

(4.5) Codevector Jiggling (1 < i < N):
W=y 4 BT,

The noise variance is again dictated by the temperature,
which is gradually reduced as in (18), except that o2 now
indicates the variance of the codevector components. The
heuristic justification for this algorithm is essentially the
same as that for the simplified encoder perturbation. In
practice, the run times associated with this SR algorithm
are significant reductions over those of the more elaborate
SA version given in Section III-A, and yet the perfor-
mance is usually indistinguishable or superior.

V. EXPERIMENTAL RESULTS

We will now present the results obtained when we used
our algorithms to design codebooks for several different
sources. Our quoted execution times are based on those
obtained with a 4-MIPS SUN 3/260 machine using a
floating point accelerator.

The first source we considered was obtained by extract-
ing 8192 nonoverlapping 16-dimensional vectors (corre-
sponding to 4 X 4 blocks) from eight 512 X 512 mono-
chrome training images with each pixel amplitude quan-
tized to 8 b. The pixel means were calculated for each
vector, uniformly quantized to 3 b, and then subtracted
from the vector components to form the training set. These
means were subtracted in order to allow us to use the
codebooks to quantize images with reasonable quality.
Four codebooks of size 32, 64, 128, and 256 were built
using this training data. The second source examined was
obtained from a segment of human speech sampled at a
rate of 8 kHz, and partitioned into 4096 4-dimensional
vectors and 4096 2-dimensional vectors. In the first case,
we designed five codebooks of size 8, 16, 32, 64, and 128
vectors, while in the second case we built five codebooks
of size 16, 32, 64, 128, and 256. Finally, we examined
two cases for each of three first-order Gauss-Markov
sources with correlation coefficients of 0, 0.5, and 0.9,
respectively. These sources were generated using the
equation x; = ax;_, + w; to derive the value of the ith
sample, where w; is a sample of independent white Gauss-
ian noise. In the first case, we blocked 8192 samples of
the source into 4096 2-dimensional training vectors, and
designed codebooks of size 16, 32, 64, 128, and 256. In
the second we blocked 4096 samples into 1024 4-dimen-
sional training vectors and designed codebooks of size 4,
8, 16, 32, and 64 vectors.

We designed the codebooks for each of the above
sources using four algorithms: the GLA; the encoder per-
turbation algorithm (SA-C) with the initial value of N set
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TABLE 1
GLA PERFORMANCE FOR THE IMAGE SOURCE. THE AVERAGE AND PEAK
VALUES WERE CALCULATED USING TEN DIFFERENT INITIAL CONDITIONS

Codebook Size Ave. PSNR (dB) Peak PSNR (dB)

32 26.92 26.92

64 27.65 27.65

128 28.34 28.36

256 29.11 29.12
TABLE 11

THE GLA PERFORMANCE FOR THE SPEECH SOURCE. THE AVERAGE AND
PEAK VALUES WERE CALCULATED USING TEN DIFFERENT INITIAL

CONDITIONS
Vector Codebook Peak SNR
Dim. Size Ave. SNR (dB) (dB)
8 7.29 7.30
16 9.92 9.93
4 32 12.50 12.54
64 14.50 14.62
128 16.10 16.49
16 13.48 13.49
32 16.35 16.38
2 64 18.23 18.39
128 21.44 21.81
256 24.05 24.51

to be equal to min (N /3, 10); the reduced complexity en-
coder perturbation algorithm (SR-C); and the reduced
complexity decoder perturbation algorithm (SR-D). Each
one of the last two algorithms was executed for the same
number of iterations. We note that the SA-C algorithm is
computationally intensive because of the requirements that
AE be calculated after every perturbation and that thermal
equilibrium be approached. Thus, in order to achieve good
performance, the SA-C algorithm must be run much
longer than the other two algorithms. However, it is also
true that all of our temperature schedules have been set
conservatively, and that nearly equivalent performance
can be attained in most cases.

The baseline performance for each source was com-
puted by running the GLA with ten different randomly
selected initial conditions (to obtain an adequate indica-
tion of average performance). The average and the best
GLA results are shown in Table I for the image data, Ta-
ble II for the speech data, and Table III for the Gauss-
Markov source. The performances of the SR algorithms
compared with the best GLA performances are shown in
Figs. 5-7. As an additional comparison, the GLA results
when the initial VQ codebooks are designed using a split-
ting algorithm [3] (denoted *‘split’” in the figures) are also
given. The splitting algorithm can outperform the ran-
domly initialized GLA at times, but its performance is
quite inconsistent and generally yields significantly worse
performance than the SR algorithms. In the case of the
image source, the number given in the table is the peak
signal-to-noise ratio (PSNR), the most popular measure
of quality in image coding, while the SNR is used for the

TABLE III
GLA PERFORMANCE FOR THE FIRST-ORDER GAUSS—-MARKOV SOURCE. THE
SOURCE DATA POINTS WERE DERIVED USING THE EQUATION x; = ax;_, +
Ww;, WHERE W; IS A SAMPLE OF INDEPENDENT WGN, AND THE AVERAGE AND
PEAK VALUES WERE CALCULATED USING TEN DIFFERENT INITIAL

CONDITIONS
Vector Codebook
a Dim. Size Ave. SNR (dB) Peak SNR (dB)
4 2.07 2.07
8 3.54 3.55
4 16 4.94 4.98
32 6.45 6.47
0 64 8.19 8.21
16 9.66 9.66
32 12.44 12.45
2 64 15.35 15.38
128 18.22 18.25
256 20.73 20.73
4 3.30 3.30
8 4.58 4.58
4 16 6.09 6.10
32 7.46 7.49
64 9.28 9.31
0.5
16 10.30 10.37
32 13.09 13.12
2 64 16.05 16.11
128 18.77 18.89
256 21.59 21.74
4 6.46 6.48
8 8.57 8.58
4 16 10.35 10.40
32 11.86 11.89
64 13.52 13.55
0.9
16 13.63 13.64
32 16.34 16.34
2 64 18.94 19.13
128 21.56 21.67
256 24.95 25.01
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Fig. 5. The improvement obtained with SR on the image source.

other sources. The PSNR and SNR are defined as
PSNR = 10 log [2552/E] and SNR = 10 log [P,/E]
(20)
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where P is the signal power. We next present the SR re-
sults for each of the sources.

A. Image Source

The first design technique tested after running the GLA
was the SA-C encoder perturbation. For our design of the
codebooks, we follow (5) and use a schedule given by T,
= Ty - (0.6)", with the initial temperature causing ap-
proximately 25% of the switches to be accepted in the first
iteration. Each iteration of the algorithm consists of L =
81 920 switch attempts followed by an iteration of the
GLA. The above schedule has been chosen heuristically;
however, neither finer temperature divisions nor larger
values of T, improved the results significantly. Slightly

3
=
2
g
jo
=
=
=z
n
2.0 2.5 3.0 3.5 4.0
RATE(bits/sample)
(a)
B
>
o
E)
=
z :
L
I
‘L
02l ‘ | R L
0.6 0.8 1.0 1.2 1.4
RATE(bits/sample)

(b)

Fig. 7. The improvement obtained with SR on the Gauss-Markov source.
The source data points were derived using the equation x; = ax; | + w,,
where w; is a sample of independent WGN. (a) k =4, o = 0. (b) k = 2,
o = 0. (Continued on next page.)

improved performance is possible if the size of N is in-
creased; however, the amount of computation grows rap-
idly with this parameter, since it then takes much longer
to reach thermal equilibrium at each temperature. The SR-
C and SR-D algorithms used the temperature schedule
given in (18), with 7 = 200.

The PSNR’s improvements obtained when using the SR
techniques to design the codebooks are plotted in Fig. 5.
From the figure, we see that each of the algorithms gives
approximately the same performance. In each case, the
improvement is significant, and in the 256 codevector case
the improvement is approximately equal to that obtained
by doubling the desired codebook size to 512 and using
the GLA for the design. The entire design procedure in
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the 256 codevector case required approximately 450 min
of CPU time for the SA-C algorithm and 340 and 190 min
for the SR-C and SR-D algorithms, respectively. The
GLA operating on the same training set typically needed
70 min to converge to a stabilized codebook (i.e., a true
local minimum of the distortion). We note that the result
obtained by running five iterations of the SA-C algorithm
at zero temperature, implying that no perturbations that
increase the energy will be accepted, seems to work al-
most as well when the full schedule is used, giving a
PSNR of 29.3 dB. This last point indicates to us that the
global minimum is probably not very deep and that there
are many local minima with distortions close to the global.
As in the previous example, the GLA terminates in a poor
local minimum because it drops the energy in a very re-

stricted fashion, making substantial changes to the trial
codevectors only during the first couple of iterations.
The relative performance of these codebooks in the
coding of an image (called ‘‘Lena’’) from outside of the
training set is shown in Fig. 8. The SA-C image is seen
to be superior in the high-detail regions, and the amount
of “‘blockiness’’ in the neighborhood of the edges has
been reduced. These high detail regions are identified by
calculating the pixel variances of each 4 X 4 block. Thus,
since we wish to examine the improvement in the high
and low detail vectors separately, we group the vectors
into high and low detail classes and calculate separate
PSNR’s. Through subjective evaluation, we found that a
threshold of 144 provided a good separation between the
two types of vectors, and the resulting numbers are shown
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(a) (b)

Fig. 8. Coding ‘‘Lena’: (a) using the GLA codebook, (b) using the SA-
C codebook.

TABLE IV
THE PSNR’s FOR THE CODED IMAGES WITH Two CODEBOOKS. THE
DISTORTIONS ARE SUMMED OVER THE ENTIRE IMAGE, AS WELL AS IN A
SEGMENTED FASHION WHERE VECTORS HAVING HIGH AND LOW VARIANCES
ARE GROUPED TOGETHER

Codebook Design Method

GLA SA-C
Image Total o > 144 o7 < 144 Total o> > 144 o> < 144
Lena 30.48 25.03 34.86 30.59 25.27 34.73
F16-jet 30.33 24.35 37.22 30.74 24.87 37.09
Barb 25.80 22.21 35.33 25.87 22.28 35.18

in Table IV, for the whole image as well as the high and
low detail classes. We have included PSNR results for the
image ‘‘Barb,’” a 512 X 512 subset of the standard image
‘‘Barbara,”” and ‘‘Fl6-jet’” (from the University of
Southern California data base) for completeness.

B. Speech and Gauss—-Markov Sources

The three algorithms were run on the speech and Gauss-
Markov sources using the same type of schedule as in the
image source designs, with the value of / in (18) being
set to 200. The improvements obtained with each of the
these three design algorithms are plotted in Figs. 6 and 7,
where it is seen that all perform approximately equal.
However, the SR-D and SR-C algorithms again run much
faster than the SA-C algorithm, requiring 12 and 100 min
of CPU time, respectively, as opposed to 400 min for the
SA-C algorithm in a typical run of a 64 codevector speech
codebook design. The SA-C algorithm executes more
slowly when designing the smaller codebooks because of
the increased size of the clusters, and hence the effort
needed to compute AE, in these cases. Also, since the
SA-C algorithm runs a different amount of time at each
temperature depending on the size of the training set
(which affects L), it will execute faster for the Gauss—
Markov designs that use only 1024 training vectors.
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It is interesting to note that the SR-D algorithm gener-
ally performs slightly better than either the SR-C or the C
algorithms, indicating that it may be more effective to per-
turb the decoder than the encoder. We conjecture that the
reason for this difference lies in the amount of state ‘jit-
tering’’ done by each perturbation, since each codevector
perturbation affects the partition for many training vec-
tors. We expect that exactly equivalent performance will
be attained with both of the reduced complexity algo-
rithms if the SR-C case is executed for a sufficiently long
time. In theory, if the simplifications to increase compu-
tational efficiency are removed, then the SA-C algorithm
will eventually produce the global optimum. There is no
solid theory to indicate whether the SR-C and SR-D al-
gorithms will reach this same point even given infinite
computational resources; however, in practice, the SR-D
algorithm seems tq be the best choice of quantizer design.

VI. CONCLUDING REMARKS

A unified formulation of the vector quantizer design
problem using stochastic relaxation has provided a basis
for future studies and other design approaches. Several
new methods for improving vector quantizer codebook
design by combinjng stochastic relaxation and the GLA
algorithm have been analyzed. Other existing techniques
are also shown to fit into our general formulation.

We have investigated both simulated annealing proce-
dures as well as reduced complexity techniques that give
similar results to SA in much less time. In practice, these
new techniques give reliable, reasonably efficient ways to
improve the quality of vector quantizers by finding code-
books that are much closer to the global optimum. An
important feature of this technique is that the quality of
the final codebook achieved, in terms of the MSE when
coding the training set, is quite consistent over a wide
range of initial conditions for the design. This consistency
is important since it removes the initial condition as a pa-
rameter in the design (at least with respect to the MSE
criterion).

We have demonstrated the effectiveness of the new al-
gorithms by designing codebooks for a wide variety of
sources obtained from different applications, including
data for image coder design; data for speech coder design;
and several different Gauss—Markov sources at different
rates. In each case, the SR-GLA algorithms were found
to significantly improve the quality of final codebooks,
with increased benefit being obtained in those cases where
the number of codevectors is large. The reduced com-
plexity algorithms, especially the SR-D, perform as well
or better than the direct SA approach and are excellent
tools for vector quantizer design.
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