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VtUECl-lC, Q-l(w) = &l(w) 
Q-‘(z) = Q-‘(z) r- H 

Q-‘(y)= &‘(z)n (Rd -H). 

Each application of the second condition to an existing TSVQ 
yields a new TSVQ by cutting (or splitting) the cell 0-r (z) into two 
new cells, Q-’ (x) and Q-r (y). Such a convex polytopal cell is split 
by the hyperplane boundary of H. 

The set of all TSVQ’s is built up by recursively applying the pre- 
vious two conditions. General TSVQ’s are referred to as unbalanced. 
A TSVQ is said to be balanced if either it has exactly one codevector 
or else it was obtained by successively applying the second TSVQ 
condition exactly once to every codevector in some existing balanced 
TSVQ. As in general VQ, TSVQ’s also partition Rd into a finite set of 
convex polytopal cells. This follows from the fact that every encoding 
region is a finite intersection of half-spaces. 

Average Number of Facets per Cell in Tree-Structured 
Vector Quantizer Partitions 

Kenneth Zeger and Miriam R. Kantorovitz 

Abstiact-Upper and lower bounds are derived for the average number 
of facets per cell in the encoder partition of binary tree-structured vector 
quantizers. The achievability of the bounds is described as well. It is 
shown in particular that the average number of facets per cell for 
unbalanced trees must lie asymptotically between 3 and 4 in R2, and 
each of these bounds can be achieved, whereas for higher dimensions it 
is shown that an arbitrarily large percentage of the cells can each have 
a linear number (in codebook size) of facets. Analogous results are also 
indicated for balanced trees. 

It will be assumed throughout that the intersection of any cell- 
splitting hyperplane with a face of the split cell is of lower dimension 
then that of the face itself. This implies, for example, that if a 
cell S is split into two cells with a hyperplane H, then H cannot 
intersect any vertices of S and can only intersect boundary lines of 
S in single points. This assumption could equivalently have been 
stated as a general position [l] restriction, corresponding to zero 
probability events for TSVQ partitions arising from random variables 
with continuous density functions. 

Index Terns-Tree-structured vector quantization, data compression, 
computational geometry. 

I. INTRODUCTION 

A vector quantizer (VQ) Q: Rd -+ C is a mapping from d- 
dimensional Euclidean space Rd into a finite set of code vectors 
C C Rd, called a codebook. Every VQ induces a finite partition 
of Rd into sets, Q-‘(y), for y E C, called cells, which are the 
inverse images of vectors in C under the quantizer mapping. In an 
unstructured VQ, a nearest-neighbor encoder partitions Rd into a 
Voronoi diagram, consisting of a finite set of convex polytopal cells. 

A binary tree-structured vector quantizer (TSVQ) Q can formally 
be defined recursively as any VQ with codebook C that satisfies 
either of the following two conditions. 

1) ]C] = 1. 
2) There exists a TSVQ 0, with codebook C, and a half-space 

H such that for some 2, y E C and some z E C, 

A facet of a convex polytope in Rd is any (d - 1)-dimensional 
face of the polytope. Two cells in a quantizer partition are neighbors 
if each has a distinct facet, one of which is a subset of the other. 
Equivalently, two cells are neighbors if the intersection of their 
closures has dimension cl - 1. For a VQ encoder partition in general 
position, there is a one-to-one correspondence between the facets of a 
cell and the cell’s neighbors. However, for TSVQ, it is possible that 
one cell could be adjacent to several other cells via the same facet; 
in general, the number of facets per cell is less than or equal to the 
number of neighbors of the cell. Often, however, these two quantities 
are very similar or equal. Note also that in general, a TSVQ partition 
of Rd is not a nearest neighbor partition. For a given convex polytopal 
partition R of R” into n cells, define 

1) Fd(n) = average number of facets per cell in 0; 
2) Gd(n) = nFd(n); 
3) Md(n) = maximum number of faCetS of a Cell in 0. 
Cd(n) is the sum over all cells in fi of the number of facets 

bounding each cell. The results in this paper are stated in terms of 
bounds on Fd(n), whereas many of the proofs are given in terms of 
Gd(n) for COnveniCnCe. 

Manuscript received Nov. 3, 1991; revised Sept. 8, 1992. This work was 
supported in part by the National Science Foundation under Grants NCR-90- 
09 766 and NCR-91-57 770, and in part by the Hewlett-Packard Co. This 
work was presented in part at the International Symposium on Information 
Theory and Its Applications, lbusuki, Japan, Dec. 1991. 

K. Zeger is with the Coordinated Science Laboratory, University of Illinois, 
1308 W. Main Street, Urbana, IL 61801. 

M. R. Kantorovitz is with the Department of Mathematics, University of 
Illinois, Urbana, IL 61801. 

IEEE Log Number 9207086. 

It is of both theoretical and practical interest to know Fd(n) for 
various applications in quantization theory. One such application 
arises in multiprocessor design of QV [2], where every pair of neigh- 
boring cells is examined in the context of an iterative improvement 
algorithm. Processor memory and time consumption in this case are 
proportional to the total number of cell neighbor pairs, which is lower 
bounded by the total number of facets in the encoder partition. In [3], 
an asymptotic analysis of TSVQ is performed by choosing a model 
that assumes every cell in a TSVQ encoder partition has exactly 
2d facets in d-dimensional space. Under this assumption, a useful 
formula was derived in [3] for the high resolution distortion of a 
TSVQ, which was supported by experimental evidence. 

One might question, in general, whether it is the case that all or 
most of the cells in a TSVQ have exactly 2d facets, or whether even 
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on average this must be true. In fact, it might be questioned whether 
Fd(n) = O(1) can always be guaranteed or whether alternatively 
Fd(n) can be unbounded in n. 

Note that since every cell of a vector quantizer with n codevectors 
cannot share more than one facet with any other cell we obtain the 
trivial upper bound Fd(n) 5 n - 1. Using a construction based on 
the existence of simplicial neighborly d-polytopes, Klee [4] showed 
the remarkable result that for d 2 4 this bound is achievable 
with equality for unstructured vector quantizers whose codevectors 
are in general position. In such quantizers, every cell is adjacent 
to every other cell in the encoder partition. In two dimensions, 
a straightforward application of Euler’s theorem for planar graphs 
shows that F;?(n) 5 6. Seidel [5] similarly derived expressions for 
counting the faces in d-dimensional Voronoi diagrams in terms of the 
number of faces on a polytope of one higher dimension, obtained by 
stereographic projection. 

Several authors have also examined non-Voronoi partitions of Rd. 
Using the Euler-Poincare formula from combinatorial topology, Buck 
[6] determined the number of cells that result from dividing up Rd by 
a given number of arbitrarily placed hyperplanes in general position, 
and generalized theresults to projective d-space. In [7] it was shown 
that if convex polytopes are chosen at random, generated according to 
some continuous probability distribution, then F,(n) = 2d as n -+ 
00. Many interesting properties of randomly constructed polytopal 
divisions of Rd were given in [8]-[ll]. 

In this correspondence, we derive several bounds on Fd(n) for 
TSVQ and point out the achievability of these. Specifically, it is 
shown that for two-dimensional unbalanced TSVQ, the average 
number of facets per cell is asymptotically bounded above by 4 
and below by 3, and that the bounds are achievable. For higher 
dimensional spaces, an upper bound of n/2 and a lower bound of 3 
are given. It is also shown that n/4 and 3 respectively are achievable 
in this case. At present, it is an open question as to whether the 
n/2 bound is achievable. In R, it is trivially always the case that 
Fl(n) = 2 - 2/n. 

In R2, it is shown that if an asymptotically large fraction of the 
TSVQ cells are bounded, then F2(n) z 4. This would lend some 
support to the assumption made in [3] that Fd(n) = 2d for the case 
d = 2. However, for d > 2, this might not be the case. It is shown 
analogously that for balanced TSVQ with d > 2 the upper bound 
on the average number of facets per cell is reduced to logan. It 
should be emphasized, though, that the achievability of the bounds 
presented are best and worst cases, over the class of all TSVQ’s, and 
it is a question for future study as to how likely they are to occur 
for various practical TSVQ systems. 

II. BOUNDS ON NUMBER OF FACETS PER CELL 
FOR UNBALANCED TREES 

The encoder partition of an unbalanced TSVQ can be viewed as 
being formed via a sequence of cuts by hyperplanes. The following 
facts will prove useful in the various proofs. 

Fact 1) 

Fact 2) 

Fact 3) 

Fact 4) 

Each cut increases the number of cells by exactly one. 
After n - 1 cuts there are precisely n cells. 
If the hyperplane forming the nth cut of the TSVQ 
intersects exactly m facets of the cell it splits, then the 
total number of facets in the partition increases by m + 2. 
For n > 1, the nth cut introduces at least 3, but no more 
than &(n) + 2 new facets. 
After n cuts, no cell can have more than n facets, i.e., for 
all n, h&(n) 5 n - 1. 

Proposition 1 : For unbalanced TSVQ, the average number of 
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facets per cell satisfies 

3 - 4/n 5 Fd(n) 5 n/2 + 112 d > 2, n>l 

3 -4/n 5 Fd(n) 5 4 - 7/n d = 2, n > 3. 

Proof: Consider the two cases separately. 

Case 1: d > 2. 
It is proven by induction on n that 

3n - 4 5 Gd(n) 5 n(n + 1)/z. (1) 

There are no facets until at least two cells exist, so the basis step is 
satisfied, since Gd(l) = 0. Now suppose the inequality in (1) holds 
up to n, and consider the case for n + 1. Then, we get 

Gd(n + 1) 5 Gd(n) + Md(n) + 2 

<Gd(n)+n+l 

I n(n + 1)/2 + n + 1 

= (n + l)(n + 2)/2, 

where the three inequalities follow respectively from Fact 3, Fact 4, 
and the induction hypothesis in (1). For the lower bound, note that 
after there are at least two cells, any new cell splitting increases the 
total face count by at least three, since at least one face must split 
into two and the splitting hyperplane is counted as two new facets. 
This gives 

Gd(n + 1) 2 Gd(n) + 3 
> (3n -4)+3 
= 3(n+l)- 4, 

the second inequality following from the induction hypothesis. 
Case 2: d = 2. 
First, note the fact that Fz (1) = 0 and Fz(2) = 1. Again using 

induction on n we show that for n 2 3, 

The first cut adds two facets to the total, giving Ga(2) = 2, and the 
second cut adds three facets to the total giving Ga(3) = 5, which 
satisfies the basis step. Every cut following the first two cuts intersects 
at most two edges of the cell it splits. From Fact 2 and the induction 
hypothesis, 

Gd(n + 1) 2 Gd(n) + 4 5 4n - 7 + 4 = 4(n + 1) - 7. 

For the lower bound, use the same argument as for d > 2. 0 

The next several results exhibit the bounds’ achievability. 
Proposition 2 : For every d > 2 and n. > 1 there exists an 

unbalanced TSVQ such that 

Fd(n) 2 n/4. 

Proposition 3 : For d = 2 and every n > 2 there exists an 
unbalanced TSVQ such that 

F,j(n) = 4 - 7/n. 

Proposition 4 : For every d 2, 2 and n > 1 there exists an 
unbalanced TSVQ such that 

Fd(n) = 3 - 4/n. 
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Proof of Proposition 2: First, note that Gd(2) = 2 and Gd(3) = 
5. We present a construction in Rd of a TSVQ with n > 3 cells 
satisfying Fd(n) > n/4. Let I< be any (d - l)-dimensional bounded 
convex polytope with m (d - 2)-dimensional faces, where m 5 n. 
Let PO be an unbounded convex polytope in Rd containing I< as one 
of its facets. Furthermore, suppose, without loss of generality, that 
PO lies in K’, the closure of one of the two half-spaces determined 
by I< (I< is viewed as a hyperplane in Rd>. The existence and 
construction of such polytopes is described in [12]. Let HI, . . , H, 
be the hyperplanes in Rd that are determined by the m facets of 
PO that intersect I(. Let P be the convex hull (unbounded) of 
(HI n I(+) u . . . U (H, n I;+) U li’. P has m + 1 facets, and 
thus can be obtained as one cell of a particular TSVQ after m + 1 
cuts have been made. One possible sequence of hyperplanes making 
these m+ 1 cuts is HI,... , H, , I(. Proposition 1 implies that 

Gd(m $ 2) 2 3(m i- 2) - 4. 

The next n - m - 2 cuts are described as follows. Let g be a 
hyperplane lying in I(’ and parallel to I(, and let B = 8 n P. 
Now, let H be any hyperplane through P such that H n Ii’ = 4 and 
H n B = 4. Then, H intersects each H, for i = 1,. . . , m, and splits 
P into two new convex polytopes, PI and Pi. PI has m + 2 facets 
(I( is one of them) and P2 has m + 1 facets. 

Relabel P2 by P, H n Pz by I(, and then repeat the process. In 
the resulting TSVQ, there are n > 3 cells and 

Gd(n) = Gd(m + 2) + (n - m - a)(772 + 2) 
2 (n - m + l)(m + 2) - 4. 

Now choose m = [n/2], the greatest integer less than or equal to 
n/2. This gives 

Gd(n) >_ (7I - n/2 + l)(n/2 - l/2 + 2) - 4 

=!C+;n-; 

Thus, Fa(n) 2 n/4. 0 

Proof of Proposition 3: After the first two cuts one has Gd(3) = 
5. The third cut can be used to form a triangle, and it intersects two 
edges, so Gd(4) = Gd(3) + 4 = 9. For the remaining cuts, always 
choose a bounded cell to cut; in this case, since the cells are convex, 
the cut must intersect exactly two edges. So from Fact 2, 

Gd(n) = 5 + (n - 3)4 = 4n - 7. 0 

Proof of Proposition 4: The lower bound can be achieved by 
creating a TSVQ with only unbounded cells. Each new cut introduces 
three facets to the total number of facets and Gd(2) = 2. Thus, 
Gd = 3n - 4, which can easily be proven by induction. 0 

The following corollary to Proposition 2 shows that there exist 
d-dimensional TSVQ’s such that an arbitrarily large fraction of the 
cells each have a linear number (in codebook size) of facets. 

Corollary 1 : For d > 2, n 2 1, and for every 01 E (0, l), there 
exists a TSVQ with n cells such that at least an of the cells each 
have at least (1 - n)n facets. 

Proof: In the proof of Proposition 2, take m = [n(l - a)] - 2. 
In this case, the last n - m - 2 cuts yield n - m - 2 cells, 
each having [(l - a)n] facets. This completes the proof, since 
n-m-2>n-n(l-cx)=ncu. 0 

III. BOUNDS FOR BALANCED TREES 

For balanced trees similar results are obtained, though with a 
reduction from linear to logarithmic bounds. The results are stated 
in terms of the number of cells, n, in the TSVQ, though it should be 
remembered that balanced trees only exist when n is some integer 
power of 2. In the following proposition, the achievability of the 
lower bound for d 2 2 and the upper bound for d = 2 are analogous 
to the unbalanced case. However, it is unknown at present whether 
the upper bound log,n is achievable; in fact it is unknown whether, 
for a fixed d > 2, it is possible to exhibit balanced TSVQ’s such 
that Fd(n) is unbounded. 

Corollary 2 : For balanced TSVQ, 

3 - 4/n < Fd(n) 2 log,n, d > 2, n > 0: 

3 - 4/n 5 Fd(n) < 4 - 8/n, d = 2, 12 > 0. 

Proof? For d 2 2, the lower bound is proven exactly as in 
Proposition 1, by creating only unbounded cells at each stage of 
splitting. For d = 2, the upper bound is obtained in the same manner 
as for unbalanced trees, where at least one new bounded cell is created 
from each cell splitting, starting with n = 8, since for n = 1, 2, 4, 
it is only possible to form unbounded cells. This accounts for the 
slightly different bound than for unbalanced trees. For d > 2, to 
obtain the upper bound we use Lud(2n) 5 n and the fact that each 
of the cells split can introduce no more than li&d(n) + 2 new facets, 
to get 

Gd(2n) 5 Gd(n) + n(-ud(n) i- 2) 
5 Gd(n) + n log, n + 2n 

or equivalently after dividing by 2n, 

1 
Fd(h) 5 -Fd(n) + ; log, 7l + 1. 

2 

From this recursive inequality it easily follows by induction that 
Fd(n) 5 lo&n. q 
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