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Pseudo-Gray Coding

KENNETH ZEGER anp ALLEN GERSHO, FELLOW, IEEE

Abstract— A pseudo-gray code is an assignment of n-bit binary in-
dexes to 2" points in a Euclidean space so that the Hamming distance
between two points corresponds closely to the Euclidean distance.
Pseudo-Gray coding provides a redundancy-free error protection scheme
for vector quantization (VQ) of analog signals when the binary indexes
are used as channel symbols on a discrete memoryless channel and the
points are signal codevectors. Binary indexes are assigned to codevectors
in a way that reduces the average quantization distortion introduced in
the reproduced source vectors when a transmitted index is corrupted by
channel noise. A globally optimal solution to this problem is generally
intractable due to an inherently large computational complexity. A
locally optimal solution, the Binary Switching Algorithm, is introduced,
based upon the objective of minimizing a useful upper bound on the
average system distortion. The algorithm yields a significant reduction in
average distortion, and converges in reasonable running times. The use
of pseudo-Gray coding is motivated by the increasing need for low
bit-rate VQ-based encoding systems that operate on noisy channels, such
as in mobile radio speech communications.

1. INTRODUCTION

A long-standing problem in quantization theory is how to effec-
tively combat the performance degradation caused by noisy
channels. One approach is to use redundancy bits for error control
coding. A fairly straightforward argument shows, however, that
superior performance can always be achieved by instead using these
extra bits to design a higher resolution quantizer with no explicit
error control. In effect, the error control coding is built into the
higher resolution quantizer.

On the other hand, for a quantizer with a fixed codebook and no
error correction, performance gain can be achieved by judiciously
assigning channel words (i.e., binary indexes) to codevectors. Intu-
itively, vectors that are ‘‘close’’ to each other should be assigned
indexes which differ in as few bit positions as possible. In this way,
channel errors cause an index to be decoded as a vector which
approximates the codevector that was supposed to be correctly
decoded (i.e., without channel noise). The problem of how to make
these assignments in an effective manner has essentially been an
unanswered question until recently. This paper proposes a solution
to this question based on a certain upper bound approximation that
turns out to be exact in the case of the mean-square distortion
criterion. An index assignment algorithm is presented that proves
very effective in controlling performance degradation caused by
channel noise.

A. Background

Vector Quantization (VQ) has been established as an important
and successful source coding technique in many digital communica-

Paper approved by the Editor for Quantization, Speech/Image Coding of
the IEEE Communications Society. Manuscript received July 13, 1988;
revised October 24, 1989. This work was supported in part by the Jet
Propulsion Laboratory, California Institute of Technology, sponsored by
NASA, and by the General Electric Company, Bell Communications Re-
search, Inc., and the State of California MICRO program. This paper was
presented in part at the International Conference on Communications,
Philadelphia, PA, June 1988.

K. Zeger is with the Department of Electrical Engineering, University of
Hawaii, Holmes Hall 483, Honolulu, HI 96822.

A. Gersho is with the Department of Electrical and Computer Engineer-
ing, Communications Research Laboratory, University of California, Santa
Barbara, CA 93106.

IEEE Log Number 9039096.

tion applications (see, for example, [1]). Real-time implementations
of VQ coding systems are beginning to emerge and are likely to
play an increasing role in voice, image, and video communications
systems in the future. Often, the binary indexes produced by a VQ
coder account for most or all of the information transmitted to a
receiver across a noisy channel. This commonly occurs in mobile
radio and satellite communications, where low bit-rate digital speech
applications can suffer severe quality degradation from the effects of
channel noise on transmitted codevector indexes.

Several studies of classical Gray coding have been conducted for
scalar quantization of sources. The numerical and perceptual effects
of channel errors on PCM signals have been investigated in [2}-[6].
Rydbeck and Sundberg [4] demonstrated the importance of proper
index assignment in scalar quantizer design for noisy channels. The
design of optimal codes for discrete-alphabet uniformly distributed
sources using a mean-square fidelity criterion was considered by
Wolf and Redinbo [7] and Redinbo [8], [9]. Many papers have
studied combined source and channel coding, but generally ignore
the channel codeword assignment question (see [10]-[16]). The
problem of finding an optimal index mapping function is, however,
considered by Farvardin and Vaishampayan [17] in the context of
combined source-channel coding of scalar PCM signals. Cox ef al.
{18] have designed an ad hoc channel error protection scheme for
subband coding of speech signals, by identifying important channel
bits and using rate compatible punctured convolutional coding.
Specific techniques for reducing the effects of channel errors without
adding redundancy bits have been given for certain image coding
applications using Walsh Transforms {19} and DPCM [20].

Few research efforts in the past have focused on the index
assignment problem for vector quantizers. The growing popularity
of vector quantization as a realizable source coding technique has
drawn attention to the advantages of codevector index assigning
schemes, and several limited heuristic algorithms have recently been
described [21]-[23]. In [24], a technique is described that recur-
sively constructs good index assignments by examining the related
minimum weight hypercube problem. By using a well-known solu-
tion to the weighted matching problem in graph theory, their
algorithm is both efficient and yields good results for certain quan-
tized images corrupted by channel noise. Finally, simulated anneal-
ing techniques have been utilized for improving the index assign-
ment functions of vector quantizers in [25]-[27].

This paper offers a systematic examination of the index assign-
ment problem in vector quantization and presents an algorithm that
effectively reduces the average distortion of a VQ system by rear-
ranging the positions of codevectors in a given codebook. The
algorithm is guaranteed to converge to a locally optimal state after a
finite number of iterations, and operates over a wide class of
common distortion functions. Pseudo-Gray coding can provide addi-
tional protection from channel errors in applications where the
primary channel coding is achieved as part of the digital modulation
scheme, as in trellis-coded modulation. This work was motivated by
such a situation where the application was speech coding for mobile
satellite communications [21].

In Section II, a formal model of vector quantization on a noisy
channel is given, and the pseudo-Gray coding problem is intro-
duced. In Section III, equations describing an upper bound on the
expected overall system distortion due to quantization and channel
errors are given. The class of distortion measures considered in-
cludes metrics and positive powers of norms. For each distortion
measure, it is shown that one can minimize a quantity (common to
each distortion function) independent of the source statistics, with a
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certain upper bound assumption. The general case of multiple bit
errors occurring in a single transmitted binary index is initially
examined. The results are then specialized to the case of at most a
single bit error per transmitted index. These results lead to the goal
of seeking a rearrangement of a given codebook that minimizes an
expected distortion term. In the single bit error case, it is noted that
this minimization is independent of the value of the channel’s
crossover probability. Section IV describes the Binary Switching
Algorithm in detail, and discusses the computational complexity
requirements of the algorithm. Numerical results of experiments
using the Binary Switching Algorithm are given in Section V, which
exhibit the achievable gain in SNR using pseudo-Gray coding. It is
shown that on binary symmetric channels, over a wide range of bit
error probabilities, one can obtain SNR gains in the range of 1-5 dB
with vector quantized waveforms. Such an improvement is often
quite significant, and particularly so considering that an increase in
the bit rate is not required.

I. VECTOR QUANTIZATION MODEL
A. VQ on a Noiseless Channel

Vector Quantization encodes each vector from a sequence of
source vectors with a channel symbol—a binary word chosen from a
finite set. A typical VQ system contains a finite predetermined
collection of codevectors (a codebook), and a vector distortion
measure which, when given two vectors, yields a distance (or
distortion) between them. A sequence of input vectors (e.g., a block
of sequential samples of a waveform) is coded by the VQ system by
associating with each input vector the binary word (or index) of a
codevector whose distance from the input vector is minimized. This
index is subsequently transmitted to a receiver which decodes the
codevector associated with the index (by a table lookup operation)
and uses the codevector as an approximation to the original input
vector to the system.

The design of codebooks for a given digital encoding system is
performed before the actual use of the VQ coder. Only VQ systems
that use static codebooks, which retain the same codevectors
throughout their use, will be considered. At the time of VQ opera-
tion, the entire codebook is completely determined and available to
both a transmitter (encoder) and a receiver (decoder). In systems
with dynamically changing codebooks, the algorithms described in
this paper can be generalized by reexecuting the procedures when-
ever a codebook undergoes change, although this may prove very
costly in terms of computational complexity.

A vector quantizer Q is a mapping of p-dimensional Euclidean
space R? into a finite subset Y of R? given by

Q:R?-Y (1)
where Y = {yg,, ¥;»** ", Yy_1} and y,€R? for 0 <i=N- L
The ordered set Y is known as a codebook and the N elements of
Y are called codevectors. For convenience, it is assumed that the
size of the codebook Y is N = 2% where b is a positive integer.
The subscripts of the codevectors are the codevector indexes, each
index representing a b-bit binary channel word, written as decimal
integers for notational brevity. The set of N vector indexes can be
written as {0, 1}?, the set of all binary words of length b bits.

A vector quantizer Q can be decomposed into two separate
mappings: a coder and a decoder. A coder C: R” = {0, 1}° maps
the vectors of R? to b-bit indexes, and a decoder D:{0,1}* = Y
maps indexes to vectors in R”. Thus,

Q=D-C )
where D(k) = y, for ke {0, 1}°.

Corresponding to an N-point vector quantizer Q is a partition
{R} where, for each ie {0, 1}?,

R;=C-'(i) = {xeR”:C(x) = i}. 3)
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Fig. 1. Block diagram of VQ on noiseless channel.

From this definition, it follows that

N-1

UR;=R°and R,NR;=¢ whenever i # j.
i=0

*)

A vector quantizer is completely specified by its partition {R;} and
output set Y. Fig. 1 is a block diagram of a vector quantizer on a
noiseless channel.

B. VQ on a Noisy Channel

The effects of channel errors on indexes can result in significant
distortion in decoded vectors. The magnitude of this degradation is
measured in terms of the distortion function defined for a VQ
system. The indexing of vectors in a codebook influences the
average distortion caused by channel errors. By arranging the
codevectors such that index errors cause incorrectly received vec-
tors to be close on average to the original vectors, the expected
distortion due to channel noise can be reduced. The problem of
finding the best codebook rearrangement involves searching every
possible index assignment for the one that yields the best possible
performance. This task requires enormous computational complex-
ity due to the combinatoric nature of the problem, since there are
N1 assignments of indexes to N codevectors. A suboptimal solution
to this problem is thus sought.

Define the bitwise addition operation ®:{0,1}® x {0,1}* -
{0, 13 as follows. If i = iy, *++ i,€{0,1} and j = jijs **" Jp
€{0,1}?, where iy, j,€{0,1} for 1 <k <b, then i @ j is the
element of {0, 1}° with binary representation ¢,c, - ¢, where
¢, = iy +ji (mod2) for 1 < k < b. That is, each binary digit c,
is the logical exclusive-OR of i, and j,.

If the indexes in the set {0, 1}? are transmitted across a noisy
channel, their values in general will be received as different indexes
in the same set {0, 1}2. Hence, a memoryless noisy channel can
be represented by a mapping 7:{0, 1}° — {0, 1}” given by

(ie{0.13) (5)

where 7 is a random variable taking on values from the set {0, 1}°.
7 is a function of the random variable 7 that describes the effect of
channel errors upon a transmitted binary index.

Let S, denote the set of all one-to-one functions :{0, 1}° -
{0, 1}. Each of the N! bijections (permutations) 7 € Sy is called
an index assignment function for the quantizer Q. For each index
i€ {0,1}%,  uniquely maps i to another index of {0, 1}”, namely,
x(i). A permutation can be thought of as a rearrangement of the
order in which vectors appear in a VQ codebook.

Definition: For any vector quantizer Q = D°C and for any
permutation = of {0, 1}°, a noisy channel vector quantizer, Q,,
is a mapping from R? to the set of codevectors Y given by

r(iy=ienq

Q.=Dex lerexeC

(6)

1 is the inverse

where 7 is a noisy channel mapping, and 7~
function of the permutation .

For any input vector, the output quantized vector produced by Q.
is a function of the random variable 7 associated with the noisy
channel and the input random variable from R”. For a given
channel, Q, can be represented by the triple (C, D, 7). A block
diagram depicting a noisy channel vector quantizer is shown in Fig.
2. In the case of a noiseless channel, the channel noise random
variable 9 is identically zero, 7 is the identity mapping on {0, 1}°,



ZEGER AND GERSHO: PSEUDO-GRAY CODING

Input
Vector

X— C n

Channel
Noise

Qutput
Vector

Yi— D

-l

Fig. 2. Block diagram of VQ on discrete memoryless channel. C =
quantizer encoder, D = quantizer decoder, # = index permutation.

and Q, = Q. The choice of index assignment function = has no
effect on Q,’s performance on a noiseless channel.

Define a real-valued distortion function d:R” x R” = R to be
a function that assigns to every two vectors in R” a nonnegative
number describing their distance from each other. We assume a
finite-variance source random variable X from R” with some
given cumulative distribution function. For a fixed vector quantizer
Q and a given channel, one seeks to find a noisy channel vector
quantizer Q, that minimizes the average distortion given by

e, = E[d(X,0,(X))]. (7

For a given vector quantizer Q, a noisy channel vector quantizer is
completely specified by choosing a permutation function =. Hence,
for a given Q, one seeks to minimize the average distortion e over
all permutation functions 7 € Sy,

®)

Let i = C(X) be the unique integer in {0, 1}® such that X e R;
and assume that the source vectors are independent of the channel
noise 5. Let p denote the probability mass function of the codevec-
tors induced by the source statistics, given by

p(r) =Pr[XeR,] ©)

where Pr denotes the probability of a random event. The number
p(y,) gives the probability that a particular codevector is selected
by the encoder to represent an analog input vector. This probability
distribution is determined by the input signal vector statistics. The
vector probabilities p(y,) can be computed a priori by tabulating
statistics on the relative frequency with which each codevector is
chosen as the best match.

The binary index transmitted across the channel to represent X is

=(C(X)) = (i), (10)

the received index is 7(w({)), and the index of the codevector used
to approximate X in the receiver is 7~ !(7(x(i))). If we define

jEa (r(x @) =7 (=D e n). (1)

then codevector y; is chosen by the encoder as an approximation of
X, and y; is the decoded codevector selected as an approximation
of X. Index i is a random variable depending on the source
statistics of X, and index j is a random variable depending on both
X and on the channel noise statistics determined by the discrete
random variable 75, as well as on the deterministic mapping #. The
total distortion due to the combined effect of the quantization and
channel index errors is d(X, y;). In order to optimize the perfor-
mance of the coding system for a given codebook, the expected
value of this distortion must be minimized over all possible permuta-
tions in S,,. Thus, we take the expectation in (7) by averaging over
both the distribution of the input vector X and the distribution of
channel bit errors. The quantity to be minimized can be written as

e, = E[d(X, y;)]. (12)

With the mean-square distortion function, an optimal vector
quantizer on a noiseless channel satisfies the well-known nearest-

emin = min {e, : reSy}.

mis
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neighbor and centroid conditions. In the presence of channel noise,
generalized versions of these conditions are satisfied [15]. Totty and
Clark [3] showed (later generalized by Messerschmitt [28]) that
when channel noise is added to an optimal quantizer, the mean-square
error can be separated into the sum of the mean-square error for the
quantizer without channel noise and a term due only to channel
noise, as given by the following Lemma.

Lemma 1: The average distortion of a noisy channel quantizer
with the mean-square distortion function that satisfies the centroid
condition can be written as E|| X — y;||* = E|| X — y;||* + E|| y;

2
- .Vj" .
II. MINIMUM DISTORTION INDEX ASSIGNMENT
A. Optimal Pseudo-Gray Coding

To minimize (12) requires determining which permutation =
minimizes the quantity e,. In general, this may be quite a difficult
task since both the source and channel statistics must be taken into
account. There is, however, an asymptotic procedure for determin-
ing the best permutation =, the permutation that achieves e ;,. A
training set T is a finite collection of vectors,

W) (13)

where w, € R? for 1 < k < M. In practice, a training set is much
larger than a codebook, i.e., |T| > | Y |. The expected system
distortion e, for a given permutation 7 can be approximated by

T={w,w,,

1 M
~— 3 d(w, ¥ 14
€x ng] (wk y]) ( )

where the index j is determined for each w; by a channel simula-
tion and the given mapping w. For sufficiently large numbers of
training vectors, M, the summation in (14) will approach the actual
value of e,. Hence, by approximating the source statistic by those
of a large training set of vectors, and by simulating the channel
characteristics, there is an effective procedure for determining the
value of e, with any desired accuracy for any given permutation =.
By iterating this procedure for each =€ S,, one can determine
which permutation 7 is optimal (yields the minimal expected distor-
tion e ). If d is the mean-square distortion function and the
codevectors satisfy the centroid condition, e, can be computed
without a channel simulation, by using Lemma 1.

To determine the optimal codebook permutation in this way,
however, is a problem of enormous complexity. Very large training
sets must be used to accurately simulate the effects of channel
errors, and every permutation in S, must be checked to determine
which is optimal. Since S5 has N! permutations, even a relatively
small codebook size (e.g., N = 16) presents a formidable chal-
lenge. For this reason, a suboptimal solution to the pseudo-Gray
coding problem is sought. We concentrate on finding a permutation
« which reduces the average distortion e, by way of a locally
optimal algorithm. Attention is restricted to certain classes of com-
monly used distortion functions.

B. Local Optimum

We consider metric distortion functions and rth-power of a
norm distortion functions, the latter being of the form
(15)

dX,Y)=|Xx-Y|"

where || - || is any norm on R? and r = 1. When r = 2, we get the
important squared-error distortion function, using the usual Eu-
clidean norm. It is shown that the average distortion with each
distance measure can be upper bounded by quantities that are
amenable to minimization via a common descent algorithm.

Case 1—d is a Metric: By rewriting d(X, y;) and taking
expectations, e, can be decomposed into the sum of an average
distortion of a vector quantizer on a noiseless channel and a term
due to channel errors,

E[d(X, ;)] = E[d(X, y,)] + E[d(X, y;) - d(X, »)].

(16)



2150

Note that if the encoder C is a nearest-neighbor encoder, then
E[d(X,y;) - d(X, )] 20 (17)

which implies that channel errors on transmitted indexes always
increase the average system distortion, as. would be expected. The
triangle inequality implies

e.=E[d(X,y)] =U, (18)

U, - Ela(X. 5] + E[d(y )] (19)

The quantity U, provides an upper bound for the minimum total
expected distortion of the VQ system. This motivates us to seek to
minimize this upper bound as a method of reducing the expected
codebook distortion. This approach does not necessarily guarantee
minimization of the total distortion, but is a heuristic solution that
can contribute to its reduction. Our experimental results help to
justify its use.

The quantity E[d(X, y,)], the expected distortion due to the
approximation of an input vector by a codevector, is independent of
the assignment of indexes to codevectors, and depends only upon
the original design of the codebook. It is thus a constant with respect
to the minimization problem (over all permutations). To minimize
the upper bound U, it suffices to find

(20)

min E[d(y;, y;)].
weSN
Case 2—d is an rth Power of Norm: Where r=1,d is a
metric so that Case 1 applies as well. The Minkowski inequality for
expectations can be written as [29]
1

where

1 i
r r

(Elx+YI")" =< (EIX|")
where X, Y€ R”. Hence, we have
e, =E|X-y;|"= El(X -») + (5 - )" = U; (22)

where

+(ElY|n)"  (21)

'

1
Up = {(EIX =p0")" + (Ellyi =207 . (23)

From (23) it can be seen that e, is upper bounded by a quantity
containing two components. The first is independent of the permuta-
tion w, and the second component, containing d(y;, y;), varies
depending on the choice of 7. To minimize the upper lJ)ounds in
both Case 1 and Case 2 (for a fixed collection of codevectors), it
suffices to minimize the quantity

D, = E[d(:, y;)] (24)

over all permutations in S,. The subscript = indicates the fact that
the value of the expectation depends on .

The inequality e, < U, is valid over a broad class of quantizers,
namely, any quantizer with a distortion measure that is an rth
power of a norm and which transmits symbols across a discrete
memoryless channel. In the special case when the distortion function
is the mean-square criterion and the quantizer is optimal for a
noiseless channel, Lemma 1 shows that e, = U,, so minimizing
D, over all 7 actually minimizes e, as well (instead of an upper
bound on e,).

We examine the expected value D, in terms of the probability
functions of X and 7 under the assumption of a memoryless binary
symmetric channel. The expectation in D, can be reduced to a very
simple formula involving a summation of ‘‘costs’’ of codevectors,
where each cost is a readily computable function. This provides the
basis for an efficient algorithm that performs the pseudo-Gray
minimization in a locally optimal manner. Since the channel noise is
assumed independent of the source and {R,} partitions the space
RP”, we have

D= ¥

N-1
tef0, 130 =0

E[d(y, y;)|n=1, XeR,]

-Pr[n: t]Pr[XeRk].

(25)
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Using the fact that i = k whenever XeR,,
N-1 N-1
D, = kzop(yk) Zo d(yis .Vf'(x(k)m)) Pr [’7 =1t]. (26)
= i=

Note that by minimizing the upper bound in (19) and (23) rather
than the exact average distortion, we have eliminated any need to
consider the explicit distribution of the input vector X in order
to find an optimal permutation. It is sufficient to know the
codevector probabilities p(y,) and the channel statistics.
For each binary index ge{0,1}” and each integer m with
0 < m < b, define the mth-neighbor set of g as
(27)

N™(q) = {re{o0, l}b: H(q,r)=m}

where H(-, + ) is the Hamming distance function. N™(g) is the set
of all integers whose binary representations differ from that of ¢ in
exactly m positions (have Hamming distance equal to m). Equiva-
lently, N™(q) is the set of indexes that index g can be transformed
into as the result of exactly m bit errors. If g is a b-bit binary
word, then counting the number of different ways that g can be
changed in exactly m bit positions gives

INm(a)| = (L) (28)

For example, if b = 4, then the neighbor sets of the index ‘2"’
given in decimal notation are N°(2) = {2}, N'(2) = {3,0,6, 10},
N2@2) = {1,4,8,7,11,14}, N3@2) = {12,15,9,5}, and N*(@2)
= {13}.

In a binary symmetric channel (BSC) with error transition proba-

bility ¢,
Pr{n=1t] =001 - e)b_}m'o). (29)
If a channel is binary symmetric, then for any integers s, ¢ € {0, 1}°,
Prin=s] =Pr[n=1¢] iff H(s,0) = H(t,0). (30)

The probability that a transmitted binary word from {0,1}° is
received as a particular binary word depends only on their Ham-
ming distance apart from each other and for a fixed m, Pr[n = ¢} is
a constant over all 1e N"(C(X)). For each m, with0 <= m < b
and H(t,0) = m, define
dn=Prn=1]=¢"(1 —e) . (31)
The second summation in (26) is taken over the set of all 2°
codevectors in Y. This set of vectors can be partitioned into b
neighbor sets, such that each set in the partition of Y consists of all
vectors whose indexes are a fixed Hamming distance from the index
i. Using this observation, the summation over k can be written as
two surnmations:

N—-1 b

D, = P(¥) X an X d(y, yr_l(x(k)sz))
k=0 m=0 2eN"(0)
N-1

r(¥)am Y

weN™(x(k))

d(¥ie, Ya-10w)- (32)

Define the mth cost of y,, with respect to the permutation
function 7 as

cm(w) =p(n) X

weN"(x(k))

(33)

d(ye, yf‘(w))-

C™)( y,) measures the relative contribution to the overall expected
bit error distortion of the codebook, when exactly m bit errors
occur, and y, is the codevector selected by the encoder.

The above formulation yields a means of minimizing the average
distortion upper bounds, U, and U,. Note m = 0 implies
NOw(k)) = {w(k)}, so that

CO(v) = p(3) d(¥ies Yo 1aiiy) = 0.

Finally, define the fotal cost, C_(y), of a given codevector y, with

(34)
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respect to the permutation 7 as

C.(3) = X 4,7 (). )

which measures the total contribution to bit error distortion due to
possible channel errors when a particular codevector, y, is selected
by the encoder. In terms of the cost functions, the problem of
minimizing D, reduces to finding a permutation 7 that minimizes
the equivalent quantity

D= ¥ c.x). (36)

where the minimization ranges over all possible permutation func-
tions in Sy.

We wish to minimize D, in the hope of reducing the expected
distortion introduced to the VQ system from the combined effect of
coding error and channel noise. In general, as can be seen in the
above equation, this minimization involves the knowledge of the
channel’s error transition probability ¢ as well as the distance
function d and the codevector probabilities p(y,).

C. Asymptotic Properties

When the channel error probability e is sufficiently small, the
probability of multiple bit errors in an index is very small relative to
the probability of zero or one bit error. Often it is adequate to
consider only the effects of single bit errors on channel words. If
one assumes only single bit errors, then to minimize D,, it suffices
to minimize a simplified version of (36) that does not depend on the
value of €, and is less computationally demanding.

Neglecting the effect of multiple bit errors assumes that g,, = 0
for m = 2 or, equivalently for every codevector ye Y,
- CeP(y)

(37)

C.(y) =e(l
Substituting for q,,

(38)

N-1
D, =e(1 - e)b_l ’(20 CP ().

To minimize D, in this case, it suffices to find the permutation
function # which minimizes the quantity

N-1
d, = > CO(xe)

(39)

Since minimizing d, does not depend upon the value of the
parameter €, the solution applies to any memoryless binary sym-
metric channel. This result leads to a tractable algorithm for solving
the pseudo-Gray problem in a locally optimal manner. All that need
be known a priori about the communication channel in this situa-
tion is that it is memoryless and binary symmetric in nature. The
exact frequency in which errors occur is not significant in determin-
ing which codebook permutation function minimizes the derived
upper bound.

It is important to examine the accuracy of the distortion upper
bounds U, and U given in (19) and (23). In actual VQ systems,
one often encounters channels with relatively low noise levels or
vector quantizers with very high resolution. We consider the devia-
tion of U, and U, from e, in these situations in limiting cases. As
the channel becomes less noisy or as the resolution of the quantizers
increases, the upper bounds approach equality. For a given source,
and either a fixed channel or a fixed noiseless quantizer, there
always exist noisy channel vector quantizers that make the upper
bounds U, and Uj arbitrarily accurate. In this uniform sense, the
bounds are as tight as possible. The following lemma summarizes
this property.

Lemma 2: In the limit of high resolution or low channel noise,
each of the bounds U, and U, tends to e, independent of the
permutation .
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The results of the previous sections can be generalized and
applied to arbitrary error correcting codes. In general, if more
errors occur than a code is capable of handling, invalid data are
received (assuming retransmissions are unallowable). If, however, a
given channel code is used to code vector quantization indexes,
additional performance can be achieved. Beyond a code’s error
correcting capability, incorrect codevector indexes are received and
decoded as erroneous codevectors. The expectation of the resulting
vector distortion can be reduced by a priori carefully assigning
channel words to codevector indexes. Pseudo-Gray coding can
‘‘extend’’ the error correcting capability of a given channel code in
the sense that, in addition to correcting all errors less than a certain
amount, it can reduce the average error that a VQ systems experi-
ences when more errors occur than the channel code can handle.
Applications of pseudo-Gray coding to error correcting codes will
be presented in a future publication.

IV. BINARY SWITCHING ALGORITHM
A. Algorithm Description

In this section, a Binary Switching Algorithm is presented that
performs pseudo-Gray coding on a given VQ codebook. A descrip-
tion of a channel (such as the error probability ¢ on a BSC) and a
predesigned VQ codebook are given as input. The algorithm eventu-
ally halts and gives as output an assignment of binary indexes (i.e.,
a mapping =) to the vectors of the codebook. The new index
assignment provides an improvement in the average distortion due
to channel errors, over an arbitrary index assignment, as confirmed
by experimental results (Section V).

At this point, a simple fact is worth noting. For any index
mapping =, the selection of codevector y; as an approximation to
some input vector X causes the transmission of index w(#). This is
conceptually equivalent to first shuffling the vectors in a codebook,
so that for each index i#, vector y; moves to location (i), and then
using the identity mapping for 7.

An interesting question naturally arises with an algorithm that
produces as its output a permutation 7. What data representation
should be used to specify w? The easiest way to specify =« appar-
ently is to produce the original codebook, but with the codevector
locations shuffled in the described manner. This has the added
advantage that no memory is needed to specify = other than the
storage required for the codebook itself. The algorithm thus receives
a codebook as input, and outputs the same codebook but with its
vectors in different locations.

The Binary Switching Algorithm rearranges a codebook such that
the summation in (36) is locally a minimum. The main idea involves
iteratively switching the positions of two codevectors to reduce the
term D, after every switch. A monotonic decrease in D, results as
the algorithm progresses. Each such switch constitutes a change in
the permutation 7. The choice of which pair of vectors to switch in
the codebook at each iteration is determined by a heuristic ordering
process, which works well in practice. Each codevector y is
assigned a cost, C_(y), as given in (35). The codevectors are sorted
in decreasing order of their cost values. The vector with the largest
cost, say, y,, is selected as a candidate to be switched first. A trial
is conducted, where y, is temporarily switched with each of the
other codevectors to determine the potential decrease in D, follow-
ing each switch. The codevector which yields the greatest decrease
in D, when switched with y, is then switched with y,. If no such
vector exists (an unsuccessful switch attempt), then the second
highest cost vector is used to check for the most cost-efficient
switch, and so on. If every codevector is such that when switched
with every other codevector, no decrease in D, results, then the
algorithm halts in a locally optimal state.

By ordering the codevectors based upon a measure of the quality
of their codebook positions (costs), the algorithm is given a sense of
direction in terms of which vectors are important to switch first. The
vectors with the highest costs contribute largely to the expected VQ
distortion, which is equal to the sum of these costs. If the total
number of program iterations is limited because of running time
constraints, then this directedness becomes increasingly significant.
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The completion of each switch or unsuccessful switch attempt
constitutes the end of an iteration. Following such a switch, the
process repeats; the vectors are resorted based on cost, and new
switches are attempted.

It is important to point out that from any initial codebook index
assignment, any other index assignment can be ‘‘reached” by
performing vector switches entirely of the type described above.
This follows trivially from the well-known result in group theory
that any element of the symmetric group can be decomposed into a
product of 2-cycles. This fact guarantees that the restriction to
vector switches does not exclude the globally optimal index assign-
ment as a potential final permutation of the BSA.

B. Initializing a Codebook Permutation

The input to the Binary Switching Algorithm is a codebook with a
particular initial index assignment. The initial index assignment
(i.e., initial vector locations) can affect the performance of the
pseudo-Gray algorithm, since only a local optimum is determined.
There are many different ways to specify an initial index assign-
ment.

The simplest initial assignment is an arbitrary one. That is, take
the codebook and input it directly to the pseudo-Gray algorithm
following codebook design, with the vectors in whatever order they
appear. In this case, the entire process of minimizing D, consists
only of the vector switching operations described.

With the use of preprocessing, an initial index assignment can be
constructed in an attempt to reduce the quantity D, when the
algorithm reaches a locally optimal state. Such techniques are
generally heuristic in nature. One such preprocessing technique
involves examining the codevectors that have the highest probabili-
ties of being used [i.e., the largest p(¥,)). Since these vectors are
used more frequently than others in the codebook, they can initially
be assigned to have Hamming neighbors that are very close in terms
of the distortion function d. This can be achieved by distributing
several of the highest probability codevectors throughout the code-
book and placing close vectors as their nearest neighbors. In this
way, the process of minimizing D, is given a ‘‘head start,”’ based
on an intuitive notion of what an optimal codebook permutation
should look like.

Another option for codebook initialization is one that makes use
of random codebook permutations. Initially, a predetermined num-
ber of random index assignments is performed. The assignment with
the lowest distortion, D, is then chosen as the starting codebook
for the vector switching algorithm.

C. Halting Conditions

There are several options available to determine when the
pseudo-Gray algorithm will halt. As noted previously, the default is
for the algorithm to keep running until a local optimum is reached.
In this situation, if any two codevectors are switched in position,
then no decrease in D, can result. This stopping condition can yield
extremely long running times for large codebooks. Of course, since
running the algorithm on a codebook is a one-time operation, this
may be tolerable.

There is no known reasonable bound on the number of iterations
required before the algorithm halts. A weak upper bound on running
time can be obtained by considering the maximum number of vector
switches possible. Each vector switch yields a strictly positive
decrease in D,, and hence a codebook with an index assignment
mapping = that is different from any codebook permutation that the
algorithm had previously generated (otherwise, two different distor-
tions would result from the same permutation ). Since there are at
most N! distinct codebook permutations, there can be at most N!
vector switches before the algorithm halts. In practice, this upper
bound is normally not closely approached, as can be seen in the
tabulation of execution times (Table II) for various trials of the
algorithm.

An alternative to stopping when no more vector switches are
possible is to perform some random perturbations from the locally
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optimal state, attempting to find a decrease in D,_. If such a new
codebook permutation is found, then the entire algorithm can be
used again to locally optimize this new codebook. With this method,
one continually reaches locally optimal states followed by randomly
jumping into new states with less distortion.

If computation time is critical, an upper bound can be set on the
number of iterations to perform in the program. A program variable
I, is provided to specify the maximum number of iterations
allowed before the program should halt. In this situation, the
program keeps switching codevectors until either a local optimum is
reached or the designated number of iterations is performed.

Binary Switching Algorithm Parameters
Input Parameters:

Y Input codebook {y;: 0 <i=< N — 1}

p(y) Vector probabilities (0 < i<N-1).

d Distortion function.

€ Channel error probability (for a BSC).

I,  Number of iterations to perform before halting. Defauit is

oo (runs until a local optimum is reached).
Output Parameters:

Y’ Pseudo-Gray coded codebook (permuted version of Y).
D,, Initial value of distortion in Y. ; is the initial permutation.
D, y Final value of distortion in Y. =, is the final permutation
Procedures Used in the Algorithm:
INITIALIZE_CODEBOOK(): Preprocess codebook Y
before running the vector switching algorithm on it.
SORT _INDEXES(): Construct an array A(n) of the
indexes of codevectors sorted in order of decreasing Cost.
SWITCH(i, j): Switch the index assignments of the code-
vectors y; and y; in Y.
UPDATE_COST(j): Calculate and return the quantity
C,(y,) using the vector probabilities p(y).
DISTORTION(): Calculate and return the quantity D,
for codebook Y.

Binary Switching Algorithm

BEGIN: N := 2%
INITIALIZE _CODEBOOK()

I:=1 ;331 = iteration number
Imnx = G0
j =0

LOOP: FOR k :=0TO N - 1

UPDATE_COST(k)

NEXT k&

SORT _INDEXES()

&* =0

FOR j =1TON -1
IF j = A(i/) THEN NEXT j
D_ := DISTORTION()

;33 A is an array of indexes

;;5;Current permutation is

SV,{/ITCH (AW, J) ;;;Create a new permutation 7’
D,. := DISTORTION ()
6 =D_ - D,

IF 5 > 0 THEN GOTO UNSWITCH
IF |§| > 6* THEN

o* = | 8|
J* =7 ;5; % is the Bestindex.
UNSWITCH: SWITCH (A(D), j)

NEXT j

IF 6* = 0 THEN
IF i = N — 1 THEN STOP
ELSE i =i+ 1: GOTO LOOP

SWITCH ( A(D), j)

i=0

I =I+1

IF I > I, THEN STOP

GOTO LOOP
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TABLE 1
CompPUTATIONAL TiME COMPLEXITIES PER ITERATION. N = CODEBOOK SIZE

General Case Single Bit Errors
Initialization Updates Initialization Updates
SORT_INDEXES O(N log N) O(N log N) O(Nlog N) O(N)
D& O(N?) O(N) O(N log N) O(log N)
Total O(N?) O(N?) O(N log N) O(N?log N)

D. Computational Complexity

Since the optimization problem at hand involves summations that
range over the set of all possible codebook permutations, it is
important to consider the computational complexity of such a task.
An optimal solution can be found by way of exhaustively searching
the N! possible configurations of the codebook, which for even
small size codebooks can be prohibitive. A codebook of size 32 has
approximately 10%° different configurations, making an exhaustive
search essentially impossible.

The Binary Switching Algorithm provides a reduced complexity
method for obtaining good codebook permutations. The computa-
tionally demanding portions of the algorithms are the execution of
the procedure SORT_INDEXES and the calculation of the variable
8. After the first iteration, many of the computational requirements
can be reduced by updating various quantities, rather than recomput-
ing them in their entirety. The algorithm’s complexity requirements
can be divided between those of the first iteration (which can be
interpreted as a startup overhead cost) and those of subsequent
iterations. By making the single bit error assumption, the algorithm’s
complexity can be reduced. The complexities of the more efficient
single bit error case and the general case are analyzed in this section
and are given as functions of N, the codebook size.

The procedure SORT_INDEXES sorts the N indexes in {0, 1}°
such that the corresponding codevectors in Y are in decreasing
order of costs, C,. Assuming the costs are precomputed, the sort
can be done in average time O(N log N) using a standard sorting
algorithm [30]). Following the initial sort, a more efficient sort
update can be implemented when only single bit errors are assumed.
Switching two vectors affects the values of C,_(y,) for at most 25
[i.e., O(log N)] codevectors, since the number of vectors with
Hamming distance one from either of the two switched vectors is at
most 2 b. Sorting the indexes in this case reduces to the problem of
resorting O(N) indexes, given that O(log N) of them have been
shuffled. To do this, one can first resort the O(log N) shuffled
indexes in average time O(log N - loglog ), and then merge them
with the remaining indexes in time O(N).

The complexity of initially computing various quantities needed
by the algorithm turns out to be more demanding than the complex-
ity of subsequent iterations. By examining the number of terms in
the summation in (33), it can be seen that the complexity of
computing the term C{™(y,) for a fixed integer m and a fixed
codevector y, is

o(1n"(x(k)1) = 0((2))-

Using (35), the complexity of computing C,(y,) for a fixed code-
vector y, is thus

(40)

o(mi=1 (51)) = 0(2%) = O(N), (41)

and the complexity in the single bit error case is

o((’l’)) = 0(log N).

From (36), the complexity of initially computing D, is O(N?)
since C,(y,) must be computed N times. With single bit errors, it
suffices to compute d, instead of D,. The complexity of initially

(42)

{0, 1}® such that w(r) = 7'(s), 7(s) = x'(r), and =(/) = ©(])
for every /€{0,1}® — {r, s}. To calculate the value d_., the
computing d, is

O(N- |NO(x(k))|) = O(N' (’1’)) ~ O(Nlog N). (43)

For any iteration other than the initial one, let 7’ be the permuta-
tion that results when two vectors are switched in location from the
previous permutation «. The value of D,. (respectively, d,.) can
be obtained by modifying the value of D, (respectively, d,)
according to the changes induced by a single vector switch. The
relationship between 7 and =’ is that there exist 2 indexes r, s€
relation d,. = (d,, — d,) + d, and the fact that d__ is known give

(#4)

The only terms in the above summation that can be nonzero are
those for which #(k) is not equal to =« (r), w(s), or any element in
the neighbor sets N!(w(r)) and N'(x(s)). Hence, if C{P(y,) #
CO(y,), then w(k)eA, where A = {x(r), m(s)} U N'(x(r))
U N(x(s)). To compute &, it suffices to sum over all k in the set
7~ 1(A), giving

-d, = Z

ke~ 1(4)
= [€y,) = € (9,)] + [CP(x,) = € ()]

+ > [CO(wi) = €O ()]
ke~ l(a)—{s, 1}

N-1

b=d, —d. = ¥ [CO(n) - ()]

[€2(y) - € (9]

x

Each of the first two terms above can be computed in time O(log N).
Each difference of costs in the summation of the third term above
can be computed in time constant in N, since only one term in (35)
(taking m = 1) needs to be updated for each term. Thus, since
|A| =141+ b+ b= 0(ogN), the quantity d,. — d= can
be computed in time O(log N + log N + | A|) = O(log N).

Omitting the single bit error assumption, each vector switch has
an effect on the cost of every codevector. In general, for two
codevectors switched, y, and y,, the terms C_(y,) and C,(y,)
must be entirely recalculated in time O(/NN), while for each remain-
ing codevector y, the quantity C,(y) can be computed by updating
at most two of its mth costs, C{™(y). Furthermore, for each of
these two mth costs, at most two components of the sum in
definition of C{™(p) need to be adjusted, so recomputing C™( y)
can be done in constant time. Computing D,. — D, can therefore
be done in time O2N + (N — 2) - 2) = O(N).

During each iteration of the algorithm, 6 must be computed for
each trial pair of vectors switched, before determining which vector
pair provides the most gain. The number of such computations of &
is bounded by the total number of possible pairs of codevectors,
which is O(N?). The total computational complexity of an iteration
is then of order N'? times the complexity of computing 6. These are
summarized in Table I.

Although the order of magnitude of run times for the BSA can be
estimated by complexity analysis, often the actual run times must be
known. The BSA typically required about 25 h of CPU time on a 2
MIPS machine (SUN-3/180) for a codebook of size 256, and about
13 h for size 128, each with the single bit error assumption. There
may be interest in using the BSA for even larger codebooks and
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Fig. 3. Performance of vector quantizer with index permutation on a Binary Symmetric Channel as a function of pit error
probability. (a) Codebook size = 16, vector dimension = 4, source = Gaussian iid. (b) Codebook size = 16, vector dimension
= 4, source = lIst-order Gauss-Markov (a = 0.5). (c) Codebook size = 16, vector dimension = 4, source = lst-order

Gauss-Markov (a = 0.9).

omitting the single bit error assumption, in which case greater run
times can be expected, although more efficient programming and
faster computers may ease the burden somewhat.

V. EXPERIMENTAL RESULTS

The Binary Switching Algorithm was implemented in software
and tested on various inputs. It was allowed to run until the
distortion reached a local optimum. A Euclidean mean-square dis-
tortion measure was used as the fidelity criterion (avoiding a channel
simulation), and codebooks were designed using a standard General-
ized Lloyd Algorithm [31] with training ratios of at least 50. The
resulting codebooks with arbitrary initial index assignments were
used as input to the BSA, which yielded as output the same
codebook but in a different ordering.

The input signals tested include speech waveforms, 1st-order
Gauss-Markov processes, and Gaussian i.i.d. signals. The speech
waveforms were sampled at 8 kHz, digitized, and partitioned into
input vectors of dimension 4 with codebooks of size 64, 128, or
256. The Gauss-Markov processes were of the form

X, = aX,_, + W, (45)

where w, is a zero-mean, unit variance, Gaussian white noise
process, with o = 0.9, & = 0.5, or o = 0 (Gaussian i.i.d.). Each
of these was tested with quantizers having the following codebook
size and dimension values (N, p): (16, 4), (64, 6), (256,4).

In order to reduce the running time of the algorithm, the single bit
error assumption was used. Designing the codebook permutations
for single bit errors proved satisfactory even when multiple bit
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Fig. 4. Performance of vector quantizer with index permutation on a Binary Symmetric Channel as a function of bit error
probability. (a) Codebook size = 64, vector dimension = 6, source = Gaussian iid. (b) Codebook size = 64, vector dimension
= 6, source = lst-order Gauss—Markov (a = 0.5). (c) Codebook size = 64, vector dimension = 6, source = 1st-order
Gauss-Markov (a = 0.9). (d) Codebook size = 64, vector dimension = 6, source = speech.

errors were allowed, since the SNR improvements provided by the
BSA for single bit errors closely follow those for multiple errors, as
can be seen by comparing Fig. 5(c) and (d).

For each codebook tested, a computation was made at various
channel noise levels of the system’s signal-to-noise ratio (SNR),
defined as 10log,,(62/0?), where o2 and o7 are the signal and
noise variances, respectively. The SNR’s were computed for the
codebooks both before and after applying the BSA for BSC bit error
probabilities ranging from 104 to 10~ 1.

In addition, by making a minor alteration to the BSA, it is
possible to produce rearrnaged codebooks with locally maximum
average distortion D_. The previous experiments were repeated for
these codebooks with locally ‘‘bad’’ index assignments. The impor-

tance of bad codebook permutations is that they provide upper
bounds on the expected distortion that would result from using
random codebook permutations in a noisy channel VQ system. The
signal-to-noise ratios of the ‘‘worst case’” and ‘‘best case” code-
books produced by pseudo-Gray coding provide a range of possible
performancces for a typically chosen codebook that has not been
pseudo-Gray coded. Of course, neither are truly ‘‘worst’” nor
““best’” cases because the algorithm is not guaranteed to achieve a
global optimization. The performance of the BSA can be measured
cither by the dB gain in SNR of a best case codebook over the initial
codebook or over a worst case codebook. The various SNR’s are
plotted in Figs. 3-5.

The increase in SNR from the initial codebook to a **best case’
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Fig. 5. Performance of vector quantizer with index permutation on a Binary Symmetric Channel as a function of bit error
probability. (a) Codebook size = 256, vector dimension = 4, source = Gaussian iid. (b) Codebook size = 256, vector dimen-
sion = 4, source = lst-order Gauss-Markov (a = 0.5). (c) Codebook size = 256, vector dimension = 4, source = 1st-order
Gauss-Markov (a = 0.9). (d) Assuming only single bit errors. Codebook size = 256, vector dimension = 4, source = Gaussian
iid. (e) Codebook size = 256, vector dimension = 4, source = speech.

codebook was observed to generally be less than 2.5 dB over the
range of channel error probability e between 0 and 0.1, while the
increase in SNR from the ‘‘worst case’’ codebook to a ‘‘best case”
codebook reached as high as 6 dB over this range. The increase in
SNR achievable using pseudo-Gray coding is more prominent for
higher channel error probabilities.

The SNR’s of the codebooks processed by the BSA are often
substantial increases over both the starting codebook SNR’s and
those in the worst cases. The improvements tended to rise with
increasing codebook size. This may be due in part to the fact that in

larger size codebooks, there is a greater ‘‘flexibility’’ to rearrange
vectors, since there are many more locations available, and since the
total number of possible vector switches at any one time for a
codebook of size N grows as O(N?).

An interesting fact that should be noted is that at relatively high
channel noise levels, the performances of vector quantizers tested
with the ‘‘best’” index assignments can decrease as the vector
dimension increases. For example, at a fixed rate of 1 b/source
sample, the SNR of a vector quantizer for a Gaussian i.i.d. source
decreases from 1.4 dB to 1.1 dB for a bit error probability of 0.1
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TABLE I
SIMULATION RESULTS OF BINARY SWITCHING ALGORITHM (dim = 4)
Best Codebook Worst Codebook
Number Number Number Number
of of of of
CB Size Iterations Switches Iterations Switches
16 37 9 59 15
32 91 24 277 66
64 1571 85 6342 610
128 8945 273 46011 1982
256 58312 987 297410 6002

[see Figs. 3(a) and 4(a)]. This performance is consistent with that
reported in [16], and is due to the fact that the quantizers are not
‘‘channel optimized,”’ since their encoders and decoders were de-
signed under noiseless channel assumptions. In contrast, truly opti-
mal quantizers on noisy channels would be expected to increase in
performance as the vector dimension increases.

Some important measurable parameters can yield insight into the
success of the algorithm. The number of iterations executed by the
algorithm before halting and the number of vector switches carried
out during the program’s operation were recorded for various
codebook sizes and are shown in Table II. The number of iterations
is directly proportional (ignoring the minimal initialization over-
head) to the actual running time of the program, and generally
increased with codebook size. It was observed while running the
BSA that vector switches occurred much more frequently at the
beginning of the program than toward the end (when approaching a
final permutation). This artifact was likely a result of the ordering
imposed on the codevectors before allowing vector switches. Simi-
larly, the number of iterations executed remained constant in order
of magnitude for codebooks of the same size.

VI. CONCLUDING REMARKS

Using the BSA for VQ index assignment can lead to increased
performance in the presence of channel noise. Although optimal
index assignment is a computationally demanding feat, the BSA
provides efficient means of obtaining locally optimal solutions. We
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note that pseudo-Gray coding can be extended to systems with error
correction coding—a topic of a future publication.

Several questions remain concerning VQ design for noisy chan-
nels. An interesting one concerns the performance of high-resolu-
tion quantizers when channel noise is added. More precisely, sup-
pose a sequence of quantizers Q,, is given where the nth quantizer
has n output points and such that lim,,_, , E[d( X, Q,(X)] = 0. If
a fixed level of channel noise (e.g., BSC) is added, must it still be
the case that this limit equals zero? Another problem of great
interest is to provide tight mathematical bounds on the potential
performance gain that pseudo-Gray coding can provide for a given
source and quantizer. Analytic estimates on the running time of the
BSA would also be of value.

Studies are in progress to utilize pseudo-Gray coding in more
complex coding structures, such as in vector-excited and adaptive-
predictive coding schemes and with error correction coding. Inte-
grating pseudo-Gray coding into systems specifically designed for
noisy channels should become an important task of the future.
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