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Asymptotic Bounds on Qptimal Noisy 
Channel Quantization V ia Random  Coding 

Kenneth Zeger and Vie Manzella 

Abstract-Asymptotically optimal zero-delay vector quantiza- 
tion in the presence of channel noise is studied using random 
coding techniques. First, an upper hound is derived for the 
average rth-power distortion of channel optimized k-dimen- 
sional vector quantization at transmission rate R on a binary 
symmetric channel with hit error probability l . The upper 
hound asymptotically equals 2-‘Rg(E,k)r), where k/(k + I) 
11 - log,0 + 2&ZiTT)l I g(e,k,r) 5 1 for all E 1 0, 
lim .,,g(e,k,r) = 1, and lim,,,g(e,k,r) = 1. Numerical 
computations of g(e, k, I) are also given. This result is analo- 
gous to Zador’s asymptotic distortion rate of 2 -rR for quantiza- 
tion on noiseless channels. Next, using a random coding argu- 
ment on nonredundant index assignments, a useful upper hound 
is derived in terms of point density functions, on the minimum 
mean squared error of high resolution, regular, vector quantiz- 
ers in the presence of channel noise. The formula provides an 
accurate approximation to the distortion of a noisy channel 
quantizer whose codehook is arbitrarily ordered. Finally, it is 
shown that the minimum mean squared distortion of a regular, 
noisy channel VQ with a randomized nonredundant index as- 
signment, is, in probability, asymptotically hounded away from 
zero. 

Index Terms-Asymptotic vector quantization, noisy channel, 
joint source-channel coding, index assignment. 

I. INTRODUCTION 

I NTEREST in combined source/channel coding for 
bandlimited radio channels has motivated research to- 

ward quantifying the effects of channel noise on quantiza- 
tion systems. Dunham and Gray [l] and Kumazawa et al. 
121 derived necessary conditions for optimal vector quanti- 
zation in the presence of discrete memoryless channel 
noise. Their results show that optimal quantizers have 
encoders and decoders that satisfy generalizations of 
Lloyd’s well-known nearest neighbor and centroid condi- 
tions. In [3], [4] algorithms were introduced for finding 
locally optimal codevector index assignments (or label- 
ings), so as to m inimize the average distortion resulting 
from a particular assignment. These papers showed the 
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importance of choosing a good index assignment in terms 
of the overall signal-to-noise ratio. Using the assumption 
of a “greedy” index assignment, some numerical high-res- 
olution bounds for noisy channel vector quantization were 
presented in [5] in terms of integrals of point density 
functions. 

Consider a vector quantizer source coding system with a 
channel coder that transmits data across a binary symmet- 
ric channel. Let R, denote the Source rate, i.e., the num- 
ber of bits per input vector component used for vector 
quantization. Let R denote the channel usage rate, i.e., 
the number of binary channel uses per input- vector com- 
ponent. Let R, = RJR be the channel code rate, i.e., the 
fraction of transmitted bits that are used as information 
bits for source coding. The vector quantizer has a code- 
book of size 2kRs and the overall transmission rate of the 
system is R, where in general R, 5 R. The difference 
R - R, is the number of redundancy bits per vector 
component used for error correction coding. If a redun- 
dancy free channel code is used then R, = R, such as 
when the channel is noiseless. 

Zador [6], [8] showed that, assuming a noiseless chan- 
nel, the asymptotic mean rth-power distortion, El/X - 
Q<X>llr, of an optimal rate R, k-dimensional vector quan- 
tizer decays as 2YR (our Lemma 1). No such explicit 
formula, however, has yet been displayed for quantizers in 
the presence of channel noise. 

Asymptotic vector quantization theory assumes the rate 
of data transmission R grows without bound. This as- 
sumption implies that as R grows, there exists an ever 
increasing channel bandwidth available for transmission. 
Equivalently, one can assume that kR binary channel uses 
are made for each k-dimensional input vector. Through- 
out this paper it will be assumed that all data is transmit- 
ted across a binary symmetric channel. 

In a quantization system that allows delay, the output 
binary data from a quantized sequence of input vectors 
can be blocked together and sent over the channel in the 
form of long channel codewords. Shannon’s channel cod- 
ing theorem guarantees that up to CkR bits per source 
vector can be reliably conveyed in this way, hence achiev- 
ing distortions down to D(CR), where D(e) is the distor- 
tion-rate function of the source and C E [0, 11 is the 
channel capacity. This is one typical conclusion about 
separating the source and channel coder components in a 
communication system. 
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However, the same conclusion does not follow for source 
coding systems that do not allow delay; that is, systems 
that require that the kR bits corresponding to an input 
vector be transmitted before the next input vector is 
encoded. We call these zero delay vector quantizers and 
assume throughout this paper that all quantizers men- 
tioned are zero delay quantizers. Without arbitrarily long 
blocking of input symbols there exists a nonzero probabil- 
ity of incorrectly decoding a channel codeword. This in 
turn induces an extra component of “analog” distortion 
between the source vector and the final reproduction 
vector. 

For a given vector dimension and transmission rate, the 
only “blocking” advantage that can be exploited for source 
or channel coding in a zero delay system is that of the kR 
bits simultaneously transmitted per source vector. On one 
hand, Shannon’s channel coding theorem guarantees that 
one can achieve a bit error probability at least as small as 
2p(kR)ErnxSRc), where Em,, is the maximum of the error 
exponent function E, and the expurgated error exponent 
function E,, [7]. However, m inimizing the end to end 
analog distortion does not necessarily imply one should 
strive to reliably convey the maximal amount of binary 
data across the channel. In fact, it m ight be desirable to 
tolerate some amount of bit errors in order to increase 
the quantization resolution. 

It can be shown that the m inimal average rth-power 
distortion of nonzero delay vector quantizers on a noisy 
channel decays to zero as the number of transmitted bits 
per sample grows, provided one is willing to block to- 
gether multiple input samples before transmission and 
thus incur delay. It has been an open problem, however, 
to find the rate of decay of the m inimum distortion for 
zero delay quantizers. Part of the difficulty in determining 
this lies in the complexity of mathematically analyzing the 
index assignment problem, since for an N-level quantizer 
there are N! possible index assignments. 

In this paper we present several results to help answer 
these questions for zero delay quantizers. First (Theorem 
l), we show that for high resolution vector quantization 
on a binary symmetric channel (BSC) with bit error prob- 
ability E, the m inimum mean square-error (MSE)-decays 
to zero at least exponentially fast in R. 

An MSE upper bound is given that approaches Zador’s 
2-‘R optimal decay rate (Zador’s rate holds for E = 0 and 
for all k) either in the lim it as E + 0 or in the lim it as 
k + ~0. In general, the decay rate of the bound can exactly 
be computed by simple numerical means. Also, an ana- 
lytic upper bound to the decay rate is derived which is 
accurate over a certain range of values of r and k. As the 
vector dimension k grows, the decay rate of the noisy 
channel bound approaches that of the noiseless channel 
bound and is thus asymptotically (in vector dimension) 
tight. This result however, implicitly assumes that a block 
channel coder follows an ordinary vector quantizer; how- 
ever, this channel coder is obtained using the existence 
proof in Shannon’s channel coding theorem. Even if an 

explicit cascade of a quantizer and channel coder were 
not used, a channel coder would in essence be implicitly 
embedded in a quantizer of higher rate. For practical 
coders, this is not generally feasible due to complexity; in 
such cases the result provides a theoretically achievable 
quantizer performance level. 

On the other hand, one can consider quantization sys- 
tems for noisy channels that have nonredundant channel 
coders, that is, channel coders that merely determine the 
assignment of binary channel words to codevectors and do 
not add redundancy bits (i.e., R, = R). This is the focus of 
Section III. To derive a useful description of optimal noisy 
channel quantization, we introduce a random coding tech- 
nique to analyze the MSE of noisy channel vector quan- 
tizers (VQ’s), by averaging the MSE of a given VQ over 
all possible nonredundant index assignments. In particu- 
lar, attention is focused on regular VQ’s [a quantizer is 
regular if each encoding cell Ri is convex and contains the 
codevector yi = &(Ri)l. Quantizers with convex encoding 
cells that satisfy the centroid condition are regular [8], as 
are lattice quantizers. An expected MSE is derived (Theo- 
rem 2), giving an asymptotic upper bound on the MSE of 
any VQ having a better than average index assignment. It 
thus provides a mathematical tool analogous to Zador’s 
formula for analytically describing the MSE. Corollary 1 
gives a useful formula for the m inimum MSE of a vector 
quantizer that transmits across a noisy channel with ran- 
domized index assignments and provides an upper bound 
on the MSE over all possible index assignments. For 
certain ranges of transmission rates this expected MSE is 
shown (Corollary 3) to have a unique m inimum as a 
function of the transmission rate, an interesting “di- 
m inishing returns” result. That is, for zero delay regular 
VQ with a randomized index assignment, there is no 
benefit to increasing the transmission rate beyond a cer- 
tain point. 

It is also shown (Theorem 3) that, under a regularity 
constraint, the average (over randomized nonredundant 
index assignments) mean squared quantization distortion 
with a BSC is, in probability, asymptotically bounded away 
from zero. That is, the MSE of optimal zero-delay quanti- 
zation using random codeword labeling does not typically 
decay to zero. This contrasts with Theorem 1 where the 
MSE decays to zero. An explanation for this lies in the 
fact that Theorem 1 imposes a regularity constraint (or 
equivalently only allows nonredundant channel cod- 
ing) on the quantizers in order to reduce computational 
complexity. 

Section II establishes the asymptotic MSE upper bound 
for VQ distortion on a binary symmetric channel without 
any regularity assumption. Section III introduces the tech- 
nique of computing mean squared quantization error for a 
noisy channel by randomizing over all possible nonredun- 
dant index assignments, with a regularity constraint. Here, 
an MSE formula is given in terms of point density func- 
tions. Appendix A contains the statements and proofs of 
some technical lemmas used in the paper. Lemma 2 is 
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particularly useful and is used to prove most of the other 
lemmas. Appendix A is dedicated to proving Proposition 
2, which requires examination of many separate cases. 

II. UPPERBOUNDONASYMPTOTICCHANNEL 
OPTIMIZEDVECTORQUANTIZERDISTORTION 

A rate R, k-dimensional vector quantizer is a mapping 
Q: 9PYk + {y($**, y+- 1} CL&?’ where yO;*., yoke_ r are 
called codevectors. Q is also said to be a 2kR-level vector 
quantizer. The encoder and decoder of Q are, respec- 
tively, functions QE : Sk + (0, l}kR and QD : {O, l}kR + 
(Yo,‘.., y2k~_r} such that QD(i) = yi for all i and Q = 
Q, 0 QE. For each i, RidefQil(i} is the cell associated 
with yi. Here the notation for the binary string i E (0, l}kR 
is used to represent its numerical value. 

A noisy channel vector quantizer, of rate R with respect 
to a binary channel having conditional probabilities Pi,, = 
Pr[j receivedli sent] is the composition Q = QD 0 n 0 QE 
where the random permutation 7 : IO, l]kR -+ (0, l]kR is 
defined by Pr[q(i) = j] = & Here, Rk uses of a binary 
channel are made. We will frequently refer to a noisy 
channel vector quantizer as a vector quantizer which 
transmits across a noisy channel. 

It is well known that with a noiseless channel, an 
optimal quantizer satisfies a nearest neighbor condition and 
a centroid condition. These two conditions, respectively, 
assert that every cell contain all the points closer to its 
codevector than any other codevector and that every 
codevector is the conditional mean of its cell. For noisy 
channel quantizers, there are also well-known generaliza- 
tions of these conditions. 

Zador’s formula provides a useful rule of thumb of “3r 
dB/bit” increase in SNR for each bit added to a high 
resolution scalar quantizer using an rth power distortion 
measure. This is reasonably accurate for many low-resolu- 
tion cases as well. Below, it is shown that on a noisy 
channel an optimal quantizer’s average rth power distor- 
tion decreases asymptotically at least as fast as “3rg(e, k, r) 
dB/bit,” where g(e, k, r) E (0,l ] for all E 2 0. To the 
best of our knowledge, this is the only known upper 
bound on the average distortion of a quantizer with a 
noisy channel. This result does not assume that the cen- 
troid condition is necessarily satisfied. 

Lemma I: (Zador [6]) Let X •9~ be a random vector 
having a density f. The m inimum average rth-power dis- 
tortion of a rate R vector quantizer is asymptotically 
equal to 

b,,ktiflik,(k+r)2-rR (1) 

where IlflI,d~f(ispxlflP)l/Y and br,k is a constant indepen- 
dent of f and R. 

Theorem 1: Let X E Sk be a random vector having a 
density f with compact support. The m inimum average 
rth-power distortion of a rate R noisy channel vector 
quantizer on a binary symmetric channel with crossover 
probability E is asymptotically bounded above by 
2prRg(~,ksr), where ]im E+Og(E,k,r) = 1 and k/(k +r>[l 
- log, (1 + 2d41 - E) )I 4 g(e, k, r) 5 1. 

Proof Many of the facts and terminologies used in 
this proof can be found in [7]. It suffices to exhibit any 
noisy channel quantizer that satisfies the bound for the 
given f. Assume for convenience that R and R, are 
positive integers, and consider a rate R, k-dimensional 
noisy channel vector quantizer Q  that is composed of an 
optimal rate R, noiseless channel quantizer Q  and a 
(kR, kR,) channel coder $ : (0, l}kRs + (0, l}kR with chan- 
nel decoder 4 : (0, l}kR * (0, l}kRs. That is, if the encoder 
of Q  is QE : 9’ + (0, l}kR~ and the decoder of Q  is 
Q, : (0, l}kRs + zk, and if we define*a new vector quan- 
tizer of_rate R 2 R, with encoder QE = + 0 QE and de- 
coder Q, = Q, 0~4 th:n the noisy channel vector quan- 
tizer is given by Q = QE 0 n 0 QD, where n is the random 
permutation n : (0, l}kR ‘+ (0, llkR defined by Pr[q(i) = jl 
= q,i. 

The capacity of a BSC with crossover probability E is 
C = 1 - H(E) in bits per channel use, where the binary 
entropy finction H(x) is defined as 

H(x) = -x log, x - (1 - x> log, (1 - x>. (2) 

If R, < C, then Shannon’s channel coding theorem guar- 
antees the existence of a function + such that kR, infor- 
mation bits can be reliably transmitted for every block of 
kR total bits sent, as R becomes asymptotically large. 
More precisely, kR, bits can be conveyed with a probabil- 
ity of error 

p, I 2-(WGmx(Rc) (3) 
where E,,,(R,) = max(E,(R,), E,,(R,)}, E, is the error 
exponent function, and E,, is the expurgated error compo- 
nent function. Let us define the linear function 

E,i,(R,)~fl - log, (1 + 2dm) - R,. (4) 
On a BSC, the function E,(R,) is known to be positive 
and convex for all channel code rates less than capacity C, 
and equal to E,,,(R,) in the range 0 < R, I R,, where 

The convexity of E, implies that E,(R,) 2 E,,,(R,) for all 
R E [O, Cl. E, can be computed numerically in the nonlin- 
ear region using 

E,(R,) = max 
O<Pll [ ~(1 - R,) - ( p + 1) 

‘log, [E’/(l+p) + (1 - E) l/(l+p)]] R, 2 R, I C. (6) 

For R, greater than R,, the error exponent E&R,) 
decreases slower than linearly until it reaches zero at 
R, = C. 

The function E,,(R,) is strictly greater than E&R,) for 
all R, in the range 0 < R, < R, < R, where 

R, = 1 - log, (1 + 2@=+ 

2Jm 

1+24= 
log, (2m) (7) 
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and E,(R,) = E,,(R,> in the range R, < R, < C. Hence 
E,,(R,) 2 E,,(R,> for all R, E [O,C]. The function E,, 
can be computed numerically in the nonlinear region 
using (for 0 < R, I R,). 

E,,(R,) = sup 
ptl 

error, and ii) devoting more of the transmitted bits toward 
error control coding to drive the probability of an uncor- 
rected channel error to zero faster. 

*(+1-R,) -log, [1+(2&?=?,““]]). (8) 

The definition of E, and its properties can be found in [7] 
and the formula for E,, on a BSC in (8) follows from a 
result in [15]. In summary, we have 

For each R, one could set the derivative DL(R,) equal 
to zero to find the rate R, that optimizes this trade-off in 
the bound D,(R,). To prove the theorem, however, it will 
turn out to be sufficient to merely choose the fixed rate 
R: (not varying with R) that forces each of the exponen- 
tials in (11) to decay at exactly the same rate. That is, we 
choose Rz to satisfy the equation 

Ema, = (r/k)R:. (13) 

Exactly one such point exists in the range (0, C), since the 
left-hand side of (13) is a monotonic decreasing function 
and the right-hand side is a linearly increasing function. 

Equation (13) can be solved exactly by numerical means 
(see remarks following this proof). If the desired E, r, and 
k are such that R, 5 Rz I R,, then (13) can be solved 
analytically. More generally, we can use the linear lower 
bound on E,,,(R,) to obtain 

E,,,(RT > 2 EIin(Rz ) 

I 

Et&?,) 0 CR, -c R, 
Emax = E,i,(R,> RI 5 R, 5 R, (9) 

&CR,) R, < R, < C. 

Let Z  and .Z, respectively, be the indices transmitted 
and received across a BSC by a vector quantizer. The 
mean rth-power vector error of such a noisy channel 
vector quantizer, averaged over both the source and chan- 
nel statistics, is given by 

D = EllX - yJI(‘. (10) 

By conditioning the expectation over the events that ei- 
ther a channel error does or does not occur, the average R; 2 (1% 
distortion can be bounded as 

-&l - log, (1 + 2Jm)] 

D = E[llX - y,ll’lJ = Zl(l - Z’,> + E[llX - yJII’IJ # ZIPe 
and hence 

5 EIIX - y$ + E[llX - yJllrlJ =+ ZIP, 
D,(R;) = (G, + G,)2-‘RRT 

< ~~2-rRRc + G22-kRLx(Rd zf (G, + G&-Mc k, r) (16) 

d”fD,(R,) VR, E (0, C) (11) 
where we have defined g(e, k, r> = R:, thus 

= 1 - log,(l + 2dm) - R;. (14) 

Equation (13) and inequality (14) together imply 

where 

GIEffb,,kiif Ilk,(k+r) 

G,efdiam [supp (f )I’ (12) 

and diam [supp (f >I is the diameter of the support of f. 
The last inequality follows from Lemma 1 (large R) and 
Shannon’s channel coding theorem. 

07) 

This completes the proof since D 4 D,(R:). 

The overall transmission rate R of the system is fixed 
and we wish to m inimize the bound D, over all source 
rates R,, or equivalently over channel code rates R,. For 
convenience we use the notation D,(R,) to indicate the 
dependence on R,. The choice of R, trades off between 
source and channel coding. 

If one transmits at a rate R, very close to capacity C, 
then the number of information bits R, will be large, and 
thus the quantization error E II X - y, IV will be small; 
however, for large R,, the probability of an uncorrected 
channel error cannot be as tightly upper bounded (smaller 
error exponent), so that the term P, will contribute more 
to the overall distortion D. Thus, there is an important 
trade-off in this case between: i) designating more of the 
transmitted bits as information bits to reduce quantization 

It can be shown that on a BSC, R, + C and R, + C as 
E + 0, so that E,,,(R,) = E,,(R,) for R, arbitrarily close 
to C, for sufficiently small E. But since C + 1 as E -+ 0, 
we have that E,,,(R,) = E,,(R,) for R, arbitrarily close 
to 1 as E --f 0. Also, for any fixed R, E (0, C), it is easy to 
show from the definition of E,,(R,) that lim ,,, E,,(R,) 
= 00. Thus for any R, E (0, C), we have lim , --f ,, E,,,(R,) 
= co. This in turn implies that for a fixed k and r, the 
solution, Rz, to (13) approaches Rz = 1 as E + 0, and 
thus lim , --f 0 g( l , k, r) = 1, agreeing with Zador’s for- 
mula. 0 

Remarks: The decay rate of our upper bound 2PrRg(E*k,r) 
approaches the optimal decay rate of 2-‘R as either E + 0 
or k + W. The analytic lower bound on g(e, k, r) in (17) 
also approaches 1 as k -+ 00 but unfortunately approaches 
only k/(k + r) as E + 0. Thus, from (16) it can be seen 
that to achieve the distortion upper bound D, for small E 
[using the analytic bound on g(e, k, r>l, it suffices to 
convey information across the channel at an approximate 
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rate of k/(k + r> bits per channel. For a scalar quantizer 
on a BSC with small E, the MSE in this case drops at least 
as fast as about 2-’ R/3, which is the same rate of decay as 
an optimal scalar quantizer on a noiseless channel, but 
using only one-third as many bits. The remaining two- 
thirds of the bits are for channel error protection. 

While for small E the analytic lower bound in (17) does 
not agree with the optimal decay rate (i.e., does not 
approach 11, it is still useful for larger E and it will be 
shown numerically that is differs very little from g(e, k, r> 
in some practical cases. In Fig. 1 a comparison is made 
between g(e, k, r) and the lower bound in (17) for MSE 
distortion (i.e., r = 2) and several channel bit error proba- 
bilities. It can be seen that they are reasonably close to 
each other over a wide range of E. The curves for g(e, k, r) 
give the best known decay rate of asymptotic noisy chan- 
ncl vector quantization. 

bep=.l 

1 
0.1 

‘2 4 6 8 10 12 14 16 18 20 
Vector Dimension 

III, RANDOM CODING THEOREMS FOR REGULAR 
QUANTIZERS ON NOISY CHANNELS 

In this section, the asymptotic mean squared perfor- 
mance of k-dimensional VQ in the presence of channel 
noise and under a regularity constraint is examined for 
typical index assignments by modeling the selection of 
nonredundant index assignments as a random procedure. 
For an N-level quantizer Qhi define a randomized index 
assignment to be a codevector labeling chosen randomly 
and uniformly, and independent of the source, from the 
set S, of all N! permutations of N elements. It may be 
argued that this accurately models an arbitrary ordering 
of the codevectors in a codebook. Arbitrarily ordering the 
codevectors is inferior to various known index assignment 
algorithms and is clearly not recommended. However, in 
practice, some implementations do in fact neglect to 
choose good index assignments and instead settle for 
whatever codebook ordering happens to result from a 
quantizer design algorithm. 

Fin. 1. Plot of the function n(~, k, I) for r = 2 and E = 
10-l, lo-‘, 10e3, lo-*. The solid lines are the function g(~, k, r) and 
the dashed lines immediately below them are the corresponding upper 
bounds from Eq. (17). For E = 10-l: E,,, = E,,, for k 5 2 and I&,,, = 
E, for k 2 3. For E = lo-*: E,,, = Eexp for k = 1 Em,, = E,, for 2 < 
k 5 6 and E,,, 
E 

= E, for k 2 6. For l = 10m3: E,,, = Eexp for k I 5 
max = Eli, for 6 I k I 14 and E,,,,, = E, for k 2 15. For E = lows: 

E max = Eexp for 1 5 k I 20. 

of the codebook as a subscript of the codevectors and 
partition regions. The probability of a source vector lying 
in the ith partition cell is 

(18) 

and we define 

fiNdzf max diam(R, n Sf> 
i=l;..,N 

(19) 

While the above argument may provide some mild 
motivation for studying random index assignments, there 
is, in fact, a much more significant purpose. Namely, the 
average distortion using a randomized index assignment 
gives us an analytic upper bound on the performance of 
the best possible index assignment (and also a lower 
bound on the worst possible index assignment perfor- 
mance). Until now, there has be.en no concise formula for 
predicting or closely bounding noisy channel quantizer 
distortion. In practice, the performance of randomized 
index assignments is sometimes close to the best index 
assignments and sometimes not too close. However, even 
when the best index assignment is significantly better that 
the average index assignment, their performances tend to 
follow the same trends as a function of the channel bit 
error probability. Thus, the randomized index distortion 
formula can still provide utility in these cases. 

which will serve as an upper bound on intracell Euclidean 
distances. We will say that a sequence of quantizers has 
diminishing cell diameters if lim,,, S, = 0. 

Note that with a noiseless channel any sequence of 
optimal quantizers QN will have diminishing cell diame- 
ters if the source density is positive on the support region. 
To see this, first enclose the support region Sf inside a 
cube and divide each side of the cube into say M equal 
length pieces. This partitions the cube into Mk smaller 
cubes. Now consider those of the cubes that intersect Sf 
with positive probability. For sufficiently large N each of 
these cubes will contain at least one codevector, for 
otherwise the MSE would be bounded away from zero. 
Hence the diameter of each quantizer cell is upper 
bounded, for instance, by four times the diagonal length 
of these cubes, which can be made arbitrarily small by 
choosing M large. This is a straightforward result, but 
relies on the compact support and positive density as- 
sumptions. 

Assume that the source random vector X has a density 
f over a compact support, Sf c5Yk. Let yi denote the ith 

Denote by C the random mapping of input indices to 
output indexes across the channel, and let rr E S, be a 

codevector of QN, and Ri the, ith partition cell. For permutation of codevector indexes. With this model let Z  
notational simplicity we do not explicitly write the size N be the source encoder output, a random variable depend- 
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X 1 YJ - Encoder > 
lT 

- Channel - 
7-r’ J - Decoder - 

Fig. 2. Block diagram of noisy channel vector quantization system, where QT is a nonredundant index assignment function. 

ing only on X, and let J be the decoder input, a random 
variable depending on X and C, as well as the index 
assignment. A block diagram is shown in Fig. 2. The total 
distortion D = D(X, r, C) = IIX - yJ]12 is also a random 
variable, and the quantity of interest is 

m in E,,,[D]. 
?rcS, (20) 

This m inimization is in general a quite difficult discrete 
optimization problem. We introduce in this paper an 
alternative approach in which the choice of index assign- 
ment rr is randomized. Letting II denote an index permu- 
tation selected randomly and uniformly from S,, we 
emphasize that D = D(X, II, C> now depends on three 
random variables, and D is then averaged over all three 
random variables, making E, “,JD] the new quantity of 
interest. This ‘average will provide an upper bound on the 
m inimum distortion in (201, and will also be a good 
estimate of the average distortion for systems that choose 
the index assignment arbitrarily. We use the subscript 
notation on expectations in order to make clear which 
random variables are included in the expectation. If any 
of the random variables X, II, or C are omitted in an 
expectation, this will indicate that the expectation is a 
conditional expectation (conditioned on the m issing ran- 
dom variable). 

To obtain the mean squared distortion E,, n,c[D] we 
decompose the overall distortion into the sum 

D = D, + 2D,, + DC (21) 

of a source coding distortion D, = /IX - y1112, a codebook 
distortion D, = llyl - yJ]12, and a cross term Dsc = (X - 
y,)Yy, - y,). D, depends only on X so that 

E x,n,c[Dl = Ex[Dsl + 2-%,n,,[Q,l + Ex,n,c[Dcl- 
cm 

Throughout this paper it will often be convenient to 
first compute expectations with respect to X and C and 
then to analyze the expectations over KI separately. This 
is possible without conditioning since the random index 
assignment is assumed to be independent of the source 
and channel random variables. To facilitate this and to 
emphasize dependence on II we introduce the additional 
notation 

o,(~)EfEx,,[Dcl 

Ds,(rl)d~fEx,cDJ. (23) 

Using.this notation we have 

D(n) = &@,I + 2D,,(IT) + D,(II) 
E x&D1 = E&WI)1 

= E,D,l + 2E,[D,,(III)l + E,[D,(II>l. 
(24) 

The following proposition shows that for regular quan- 
tizers the expectation of the cross term decays to zero as 
N increases. If a quantizer is designed optimally for a 
noiseless channel, then the centroid condition is satisfied 
and the expectation of the cross term D,, is identically 
zero for all N. One motivation for stating the following 
proposition in its generality is so that it applies to the 
class of lattice quantizers, which in general do not satisfy 
the centroid condition. This proposition implies that for 
sequences of regular quantizers with randomized index 
assignments, the average distortion is asymptotically given 
by (11, with r = 2, plus the term E,, =,J DC]. We note that 
the quantity D,, was analyzed in [9] under certain specific 
assumptions. 

Proposition 1: Let X E Wk be a random vector having a 
density with compact support. Then for any sequence of 
N-level vector quantizers that are regular, have diminish- 
ing cell diameters, and that transmit across a binary 
symmetric channel with bit error probability E, 
lim  N+m Ex,n,c[Ds,l = 0. 

Proofi Smce each permutation n is equally likely and 
is selected independently of the source and channel, the 
cross-term expectation is 

E x,n,cDJ = ; +,%,‘:[Dsc(x~ n,c)]. (25) 

For each rr E S,, 

E,y,,[D,,(X, r,C)l 

= f f E,[D,,JZ = i, J =j]P[Z = i, J = j] 
i=l j=l 

= 2 E  Ex[ (X - Yi)‘(Yi - Yj)IX E  Ri]P,(j,l,(,,Pi 
i=l j=l 

(26) 

where ‘mfj)lr(i) is the conditional probability that r(j) is 
received given that v(i) is transmitted across the channel, 
and ci = E,[X(X E Ri] is the centroid of cell Ri. To 
determine the expectation with respect to the randomized 
permutation selection, note that 

D,,(n) = E E (Ci -Yi)‘(Yi -Yj)P,(j,l,(i,Pi (27) 
i=l j=l 
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so that 

I%r,n,c[Dsc]l 
= I E,[D,,(II>~~ 

= & ,f 5 cci -Y;)‘(Yi -Yj)piC’w(j)\n,(i) 
’ i=* j=l 37 

1 - (1 - &‘gz N N N 
= 

N-l C C pi(ci - Yilf(Yi - Yj) 
i=l j=l 

(28) 

1 - (1 - &‘gzN N N 

5 
N-l C C pillci - Yill ’ IlYi - Yjll 

i=l j=l 

(29) 

N 
< [l - (1 - E)l”gZN]L 

N-l 
S, diam (S,) (30) 

+ 0 as N + ~0, since SN --) 0. (31) 

Equation (28) follows from Lemma 3 (see Appendix A), 
and (29) follows from the Cauchy-Schwarz inequality. 
The regularity of the quantizer implies that each partition 
cell is convex and therefore contains both its centroid ci 
and the codevector yi, implying llci - yiII 5 S, and thus, 
together with the compact support assumption, implies 
that (30) follows from (29). q 

We next consider the asymptotic behavior of the mean 
EJD(lI>] and variance Varn [D(n)] of the distortion 
random variable D(n). It will be shown in the following 
propositions that the mean of D@I> can be written in a 
convenient asymptotic form and that ultimately it is a 
positive constant, independent of the quantizer size N. 
Also, the variance will be shown to decay to zero as N 
increases. 

In order to examine E,[D,(III)I the notion of a point 
density function is used. For any quantizer QN with 
partition cells Ri, having Lebesgue measure pi, define a 
point density function [lo] by 

(32) 

The characteristic (or selector) function X is defined for 
any set S as XJx) = 1 if n: = S, and Xs(x) = 0 if x 65 S. 
Assume that for a given sequence of quantizers {QN} 
there exists a probability density function A such that 
h,(x) + h(x) almost everywhere on Sf as N +. ~0. The 
following theorem gives an explicit expression for the 
asymptotic expectation of DC in terms of two quantities, 
one depending on the source density and the other on the 
quantizer point density. 

Theorem 2: Let X E 2’ be a random vector having a 
density f with compact support, mean m,, and compo- 
nent variances gi2 (1 I i _< k). Consider a sequence of 
N-level vector quantizers, that are regular, have diminish- 
ing cell diameters, randomized nonredundant index as- 

signments, lim iting point density function h, and whose 
outputs are transmitted across a binary symmetric channel 
with bit error probability E > 0. Then En[DC(II>] is 
asymptotically (in N) equal to 

(1 - (1 - #gz N ) 
[ 

5 uii2 + /,Jlx - m ,l12A(x) dX . 
i=l I 

(33) 

Proofi We can write 

N Iv 
D,(n) = C C IIYi -Yjl12P~~j~~n~i~PI (34) 

i=l j=l 

so that the expectation of D,(III) may be computed using 
Lemma 3: 

1 - (1 - #gzN N N 
= 

N-l C C pillYi -Yjll*- (35) 
i=l j=l 

To evaluate the double summation, define 

(36) 

and observe that g can be written as g(N) = EllW, - 
V, ]12, where W, and V, are independent discrete random 
vectors for each N. V, is distributed uniformly over the 
finite codevector set {yr, y2;..,yN], while W, is dis- 
tributed over the same set of codevectors, but with Pr [W, 
= yi] = Pi. For each N define wN = E[ W,] and write 

g(N) = EIIWN - VJI’ 

= EIIW, - @J12 

+ 2E[(W, - mN)‘(wN - VN)] 

+ E/IV, - wNl12. (37) 

Note that lim , wN = m, since 

IIWN - mxll = 

I S, + Oas N+ cc). (38) 
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The m iddle term in (37) is zero by the independence of 
W, and V,. To compute the first term in (37) for large N, 
note that 

EllW, - W,ll’ - ~ ai 
i=l 

= E llyi - wNl12pi - / 
i=l 

9JIx - mxl12f(x> 05 

N 

cz 11 
llyi - w,l12 - Ilx - m,ll* If(x) Qh 

i=l Ri 
N 

CL /( i=l Ri 
llyi - WNll + IIx - mxll) 

. llyi - x + mx - wNllf(x> dit 

I 2 diam <Sf>( S, + l lmx - w,ll) --f 0 as N + ~0. 
(39) 

where (38) was used. Each of the three above inequalities 
follows from the triangle inequality. So, EIIW, - VNl12 + 
Cic_lvi2 as N -+ 00. Next, since A,(y,),u, = l/N, we have 

El/V, - v,l,* = ; llyi - %l12; 
i=l 

and then by adding and subtracting the quantity Mx)lly, - 
WN112 one obtains 

EllV, - w,l12 - jgJlx - mxl12Mx> o!xl 

N 

cc JI IlYi - wN112hN(Yi> - Ilx - mxl12Mx)l dx 
i=l R, 

N 

cc /( 
llyj - ~,ll*lA,(d - A(x)I 

i=l R; 

+Mx)(lh - W,ll + Ilx - m,ll) 

.(lly, - XII + llm, - FNIl)) dx 

5 diam2 CS,)/ I&(X) - h(x)1 & + 2diam(Sf) 
Sf 

‘( sN + I lmx -‘vNll) (41) 

where we have used the fact that J9k A(x) dx = 1, and the 
inequality 

illa - bll - llc - dill I lb - cll + Ild - bll. (42) 
Scheffe’s theorem [ll] implies that lim , /,kIA,(x) - 
A(x)1 & = 0, so the quantity in (41) tends to zero as 
N + 00, completing the proof. q 

Corollary 1 below follows from (24), the centroid condi- 
tion, Lemma 1, and Theorem 2. One consequence of 

Corollary 1 (and equivalently Theorem 2) is that an exis- 
tence result can be inferred. A positive coding theorem 
can be stated that says there exists a sequence of index 
assignments (7~~) that asymptotically achieve MSE’s at 
least as small as in (43). Corollaries 2 and 3 follow directly 
from Theorem 2. 

Corollary I: Let X •9~ be a random vector having a 
positive density f with compact support, mean m,, and 
component variances fli2 (1 5 i 4 k). Consider a se- 
quence of N-level vector quantizers that are optimized for 
a noiseless channel and have randomized nonredundant 
index assignments. If the output indices are transmitted 
across a binary symmetric channel with bit error probabil- 
ity E > 0, then the mean squared error, E,, n.c[Dl, is 
asymptotically (in N) equal to 

b,,kll.,fl~k,(k+2)N -2/k + (1 _ (1 - #gzN) 

’ 1 . (43) 

Corolhy 2: The assumptions of Theorem 2 imply that 
lim  N-m E,,.,,[D] > 0. 

CoroZZuy 3: The assumptions of Theorem 2 imply that 
the rate that m inimizes the mean squared error is Rapt = 
(l/2) log, (2a/(k@)), and at this rate, E,,.,,[ D] = 
(Epk/2)ln(2c-ue/(kpE)), where a = b2,kllfllk/(k+2) and 

/3 = (l/in 2)(Cf=,gi2 + J,kllx - mxl12A(x) dx). 
Proof For a given E, the MSE, written as a function 

of the number of quantizer codevectors N, is given 
asymptotically by 

= (WN-~/~ + (1 - (1 - ~)“~‘~)j3 In2 

= CYN-~/~ + EP In N. (44) 

Setting dD(N )/dN = 0 then yields Nopt = 
(2a/(kp~))~/~, and then we use Rapt = (l/k)log, N,,,. 

q 
Equation (33) can easily be computed for many sources 

and together with (1) provides a useful formula for esti- 
mating the MSE of a vector quantizer in the presence of 
channel noise for a randomized index assignment. The 
m inimum mean squared error in this case provides an 
upper bound to the m inimum mean squared error of the 
quantizer using the best possible index assignment and 
this performance can be guaranteed at the optimal rate. 
Perhaps future research will gain intuition from this anal- 
ysis in order to obtain the performance formulas and best 
operating rates for quantizers having optimal index as- 
signments. 

The MSE formula given in Theorem 2 is for a random- 
ized index assignment and can be useful for several pur- 
poses. First, it gives an analytical upper bound on the 
MSE performance of the best possible index assignment, 
as well as a lower bound on the MSE performance of the 
worst possible index assignment. No other analytical 
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bounds are presently known. Some experimental results 
are given in [14] and [4], where algorithms for finding good 
index assignments are presented. In [14 (Figs. 3-5)] the 
randomized index assignment performance is often close 
to the “worst case” performance while in [4 (Figs. 3-5)] 
the performance of the index assignment resulting from 
the generalized Lloyd algorithm is often close to the best 
possible index assignment. Together these experimental 
results suggest that the randomized index assignment per- 
formance formula provides an upper bound on the MSE 
of the index assignment generated by the generalized 
Lloyd algorithm. 

An example for the Gaussian source is given below. 
While our results have been proven only for sources with 
bounded support, we feel the Gaussian source is very 
illustrative and indeed shows the utility of the formulas 
for more general sources. We have found experimentally 
that truncating the support region of a Gaussian density 
to several standard deviations yields nearly identical re- 
sults. 

Gaussian Source: Let k = 1 and consider an indepen- 
dent and identically distributed (i.i.d.) Gaussian source 
with density function f(x) = N(0, a’). Some arithmetic 
yields Ilfllr,s = 6&g’, b,,, = l/12, (Y = fi/2rra2, 
and p = 4a2/ln 2. The point density h(x) is chosen to be 
the optimal point density for the high-resolution compan- 
dor model, h(x) = f’/3/j&1/3 = N(0,3a2). Thus, 

1 
.971 

No,,= yj= = - 
6 

(45) 

R opt = 1.66 . log,, 1. (bits) (46) E 

D(N,,,) = 2a2e log, 

i 

1 
= (~‘6 2.716 + 6.644. log,,- . 

i 
(47) 

E 

The distortion in (44) is plotted in Fig. 3 as a function of 
the rate for several different values of E for this Gaussian 
source. The m inimum value of each curve corresponds to 
R opt. It can be seen in the figure and in (46) that if the bit 
error probability decreases by a factor of 10 in this case 
then the optimal rate increases by about 1.66 bits. An 
intuitive explanation for this is that as the rate increases, 
the resulting longer transmitted codevector indices are 
more exposed to damaging channel errors. Thus, on chan- 
nels with smaller E, one can transmit longer indices to 
achieve the m inimum MSE. 

Fig. 4 shows the performance of scalar quantization in 
terms of SNR versus the channel’s bit error probability E, 
again for the same Gaussian source. Three experimental 
curves are shown corresponding respectively to the best 
index assignment, worst index assignment, and average 
over all index assignments from among 5000 randomly 
chosen index assignments. The average index assignment 
curve is accurately modeled by the curve labeled “Ran- 
dom Coding Formula,” the asymptotic formula from (43). 

It was observed experimentally in [12] that for “channel 
optimized” quantizers, as the transmission rate increased, 
the number of quantization levels would at some point 
not increase any more. Instead the additional rate avail- 
able was better used in channel coding. Adding more 
quantization levels would in fact have a detrimental effect 
in such cases. This observation is supported by Corollary 
3, which shows that the MSE of quantization can actually 
increase in the presence of channel noise as the number 
of levels is increased. The average distortion D(N) in (44) 
is strictly increasing as a function of N for N > Nopt; 
increasing N beyond N,,, only reduces the performance. 
It should be noted however, that Corollary 3 is based on 
the assumption that the quantizers are regular, a property 
that channel optimized quantizers m ight not always have 
for certain E, though insight can still be gained from this 
reasoning. 

The formula in (33) provides an asymptotic approxima- 
tion for the MSE due to channel errors when a typical 
index assignment is used. Thus it serves as an asymptotic 
upper bound on the channel term DC of the MSE for all 
better than average index assignments. For realistic large 
values of N, one m ight anticipate that this bound would 
be most useful for quantizers satisfying the centroid con- 
dition, as in this case the cross term Ex,n,c[Ds,] is 
guaranteed to be zero for all N. 

An interesting feature of Corollary 2 is that for any 
source the expected distortion E,,.,,[ D], tends asymp- 
totically to a strictly positive value. The regularity assump- 
tion played a key role in this conclusion since it guaran- 
teed the decay to zero of the cross term E,[D,,(II)]. For 
sequences of quantizers satisfying the centroid condition 
even more can be said. For such sequences the cross term 
E,[DJII)] is identically zero for all N, so that for each N 
the expected distortion is strictly positive. 

It is important to consider the rate of convergence for 
Corollary 2. Though the first term 1 - (1 - e)“gz N does 
eventually converge to 1, N must be of the order 2l” to 
approximate this asymptote (in which case the MSE is 
larger than the source variance), whereas for smaller N 
the first term in (33) may be approximated as E log, N for 
small values of E. 

In what follows the asymptotic behavior of the variance 
is examined. Recall that 

Var, [DOI> = Var,[E,[D,l + 2D,,(II) + D,GI>l 

= Var, W,,(II) + D,UI>l 

= En[ @D,,(III) + DCUI))2] 

- E;[2D,,(n) + D,UI)l. (48) 

The second term in (48) has already been examined: 

E;[2D,,(II) + D,(rI>l = 4E;[D,,(II)I 

+ 4E,[~,,(~I>1EnDcUOl + E:D,UII)I. (49) 
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Fig. 3. Plot of noisy channel scalar quantization system’s overall mean squared error, lOlog,, D(N), for a zero-mean, 
unit-variance, Gaussian i.i.d. source, and for different values of a binary symmetric channel’s bit error probability E. 
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Fig. 4. Overall SNR versus bit error probability on a binary symmetric channel for noisy channel scalar quantization system. 
Plots are given for the best, worst, and average index assignments, and for the theoretically predicted average index 
assignment performance based on the random coding formula derived in Theorem 2. The source is i.i.d. zero-mean, 
unit-variance, Gaussian, at a rate of 6 b/sample. 

1935 

By Proposition 1, E,[D,,(rI)] -+ 0 as N + ~0, so the 
term E~[2D,,(II) + D,(II)l is given asymptotically by 

Proposition 2: The assumptions of Theorem 2 imply 

(lim N-m E,D,(~>1>2, h 
that lim ,,,Var, [ D(II>] = 0. 

w ose existence was established by Combining the results of Corollary 2 and Proposition 2 
Theorem 2. The following proposition is proven in Ap- and applying Chebychev’s inequality gives the theorem 
pendix B. below. In it is stated that the mean squared error of Qhi 
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is, in probability asymptotically bounded away from zero. 
The precise meaning of this statement is that 

There exists E > 0 such that 

* lim Pr [EllX - QN(X>112 
N-m 

where the probability is with respect to 

< E] = 0 (50) 

the randomized 
index assignment. Informally, this says that if index assign- 
ments are chosen arbitrarily then the MSE will likely not 
decay to zero as the resolution of the quantizer increases. 

Theorem 3: Let X E Wk be a random vector having a 
density f with compact support. Consider a sequence of 
N-level vector quantizers QN that are regular, have dimin- 
ishing cell diameters, randomized nonredundant index 
assignments, and whose outputs are transmitted across a 
binary symmetric channel with bit error probability E > 0. 
Then, in probability, the mean squared error (taken over 
source and channel statistics) of Q,,, is asymptotically 
bounded away from zero. 

Without channel noise, the MSE of an optimal N-level 
vector quantizer QN decays to zero. If channel noise is 
added to the output of QN, then according to the above 
theorem, the probability is asymptotically zero that the 
resulting MSE decays to zero. 

IV. CONCLUSION 

Random coding techniques are introduced to study the 
performance of asymptotically optimal zero-delay vector 
quantizers in the presence of channel noise. An upper 
bound, related to Zador’s formula, is given for the mini- 
mum mean rth power distortion. For a noisy channel 
vector quantizer with randomized (or arbitrary) nonredun- 
dant index assignments a useful asymptotic formula for 
the MSE is given. A future research direction would be to 
mathematically investigate the minimum MSE .of noisy 
channel quantizers for the best index assignments, which 
would improve upon the results for the average index 
assignments given in this paper. Along these lines one 
might study specific structured classes of index assign- 
ments rather than aggregate averages. Also, most of the 
results presented in this paper assume the source has a 
density with compact support. To remove this assumption 
would be an interesting challenge. Extending these results 
to sources and channels with memory is another obvious 
path to be followed. 

APPENDIX A 

STATEMENTS AND PROOFS OF LEMMAS 
Lemma 2: Let K < N, f : {1,2,,*., N}K --f 2, and suppose that 

11, 12,“‘, K i are distinct elements of (1,2;.., N}. Then 

Tz f(+>? v&>,“‘, T(iK>> 
N 

=(N-K)! f 5 ... 5 fbn,,m,;-,m,). (51) 
m,=l mz=l mK= 1 

ml, mZ;~‘,mk distinct 

Proof For every K-tuple Cm,, m2;.., m,> with 
ml, m2,"', mK distinct, there exist exactly (N - K)! permuta- 
tions rr in S, that satisfy a&> = m,, di,) = m2;.‘, diK> = 
mK. The result is immediate. 0 

Lemma 3: If N 2 2, then for every pair (i, j) with i f j 

C P?r(j)jr(i) = [l - (1 - e)‘ogzN]~(~ - 2)!. (52) 

Proof By Lemma 2 

C pW)ln(i) = (N - 2)! $ 5 Pklr 
WCS, k=l I=1 

l#k 

= [l - (1 - E)~“~~~]N(N - 2)!. (53) 

u 
Lemma 4: If N 2 2, then for every pair 6, j> with i + j 

(54) 

Proof By Lemma 2, 

<(N-2)!; ; Pm,, 
n=l m=l 

= N(N - 2)!. (55) 

0 
Lemma 5: If N 2 3, then for every 3-tuple G, j, k) with i, j, k 

distinct 

C Pm(i)lr(j)Pr(k)lr(j) 5 N(N - 3)!. 
&S, 

(56) 

Proofi By Lemma 2, 

C p~(W(i)p~(k)l~O = (N - 3)! 5 ; 5 Pm,nP,,n 
TIES, m=l n=l r=l 

m, n, I distinct 

I (N - 3)! 5 5 Pnln ; Pr,,, 
n=l m=l r=l 

= N(N - 3)!. (57) 

0 
Lemma 6: If N 2 4, then for every 4-tuple (i, j, k, 1) with 

i, j, k, 1 distinct 



ZEGER AND MANZELLA: ASYMPTOTIC BOUNDS ON QUANTIZATION VIA RANDOM CODING 1937 

Proof? By Lemma 2 Case 1 (iI, j,, i,, j, all distinct): By Lemma 6, 
c7ip~7i(jl)17i(il~p?r~,~~,~~i~~ s N2(N - 4)!’ 

= (N - 4)! E f 5 f P,,nP,,s 
I?=1 n=l r=l s=l 

E, I 2 
(N - l)(N - 2HN - 3) 

I 

N3 
= 

(N - l)(N - 2XN - 3) 
m,n,r,sdistinct rNN 4 l2 

(65) 

0 
as shown in Theorem 2. 

Lemma 7: Let Pi be the probability of the ith cell in an Case 2 (i2 = i,, j, = j,): By Lemma 4, C, P7i(jl)lp(ilI 

optimal N-level vector quantizer. Then ‘p4i2W(i2) C, Picj)lv(i) I N(N - 2)!. 

‘$$P’2=0. 

E, I & ,g pit E IlYi, -Yj1114 

(60) 
11-l j,= 1 

1-l < z[diam (S,>14 t Pi: 
- (N-1) i,= 1 

Pro05 -+OasN+m. (66) 

cPF5 max{P,)EP,= 
The sum in the last inequality above tends to zero by Lemma 7. 

max{PJ. (61) Case 3 (i2 = j,, j, = i,): By Lemma 4, C~P~~j,)l~(i,) 
i=l i i=l i *Palm I N(N - 2)!. 

For optimal quantization, the MSE decreases to zero so that 
lim, maxi {Pi) = 0. 0 

APPENDIX B 

PROOF OF PROPOSITION 2 
Proof To show that lim,Varn [D(TI>] = 0 it suffices to 

show 

l im~pEn[(2Ds,(II~ + o,oI))~] 5 ( li~mE,,[Dc(n)l)2. (62) 

Consider each of three terms in the equation 

E,[(ZD,,(n) + DRIP] = 4En[Dfc(n)I 

+ 4E,[D,,(II)D,(n)1 + E,[&%)1. (63) 

We first show that lim sup,,, E,[D~UI>l I (lim, + m En[Dc(n)1)2 
and then show that each of the remaining two terms decays to 
zero, completing the proof. Begin by noting that 

En[D:(n>I = & ,c ,$ Cpi,II~i, -Yj1112 
. 1,-l 1,-l 

’ f E ‘i,llYi, - Yj,112Cp,cj,,l,ci,,p,Cj,,l,ci2). ((j4) 
i,=l jz=l T 

E, I $q ,f Pi, 5 qlllY,, - Yj1114 
,I= 1 jl=l 

I &[diam (S,>14 5 P, E 6, 
i,= 1 j,= 1 

= & [diam @ ,>I4 

+ Oas N -+ ~0. (67) 
Case 4 (iz = i,, j2 # j,): BY Lemma 5, Cnf’w(jl)iv(il) 

*Pv(j2)lw(i2) 5 N(N - 3)!. 
1 

2 P2 
E4 ’ (N - l)(N - 2) iI=1 ” 

’ f f llyi, - Y,,l1211Yi, - Yj2112 
j,=l j2=1 

N2 N 

’ (N _ l)(N _ 2) [diam(sf)14i,~lp: 

+Oas N+m. (68) 
The sum in the last inequality above tends. to zero by Lemma 7. 

Case 5 (i2 # i,, j, = j,): By Lemma 5, CpP~(jl)ja(il) 
.P,(j2)1v(,z) I N(N - 3)!. 

1 N N 

E5 I (N - l)(N - 2) iI?Ipili~?Ipiz 

. E IlYi, -Yj,l1211.!+, -Yj1112 
j, = 1 

N 

’ (N - l)(N - 2) 
[diam(Sf)]4 E Pi, f Pi, 

i,= 1 i,=l 

An upper bound for this expression can be found by splitting 
it into a sum of seven terms, El;.., E, corresponding to seven 
mutually disjoint and exhaustive cases for the indices i,, jI, i,, j,. 

= (N _ 1;N _ 2) [diam (sf’14 

+ Oas N-, ~0. (69) 
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Case 6 (i2 = jl, j, # i,): By Lemma 5, CpP?i(jI),7i(iII 
.P~~,2~,~~i2~ I NO’ - 3)!. 

1 N N 

E6 I 
(N - l)(N - 2) iI~Ip’&~] 

N 
’ (N - l)(N - 2) 

[diam(Sf)14 ; Pi, ; I$ 
i,= 1 jl= 1 

N 
= (N _ l)(N _ 2) [diam(Sf>14 

+ Qas N+ ~0. (70) 

Case 7 (iz Z jI, j, = i,): By Lemma 5, C,P,,(,,),,(,,) 
.pw(j,)l,ci,) I N(N - 3)!. 

N 

’ (N - l)(N - 2) 
[diam (S,)14 E Pi, : Pi, 

i,= 1 i,=l 

= (N _ I;, _ 2) [diam (sf)14 
+OasN+m. (71) 

We have thus established that lim sup E,[D~(II>] I 
(lim N-t io E,D,0UD2. Next, applying the triangle 
Cauchy-Schwarz inequalities gives 

En[@c(IUl 

N N 

’ C C pi,llci, -Y&II ’ llYiz - Yjzll 
i,=l jz=l 

I 8; diam (Sf)2 c PiI c Pi, 
i, = 1 i,= 1 

and 

(72) 

Noting that 8, * 0 as N + M, this quantity can be bounded by 
a sum of seven terms (using seven cases as above), each of which 
decays to zero asymptotically. Finally we note that 

1 E,tD,,(II>D,UI>1~ 
11 N N N N 

i,=l j,=l 

I & ,c f p~,llci, -Yi,ll’ IlYi, -Yj,ll 
’ q=l jI=1 

i,=l jz=l 7r 

4 8, diam(Sf)3 f Pi, ; Pi, 
i,=l i,= 1 

Again noting that 8, + 0 as N + 00, this quantity can also be 
bounded by a sum of seven terms each of which decays to zero 
asymptotically. 0 
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