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of the 1 + D system are the same as the 1 - D system given in 
(3). 

An N-dimensional 1 - D2 channel, N even, can be consid- 
ered as two time-multiplexed N/Zdimensional 1 - D channels. 
Consequently, the eigenvalues are in pair equal to 
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The two eigenvectors corresponding to a pair of eigenvalues are 
of the general form cw,m,(2n) + cuzm,(2n + l), where at + CX~ 
= 1 and m,(n) is the eigenvector of the 1 - D channel given in 
(2). 

The product of the nonzero eigenvalues of C is equal to 
N-l 

kvo 4,’ = IC’CI, (9) 

where ICC/ is the determinant of CC. This product is an 
important parameter of the systems based on C. For example, in 
the transmission system shown in Fig. (l), the volume of the 
Voronoi region around each constellation point at the channel 
input is proportional to (n,+,)-l and the required energy is 
proportional to (llk+J2/N. 

Abshact-A Euclidean code is a finite set of points in n-dimensional 
Euclidean space 9”. The total number of nearest neighbors of a given 
codepoint in the code is called its touching number. We show that the 
maximum number of codepoints Fn that can share the same nearest- 
neighbor codepoint is equal to the maximum kissing number 7, in n 
dimensions, that is, the maximum number of unit spheres that can touch 
a given unit sphere without overlapping. We then apply a known upper 
bound on 7, to obtain F, s  2”(“.401 + O(l)), which improves upon the best 
known upper bound of F, 5 2 ‘(’ + O(l)). We also show that the average 
touching number T of all the points in a Euclidean code is upper 
bounded by 7,. 

I. INTRODUCTION 

For the 1 f D channels, assuming IC’CI = 2-N X A, and 
expanding the determinant, we obtain A, = A,-, + 1. Solving 
this recursive equation with the initial value A, = 2 results in 
A, = N + 1. Consequently, for the 1 + D channels, we have 

N-l 

kFo 6 = 2- N x (N + 1). (10) 

For the 1 - 0’ channel, we have 
N-l 

n 4,” = 2-N x [(N/2) + 11’. (11) 

A Euclidean code is a finite set Y of M > 1 points in n-di- 
mensional Euclidean space ~6”“. A vector quantizer codebook 
and a code (or signal constellation) for the Gaussian channel are 
both examples of Euclidean codes. In both cases, the nearest- 
neighbor partition (also known as the k’oronoi partition) of the 
space induced by the code is of particular importance in evaluat- 
ing the performance of the code. For vector quantizers, a source 
vector is encoded by identifying in which region of the partition 
it lies. For Gaussian channels, a selected codepoint is corrupted 
by an additive Gaussian noise vector and the maximum a 
posteriori decoder identifies in which region of the Voronoi 
partition the resulting vector lies. 

k=O 

For all three channels, modulation with the input,eigenvectors 
can be performed by using the even discrete sine transform. For 
modulation with the output eigenvectors, we can use the block 
diagram shown in Fig. (2). Using (7), modulation with the output 
eigenvectors can also be achieved using an N + l-point even 
discrete cosine transform. In this case, samples of the modulat- 
ing vector are shifted by one sample and filled with zero. Ref. [3] 
shows how both the discrete sine transform and the discrete 
cosine transform can be efficiently calculated. 

A special case of a Euclidean code is a uniform code (e.g., a 
lattice code), defined by the property that every codepoint has 
the same nearest-neighbor distance, dmi,. Each point of a uni- 
form code can be viewed as the center of a sphere of radius 
r. = d,,/2 so that each sphere is contained in the closure of a 
nearest-neighbor region. 

III. SUMMARY 

The nearest-neighbor region (or Voronoi cell) of a given point 
a! in a Euclidean code is the set of points in 9” closer to (Y 
than to any other codepoint. This region is a convex set bounded 
by faces of dimension n - 1 that are subsets of hyperplanes. 
Each such hyperplane is defined as the locus of points equidis- 
tant from (Y and some other codepoint p. 

The input and output eigenvectors and the eigenvalues of the 
1 k D and 1 - 0’ systems are calculated. The product of the 
nonzero eigenvalues are found in closed form. In all cases, the 
multiplication by the input or output eigenvectors can be 
achieved by using fast transform algorithms. 
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There are two important types of neighboring points for 
convex polytopal partitions of space, namely, adjacent points and 
touching points. Each codepoint that defines a face of the 
polytopal cell containing (Y is called an adjacent point of cy. For 
any point a in the code Y, we say that a point /3 in Y is a 
touching point (or nearest neighbor) of CY, if p is a closest point 
of LY in the code Y. In this case, 

d, A min{](a - y/I: y E Y, y f cy} = (((Y - /3/l, (1) 
where we call d, the touching distance of the point CY. Note that 
every touching point of a given codepoint is also an adjacent 
point to it, but the converse does not necessarily hold. 

Some interesting properties of adjacent points are known. 
Using Euler’s formula for planar maps, one can show that the 
average number of adjacent points per codepoint for any Eu- 
clidean code in two dimensions is at most 6. Klee [l] used a 
construction based on the existence of simplicial neighborly 
d-polytopes, to show that for n 2 4 and for any M, there always 
exists a Euclidean code such that every point in the code has 
exactly M - 1 adjacent points. It has been shown for tree-struc- 
tured Euclidean codes that the average number of adjacent 
points for n = 2 is less than 4, and for n 2 3 this number cannot 
be universally upper bounded by a constant (i.e., independent of 
the number of points), by showing that there exist families of 
codes such that the average number of adjacent points grows 
linearly with the size of the code [2]. However, much less is 
known about touching points for Euclidean codes. 

Let dmin be the minimum distance between any pair of points 
in the code. Thus 

dmin- {lla-Pll:~>P~Y,~+P}. (2) 
The minimum distance of a code plays a central role in obtain- 
ing error probability bounds for the Gaussian channel under 
conditions of high signal-to-noise ratio. The number of nearest 
neighbors of each codepoint also plays an important role in 
determining the performance of a code. 

Since M > 1 for any code, every point in the code has at least 
one touching point and at most M - 1 touching points. The 
touching number of a codepoint CY is the number of touching 
points of 01. The total touching number of a code is the sum of 
the touching numbers of each point in the code. The average 
touching number T is the total touching number divided by M 
(the size of the code). Also of interest for a given codepoint (Y is 
the total number of codepoints which have (Y as a touching 
point. Denote by F,, the maximum number of points in sn that 
can share a common nearest neighbor, where the maximum is 
taken over all possible arrangements of points. 

In general, the touching number may differ from one code- 
point to another. Also, note that a codepoint might not be the 
nearest neighbor of any other codepoint. It is simple to con- 
struct a code in which each point has only one touching point. 
For example, in 9, let CQ = l/k for k = 1,2;.., M. Then c++ r 
is the unique touching point of (Ye for k = 1,2;.., M - 1, and 
a,,,-, is the unique touching point of cu,. It is also possible for 
a codepoint to have M - 1 touching points. For example, let ~yi 
be the origin and let all remaining points (Ye;*., (Ye lie on the 
surface of a sphere in n dimensions (n 2 2), centered at the 
origin. 

For M large enough and for a lixed dimension n, it is not 
possible for all codepoints to simultaneously have M - 1 touch- 
ing points, nor is it possible for a codepoint to be a nearest 
neighbor of arbitrarily many other codepoints. We shall demon- 
strate that there is, in fact, an upper bound on both F, and the 
average touching number T of a code. This upper bound will be 
independent of the size M of the code. 

II. MAIN RESULT 

A sphere packing in any dimension is a collection of disjoint 
unit radius open spheres. In a sphere packing, the kissing number 
(or contact number) of any sphere is the number of spheres in 
the packing that it is tangent to. In a lattice packing, each sphere 
has the same kissing number. The maximum kissing number in 
W”, denoted by T,, is the largest kissing number that can be 
attained by any packing of n-dimensional spheres. 

The maximum kissing number is known exactly in only very 
few dimensions, namely, I = 2, r2 = 6, rs = 12, 7s = 240, and 
rz4 = 196560. It is known that for some n, no lattice packing 
can achieve the maximum kissing number. On the other hand, 
the 24-dimensional kissing number is attained in the well-known 
Leech lattice. Good upper and lower bounds on r,, are known 
for low dimensions and are summarized in [3]. For arbitrarily 
high-dimensional space, the following lemma gives the best 
known upper and lower bounds on rn. The upper bound is due 
to Kabatiansky and Levenshtein [4] and the lower bound is due 
to Wyner [Sl. 

Lemma 1: The maximum kissing number in n-dimensional 
space is bounded as 

20.2075”(1+0(1)) I ~ n I 20.401n(l+O(l)) (31 
Throughout this paper, the notation o(l) will refer to the 

asymptotics of the dimension n, and will be independent of the 
code size M. In most applications of Euclidean codes, the rate, 
R = (log, M)/n (bits per dimension), of the code exceeds 1, so 
that usually M = 2R” s=- 7,. 

The main results of this paper (Theorem 1 and Theorem 2) 
show that r, equals the maximum number F, of codepoints that 
can share a common nearest-neighbor codepoint and that r, 
upper bounds the average touching number T of a code. Since 
M is often used as an upper bound to the average number of 
nearest neighbors of a code, this shows that the tighter upper 
bound r, can be used advantageously. For a uniform code, the 
touching number for any point cannot exceed r,, and hence the 
average touching number T is bounded by r,,. Theorem 2 shows 
that for nonuniform codes, the average touching number has the 
same upper bound. 

The number of points in 5%‘” that can share a common 
nearest-neighbor point plays an important role in a widely 
diversified set of fields of research. For example, some re- 
searchers in psychology have investigated the nearest-neighbor 
problem from a statistical point of view [6], [7]. In [8], an 
extensive experimental study was done to compute a histogram 
for the values of F, based on a statistical model. Other studies 
of the number of points having a given point as a nearest 
neighbor have been done in such fields as sociology, biology, 
cognitive psychology, and ecology (e.g., see the references listed 
in [6]). 

The quantity F, also plays an important role in the field of 
nonparametric (distribution-free) estimation. In [9], it is shown 
that F,, is independent of the code size for metrics induced by 
arbitrary norms in 9’“. A bound of F, I 3” - 1 = 21.585n for all 
n 2 1 was cited in [lo] as an upper bound which is independent 
of the code size. Rogers [ll, Th. 31 derived bounds on the 
number of unit spheres needed to cover a given sphere of 
arbitrary radius when n 2 9. Fritz [12], citing the bounds of 
Rogers, noted that F,, can be approximately upper bounded by 
F I 2”(l+Oo)). Stone [13, Prop. 121 has shown that F,, can be 
u”pper bounded by the minimum number of 60” cones emanating 
from a point that can cover space. Combining Stone’s result with 
the earlier result of Rogers also gives F, I 2”(l+OC1)). 
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By Lemma 1, the kissing number can be upper bounded by 
r I 2n(0.401+o(1)), making our bound, F, 2 2n(0.401+o(1)), a signif- 
ic”ant improvement in tightness over the previously known bounds 
mentioned above. The essential difference between our bound 
and the weaker one of Stone and Rogers is that theirs is based 
on a minimal covering while ours is based on a maximalpacking. 

Theorem 1: The maximum number of points in 9” which can 
have a common nearest neighbor is equal to the maximum 
kissing number (i.e., F, = r,), and is thus bounded as 
20.2075n(l+o(l)) I F I 2n(O.‘,Ol+o(l)) 

directed edge goes from vertex a! to vertex p if /3 is a touching 
point of (Y. (If (Y is also a touching point of p, then there is 
another directed edge from p to a.) 

From Theorem 1, it follows that the nearest-neighbor graph of 
any Euclidean code with M > 1 codepoints has the property 
that each vertex has at most rn incoming edges. Hence the total 
number of edges in the graph cannot exceed Mra (at most linear 
in the number of vertices) and consequently the total number of 
outgoing edges from all vertices is also at most Mr,,. Therefore 
the average touching number T, being the average number of 
outgoing edges from a vertex, is bounded above by 7,. The upper 
bound then follows from Lemma 1. 0 

Proof: Consid”er any set of r,, nonoverlapping spheres which 
are tangent to a common sphere. The centers of these r, 
spheres each have the center of the common sphere as a 
common nearest neighbor. Hence F, 2 T, and it remains to REFERENCES 
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by the definition of yi and yj. 
Hence, 

2(yi - P). (yj - P> 5 dk 
and 

(9) 

IlYi - Yjll’ = llyi - PII’ + IlYj - PII 
- 2(yi - /3> ’ (yj - P> 

>d;+d;-d;=d$. (10) 
Hence, in the code { p, yi, y2;.., yk,, the point p has touching 
number k that exceeds r,. However, then k nonoverlapping 
spheres of radius d,/2 could be placed about each touching 
point of /3, violating the kissing number bound for the sphere 
centered at /3 of radius d,/2. This completes the proof. The 
required bounds on F, then follow from Lemma 1. 0 

Theorem 2: The average touching number of any Euclidean 
code in 9’” is less than or equal to the maximum kissing number 
(i.e., T I r,), and thus is upper bounded by 2n(0.401+o(1)). 

Proof Given a Euclidean code, the directed nearest-neigh- 
bor graph associated with the code is defined in the following 
manner. Let each vertex correspond to a particular codepoint. A 

Malfunction in the Peterson-Gorenstein-Zierler 
Decoder 

Meera Srinivasan and Dilip V. Sarwate 

A&rub-Most versions of the Peterson-Gorenstein-Zierler (PGZ) 
decoding algorithm are not true bounded distance decoding algorithms 
in the sense that when a received vector is not in the decoding sphere of 
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