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Abstract—Vector quantizer (VQ) design is a multidimen-
sional optimization problem in which a distortion function is
minimized. The most widely used technique for designing vec-
tor quantizers is the generalized Lloyd algorithm (GLA), an
iterative descent algorithm which monotonically decreases the
distortion function towards a local minimum. One major draw-
back of the GLA, and of any descent minimization technique,
is the ‘‘greedy’’ nature of the search, generally resulting in a
nonglobal local optimum. A promising alternative to the GLA
is the Kohonen learning algorithm (KLA), originally proposed
for unsupervised training of neural networks. The KLA is an
‘“‘on-line’’ algorithm where the codebook is designed while
training data is arriving, and the reduction of the distortion
function is not necessarily monotonic. In this paper we provide
a convergence analysis for the KLA with respect to VQ opti-
mality criteria and introduce a stochastic relaxation technique
which produces the global minimum but is computationally ex-
pensive. By incorporating the principles of the stochastic ap-
proach into the KLA, a new deterministic VQ design algo-
rithm, called the soft competition scheme (SCS), is introduced.
Experimental results are presented where the SCS consistently
provided better codebooks than the GLA, even when the same
computation time was used for both algorithms. The SCS may
therefore prove to be a valuable alternative to the GLA for VQ
design.

I. INTRODUCTION

ECTOR quantization (VQ) is a technique that can be

used to map analog waveforms or discrete vector
sources into a sequence of digital data for storage or trans-
mission over a channel. A vector quantizer is a mapping
of input vectors to one of a finite collection of predeter-
mined codevectors, where the set of all codevectors is
called a codebook. In designing a vector quantizer, the
goal is a construct a codebook for which the expected dis-
tortion, introduced by approximating an input vector by a
codevector, is minimized. The VQ design problem is a
nonconvex optimization for which necessary conditions
to attain optimality can be specified. For the mean-squared
distortion function two such useful necessary conditions
are the centroid and nearest neighbor conditions [1], [2].
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At present, the most widely used technique to design
VQ codebooks is the generalized Lloyd algorithm (GLA)
[3], a multidimensional generalization of the Lloyd scalar
quantization algorithm [4]. The GLA is a descent algo-
rithm for which a distortion function monotonically de-
creases by iteratively updating the codebook in an attempt
to satisfy both the centroid and nearest neighbor rules.
Unfortunately, since the distortion function is generally
not convex and may contain multiple local minima [5],
the GLA often produces nonoptimal codebooks. The ex-
istence of poor local minima is also demonstrated by the
improvements over the GLA obtained in [6] using prob-
abilistic VQ design methods (though with a significant in-
crease in complexity).

A clustering technique, called the self-organizing fea-
ture map was proposed by Kohonen (see, for instance [7])
as a learning algorithm for neural networks. These self-
organizing feature maps have also been used for VQ de-
sign [8]. Unlike the GLA, which is a batch algorithm,
Kohonen learning is an on-line algorithm, which modifies
the codebook each time a training vector is presented. As
opposed to a batch algorithm in which the design of the
codebook begins after the entire set of training data has
arrived, in an on-line algorithm the codebook update oc-
curs “‘on the fly,” after each presentation of a training
vector. Hereafter, Kohonen's learning scheme will be re-
ferred to as the Kohonen learning algorithm (KLA). The
KLA is an application of the least mean squares (or LMS)
algorithm [9], [10] to a nonquadratic cost function, which
updates the codebook on-line using an instantaneous es-
timate of the gradient, known as the stochastic gradient.
The KLA does not ensure that the distortion function de-
crease monotonically; it thus may avoid being trapped in
poor local minima and if trained carefully may therefore
find better solutions than a ‘‘greedy’’ algorithm, such as
the GLA. Chang and Gray [11], [41] independently intro-
duced an on-line technique for VQ design called the sto-
chastic gradient (SG) algorithm, which is a special case
of the KLA. Their experiments showed that the SG al-
gorithm can yield slightly better codebooks than the GLA.
Nasrabadi and Feng [8] used Kohonen learning to design
vector quantizers for image coding, and similarly ob-
served equal or slightly better results than with the GLA.
Gersho [12] introduced an LMS-type algorithm for adapt-
ing a VQ codebook to changing source statistics.

To our knowledge, no analysis of Kohonen learning and
its convergence properties with respect to VQ optimality
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conditions has been published. Parameters, such as the
reduction rate of the step size in the codevector update
formula, are generally chosen by ad hoc techniques [7].
In the SG algorithm [11], the authors used a step-size for-
mula suggested by Eweda and Macchi [13] for a linear
adaptive filtering model. However, the filtering model is
slightly different than the KLA (or the SG) and hence the
convergence analysis given in [13] may not extend to the
KLA. Moreover, although this step-size formula was re-
ported to work well experimentally for the SG algorithm
[11], there are no guidelines on how to choose some of
the parameters. This led Chang and Gray to conclude that
overall the GLA is preferable to use in practice.

In this paper, we first provide a convergence analysis
for the KLLA for a single codevector, and determine the
conditions required to meet the centroid and nearest
neighbor optimality criteria. The convergence for the
more realistic case of multiple codevectors is very diffi-
cult to analyze and, in fact, although LMS-type algo-
rithms are used extensively in many applications, there
are no rigorous convergence proofs for nonquadratic dis-
tortion functions. However, assuming certain reasonable
convergence properties of the KLA, the analysis given for
a single codevector is valuable for assessing the asymp-
totic properties of the multiple codevector case.

We then introduce a stochastic relaxation scheme for
VQ design, based on the Gibbs sampler of Geman and
Geman {14] which, if given sufficient computation time,
will produce a codebook with the global distortion mini-
mum. The stochastic scheme, however, is generally very
time consuming. By incorporating the principles of the
stochastic scheme into the deterministic KLA, we then
introduce a new on-line design algorithm, which can be
viewed as a modification of Kohonen’s neighborhood
mechanism.' The resultant learning algorithm, called the
soft competition scheme (SCS), is shown to be a valuable
algorithm for designing vector quantizers, which consist-
ently provide better codebooks than the GLA. Two ad-
ditional significant advantages of the SCS are its suitabil-
ity for parallel implementation and for real-time codebook
adaptations (such as described in [12]).

The remainder of this paper is organized as follows. A
presentation of the KLA and its use for VQ design is given
in Section II. The asymptotic behavior of the KLA as an
on-line estimator for a single codevector, and its impli-
cations for the multiple codevector case are discussed in
Section III. Conditions on the step-size reduction rate in
the adaptation formula are derived, and the unique sched-
ule for which the Cramer-Rao lower bound is achieved
for the estimator variance is obtained. The stochastic re-
laxation scheme is given in Section IV. The scheme is
similar to the simulated annealing technique used by Ze-
ger, Vaisey, and Gersho [6] but has a much higher tran-
sition rate and is amenable to parallel implementation. The
soft competition scheme is introduced in Section V, where
the principles of the stochastic scheme are incorporated

'More details on the neighborhood mechanism are given in Section 1.
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into the deterministic KLA. This new algorithm is com-
putationally equivalent in each update step to the original
Kohonen learning but has the capability of finding higher
quality solutions. Experimental results comparing the
performance of the SCS to the GLA are given in Section
VI for both Gauss-Markov and speech sources. These re-
sults demonstrate that the SCS can consistently provide
better codebooks (in terms of mean-square error) than the
GLA, even when the same amount of computation time
is allocated for each of the algorithms.

II. VEcTOR QUANTIZATION AND KOHONEN LEARNING
A. VQ Fundamentals and Notation

A vector quantizer Q is a mapping of the k-dimensional
Euclidean space R* into a finite subset ¥ = {y,, -+,
yi} of R*. Each y; is called a codevector and the set Y is
called a codebook. The performance of a vector quantizer
is measured by the average distortion, D(Y) = Eld(x,
0O(x))], between the source vectors and the quantized re-
production vectors, where d(+) is some distortion func-
tion, usually taken as the squared-error distortion d(x, y)
= |lx — ylI%, and E[+] denotes the expectation operator.
The statistics of the source are assumed to be represented
by a finite training set of vectors. The objective of the
design procedure is to minimize the average distortion.
Throughout the paper we assume that the mean-squared
distortion function is used.

A vector quantizer is said to be optimal if no other
quantizer has a smaller average distortion, for the same
source, vector dimension, and codebook size. The fol-
lowing are two well-known necessary conditions for a
vector quantizer to be optimal.

1) Nearest Neighbor Condition: For a given code-
book, each training vector is mapped (quantized) to the
codevector closest to it (‘‘ties’’ are decided arbitrarily).
This implies a partition of the space R* into disjoint re-
gions (1 =i < K)

R = {x e R*|llx — yill < lx =yl forallj # i}.
2.1

Each partition region R; is called the nearest neighbor cell
of the ith codevector, and each x € R; is quantized to the
codevector y;.

2) Centroid Condition: For a given partition {R;},
each codevector y; is the centroid of the cell R;, given by
y; = Elx|x € R;]. For a finite training set, the expected
value is replaced by the sample mean of the ith cell.

If the nearest neighbor condition is assumed to hold,
then the objective in designing a vector quantizer reduces
to finding a codebook which minimizes the average dis-
tortion D(Y). The GLA is a VQ design procedure which
iteratively computes partition region centroids and per-
forms nearest neighbor clustering to improve the quan-
tizer performance for a given training set. The GLA is a
batch-type algorithm; it takes into account all the training
vectors in each iteration. As opposed to an on-line algo-
rithm it cannot handle a continuous stream of training
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data, or incorporate new source data without reprocessing
all of the previous processed data. On-line algorithms can
be used for real-time adaptation as source statistics
change, without introducing large delays.

B. Kohonen Learning

A classical learning algorithm for self-organization of
neural networks was proposed by Kohonen [7]. Koho-
nen’s algorithm can also be used for designing vector
quantizers [8]. Here we give a general formulation (and
slight extension) of the learning scheme as applied to an
on-line VQ design algorithm.

The codevectors y; € R* are associated with lattice
nodes in a space with dimension smaller than k. The code-
book is initialized (arbitrarily, except that no two code-
vectors can be equal) to Y(0) = {y,(0), - - - , yx(0)} and
is iteratively updated as follows. At each iteration n, a
training vector, x(n), is presented to the network, and the
codevectors are modified according to the learning for-
mula

i) = yin — 1) + a;(mh;(j*, m)lx(n) — y;(n — 1]

j* = argn}in lx(n) = y;(n = Dl 2.2)

where a;(n) € [0, 1] is the step size of the ith codevector
at time instant n, which is assumed to decay to zero as n
increases. y;. is the codevector closest to x(n) in Euclid-
ean space. The determination of y;, can be thought of as
a competition between the codevectors to determine which
is the nearest to x(n). Hereafter, y;. will be called the Eu-
clidean winner for x(n). Other types of winners will be
introduced in Section IV. Kohonen learning thus belongs
to the class of competitive learning algorithms [15]-[18].
The function h; (j*, n) is a neighborhood function that at
time instant n is used to alter the step size of the ith
codevector as a function of the physical distance of its
associated node on the lattice from that of the winner j *.
Typically, A;(j, n) is nonzero for nodes close to j’s on the
lattice, and is zero outside this ‘‘neighborhood.’” Hence,
only codevectors inside the neighborhood of the winner
j* are updated upon presentation of x(n). The size of
neighborhood is reduced as a function of time in a pre-
determined manner. When the neighborhood is reduced
to include only a single codevector which is the winner
J*, the update formula of (2.2) can then be written as

yin) = yin — 1) + a;(m)S;(x(m) [x(n) — yi(n — 1)]

(2.3a)
in which S;(x) are selection functions defined as
1 if x € R;
S;(x) = (2.3b)
0 else

and R, is the nearest neighbor cell of the codevector y; as
defined in (2.1). In this case, upon presentation of a train-
ing vector x, only the Euclidean winner is updated by

moving towards that training vector with a step-size a;.
The SG algorithm presented in [11] used a similar update
formula as in (2.3). In contrast to the SG algorithm or
other applications of the Kohonen learning scheme (e.g.,
[19], [71, [8], [20]) in which the step-size a(n) was in-
dependent of i, we allow each codevector to have its own
step-size a;(n).

The neighborhood function is used to ensure that many
of the codevectors are affected by each new training vec-
tor. If only the Euclidean winner is updated throughout
the learning process, it might happen that some of the
codevectors never win due to poor initial conditions. Such
codevectors would then represent empty cells in the final
codebook. Solutions to prevent such pathological situa-
tions, other than using a neighborhood mechanism, are
given in [18], [19] in which the ability of each codevector
to win is inversely related to its previous rate of winning.
The neighborhood mechanism is used to achieve better
partitions of the input space (or the training set) and, thus,
better local minima of the distortion function. In Section
IV and V we develop stochastic and deterministic types
of neighborhoods that can find the global minimum of
D(Y) for a given training set. However, for analyzing the
convergence of D(Y) to a local minimum (i.e., for satis-
fying the centroid and nearest neighbor conditions) it suf-
fices to assume that only the Euclidean winner is updated
in each step. To this end we proceed with the analysis of
(2.3).

Let n; denote the number of times that the ith code-
vector y; has won and been updated. That is, each code-
vector has an independent time counter which is incre-
mented only after that codevector is updated. Formally,
the update of these counters at the nth step can be written
as(l =i = K)

ni(n) = ni(n — 1) + §;(x(n)). 2.4

Hereafter, y;(n) will denote the value of the ith code-
vector after n updates (n = 1, 2, - + ) where it is under-
stood that n represents the value of the counter n;. With
this notation, the update formula of (2.3) for the ith
codevector can be written as

yim)y = y(n — 1) + a;(mx? — yi(n = 1]

where g;(n) is the value of the step size for the ith code-
vector for n; = n, and x¥ is the nth training pattern for
which the ith codevector wins. Thus, unlike the original
Kohonen learning for which a; (r) is independent of i, each
codevector, at any instant of the algorithm in (2.5), will
have a different value for the step size. Equation (2.5) can

be also written as

yitm) = 1 = a;(mly;(n = 1) + a;(wxy
whose solution after N updates is given by

N
YN) = 40, Ny ©) + X Aln, Nanx)  2.72)

(2.5)

2.6)

where forO0 = n < N -1
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N
A;(n, N) =j="ZH [ —a(j)] and A,(N, N) = 1.

(2.7b)

A key problem with this algorithm is how to reduce the
step-size values a;(n) to zero so that a codebook is pro-
duced which satisfies both the nearest-neighbor and the
centroid conditions. We call the functional decay of a;(n)
the step-size schedule of the algorithm. In Section III we
address the question of what step-size schedule should be
used for the KLA.

III. AsyMpTOTIC PROPERTIES

In the following discussion we assume that the training
vectors are generated by a stationary memoryless source
with an unknown probability distribution. That is, the
training patterns are independent, identically distributed
(i.i.d.) random vectors, denoted by x(n). We will exam-
ine the asymptotic behavior of the KLA as n — o. Un-
fortunately, analysis of the general case is very difficult.
Therefore, we first assume that there is only one code-
vector in the codebook. Later we show how the analysis
of a single codevector can be used to address the more
realistic problem of multiple codevectors.

After N updates, the value of the codevector y(N) is
given, according to (2.7), by

N
y(N) = AQ, N)y(0) + El g (mx(n) 3.1

where
qn(n) = A(n, N)a(n)

and A(n, N) is given in (2.7b) (the index i is omitted). To
satisfy the centroid condition, the value of the codevector
should equal the expected value of x. Hence, for any N,
¥(N) is an on-line estimate of the mean of x based on N
measurements. The expected accuracy of the estimation
at time N may be assessed by two important factors: the
bias b(N) of the estimator, and its variance, o>(N). Since
the training vectors are assumed i.i.d., these two quan-
tities are given by

b(N) & E[y(N)] — Elx]

(3.2)

= A0, N)y(0) + Elx](r(N) — 1) (3.3a)
where
N
r(N) = E] an(n) (3.3b)
a2(N) £ VAR (y(N)) = u(N) VAR (x) (3.4a)
N
uN) = 2 gy(n). (3.4b)

n=1

To obtain a good estimator in the MSE (mean-squared
error) sense, it is required that the sequences H(N) and
"3 (N) converge to zero as N — oo. The question dis-
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cussed in this section is the following: what conditions on
the step-size schedule a(n) will guarantee that both the
bias and variance of the estimator y(N) will converge to
zero as N — o? We assume hereafter that a(n) is mono-
tonically nonincreasing, decaying to zero as n — .

From (3.3) and (3.4) it is evident that the following
three requirements must be satisfied:

i) lim A0, n) =0 (3.5a)
i) im r(m) = 1 (3.5b)
iii) lim u(n) = 0. (3.5¢)

n— o

Conditions i and ii make the bias zero and condition iii
makes the variance zero. The next five theorems provide
conditions for the step-size schedule to comply with the
above three requirements. Formal proofs of these theo-
rems are given in Appendix A.

Theorem 1: y(N) in (3.1) is asymptotically unbiased if
and only if

(3.6)

and is unbiased for any value of N if a(1) = 1.

To achieve an unbiased estimator it is thus sufficient to
choose a step-size schedule for which a(1) = 1. However,
(3.6) must be satisfied since it is also a necessary condi-
tion for the convergence of the estimator variance to zero,
as stated in Theorem 2:

Theorem 2: If u(n) converges to zero then L;7_, a(n)
= 00,

In Appendix A-2 (Lemma 3) it is shown that if a(n)
decreases monotonically, then the variance sequence u(n)
also decreases monotonically. Thus, for any monotonic
step-size schedule, an improvement in the estimation will
be obtained as more observations become available.
However, if the step-size schedule decreases too quickly
the variance will converge to a nonzero value. Theorem
3 provides a sufficient condition for the convergence of
the estimator variance to zero.

Theorem 3: A sufficient condition for the convergence
of u(n) to zero is

a(n)

—_— foralln = 1.
1 + a(n)

an + 1) = 3.7

While the class of step-size schedules for which the es-
timator variance converges to zero might be fairly large
(e.g., all schedules that satisfy (3.7)), it is desirable to
find the schedule with the lowest convergence time. We
first give a bound on the convergence rate of the variance
sequence of an unbiased estimator.

Theorem 4: If r(N) = 1 forall N = 1, then

1
u(N) = N forall N = 1 (3.8)
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and equality is obtained if and only if gy(n) = 1/N for
all n e [1, NJ.

This lower bound on the rate of decay of the variance
is in fact the Cramer-Rao bound for unbiased estimators
[21]. Note that an unbiased estimator is obtained simply
by setting a(1) = 1. Hence, the most efficient estimator
is obtained for a schedule a(n) for which gy (n) is identi-
cally 1 /N for all n € [1, N]. In fact, the unique schedule
that meets this condition is the schedule a(n) = 1/n, as
given by Theorem 5.

Theorem 5: The step-size schedule a(n) = 1/n is the
unique schedule for which the Cramer-Rao bound is
achieved for the variance of an unbiased estimator.

In the following subsections, three classes of schedules
that are often used in practice are examined and their
asymptotic behavior is analyzed (with respect to the above
results).

A. Hyperbolic Schedule

Here we consider a hyperbolic schedule a(n) = n~ " with
r> 0.

Theorem 6: For a hyperbolic schedule, a necessary and
sufficient condition to satisfy all three requirements of
(3.5 isr =< 1.

It is interesting to examine the asymptotic behavior of
the weighting function gy (n) for a hyperbolic schedule.
In a similar manner as in the proof of Lemma 4 (given in
Appendix A-6), it can be shown that forr < l and n =
2,

gnn 7(”_1)r>1

gvin — 1) n -1 (3.9)

and equality holds only for r = 1. For r = 1, the centroid
is estimated by the sample mean of all the data presented,
while for r < 1, (3.9) implies that the weighting sequence
gy(n) is an increasing sequence, with the learning algo-
rithm thus giving more weight to the latest data presented.

B. Exponential Schedule

Here we consider an exponential schedule a(n) = \p",
with p < 1, and N\ € (0, 1]. For this schedule, the se-
quence A(0, n) doe not converge to zero as n — o since
(3.6) is violated. However, in practice, A(0, n) can be
made arbitrarily small by choosing p sufficiently close to
unity: the inequality of (A.1) (given in Appendix A) can
be used to give an upper bound on A(0, n) as

A, n) = I_IO (1 = Np)

n . —A
< exp {— A E]O p'} j exp {ﬁ} (3.10)

This upper bound is finite for any p < 1, and can be
made arbitrarily small by choosing p sufficiently close to
unity. For example, to upper bound A(0, n) by 107 (for
A = 1), p should be at least 0.93. By using the Taylor
series expansion of In (1 — x), the exact expression for

the limit of A(Q, n) can be written as

lim A(0, n) = exp {— 2 1LI (3.11)

= oo i=1i1—0p

and any finite sum in the above exponent will serve as a
tighter upper bound than the one in (3.10). For example,
by also considering the quadratic term in the Taylor se-
ries, the bound of 107° is achieved for p = 0.91. Thus in
practice, for p > 0.9, the estimate can be considered to
be asymptotically unbiased. However, while the asymp-
totic value of A(0, n) is small, the learning algorithm
weights the training vectors presented to the system in an
undesirable way. Specifically, for large values of n, the
most recent data presented is weighted less than previous
data. Informally, this means that for some value of n the
learning algorithm ‘‘freezes,”” and the presentation of new
data will have a diminishing effect on the codevector lo-
cations. To show this we note that from (3.2) and (2.7b)
it follows that for any k

an (”) ok

lim pr <1

= 3.12
o = &) G.12)

which is in contrast to the hyperbolic case in (3.9). For
large values of n we obtain gy(n) < gy(n — 1) since
gy(n) = gy(n — 1), and therefore the most recent data
presented is weighted less than older data. There exists a
critical value of »n (independent of N), denoted by n,, after
which newer inputs are weighted less than older ones. We
call n. the freezing instant, since thereafter new data pre-
sented to the network is exponentially attenuated and the
algorithm progressively stops learning. The freezing in-
stant can be explicitly obtained as the solution of p =1
— N\p" (for which gy(n) = gy(n — 1)), yielding

_bhd=-p =ik

(3.13)
Inp

For example, for p = 0.9 and A = 1, we have n, = 22,
or for p = 0.99 we get n. = 458. The freezing instant,
n., becomes even lower for A < 1, since n, decreases with
decreasing N. For any A < 1 — p, the freezing instant
becomes zero, inducing the algorithm to start freezing at
the very first input data. The existence of a freezing point
independent of N, beyond which the incoming data is
weighted less and less, implies that an exponential sched-
ule is inadequate for VQ design (and for other self-orga-
nization applications using the KLA).

It is also interesting to inspect the freezing instant con-
sidering condition (3.7). For Theorem 3 it is evident that
the variance sequence u(n) is bounded by a(n) when

(3.14)

By using the definition of the freezing instant in (3.13),
the inequality in (3.14) can be expressed as

n=<n.— 1.

(3.15)
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Thus, for the exponential schedule, freezing begins when
condition (3.7) is violated.

C. Linear Schedule

Finally, we consider a linear decay of a(n) of the form
a(n)y =X(1 —n/N)for0 < n < Nand X € (0, 1], where
the algorithm terminates after N steps. Asymptotically, as
N becomes larger, condition (3.6) holds and the estimate
becomes unbiased for any A € (0, 1].

To examine the behavior of the weighting function
gy (n) we note that

gvin)  _ N-n N
gvn —1) N—-n+1 N—-AXN-n

(3.16)

For small values of n (n << N) and for A = 1, the above
ratio can be approximated by N/n >> 1, and for A < 1
this ratio is approximately (1 — N)™' > 1. Hence, at the
beginning of learning, the step-size schedule is too slow,
and gy (n) increases faster as \ approaches unity. On the
other hand, when n = N, the ratio in (3.16) is approxi-
mated by (N — n) /(N — n + 1) < 1. Using the boundary
condition for gy(n — 1), the weighting factor gy(n) can
be approximated for values of n close to N by gy(n) = 1
— n /N, which decays linearly to zero. Therefore, asymp-
totically as n approaches N, the decay is too fast. Since
the decay of the step size is too slow at the beginning of
the learning and too fast at the end, there is some inter-
mediate instant, for which the weighting sequence gy (n)
peaks. In other words, in the linear schedule, the weight-
ing of the data is biased in favor of data presented around
some intermediate instant, denoted, by n,, for which a
maximum in the sequence gy (n) is attained. To solve for
n,, the ratio in (3.16) is unity and we obtain

N N
n,=N-— |-.
’ A

Note that n, decreases as N\ decreases, so the weighting
function gy(n) peaks for ‘‘older’’ input data. Unlike the
exponential case in which n, was a fixed point, indepen-
dent of N, the critical point n, is relatively close to N.
Hence, while a learning algorithm with the exponential
schedule tends to favor data presented at the beginning of
the learning and ignores the most recent data, a linear
schedule favors the recent data (see Fig. 1).

Finally, by the checking condition (3.7), it can be ver-
ified that as in the exponential case, u(n) is bounded by
a(n) for n < n,, and the condition is violated for n > n,.
A graphical illustration of the behavior of gy(n), dem-
onstrating the typical shape of the weighting sequence as
a function of n, is given in Fig. 1 for the exponential,
hyperbolic, and linear step-size schedules.

3.17)

D. The Nonquadratic Case

In the analysis in Sections III-A through III-C we as-
sumed there was only one codevector, which implied that
the distortion surface was quadratic and therefore convex.
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Fig. 1. Ilustration of the behavior of the weighting sequence gy (n) as a
function of n(with N = 1000) for four step-size schedules: 1) Hyperbolic
schedule with » = 1 for which a constant weighting of the training data is
obtained throughout the whole learning process. This is the optimal weight-
ing. 2) Hyperbolic schedule with » = 0.6 which favors more recent data
but still, asymptotically, achieves the centroid of the training vectors. 3)
Exponential schedule with p = 0.97 for which there is an early termination
of learning due to the *‘freezing’” effect, and the weighting of the most
recent data is practically zero. 4) Linear schedule which, as opposed to the
exponential schedule, effectively weights only the most recent data.

With multiple codevectors, the distortion surface is gen-
erally no longer convex and contains multiple local min-
ima. Assuming that the algorithm converges, as time pro-
gresses the step size becomes sufficiently small and the
nearest neighbor partition of the input space induced by
the codebook essentially does not change. The asymptotic
behavior of each codevector in its own cell then obeys the
asymptotic properties discussed for a single codevector.
Convergence of each codevector to the centroid of its
nearest neighbor cell implies that the centroid condition
is satisfied and the codebook then represents a local min-
imum of the distortion function.

While we have informally argued in favor of the con-
vergence of the KLA for the nonquadratic case, a rigorous
proof of its convergence is difficult to construct since it is
hard to measure the change in the partition cells when the
codevectors are updated. Unlike true gradient algorithms,
the reduction of the distortion function in the KLA is not
necessarily monotonic (even asymptotically). The KLA
of (2.5), being the on-line version of a batch gradient de-
scent algorithm, uses the instantaneous gradient, not the
true gradient. In fact, the KLA is an application of the
LMS learning principle to a nonquadratic distortion func-
tion. Such on-line LMS algorithms are also known as sto-
chastic-gradient algorithms, for which no mathematical
proof of convergence is yet known for the nonquadratic
case. However, in practice, such algorithms have been
successfully used in a variety of applications for non-
quadratic cost functions, in which convergence of the
learning scheme was always obtained, once reasonable
values for parameters were determined. Examples involv-
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ing Kohonen learning can be found in speech applications
[22, 23], robotics and pattern recognition [20], and VQ
design [11, 18]. Applications with another on-line LMS-
type learning, the backpropagation algorithm [24], are
found in speech applications [25]-[28], character recog-
nition [29], [30], and sonar applications [31]. It was re-
cently reported that such an on-line adaptation for the
backpropagation algorithm was even found to outperform
the batch adaptation in applications of handwritten char-
acter recognition [30], [32].

In the above examples, the least mean-squares criterion
was used as the cost function. Recently, a proof of con-
vergence of an on-line learning algorithm for a Kullback-
Leibler type of cost function (defined in [33]) which is
used in Boltzmann machines was given by Sussmann [34].
Based on this empirical experience it is reasonable to as-
sume that the KLA converges, and thus, asymptotically
each codevector wins only for training vectors in its own
cell. The asymptotic convergence of each codevector to
the cell’s centroid is therefore subject to the convergence
analysis for a single codevector discussed above. Differ-
ent step-size schedules might lead to different final code-
books (as noticed in [11]) but these different codebooks
will represent different local minima of D(Y) if the sched-
ules comply with the requirements for convergence given
above. A local minimum of the distortion function does
not necessarily guarantee a high quality codebook, as it
may differ substantially from a global minimum. In the
remainder of the paper, the problem of finding local min-
ima of good quality is addressed by incorporating soft
competition techniques for which the competition be-
tween the codevectors upon each presentation of a train-
ing vector is ‘‘soft,”” and the codevectors being updated
are not necessarily the Euclidean winners.

IV. THE STOCHASTIC RELAXATION SCHEME

So far we have described VQ design as a procedure that
locates K codevectors in an input space that locally min-
imizes a mean-squared distortion function D(Y) given by

K
DY) = 2 2 |x —yl? @.1
i=1 XeR;

while for each codebook the nearest neighbor condition
was assumed. An alternative approach is to search for the
best partition, while assuming the centroid condition is
satisfied. Let us assume that the training set T is com-
posed of M training vectors, T = {x,, - - * , xy}. A par-
tition of the training set into K distinct regions is accom-
plished by associating with each training vector x,, a scalar
sm € {1, - -+, K}, which indicates the region index of
x,,. Hence, the partition of the training set can be fully
described by the M-dimensional state vectors = (sy, * * *,
sy) and the K partition regions R; are given by (1 = i <
K)

R = {x, €Tls, =i} 4.2)

which are not necessarily the nearest neighbor cells of the
codevectors. For a given state vector s, the codevectors
are assumed to be the centroids of the partition regions:

-1

o= 4.3
V=N @.3)

Zx,,,; N, = 2 L

Sm=1 Sm=1

By assuming that (4.3) holds for every partition vector s,
the codebook can be described uniquely by s, and a dis-
tortion value D(s) can be associated with each state s,
which computes the same expression as in (4.1) via (4.2)
and (4.3). The goal of the design in this case is to find a
choice of s which globally minimizes D(s).

A general way to find the global minimum of a multi-
dimensional nonconvex cost function D(s) defined over a
finite state space was introduced by Kirkpatrick et al. [35]
under the name of simulated annealing. The simulated an-
nealing scheme is based on the Metropolis algorithm [36]
suggested for simulating the dynamics of a melted sub-
stance in a heat bath. The algorithm is a stochastic pro-
cedure aimed at reducing the cost function in a non-
monotonic way, with the expressed goal to avoid local
minima. At each instant of the algorithm, a new state is
proposed, generally by changing the value of one of the
components of the state vector s, and the resulting change
in the cost function AD is computed. The acceptance of
the proposed transition is determined probabilistically as
follows: if AD < 0 the proposed state is accepted and the
cost function is thereby reduced, and if AD > 0 the pro-
posed state is accepted with probability p = exp
(=AD/T), and rejected with probability 1 — p. The pa-
rameter T is a nonnegative number called the temperature
and is gradually reduced to zero. As T decreases, the
probability of making transitions that increase the cost
function also decreases, and in the limit as 7 — 0O the cost
function can only be decreased. The rate at which T is
reduced is called the temperature schedule of the anneal-
ing.

The above procedure represents an inhomogeneous fi-
nite-state Markov chain which, if cooled sufficiently
slowly, converges to the global minimum of D(s) [37]. A
key factor to ensure the convergence of such a Markov
chain to the global minimum of D(s) is that the stationary
joint probability distributed of the states be the Gibbs dis-
tribution, given by

1
P(s) = - ¢ 9

~ (4.4)

where P(s) is the probability of attaining a specific state
s, 8 = 1/T, and Z is a normalization factor defined so
that the sum of P(s) over all possible states in unity. More
generally, any stochastic transition rule between the states
which yields a Markov chain with the Gibbs stationary
distribution of (4.4) will converge to the global minimum
of D(s), if T is reduced sufficiently slowly.

An example of a transition rule different than the Me-
tropolis algorithm is the ‘‘Gibbs sampler’’ introduced by
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Geman and Geman [14] for the restoration of images. The
Gibbs sampler generalizes the binary Boltzmann machine
developed by Hinton et al., [38], [39] to nonbinary cases.
Such algorithms are also known as stochastic relaxation
schemes. The Gibbs sampler is better suited to problems
in which the components of the state s are not binary and
can take on any of K values. The case we study falls into
this category, and we will show that by applying the Gibbs
sampler, a stochastic scheme is obtained in which each of
the codevectors is updated probabilistically. As opposed
to the winner-take-all competition of previous sections, in
which only the Euclidean winner was updated, at each
iteration any codevector can be updated in the stochastic
scheme. The probability of updating a codevector during
a given iteration is a function of its distance from the
training vector presented at that instant. We call this
scheme the stochastic relaxation scheme (SRS), which will
converge to the global minimum of D(s) for certain tem-
perature schedules. The fact that the codevectors being
updated are not necessarily the Euclidean winners is the
key to the capability of the algorithm to avoid local dis-
tortion minima.

An important advantage of using the Gibbs sampler for
the nonbinary case, rather than the Metropolis algorithm,
is that the Gibbs sampler is amenable to parallel process-
ing. The Metropolis algorithm is serial in nature whereas
the Gibbs sampler can incorporate K processors operating
in parallel for the K possible values of s, and thereby
speed up the computation.

The Gibbs sampler algorithm sequentially generates
new state vectors by changing one component of s at a
time. At each iteration a component m € {1, - - - , M}
of s is chosen at random. The new value of s, is then set
equal to some j € {1, , - - -, K} drawn probabilistically
according to the following conditional distribution (1 <
Jj =< K)

P, ()= Pr{s, = jls.

where the values of s, (for all n # m) are those of the
current state vector (which are given constants at the time
instant). The conditional distribution P, (j) should be
computed to comply with the Gibbs distribution given in
(4.4). In Appendix B, it is proven that P,,(j) can be ex-
pressed in terms of the codebook as (1 < j < K)

vn# m} 4.5)

e —Bllxm—y;l2

P,(j) = (4.6)

M) >

e ~Blam - yill2

k=1

Note that the conditional distribution, according to which
the next partition of the training vector x,, will be chosen,
as in (4.5), is also Gibbs, where the denominator in (4.6)
is a normalization factor, independent of j. When 8 — o
(i.e., the temperature goes to zero), this probability dis-
tribution becomes a delta function around the Euclidean
winner (i.e., the codevector closest to x,,). In this case,
the distortion function is strictly decreasing and the par-
tition becomes the nearest neighbor partition, in which
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each training vector is assigned to the codevector closest
to it. The expression in (4.6) is identical to the soft com-
petition scheme introduced by Yair and Gersho for the
Boltzmann perceptron network [40]. That is, P, () rep-
resents a fraction of unity which is proportional to the
proximity of y; to the current data presented x,,. It was
also shown in [40] that this scheme can be efficiently im-
plemented in parallel by a two-layer feedforward neural
network.

Given below is an outline of the main loop of the SRS
carried out repeatedly until the temperature reduces to
zero.

1) Choose, at random, a training vector x,, € T. As-
sume that the current partition of this vector is given by
Sy = 1.

2) Compute the K values P,(j) according to (4.6), and
draw an index j* € {1, - - - , K} probabilistically ac-
cording to this distribution.

3) Set s,, = j*, and update the codevectors y; and yj«
according to the following formula (derived in Appendix
B):

: ( ) (4.7a)
—(x, — ¥ .
N» m yl

{

i<y —

Yoyt (@ = V). (4.7b)

1
N+ 1
4) Update 8 according to the temperature schedule.
The codevector y;« is called the stochastic winner (which
is not necessarily the Euclidean winner), and y; is called
the stochastic loser. For each presentation of a training
vector the stochastic winner thus moves towards x,, (as in
the usual KLA), while the stochastic loser moves away

from x,,.

The computational advantage of this algorithm over the
Metropolis one should be noted. The efficiency of sto-
chastic algorithms of these type can be expressed by the
transition rate, which is the rate at which the network
makes transitions to new states. The lower the transition
rate, the less efficient is the algorithm in searching for the
optimal solution. While the Metropolis algorithm must be
performed serially and has a low transition rate (espe-
cially when K is large), the above stochastic relaxation
scheme has a much higher transition rate (since transitions
are performed unconditionally), and the soft competition
of (4.6) can be computed in parallel by a neural network.
When the temperature is low, most of the proposed states
will not be accepted in the Metropolis algorithm and much
computation will be (in effect) wasted staying in the same
state. This situation will not happen in the SRS since s,
is set unconditionally to its new value.

V. THE SoOrT-COMPETITION SCHEME

Inspired by the SRS algorithm presented in Section IV,
in this section we develop a deterministic algorithm that
updates all the codevectors simultaneously, rather than
one at a time. We first relax the requirement that the
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codevectors be restricted to the centroids of the current
partition at any given instant. We also note that the cur-
rent value of the state component s,, has no effect on its
next value. Upon winning the stochastic competition of
(4.6), y; is updated with a KLA-type formula towards the
input vector. The probability, however, of updating a code-
vector y; is independent of the current affiliation of the
data x,,. Hence, we can simplify the computation by not
tracking the partition of the training vectors. Thus, upon
each presentation of a training vector only the stochastic
winner will be updated towards the training vector. How-
ever, instead of updating at each iteration only one cod-
evector, chosen stochastically from a local Gibbs distri-
bution, and moving it with a step-size a(n) towards the
data, an alternative (deterministic) approach is taken. At
each step, all the codevectors are simultaneously updated
towards the data, but for each of them the step size is
scaled by the probability of winning, as given in (4.6).
This algorithm, which we refer to as the soft competition
scheme (SCS), can be formulated as follows.

The training vectors are presented on-line. At any time
instant n, for which a training vector x(n) is presented,
the codebook is updated using (1 < i < K)

yilm) = yi(n = 1) + a;(mP, (i) [x(n) — y;(n = D]

5.1
in which P, (i) is given by
e —Blx(n) —yitn — D2
P) = % (5.2)
ST e B lx(n) — yatn — D112
k=1
and
lim B(n) = oo. (5.3)

That is, upon each presentation of a training vector x(n),
all the codevectors are simultaneously updated such that
ith codevector is shifted a fraction of P, (i) from its pre-
scribed step-size a;(n) at each step. Since all the code-
vectors are now updated at each step, all the counters of
the K codevectors are also updated at time n. The counter
update formula is given by (1 = i = K)

ni(n) = ni(n — 1) + P,() (5.4

which is the natural generalization of (2.4), where n;(n)
is the value of the counter of the ith codevector at time
instant n, and a; (n) is computed, as for the KLA, by a;(n)
= 1/n;(n).

This scheme is a ‘‘soft’’ competition scheme in the
sense that there is no ultimate ‘‘winner,’” but rather, each
codevector is updated towards the data with a step size
that is proportional to its probability of winning. The al-
gorithm starts with a low value of 8, for which P, (i) is
approximately uniform. That is, for low values of 38 (high
temperatures) the codevectors are not yet attracted to a
certain partition, and they all migrate towards the data

presented. As time progresses, the gain § is gradually in-
creased and the codevectors are slowly separated from
each other since P, (i) begins peaking around the Euclid-
ean winner. In time, the codevectors closer to the data
will take relatively larger steps, while the codevectors
which are far away will be increasingly less affected. In
the limit as n — oo, P,(i) — S;(x(n)), the competition
becomes a winner-take-all competition and (5.1) is re-
duced to (2.3), in which only the Euclidean winner is up-
dated. Comparing (5.1) to (2.2), the SCS is seen to be a
neighborhood learning scheme in which P,(i) is the
neighborhood function, aimed at improving the partition
of the training set. However, unlike the neighborhood
function A;(j, n) defined by Kohonen on a fixed lattice,
in the SCS, P,(i) is a dynamic neighborhood function
which weighs the codevectors by their distance from the
data in the input space, rather than by their distance on
the lattice. Since this algorithm is the deterministic equiv-
alent of the Gibbs sampler introduced in the previous sec-
tion, it can avoid local minima because the attraction of
the codevectors to a specific partition evolves gradually,
allowing them to find better partitions as time progresses.
It should be noted that the computational complexity of
the soft competition algorithm of (5.1) is essentially the
same as the KLA of (2.3), as both involve the computa-
tion of K Euclidean distances for each presentation of a
training vector. It can be conjectured that, as in simulated
annealing, the schedule for the gain 8(n) = C In (n)
achieves the global minimum of D(s), although no proof
is known to the authors.

Since the SCS asymptotically evolves into the KLA,
the step-size schedule a; (n) should asymptotically be 1 /n;
to ensure the centroid and nearest neighbor conditions for
the final code. Such asymptotic behavior can be accom-
plished as follows. The time axis is segmented into frames
which, for convenience, might be measured by the num-
ber of sweeps they contain. Each sweep is one full cycle
through the training set. The lengths of the frames in-
crease as the temperature T(n) = 1/B(n) decreases, and
the value of the step-size a;(n) in each frame is reduced
according to 1 /n;. The counters n; are reinitialized to unity
at the beginning of each frame and are incremented ac-
cording to (5.4) within the frame. The reinitialization
technique was found to be useful in practice to speed up
the convergence of the algorithm. The increase of the
frames’ lengths ensures that more updates will be per-
formed at low temperatures before the next counter ini-
tialization. Asymptotically, this technique ensures that the
final codebook will satisfy both the centroid and the near-
est neighbor conditions since (5.1) then becomes (2.3) as
T(n) = 0.

Finally, we give below a schematic outline of the al-
gorithm steps carried out for each presentation of a train-
ing vector x(n).

1) Compute P,(i) fori = 1, - - -, K using (5.2).
2) Update the counters n; according to (5.4), and set
the step-size values to a;(n) = 1/n;(n).
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3) Update the codevectors y; fori = 1, - -+ |, K using
6.
4) Update B(n) according to the temperature schedule.

Generally, the temperature update will be performed once
for each sweep, and a reinitialization of the counters #; is
carried out at the end of each frame. Experimental results
showing an increase in performance of the SCS over the
GLA algorithm are given in the next section.

VI. EXPERIMENTAL RESULTS

Experimental simulations were performed to compare
the performance of the soft competition scheme with that
of the generalized Lloyd algorithm. The sources tested
were digitized speech waveforms sampled at 8 kHz and
first-order Gauss-Markov processes of the form x, =
ax,_ | + w,, where w, is an i.i.d. Gaussian process with
zero mean and unit variance, and the coeflicient « is the
first autoregressive coefficient of the process x,,. The val-
ues used for o were 0.9, 0.5, and O (the last is a Gaussian
i.i.d. process).

Each algorithm was simulated on a Sun 3/260 computer
with a floating point accelerator. One sweep of the SCS
has approximately the same computational complexity as
an iteration of the GLA. However, the time required for
the SCS to converge was, depending on the temperature
schedule, 3-10 times greater than the GLA. In an effort
to make a fairer comparison, approximately equal com-
putation time was allotted to each algorithm. Therefore,
repeated runs of the GLA using different initial conditions
were used, and the highest achieved SNR of these repe-
titions was used for comparison with a single run of the
soft competition.

The time axis was segmented into frames whose lengths
were measured by the number of sweeps they contained.
Within each frame, the step-size schedule a;(n) = 1/n;
was used, where at the beginning of each frame all the
counters n; were reset to unity. The frames were chosen
to increase in size by two sweeps after each update. This
corresponds to resetting the codevectors’ counters every
time the current sweep index m equals a perfect square.
After most resets of the step size, a temporary drop in the
SNR was recorded, which was immediately (generally
after one sweep) followed by a large recovery to an even
higher SNR value (see, for example, Fig. 3). This behav-
ior occurred because resetting the step sizes causes a rel-
atively large change in the codevector locations, bringing
them out of their near locally optimal positions as cen-
troids, and hence temporarily reducing the SNR. The con-
vergence to the different local minimum within the frame
then recovers the lost SNR, and generally increases it.
This reinitialization technique thus allows a more rapid
convergence since the step size taken by the codevectors
are larger, while the temporary loss of SNR is recovered
generally within one sweep after the initialization. A plot
of the step-size schedule as a function of the sweep num-
ber m is shown in Fig. 2 for a single codevector in a code-
book of size four. Fig. 2 demonstrates the reinitialization
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Fig. 2. Convergence of GLA and soft competition for various temperature
schedules of the form T(m) = T,y "n, with k = 2, and rate = 3.5
b/sample. First-order Gauss-Markov source: x, = 0.9x,_( + w,. The
best and worst of 10 initial conditions are plotted for the GLA, with the
range shaded.

of the step size every time m equals a perfect square, and
its monotonic decay within each frame.

The temperature schedule for the soft competition was
T(m) = T()-Ay_”'/K, where % > 1, m is the sweep index,
and K is the codebook size. That is, the temperature was
decreased at the beginning of each sweep, and was kept
constant within the sweep. The purpose of the codebook
size K in the exponent of'; is to compensate for the fact
that, at a given temperature, the probability P, (i) de-
creases as the codebook size increases. Without the factor
K, the temperature cools too quickly for large codebooks,
restricting the movement of the codevectors and *‘freez-
ing’’ the system early. The performance of the system
was not heavily dependent upon the choice of vy = %]/K:
v = 1.05 worked consistently well for all the sources.

The initial temperature was chosen to be of the form T,
= CKol, where ai is the variance of the scalar source x,
and C is a constant to be determined experimentally. We
found that choosing 0.1 < C < 0.4 worked well in prac-
tice. It is important that the initial temperature not be cho-
sen too large, for in such a case the codevectors may tend
to merge together yielding a poor codebook. In fact, it
can easily be shown that for 7, = oo, the Euclidean dis-
tance between each pair of codevectors decreases as 1/n,
where n counts the number of training vectors within a
sweep.

Fig. 3 shows the behavior of the SNR value versus the
sweep number m for several different temperature sched-
ules. Different values of y caused differences in conver-
gence time, but the final SNR was approximately the same
for each of the temperature schedules. The range of GLA
curves over 10 repeated trials with different initial con-
ditions is shown in Fig. 3 by the shaded region, where the
best performance curve of the GLA lies about 1 dB below
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Fig. 3. Plot of step-size a(n) for updating codevectors, versus sweep num-
ber of soft-competition algorithm for a first-order Gauss-Markov source.
x, = 0.9x,_, + w,, with k = 2, and rate = 1 b/sample.

TABLE 1
PERFORMANCE COMPARISON BETWEEN GLA AND SOFT COMPETITION
ALGORITHM FOR FIRST-ORDER GAUSS-MARKOV SOURCES. THE SOURCE
DATA 1S DERIVED FROM A RANDOM PROCESS OF THE FORM x; = o, _ | +
W;, WHERE w; IS INDEPENDENT WHITE GAUSSIAN NOISE

Vector Codebook GLA Soft Comp.
a Dim. Size SNR (dB) SNR (dB)
8 256 5.8 6.0
4 256 11.1 11.3
0 2 64 15.3 15.7
2 128 18.2 18.8
2 256 20.7 22.0
8 256 6.9 7.1
4 256 12.0 12.3
0.5 2 64 16.0 16.4
2 128 18.8 19.6
2 256 21.6 22.8
8 256 11.9 12.1
4 256 16.4 16.8
0.9 2 64 18.9 19.6
2 128 21.6 22.6
2 256 24.9 26.0

the peaks of the soft competition curves. That is, when
allowed the same amount of computation time, the soft
competition provides a better codebook (i.e., a better lo-
cal minimum) than the GLA. The same behavior of the
SCS with respect to the GLA was consistently observed
in all the experiments conducted. While Fig. 3 shows the
SNR for 300 sweeps of the soft competition algorithm,
that many sweeps are unnecessary in the design process.
The peak SNR in the curve with v = 1.05 occurs at about
sweep number m = 102, at which point the algorithm
could be terminated.

Vector quantizers were designed for vectors of dimen-
sions 2, 4, and 8, with rates ranging between 1 and 4 b
per sample. The results are shown in Table I for the

TABLE I
PERFORMANCE COMPARISON BETWEEN GLA AND
SOFT COMPETITION ALGORITHM FOR SPEECH SOURCE

DaTA

Vector . Codebook GLA Soft Comp.
Dim. Size SNR (dB) SNR (dB)

8 256 5.8 6.0

4 256 1.1 11.4

2 64 18.2 19.7

2 128 21.4 23.1

2 256 24.0 26.4

Gauss-Markov sources and in Table II for the speech
source. The SCS consistently outperformed the GLA over
a wide range of sources and bit rates. As seen in Tables I
and 11, the gain in SNR of the soft competition over the
GLA ranges between 0.2 to 2.4 dB. The gain in SNR was
generally greater for higher bit rates and for sources with
higher correlation.

One important aspect of the SCS is its relative insen-
sitivity to the choice of an initial codebook. Figs. 4(a) and
(b) show the evolution of codebooks with four codevec-
tors in two dimensions, as the soft competition algorithm
progresses. The source in each case is a Gaussian i.i.d.
process whose training vectors are plotted with X’s. In
Fig. 4(a) the initial codebook is chosen at random from
the training sequence, and in Fig. 4(b) the initial code-
book is chosen to lie equally spaced on a vertical line. In
both cases, the final codebooks are the same, though the
trajectories taken to achieve the locally minimal state are
quite different.

VII. CONCLUSIONS

We have demonstrated convergence properties of a
basic form of the Kohonen learning algorithm for vector
quantizer design and obtained conditions on the step-size
schedules to guarantee that the centroid and nearest neigh-
bor rules are satisfied. With this background, a new VQ
design technique was introduced by modifying the neigh-
borhood mechanism of the original KLA using stochastic
relaxation principles. The new algorithm is an on-line
method in which the codevector update is governed by a
“‘soft’’ competition between the codevectors, which are
updated simultaneously for each presentation of a training
vector. Computer simulations demonstrated the effective-
ness of the new soft competition scheme by comparisons
with the conventional GLA for codebook design.

APPENDIX A
1. Proof of Theorem I

We first consider the convergence of the sequence A0,
n) to zero (condition (3.5a)).
Lemma 1: The sequence A(0, n) converges to zero as
n — oo if and only if (3.6) is satisfied.
Proof: Since a(n) € [0, 1] for any n, it follows that
also A(0, n) € [0, 1]. Moreover, since A0, n) = [1,
a(n)]/:i(O, n — 1) = A(0, n — 1), the sequence A(0, n)
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0 = Initial codebook
A = Final codebook
X = Training vector
o = Codevector location
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Fig. 4. (a) Plot of trajectories of 4 codevectors during the soft competition
VQ design algorithm with random initial codeback. The locations of each
separate codevector at the beginning of each sweep are connected by lines.
The lengths of the connecting lines decreases with time as the temperature
decreases. The source is a zero-mean, unit-variance, Gaussian i.i.d. pro-
cess blocked into 2-dimensional vectors. (b) Plot of trajectories of 4
codevectors during the soft competition VQ design algorithm with initial
codebook on vertical line in the plane.

decays monotonically, and hence converges. In order to
give lower and upper bounds for A(0, n), the following
inequalities are used:

In(l —x) < —x forO0 < x < 1 (A.1D)
In(1 —x) > —2x for0 < x < 1/2. (A.2)

Using (A.1), A(0, n) can be upper bounded with
A0, n) < exp }:— '21 a(i)} (A.3)
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from which it follows that lim, . , A0, n) = 0if (3.6) is
satisfied.

To show that (3.6) is also a necessary condition let us
define i, to be the least positive integer for which a(i) <
1/2, forall i = i,, and let A, be defined as

fo—1

A, = 2 [1 —a@)].
i=1
Then, using (A.2), A(O, n) can be lower bounded with

A0, n) > A, exp {—2 2 a(i)} (A.4)

so that, in the limit as n — oo, A(0, n) will be bounded
away from zero unless (3.6) is satisfied. O
We now examine the convergence of the sequence r(n)
asn — o,
Lemma 2: r(n) converges to unity as n — oo if and
only if (3.6) is satisfied.
Proof: From (3.2) it immediately follows that

gv(n) = gn- (M1 — a(N)]. (A.5)
Using (3.3b) it is straightforward to verify that the se-

quence r(n) satisfies the difference equation

r(n) =[1 —a@)r(n — 1) + a(n); r(1) = a(l).

(A.6)

By defining the error sequence e(n) 21 — r(n), we get
the recursion

e(n) = [1 = a(m]e(n — 1);

Since a(n) € [0, 1] and e(n) € [0, 1], it is evident that e(n)
is monotonically decreasing and bounded and therefore
converges. Solving (A.7) with the given initial condition
for e(1) and using (2.7b) we get for all n

e(l) =1 —a(l). (A7)

e(n) = A0, n) (A.8)

and the proof is completed by using Lemma 1. 0
Combining the above two lemmas, it is concluded that
(3.6) is a necessary and sufficient condition for the esti-
mator to be asymptotically unbiased, as stated by Theo-
rem 1. Furthermore, if a(1) = 1, then the estimator y(N)
is unbiased for any value of N since in this case, e(N) =
A(0, N) = 0 for any N, and thus r(N) = 1 for any N.

2. Proof of Theorem 2

We first prove that u(n) decreases monotonically and is
bounded and thus converges (Lemma 3), and then pro-
ceed by showing that (3.6) is a necessary condition for
the limit of u(n) to be zero by upper bounding u(n)
A0, n).

Lemma 3: If a(n) decreases monotonically then u(n)
decreases monotonically.

Proof: Following its definition in (3.4b), and using
(A.5) it can be verified that u(n) satisfies the difference
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equation
un) = (1 — am)Pun — 1) + d@;  u(l) = a().
(A.9)
Define the sequence
__am
gn) = 7= am (A.10)

which decreases monotonically to zero with g(n) € [0, 1]
for all n = 1. From (A.9) it immediately follows that

u(n) — u(n — 1) = am)[2 — a@]igr) — u(n — DI
(A.11)

Therefore, a necessary and sufficient condition for u(n) to
decrease monotonically is that u(n — 1) = g(n) for all n
> 2. This condition is easily proved by induction. For n
=2, u(l) =1 = gQ2), since g(n) = 1 for all n. Now,
assuming that u(n — 1) = g(n) for some n = 2, we get
(using (A.9) and (A.10))

uim) = (1 — a(n))’g(n) + a’(n) = gn) = gn + 1)
(A.12)

which completes the induction argument. O
The sequence u(n) decreases monotonically and is

bounded and thus converges. To complete the proof of

Theorem 2 we define a sequence w(n) by the recursion

wn) = [1 — a@Pwn — 1); w1 =u(l). (A.13)

It can be verified (by induction) that w(n) < u(n) for all
n = 1. Hence, by solving (A.13) for w(n) in terms of w(1)
it follows that

u(n) = wn) = A(1, nu(l). (A.14)

However, since the convergence of the sequence A(1, n)
is equivalent to that of A(0, n), the proof is completed by
appealing to Lemma 1. O

3. Proof of Theorem 3

The proof is obtained by assuming that (3.7) holds and
showing that u(n) < a(n), for any n = 1. This proves
that u(n) converges to zero since a(n) does. First, note
that (3.7) can equivalently be expressed for all n = 2 as

atn — 1 = —2_

=1 aw (A.15)

We prove that u(n) is upper bounded by a(n) by induction.
Forn = 1,u(l) = a*(1) = a(1). Now, assuming that u(n
— 1) < a(n — 1) for some n = 2, we get (using (A.9)
and (A.15)) that

un) — an) < [1 - a(n)lz\:a(" -H- I—i(ﬁa)(TJ =9

(A.16)

which completes the induction argument. O

4. Proof of Theorem 4

By writing
(N)—l—%[ ) - ) +1]
u N A an(n) = av(m + 5
(A.17)
and partitioning the set of time instants {1, - - -, N } into
the two subsets
Nt = {ne [1, Ny = 1}
) N = N
_ 1
N~ = {n € [1, N]lgy(m) < N} (A.18)
(A.17) can be upper bounded with
1 2 1
Ny — — = — —
uN) = 5= 2 (qN(n) N>
2 /1
- neZN:_ N <N - qN(n)>
2
=yl -1= 0 (A.19)

in which equality is clearly obtained if and only if gy(n)
=1/Nforallnell, N]. O

5. Proof of Theorem 5

By Theorem 4 we can restrict attention to sequences
a(n) for which gy(n) = 1/N forall 1 < n =< N. Note
that the equality AN, N) = 1in (2.7b) implies the bound-
ary condition a(N) = 1 /N. The requirement on gy(n) can
be also written as (1 < n < N)

Q)
gv(n — 1)

which, using (2.7b), can be written as the difference equa-
tion (2 = n < N)

=1 (A.20)

a(n)

a(n — 1) = = am)’

(A.21)
By induction it is verified that the unique solution for
(A.21) with the specified boundary condition is given by
a(m) = 1/n for all n € [1, N]. In light of (A.21), the
sufficient condition (3.7) (or equivalently (A.15)) given
in Theorem 3 is tight, and is achieved only if a(n) = 1 /n.
In this case u(n) achieves its upper bound sequence a(n)
and we get u(N) = a(N) =1 /N, and the Cramer-Rao
bound is achieved.

6. Proof of Theorem 6

We first show the equivalency between r < 1 and the
sufficient condition of (3.7).
Lemma 4: If a(n) = n~" with r > 0, then (3.7) is sat-
isfied if and only if r < 1.
Proof: Applying the given form for a(n) to (3.7) and
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rearranging yields the equivalent condition, forn = 1,
(A.22)

Letf(x) £ x"+ 1 — (x + 1) forx = 1, whose derivative
is given by f'(x) = r[x" ™' — (x + 1)’ ~']. Both f(1) and
S (x) are positive if r < 1, zero if r = 1, and negative if
r = 1, from which it is concluded that for any n = 1,
f(n) = Oifand only if r < 1. O

The proof of Theorem 6 is then concluded by combin-
ing the above lemma with Theorems 1-3.

n+1=®m+1).

APPENDIX B

In this Appendix we provide a proof of (4.6).

For each i denote by s, the state vector that would re-
sult from changing the value of the mth component to be
S, = i, while leaving the other components of s unaltered,
and let P(s/,) be the probability of attaining such a vector.
P(s,,) is obtained from (4.4) by substituting s, for the state
vectors. Note that P(s;,) is also the probability of the joint
event {s, = i, s, ¥ n # m}. By applying Bayes’ rule to
(4.5), the conditional probability P,, (i) can also be writ-
ten, forl <= i < Kas

. P(s;,) 1
P,() = <% = F (B.1)
T Py 3 Elw
j=1 j=1P(s,)

Applying the Gibbs distribution of (4.4), the above
expression can be written as a function of the distortion
measure as

. 1
P, (i) =

< (B.2)
,-:5, exp {—BID(s,) — D(sil}

where D(s}) is the value of the distortion function D(s)
computed for the state vector ', (for which s,, = i). The
quantity D(s,,) — D(s,) is the change in the distortion
function when a transition from state s, (s,, = i) to state
s/, (s, = j) occurs. Since s represents a partition of the
training set, the transition from s’, to s/, is obtained by
reassigning x,, from R; to R;. We now compute the change
in the distortion function resulting from such a transition.

Denote the partition implied by s’, as state A, and the
partition of s/, as state B. Also, let R® denote the ith par-
tition region in state A, and y2 its centroid, and similarly
for R® and yB. We are interested in the transition from
state A to state B as described schematically in Fig. §,

where H; is the set with cardinality N; defined by
H ={x,eT|s, =i andx, # x,}

and similar definitions hold for H; and N;. The transition
from A to B can be expressed by the relations

R? = Hi U {xm}
R} = H
R = H,

R} = H U {x,} (B.3)
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Fig. 5. Schematic description of the transition from state A to state B, in
which the training vector x,, changes its affiliation from R, to R;.

for which the corresponding centroids are given by

y,’-\ = L [x,,, + Z x]
N +1 xeH;
1
A_ L
yj Nj xeHj o
1
B _
Yi N,- xeH; *
yE = ! [x + 2 x]. (B.4)
J NJ +1 " xeH;
The above expressions yield the relations
1
By — —(x,, — ¥} B.5a
o=yt X = ¥i) (B.5a)
1 A
V= T G ) (B.5b)

and the change in the distortion function due to the tran-
sition from A to B is given by

D®) ~ DA) = llx,, = y7I* = lx, — y2I?
+ 2 (e = yPIP = lle = y2%
xeH;
+ 2 (I = yPI? = llx =y},
x€Hj N
(B.6)
By substituting the expressions for y? and yjB from (B.S)

into (B.6), the change in the distortion function can be
written as

D(B) — D(A) = NAE " lx, =y
j (B.7)
N, + 1 A2
N e = R

If the training set is large and we assume N;, N; >> 1,
then substituting (B.7) into (B.2) yields the final expres-
sion, forl =i <K
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] e—ﬁ“xm~y.’\|z
P,() = % (B.8)
> e ~Bllxm — yill2
k=1
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