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TABLE II
POSITION OF THE SPECTRAL PEAKS (EXAMPLE 2)

Iteration i Sz fa f

0 0.1875 0.453125 0.28125 O

1 0.203125 0.140625 0.25 0.34375

2 0.203125  0.140625 0.25 0.34375

5 0.203125 0.140625 Q.25 0.34375
10 0.203125 0.140625 0.25 0.34375
Direct Inversion 0.203125 0.140625 0.25 0.359375
True Values 0.20 0.15 0.25 0.35
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Corrections to ‘‘Gradient Algorithms for Designing
Predictive Vector Quantizers’’

Kenneth Zeger

Abstract—An error in a paper by Chang and Gray is pointed out and
corrected. The error invalidates their observation that the generalized
Lloyd algorithm is a gradient descent technique but the generalized
Lloyd algorithm is a member of the related class of coordinate descent
techniques. Convergence rate analysis of gradient descent algorithms
for vector quantizer design is provided.

I. INTRODUCTION

In the above paper,’ there is an error regarding Chang and Gray’s
observation that the generalized Lloyd algorithm (GLA) is a steep-
est descent algorithm. The Lloyd algorithm is instead seen to be a
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member of the related class of ‘‘coordinate descent’’ algorithms.
Furthermore, an analysis of convergence rate properties of gradient
descent techniques for vector quantizer design is developed.

The notation in Chang and Gray’s paper' will be adopted. Spe-
cifically, let {x,} be a training sequence of L vectors taking on
values in k-dimensional Euclidean space R*, e; the input to the
quantizer, ¢; the reproduction codeword with index i, and L; the
number of training vectors which are mapped into codeword i.

The steepest descent formula to update each quantizer codeword
is given as follows by Chang and Gray,' p. 681:
= &m— f‘qve,D(xm fn)

€im+1

or equivalently in terms of a training sequence as

1
=epm—p lim— 2 V.D(e, &)

€im+1
nm Low L jyle)=u

The above equation, given by Chang and Gray, was incorrect in
using the quantity L; for both occurrences of L. As a result, (3)-
(5) in Chang and Gray should be corrected by replacing L; by L,
or, equivalently, by multiplying each occurrence of u, by the quan-
tity p; = L;/L, the ith partition region probability. Similarly, the
equation following (5) should be correctly rewritten as

1
€imer = (1 = 2u,p; )€ + 2#41’.‘2}.7(” W6
i Jovie) =u

. 2R,
The subsequent analysis on p. 682 concerning the convergence rate
and damping of the codeword update formula is thus no longer
applicable.

Specifically, Chang and Gray’s conclusion that the Lloyd algo-
rithm is a gradient descent algorithm does not hold. The Lloyd

algorithm can be written in terms of a codeword update equation
as

1 . R
Eim+l = 2 € i=12
L;jive=u

where the right-hand side is the centroid (denoted by ¢; in what
follows) of the nearest neighbor region of ¢;. There does not in
general exist any value of u, which will yield the Lloyd algorithm
from the gradient descent codeword update equation. However, if
we allow different constants u; for the update equation of each
codeword ¢; (thus violating the definition of gradient descent), then
the Lloyd algorithm can be obtained by setting 2u,;p; = 1, fori =
1, - - -, 2R This technique belongs to the class of algorithms named
coordinate descent algorithms [1]. In general, a coordinate descent
iteratively updates a single coordinate (codeword in this case) at a
time. In this correspondence, however, it is assumed for conve-
nience that all of the codewords are synchronously updated.

A gradient descent for codebook design is thus a special case of
coordinate descent (where an iteration consists of a single update
of each codeword). The Lloyd algorithm can be seen to be the
fastest converging of all coordinate descent algorithms (it con-
verges in one iteration), and is hence faster converging than any
gradient descent algorithm. As in Chang and Gray, this discussion
assumes that the encoder and training sequence are fixed.

In practice, the encoder changes after each iteration thus making
possible further descent by way of additional codeword updates. In
this case, since the gradient algorithm locally travels in a direction
of steepest descent, it may prove to be a useful aiternative to the
Lloyd algorithm. To the best knowledge of the author, a theoretical
comparison of the convergence rates of the gradient descent and
Lloyd algorithms is currently an open problem. A descent algo-
rithm for vector quantizer design based on conjugate gradient tech-
niques is presented in [2]. Some preliminary results show that the
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gradient descent performs at about the same quality and speed as
the GLA, while the conjugate gradient algorithm can often outper-
form the GLA in both attributes.

In order to use a gradient descent with a changing encoder, it is
convenient to assume a zero-boundary condition, which ensures the
validity of the gradient derivation. Namely, it is assumed that every
training vector at each iteration has exactly one nearest codeword,
so that infinitesimally small changes in the codewords ¢; do not
change the nearest neighbor encoder mapping y. While we have no
theoretical guarantee that for a fixed training set the zero-boundary
condition will hold after an arbitrary algorithmic change to the
codewords, it is known to be a necessary condition for global op-
timality of a vector quantizer.

II. GRADIENT DESCENT CONVERGENCE

To find the steepest descent algorithm with the fastest conver-
gence rate, define p;, = min; {p;} and py,x = max; {p;}, and com-
pute

min max |1 - 2u,pi |
n i

= min max {24,Pma —
u

L1 = 20Pmin}

(pmin + pmax)—l
if u'q = (pmin + pmax)_]

v

2qumax -1 if Hq

min

d 1 - zqumin
_ Pmax — Pmin

Pmax + Prin

where the minimization was achieved by setting u, =
pmﬂx)_

We can also compute the value of u, which yields the greatest
decrease in mean-square distortion for an iteration of the gradient
descent algorithm. Denote the weighted mean-square distortion
as a function of p, after a single update of the gradient descent by

D(uq) = Z Z (ej - 6i.m+l)T W(ej -

i joyle)=ui

(Pmin +

6i.m+|)-

We substitute into the equation above the gradient descent equation
€imi1 = €m + pgpi (W + W) (e — €im)

and set the derivative of D with respect to u, equal to zero. Solving
for p, then yields

z'_:p%(ci —em) (W+ W)Y (e =€)
M T S ke~ ) (W W6~ i)
which in the simple mean-square case reduces to
;P.z“ ¢ — fi.m“2
“ T 2Tt~ el
ACKNOWLEDGMENT

The author would like to thank Professor R. M. Gray and Dr.
P.-C. Chang for their time and encouragement in publishing this
correspondence.

REFERENCES

[1] D. G. Luenberger, Linear and Nonlinear Programming.
MA: Addison-Wesley, 1984.

Reading,

[2] E. Yair, K. Zeger, and A. Gersho, ‘‘Conjugate gradient methods for
designing vector quantizers,”” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Processing (Albuquerque, NM), May 1990.

High Resolution Two-Dimensional ARMA Spectral
Estimation

Xian-Da Zhang and Jie Cheng

Abstract—This correspondence pr ts a ‘‘practical’’ algorithm for
estimating the power spectrum of a 2-D homogeneous random field,
based on 2-D autoregressive moving average (ARMA) modeling. This
algorithm is a two-step approach: first the AR parameters are esti-
mated by solving a new version of the 2-D modified Yule-Walker
(MYW) equation, for which some existing efficient algorithms are
available, then the MA spectrum parameters are obtained via simple

putations. The p ial capability and the high resolution perfor-
mance of the algorlthm are demonstrated by using some numerical ex-
amples.

I. INTRODUCTION

In recent years, considerable progress has been made in devel-
oping high resolution 2-D spectral estimations, especially the max-
imum entropy (ME) method [1]-[6].

The 1-D ME method is known to be equivalent to autoregressive
(AR) linear prediction modeling. Since any prediction model of
2-D random fields fails to be connected to the ME estimation [3],
and the computation of the 2-D ME estimate is highly nonlinear,
iterative algorithms have been developed by Woods [1] and Lim
and Malik [2] in order to implement the 2-D ME method. How-
ever, on the one hand, such spectrum estimates need not exist [7];
and, on the other hand, it is well known that for any iterative al-
gorithm, its convergence rate and the accuracy of the estimate cru-
cially depend on the selection of algorithm parameters. To over-
come these fundamental difficulties, Kimura and Honoki [6]
recently proposed a hybrid approach, i.e., a *‘linearized”’ ME es-
timation. Their algorithm seems to be conceptually simple and
computationally attractive and practical. Unfortunately, the final
spectrum estimate given by this hybrid approach does not coincide
with the true ME estimate even for the case of cyclic and skew-
cyclic Teoplitz covariance matrices, as Zhang and Cui [8] have
recently shown.

From the viewpoint of modeling, Cadzow and Ogino [9] have
developed a procedure for generating a 2-D autoregressive moving
average (ARMA) model. However, there are some difficulties as-
sociated with their procedure, including weighting coefficient se-
lection and heavy computational burden for estimating AR param-
eters. In addition, the use of the smoothed periodogram method for
determining the numerator dynamics of power spectrum would re-
sult in reduction of the frequency resolution.

In this correspondence, we propose a new 2-D ARMA spectral
estimator which is based on a two-step approach: first the AR pa-
rameters are estimated; then the moving average (MA) spectrum
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