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Abstract—We present a lower bound on the probability of The union bound [6, p. 70] is a well-known upper bound
symbol error for maximume-likelihood decoding of lattices and gn the probabilityP, of symbol error for maximum-likelihood
lattice codes on a Gaussian channel. The bound is tight for error decoding of lattices and lattice codes on a Gaussian channel

probabilities and signal-to-noise ratios of practical interest, as . e .
opposed to most existing bounds that become tight asymptotically 1iS bound is tight for SNR- cc. However, as noted in [15],

for high signal-to-noise ratios. The bound is also universal; it [19], and [20], the union bound is often inadequate. More
provides a limit on the highest possible coding gain that may elaborateupperbounds on the probability of error for block-
be achieved, at specific symbol erno probabilities, using any coded and lattice-coded modulation schemes were developed

lattice or lattice code in n dimensions. In particular, it is shown - -
that the effective coding gains of the densest known lattices are by Berlekamp [3] and, more recently, by De Oliveira-Battail

much lower than their nominal coding gains. The asymptotic (as [23] and by Herzberg—Poltyrev [19], [20]. Our objective in
n — oc) behavior of the new bound is shown to coincide with this paper is to provide dower bound on the probability

the Shannon limit for Gaussian channels. of symbol errorP., which would be reasonably accurate at
Index Terms—Coding gain, Gaussian channels, lattice codes, Signal-to-noise ratios of practical interest.
lattices, Shannon limit. We note that the union bound as well as the bounds of [3],

[19], [20], and [23] all depend on the distance spectrum (or
theta series [6, p. 45]) of the lattice code at hand. In contrast,
_ _ _ ) we develop auniversalbound, namely, a bound that provides
DETERMNNG the maximum possible coding gain of any |imit on the highest possible coding gain that may be
n-dimensional lattice code is a fundamental problem igchieved, usingny lattice or lattice code im dimensions.
communications. This problem has been extensively studiedg,ch a bound is presented in the next two sections. Specif-
for instance in [6_]’ [91, [20], [11], [16], [19], [20], [23], and ically, Section Il is concerned with maximum-likelihood de-
references therein. o coding of lattices, while Section 11l deals with lattice codes.
Itis well known [9], [11], [16] that, assuming high rates and e 1ynd developed in the next section is based on the
high signal-to-noise rat_io (SNR), the gain ofalatt_ice code OVElall-known geometric notion of an equivalent sphere [19],
unf:oded QAM transmission can be separated mtp a sh_ap[QgL [28] and on the fact that no decoding region of a given
gain due to the shape of a support regm?'a”d a codmg 92N y5lume can be better than a spherical decoding region of the
due to the structure of the underlying lattiseAsymptotically, same volume (cf. [28]). Furthermore, although it is difficult,

§fs ASv’?I/Ec_r: O;f] tﬂ}i lggegsggfﬁcienstaze dgﬂg;”ﬂéﬁﬂ?%?a%d often impossible, to compute the integral of a Gaussian
: » dep Y Y distribution over the Voronoi region of a nontrivial lattice, the

very high SNR's, determining the maximum possible COdmﬁ%tegral over a sphere may be computed in closed form. This

gain of ann-dimensional lattice code is equivalent to ﬁndingcomputation detailed in Section 1. leads to a lower bound

h n ible latti kingrirdimensions. . .
the densest possible att ce packingrird ensions on P, in terms of the fundamental volume of the lattice at
Nevertheless, there is usually a sharp discrepancy betw?]en

the nominal coding gain and the effective coding gain observe nd. 1t')he rgsultl?r? br?_u?]d Its furth_ebrt;jqnvertedtrl]nt:) a pO\k/)verfuI
at signal-to-noise ratios of practical interest. Hence a mo per bound on the highest possioleding gainthal may be

careful analysis of the effective coding gain of lattices an hlevgd, for specnﬂc Sy”?bo' error probabilities, using any
lattice codes is necessary. imensional lattice. Invoking the latter form of our bound, we

show that the effective coding gains (at symbol error rates of
10~° to 10~7) of the densest known lattices are much lower
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based oD andA. The performance of a lattice cod€A,D) A. Lower Bound on the Probability of Error
on a Gaussian channel depends not only on the underlyingy, {his section, we derive a universal lower bound on the
lattice A but also on the shape of the support regign _E{obability of symbol error for maximum-likelihood decoding
Lattice codes are considered in Section Il of this paper. 18 ,,_gimensional lattices on an additive white Gaussian noise
extend the bounds of Section Il to lattice codes, we rely on t RWGN) channel. In contrast to the nominal coding gain, our
continuous approximation [4], [9], [16], and express our resuliR, nq s not asymptotic in SNR; it is reasonably tight at signal-
in terms of the normalized signal-to-noise ratio [9], [16]. FOf, ngise ratios of practical interest. Moreover, since the bound
completeness, an overview of some basic facts about Iattéﬁ?plies to any lattice of a given volume, we will effectively
codes and a brief primer on the continuous approximatigjy ,nq the performance of thiensestattices.
technique are also included in Section Ill. Herein, we observes 4 pointy € A is transmitted through an AWGN channel
that the continuous approximation becomes exact for high-rgte, roceived point is given by + X, whereX is a vector of '
codes [1], [18]. _ , __independent and identically distributed (i.i.d.) Gaussian ran-
Another issue with lattice codes is that the Voronoi regio§om variables with zero mean and variancéeper dimension.
of a pointz in the lattice codeC(A, D) may be larger than the channel outpuy + X is decoded tay under maximum-
the Voronoi region ofz in the lattice A, if this point lies |iqlihood decoding if and only if+-X belongs to the Voronoi

sufficiently close to the boundary of the support regidn reqion ofy in the lattice A. Thus the probability of correct
Thus, lower bounds onP. based on the examination Ofdecoding is given by

the Voronoi regions ofA are not necessarily valid for the

lattice codeC(A, D). This issue is considered in detail in the p _ / f(@)dz
Appendix, where it is shown that this boundary effect becomes ¢ o
negligible for high-rate codes.

(3)

where

Il. BOUNDS FOR LATTICES fla) = — 1 exp <—||$||2>
)n

. . . e 202
We first establish the relevant notation. An infinite set (V2mo 7

A C R" is called asphere packingf the minimum distance s the probability density function o¥. Now letSr; denote the
between distinct points of is d(A) > 0. Such a set is called ;,_gimensional sphere of radiusabout the origin, having the
a lattice packing, or simply &attice, if A is @ group under game yolume afl. This sphere is sometimes called [17], [28]
addition inR™. The densityA(A) of A is the fraction of the e equivalent spheref T1. Forney [13] defines theormalized

space covered by spheres of radi%@(A) about the points radius p of Sy by the relationr? = np?. The volume ofSy
of A. The center density(A) of A is the density divided by ;g V,r" = V(II), and, therefore,

the volumeV,, of a unit sphere ifiR™. It is known [6, p. 9] that

n n n 1/n
o (e L o VDY V(3 ) @
Vn = T = 7:7 ' 1 - 1/n -
(n/2)] {— i gpgy O Vi VT
der in view of (1). The corresponding expression for the normal-
where(n/2)! = I'(5 + 1) for both odd and even, and ized radius ofSy; is considerably simpler. For even = 2k,
- the normalized radius afyj is lower-bounded by
i) = / u' e du 1k
A)L/E
0 p2 2 V(Z) . (5)
me
is Euler's gamma function. For even = 2k, we have
(n/2)! =~ (k/e)* by the Stirling approximation, where is This follows from (4) and the fact that*/c* < k! for all
the natural base of logarithms. k > 1. Later in this section, we will use this lower bound as

The Voronoi regionof a pointz € A is a convex polytope, a crude approximation gf? for k& — oo.
which consists of all the points iR™ that are at least as close The following simple, but key, observation dates back to the
to « as to any other point ith. We letII denote the Voronoi work of Shannon [25], and was mentioned in several recent
region of the origin ofR™. (It is easy to see that for lattice papers [19], [28].
packings, Voronoi regions of all the points are congruent to
each other.) Theolumeof a latticeA is defined as the volume
of I, that isV(A) = V(II). The asymptotic, or theominal
coding gain (cf. [10]) ofA can then be expressed as /Hf(w) dz = Sn f(@)dz. ©)

Lemma 2.1:

d(A)? @ Proof: Let ® = II\Sy and ¥ = Sp\IL. Notice that
V(A)2/» V(®) = V(), by the definition of the equivalent sphefg.
It is obvious that (6) is equivalent to

Y(A) E 4s(AP/m =

The highest possible valug, of the coding gainy(A) of ann-
dimensional lattice is called the Hermite parameter. The value / f(z)dx < / f(z) dz.
of v, is presently known [6] only for = 1,2,--- 8. @ “Je
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Furthermore, But
_ 2 J(n)
o)™ 1
1 _ 2 = j / n-l du
f(l') > ﬁ exp <2—72>, forallz e ¥ )
o)™ 2

2w
/ / / " lh 91, 9n_1)dud9n_1 d91
asf(-)is adecreasing function of the distance from the origin.
Since® and¥ have the same volume, this completes the progf precisely the volume of a unit sphereR. In view of (1),

of the lemma. U this yields
The probability of errorP. = 1 — P. under maximum- /2
likelihood decoding ofA is the probability that a white J(n) = nV, = (n/2)!"

Gaussiann-tuple X with variance s per dimension falls

outside the Voronoi regiofil of A. Similarly, we define Thus we have

r/o
def _ n n—1_—u®/2
e A = der = —— d
Pos lef | f(z) dz. (n) s, f(z)dz 2n/2(n/2)!/0 weoe “
Su ()
and integrating by parts gives the following recurrence rela-

ThusF. s is the probability that the-tuple X falls outside the tion:

equwalent spheréy;. With this notation, Lemma 2.1 reduces T

to the inequalityP’, > P. s. This means that no decoding I(n) = I(n—2) — ¢ z?2 8)
region can be better that a spherical decoding region of the (% —1)!

same volume.

The usefulness of Lemma 2.1 lies in the fact that the integra
on the left-hand side of (6) is difficult, often impossible, to —u?)2 1
compute, whereas the integral on the right-hand side of (6) Z(1) = v 2/”/0 ¢ du = 1— erfc(z?)
can be computed in closed form. Indeed, consider a change of

wherez = r?/202. Further, it can be easily verified that

r/o
variables to the following spherical coordinates: Z(2) = / we™" 2 dy = 1— ¢
0
ry = oucost where erfc(-) is the complementary error-function given by
x2 = ousin 6y cosby erfc(z) = (2/y/7) [° ¢~ dt. We are now ready to prove

one of our main results in this section.

Theorem 2.2:If points of ann-dimensional latticeA are
transmitted over an AWGN channel with noise varianéeper
dimension, the probability of symbol error under maximum-
likelihood decoding is lower-bounded as follows:

Tp_1 = ousinfy ---sin@,_s cosl,_1

Tn cusinfy ---siné,,_osiné,_4

where
. z 22 2271

61,0, Oz € 0.7] Pea\tratatrgog) @

while _ :
6, 1 € [0,27]. for » even, while for oddr, we have
N Nk 43/2 .
The Jacobian of this transformation is given by P, z erfe(z?) +e azr ettt (z -1
! ! n 1)1
O_n—lun—lh(e17 . 9n71) (10)

where the functiom.(-) does not depend on. Thus where

V) /r(s +1)7"

Xh(91,~~~ 9n 1) O'U, dﬁn 1 d91

Proof: By Lemma 2.1 and (3), we have
The integral on the right-hand side of this expression separates

into a product of two independent integrals, one of which is P.>F.s=1- f(z) dz
given by Sn
o The expressions (9) and (10) follow immediately by induction
def/ / WOy, 0 1) dbp 1 db:. on (8). The expression for = 7?/20% in (11) follows from
(1) and (4). O
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Remark: For evenn = 2k, the value ofP. s in (9) can for a lattice A is closely related to the normalized SNR for
be also computed as follows. Consider a sequende mdirs a lattice codeC(A,D) based onA, provided the number of
(Xo;-1,X5;) of ii.d. Gaussian random variables with zergoints in C is sufficiently large.

mean and variance?, wherei = 1,2,---, k. The energy  For the sake of brevity, we only consider the case where
Y, = X2, |, + X2 of each pair is then an exponentiais even. The development ferodd is similar [27], and the re-
random variable with meas2. Furthermorey; andY; are sults are summarized in Table | for all odd< 31. For everv,
independent foi # j. With this notation, we have let & = n/2 and define the function
P.s =Pr{X]+ X7+ -+ X2>7? . 2 k-1
S {xi 2 . t gu(x) def 6x<1+£'+$_'+...+$7'>_ (14)
=Pr{ii+Yo+ - +Y>r} (12) 2 (k— 1)

If the random variabled;, Y5, - - -,Y; are thought of as the Thus the lower bound (9) of Theorem 2.2 can be written as

interarrival times of a Poisson random procg%s), thenP. s PS = gr(2)- FUFthemeQFG, it2 l°0||0W321‘r0I”r12 the deginition of
is precisely the probability that there are fewer thaarrivals <~ in (13) thr;\t z = 20" = np*[20° = ka”. Thus
in the interval[0, 2). The probability ofm arrivals during the e = gx(ka) is a nonasymptotic lower bound on the

interval [0, T) is given by the Poisson distribution probability of symbol error in terms of the lattice SNR defined
\m above. Forney [13] suggests thiat should be normalized per
Pyery(m) = e -, form = 0,1, two dimensions, and defindd’ = (2/n)P, as the normalized
m.

probability of symbol error. With this notation, the lower
where A\ = T'/E[Y;]. SinceE[Y;] = 202 for all 4, we have bound of Theorem 2.2 can be rewritten as

A = T/202. It follows that the probability”. s of fewer than gr(ka?)
k arrivals in the interval0,r?) is given by P = ’ (15)
FPes = Pye2y(0) + -+ + Pyey(k— 1) for all evenn = 2k. This bound is plotted in Fig. 1 for
. z 2 P n = 4,16,64,256. We have also included in Fig. 1 simulation
=¢ ~<1 T 11 T o1 T m) results for the 16-dimensional Barnes—Wall lattice BW
which suggest that the bound of (15) is quite tight at all signal-
where » = r?/20%. This argument, pointed out by For-i.noise ratios. The curve for = 1 plotted in Fig. 1 results
ney [13], avoids the explicit integration in (7) and (8), bupy manipulating the lower bound in (10) in a manner analo-
unfortunately does not extend to odd values»of gous to (15). This curve is achieved by the integer latlice
since the Voronoi region of is a one-dimensional sphere.
B. Upper Bound on Coding Gain It presents an approximate baseline for the measurement of

When designing a communication system for a band-limitéffective coding gains. We will provide a more precise analysis
Gaussian channel, it is more conventional to consider effectiglow.
coding gains rather than probabilities of symbol error. In this Let F. denote afixed desired probability of symbol error.
subsection, we will show how the lower bound Bnobtained We first ask the following question. What is the minimum
in Theorem 2.2 can be converted into an upper bound on tR&ice SNR that is required to achieve a probability of symbol
highest possible coding gain that may be achieved, at specfi€or . using ann-dimensional lattice? The answer to this
symbol error probabilities, using any-dimensional lattice. question follows by examining (9) and (14). It is easy to see
The resulting bounds for = 1,2, - --, 32 are summarized in that the functiong,(z) in (14) is continuous, and is strictly
Table I, and compared with the nominal coding gains of tréecreasing in the intervéd, o). Furthermoreg,(0) = 1 and
best known lattices in the corresponding dimensions. lim, o gx(z) = 0, for all k& > 1. From these properties, it

Coding gain is usually defined in terms of the signal-tdollows that the equation,(x) = F. has a unique solution.
noise ratios required by the coded and uncoded systemsV¥g denote this solution by(k; F.).

achieve a given probability of error. Thus to discuss coding Theorem 2.3:Achieving a probability of symbol erroP,

gains, we first need to discuss signal-to-noise ratios. It igjng ann-dimensional latticeA requires a lattice signal-to-
not immediately clear what the signal-to-noise ral®oin gise ratio of at least

the context of maximume-likelihood decoding of lattices on 2(k; Py)

a Gaussian channel (as opposed to lattice codes, the signal o = ’T (16)
power is, in principle, unlimited in the case of lattices). In

this regard, we will follow the suggestion of Forney [13], [14]

and use Proof: The probability of symbol error is lower-bounded
5 det P by gx(2) for = = ka?. If the lattice signal-to-noise ratio?
2 (13)  does not satisfy (16), then < z(k; P.). Sincegi(z) is a
as a measure of signal-to-noise ratio. Heiie the normalized strictly decreasing function, we then hayg(z) > F. and
the theorem follows. O

radius of the equivalent sphefig ando? is the noise variance
per dimension. We will refer ta? as thdattice signal-to-noise ~ We now consider the uncoded case, namely, the case where
ratio. In the next section, we will show that the lattice SNRx scaled version:Z™ of the integer latticeZ™ is used to
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TABLE |
UPPER BOUNDS ON THE CODING GAIN OF LOW-DIMENSIONAL LATTICES
New upper bound ) . )

on coding gain Nominal coding gain (P, — 0)

n 5 . . Best known lattice b:ﬁ:\ F:jeron
Pe=10 Fe=10 Fe=10 Name  Reference v(A) coding gain

1 0 0 0 Z (6, p.106] 0 0
2 0.62 0.66 0.70 A, [6, p.110] 0.62 0.62
3 1.07 1.15 1.22 Ag [6, p.112] 1.00 1.00
4 1.43 1.54 1.63 Dy [6, p.118] 1.51 1.51
5 1.72 1.86 1.97 Ds [6, p.117] 1.81 1.81
6 1.97 2.13 2.25 Eg [6, p.125] 2.22 2.22
7 2.18 2.36 2.50 Eq [6, p.124] 2.58 2.58
8 2.37 2.56 2.72 Eg [6, p-120] 3.01 3.01
9 2.53 2.74 291 Ag [6, p.170] 3.01 3.31
10 2.68 2.90 3.08 Ay [6, p.170] 3.14 3.57
11 2.80 3.04 3.23 K [6, p.165] 3.30 3.82
12 2.92 3.17 3.37 Ko [6, p.127] 3.64 4.05
13 3.04 3.29 3.50 K3 [6, p.165] 3.72 4.27
14 3.14 3.40 3.62 Ay [6, p.170] 3.96 4.47
15 3.23 3.51 3.73 Ass [6, p.170] 4.21 4.67
16 3.32 3.60 3.83 Asg [6, p.129] 4.52 4.86
17 3.40 3.69 3.93 Az [6, p.176] 4.60 5.04
18 3.47 3.77 4.02 Ass [6, p-176] 4.75 5.21
19 3.54 3.85 4.10 Ajg (6, p.176) 4.91 5.37
20 3.61 3.92 4.18 Asgo [6, p.176] 5.12 5.53
21 3.67 3.99 4.26 A [6, p.176] 5.30 5.68
22 3.73 4.06 4.33 Ago [6, p.176] 5.53 5.83
23 3.78 4.12 4.39 Agg [6, p.176] 5.76 5.97
24 3.83 4.18 4.45 Aoy [6, p.131] 6.02 6.10
25 3.88 4.23 4.51 Ags [6, p.177] 5.90 6.24
26 3.93 4.28 4.57 Asg [6, p.177] 5.84 6.36
27 3.98 4.34 4.63 Ag7 [6, p.177] 5.80 6.49
28 4.02 4.38 4.68 Bog [2] 5.85 6.61
29 4.06 4.43 4.73 Bag 2] 5.86 6.73
30 4.10 4.47 4.78 Q30 [6, p.220) 5.90 6.84
31 4.14 4.52 4.83 Qxn [6, p.220] 6.07 6.95
32 4.18 4.56 4.87 Q32 [6, p.220] 6.28 7.06

transmit information over a Gaussian channel. The probabilithen to achieve a symbol error probability ¢t in the
of symbol error for the uncoded case can be computed exactipcoded case, we need = +/8o¢(k; P.). The volume of
Indeed, the Voronoi regioH for the latticecZ™ is a hypercube ¢7™ is ¢V (Z™) = ¢, and hence the corresponding lattice

of side ¢, and, therefore SNR is given by
L2 e\ o & (R
1-P. = /nf(:r) dz = < 5 /_C/Qc du) o2 ok
c n assuming that = 2k is even. It follows that in the uncoded
= <1 — erfc <\/_—8>> . (17) case the desired probabilit}. of symbol error is achieved
7 precisely at a lattice SNR of
Let ¢(k; P.) denote the unique solution of the equation AR/
o = ((k;P)? - ———. (18)

(1—erfc(z))?* = 1-P.. ok
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10° , , , , , ‘ ‘ , , the lattice SNR satisfies? > 1 = 0 dB. This result is
analogous to the Shannon limit [17], discussed in more detail
in the next section. I&? > 1, then according to our results

P, could, in principle, approach zero as — oo. In his
1975 paper, De Buda [7] essentially asserts that there do exist
lattices with this property.

] Here are some observations regarding the normalized radius
of the equivalent spheré; and the lattice SNR. Using the
Stirling approximation ofs! ~ (k/c)* in (4), the expression

on the right-hand side of (5) becomes an approximatiop? of

Normalized probability of symbol error

] and we get
V(A)Q/"
2
‘ @ 2neo? (20)
10
Lattice signal-to-noise ratio [dB] by the definition ofa? in (13). This approximation fok?

was suggested by Forney in [13]. The lattice signal-to-noise
ratio has another insightful interpretation as follows. Define
the equivalent noise spher€x as then-dimensional sphere
The ratio of the expressions on the right-hand side of (16) anfl squared radiuso?. Then

(18) is an upper bound on the effective coding gain that can 2/

be obtained using any lattice in = 2k dimensions. Thus we V() V(sm¥™ _ V" (np?) ot (1)

Fig. 1. Lower bounds on the performance of lattices.

have established the following result. V(Sx)m — V(Sx)Hm Vi ™ (no?)

Theorem 2.4:Let A be an n-dimensi(in.al lattice, and let 15 o2 is the normalized ratio of the volume of the lattice
n = 2k. Then the coding gain ok overZ™ is upper-bounded 4 hang to the volume of the equivalent noise sphere. Notice

as follows: that, unlike (20), the derivation in (21) is exact.
A < C(k; P)? 4(kD)YE 19 Finally, we notice here that the main results of this section
em(A) < 2(k; P.) D (19) hold not only for lattices, but also for geometrically uniform

) _ ) ) ) ) sphere packings [12], since the Voronoi regions in a geomet-

The coding gainv.q(A) is defined in terms of lattice SNR, andyjc|ly uniform packing are always congruent to each other.

the foregoing bound is parametrized by both the dimension apgrney [13] remarks that these results, in fact, hold for all
the probability of symbol error. . sphere packings that have a well-defined volumB'infor in-
The bound of (19) is tabulat7ed for normalized error proksiance packings that haté points per basic cell of volume

abilites £ = 1077, 19_6’_10_ and dimensionsy < 32 yhich tilesR™. As a specific example, consider a coset code
in Table I. All the entries in Table | are given in terms on based on am-dimensional lattice partitiom/A’ and a

decibels. The upper boqnd in _the last column is the Rog&ls4e overA/A’ whose rate isR bits per two dimensions
bound [24], except for dimensions < 8 where the densest ¢ [10]). Then the coset cod€ has a normalized volume

possible lattice packings are knqwn [6, p. 164]._ Observe thﬁkc)?/n = V(A)¥7 /2R, regardless of whether it is a lattice
the upper bound of Theorem 2.4 is not asymptoticfor— 0; o not. Extending this argument, we see thatltilevel coset

it is reasonably tight forsymbo_l error rates ofpract|c_al interegtoges [10], [15] also have well-defined normalized volumes.
As can be seen from Table |, it is generally much tighter thaghe |ower bounds on the probability of symbol error and the

the results obtained by computing the nominal (asymptotic f{gpner hounds on coding gain derived in this section thus hold
P. — 0) coding gains of the densest knowndimensional ¢4, 411 such codes.

lattices, and/or the upper bounds thereupon.

C. Further Results and Asymptotics lll. BOUNDS FORLATTICE CODES

We conclude this section with some further remarks arE)dIn practice, only a finite set of points of a lattice can

. . ) . . . used for transmitting information over a channel. This set

observations. First, we investigate the asymptotic behavior o . .
. . : of points is usually called a lattice code basednin this

our bounds as a function of the dimensienasn — .

All the bounds in this section follow from the assertionsecnon’ we convert the bounds developed in the previous

P. > P, s established in Lemma 2.1. Recall that s denotes section in the contexf[ ofattices into powerful bounds on
< . . o i the performance ofattice codes To do so, we rely on the
the probability that a white Gaussiantuple with variance . L . o
5 . . . . . continuous approximation technique [4], [9], [16], which is
o“ per dimension falls outside the-dimensional sphere of brieflv reviewed in what follows
radius ao/n. It follows thatlim, ..o P.s = 1if o < 1, y :
andlim, .. P. s = 0if « > 1, by the weak law of large L ] ) ]
numbers. A. Preliminaries: Continuous Approximation
Combining this fact and Theorem 2.2 we conclude thatLetQ) = A+a be the translate of am-dimensional lattice\
asymptotically, reliable communication is impossible unledsy a vectora, and letD be a convex, measurable, nonempty
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bounded region oR™. Then alattice codeC = C(A,D) is Shannon’s theorem [25] for Gaussian channels has a concise

defined byC = QN D, andD is called thesupport region statement in terms of SNR.,,. Namely, arbitrarily small

of the code. Because the support region is bounded, a latwebabilities of symbol error can be achieved arbitrarily close

code has finitely many points, s&y= {y;,%s,.--,¥y - The to SNR,,.,, = 0 dB.

quantity R = log,(M)/n is called therate of the codeC. For high rates?, we have2?# —1 ~ 22% jn the denominator
Given a pointy € R", we define the average energy peof (26), and therefore by (22) and (24), the normalized signal-

dimension, or thepowerof y as ||y||?>/n. The average power to-noise ratio can be written as

of the codeC = {y;,¥s5.,...,¥a} IS then given by 2/n
M || ||2 SNRHOrm = % + 0(1) (27)
1 Y
Pay = M Z n whereo(1) denotes a function of the rate that tends to zero
=1 as R — oo. This expression makes it possible to establish the
If the number of codewords\/ is large, then it can be connection between SNR,, and the lattice signal-to-noise
approximated as/ ~ V(D)/V(1l). Thus we have ratio o? introduced in the previous section. Specifically, we
have
log,(V(D)/V (11
n SNRﬂorm = o - 7% + 0(1) (28)
and L(z+1)

For a spherical support regidn, this reduces to

M
> llyslPv ()
= —+ 0(1) (23) SNRﬂorm = 042 .

PH.V -
nV (D)

(n+2)

where o(1) is a function of the number of codeworde Thus the lattice signal-to-noise ratie® is closely related to
that tends to zero a8/ — oc. The numerator of (23) is a the more conventional normalized SNR.

Riemann sum that can be further approximatedbjjz||? dz. Now let d denote the minimum distance between the points
This, along with (22) and (23), is known as tlkentinuous of the underlying latticel. Combining (27) with the definition
approximation[4], [9], [16]. The continuous approximation of the coding gainy(A) in (2) and the definition of the shaping

+o(1).

implies that gain v,(D) gives the following result.
P, = G([D)V([D)Q/" +0(1) (24) Lemma 3.1:
2
where <i) — 37, (D)v(A)SNRuormn + o(1).
9 20
G(o) & Do loll i L 3.1 is well known; see for instance [9], [16], and
RV (D)2 H emma 3.1 is well known; see for instance [9], [16], an

[26]. Since the proof of Lemma 3.1 relies, as in [16]
is the normalized second moment of the support redon and [26], on the continuous approximation, the expression
Thus under the continuous approximation, the average powet, (D)v(A)SNR,..., is an accurate estimate ¢f/20)? only

of a lattice codeC(A,D) depends only or». The quantity for lattice codes of high rateFor more details on the accuracy
~s(D) = 1/12G(D) is known [4], [16] as theshaping gain of the continuous approximation, we refer the reader to [1]
of the support regiorD. It is well known [4], [9] that the and [18].

highest possible shaping gain is obtained wheis a sphere,

in which case B. The Main Results
~75(D) = m(n +2) (25) If a pointy € C(A,D) is transmitted through an AWGN
127 (2 + 1)2/"' channel, then the channel outg#- X is decoded tay under

maximum-likelihood decoding if and only if + X belongs
We now introduce the signal-to-noise ratio that will be useg the \oronoi region ofy in the codeC(A, D). Thus ify is
in the remainder of this paper. As in [9] and [16], we defingyfficiently far from the boundary of the support regidnthe

the normalized signal-to-noise ratias probability of correct decoding is still given by
def Pav
SNRuen 102 (26) P = [ f@as. (29)

whereo? is the noise variance per dimension. The normalized!Given a latticec and a support regio® of certain shape, there are two

signal-to-noise ratio allows one to compare lattice codes \g#ys© make the rate of a lattice code based @ndD sufficiently high. The
irst option is to set\ = £ andD = ¢D. By making the scaling constant

. L i
dlfft_er_e_nt r"’_‘tes on t_he same scale. _AnOther mOtlvat_lon for t itrarily large, we can make the rate ©fA, D) arbitrarily high. However,
definition in (26) is as follows. Since the capacity of then view of (24), this increases the average powetCofAnother option is to
AWGN channel is given by setD = D andA = c£ for a sufficiently small scaling constant This
way the rate ofC(A, D) can be made as high as desired, while keeping the

1 P, support region (and, hence, the power) constant. This is the option we assume

- log2 1+ — throughout this paper. We note that both the coding géify) and the shaping

2 4 gain (D) are invariant under scaling.
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this bound is similar to the development in Section II-B. First
observe that for a spherical support regidnthe expression
for z in (30) reduces to

B 6F(%+1)2/n w(n + 2)
a 1or(2 +1)%"
= (k + 1)SNRyorm + o(1) (31)

where we have assumed that= 2k is even. Now recall that
z(k; P.) was defined in Section II-B as the unique solution of
the equationy,(x) = P., whereg () is the function defined
in (14). Together with (31), this establishes the following
result, which is the counterpart of Theorem 2.3 for lattice
codes.

N SNRnorm + 0(1)

Probability of symbol error

12 Theorem 3.3:To achieve a probability of symbol errar.
Normalized signal-to-noise ratio [dB] using a lattice codeC of rate R in » = 2k dimensions,
Fig. 2. Lower bounds on the performance of lattice codes. a normalized signal-to-noise ratio of at least

2(k; Pe)
SN OT' 111 2 1
as in (3), wherell is the Voronoi region of the underlying Re k+1 to(1)
lattice A. If y lies close to the boundary @b, then (29) IS g required, where(1) is a function of the rate that tends
to zero asR — oc.

not necessarily valid, since then the Voronoi regiomy af the
lattice codeC(A, D) is not necessarily equal to the Voronoi

region ofy in the lattice A. In fact, points inC(A,D) that oy recall that¢(k; P.) was defined in Section II-B as the
lie close to the boundary d® may have unbounded Voronoiunique solution of the équatiohl —erfc(z))?* = 1— P..

regions. However, we show in the Appendix that for highFurther observe that(cZ”) = 1 from (2), and hence under
rate codes, this boundary effect is negligible. This observati% continuous approximation we can write

makes it possible to translate the results of the foregoing

section into the language of lattice codes. In particular, the c /3

following theorem is the counterpart of Theorem 2.2. V8o QVS(D)SNRnorm +o(1) (32)

Theorem 3.2:1f an n-dimensional lattice cod€(A,D) is in view of Lemma 3.1. This is so because the minimum
used to transmit information over an AWGN channel, thedistance between the points ef™ is preciselyc. Together
the probability of symbol error under maximum-likelihoodwith (17), this establishes the following result, which is the

decoding is lower-bounded by (9) and (10), with counterpart of Theorem 2.4 for lattice codes.
60(% + 1)2/" Theorem 3.4:Let C(A,D) be a high-raten-dimensional
#= ———7:(D)SNRuorm +0(1).  (30) Jattice code with a spherical support regibnand letr = 2.

Proof: It is easty to see from (29) that for high-Then the coding gain of(A,D) over C(cZ",D) is upper-

rate latttice codes, the probability of symbol error igounded by
still bounded by (9) and (10), as in Theorem 2.2. Fur- C C(k;P)? ATk 4 1)V
ther, the expression for = +2?/202 in Theorem 2.2 Yert(€) < 2(k P.) . :

follows from (2), (4), (11), and Lemma 3.1. The tewtl) in . . . , . :
(30) denotes a function of the rafe of C(A, D) that tends to The coding gainy.s(A) is defined in terms of the normalized
7610 ask — oo. SNR, and the scaling constanis chosen in such a way that

C(A,D) and C(cZ™, D) have the same rate.

Theorem 3.2 is a fundamental bound on the performanceThe asymptotic results for lattice codes are also analogous
of anyn-dimensional lattice code on an AWGN channel. Thigp the asymptotics for lattices, discussed in Section II-C.
bound is plotted in Fig. 2 for = 1,4,16,64,256, ignoring  Specifically, it is possible to show, using the weak law of
the termo(1) in (30). We have assumed in Fig. 2 the highesérge numbers, that
possible shaping gain for spherical support regionD in n
dimensions, given by (25). We again include in Fig. 2 the lim #(k; Pr) =
simulation results for a lattice code based on the Barnes—Wall koo k1
lattice BW¢ with a spherical support region. It is instructiveregardlessof the desired symbol error rat&.. Thus the
to compare the corresponding curves in Figs. 1 and 2. Thdserer bound of Theorem 3.3 coincides with the Shannon limit
figures confirm that our bounds are tight for both lattices arf8NR,,,., = 0 dB ask — oo. This is consistent with the
lattice codes. converse to the Shannon theorem for lattice codes. Notably,

We now convert the bound of Theorem 3.2 into an uppeur proof of this result relies solely on the geometric notion of
bound on the coding gain of lattice codes. The derivation efjuivalent sphere, and does not involve information-theoretic
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arguments. A well-known conjecture in coding theory [9], support region support region
[16] says that lattice codes achieve capacity on the Gaussianof the code C 4 of the code C»
channel. (De Buda [8] attempted to prove this for lattice codes

whose support region is a “thick” shell. However, his proof /_\-

was shown to be incorrect in [22], although [22] includes an
alternative proof that only applies to “thin” shells. See also
the recent work of Loeliger [23] and Urbanke [29] on this
problem.) If this conjecture is true, this would imply that the
bounds derived in this paper are asymptotically ¢for- o)
exact at all signal-to-noise ratios.

Remark: Although our focus in this paper is on maximum-
likelihood decoding, it is possible to extend the lower bounds
of Theorem 2.2 and Theorem 3.2 to suboptimal decoding algo-
rithms, such as bounded-distance decoding. Indeed, consider
a decoding algorithm with decision regidh # II, namely, Fig. 3. Partition of C(A,D) into boundary points and points with
an algorithm that decodes a channel output X to y if (¥ = IL
and only ify + X € y+ T for somey € C(A,D), and

declares a decoding failure otherwise. Ignoring for simplicityt correct decoding for high-rate lattice codes. We observe that
we can proceed as in Lemma 2.1 and Theorem 2.2, with {agpendix, a similar proof applies for other support regions,
equivalent sphere dfl replaced by the equivalent spheréldf  gych as a cube (QAM constellation [10], [28]) or a Voronoi

The radius of the equivalent sphere %fis given by region of a sublattice (Voronoi constellation [5], [11]).
1/n VT (2 4 1) If a codewordy of a lattice codeC(A,D) is transmitted
Fo= V(Tl)/n = () (2 + ) through an AWGN channel, and a maximum-likelihood de-
Vi a coder is applied to the channel output, then the probability of

as in (4). This implies that the probability of error or failurecorrect decoding is
is lower-bounded by (9) and (10), with

F. = f(z)dz (36)
72 V(T)Q/"F(%—l—l)Q/n . ”_(y) _ _
z2=55 = 5 (33) wherey—+Il(y) is the Voronoi region of in the codeC(A, D).
20 rie
) Clearly, I1 C II(y), and, therefore,
for a lattice A, and
n F. > x)dx. 37
_ 7:2 _ 6F(%+1)2/ V(T)Q/nSNR ) /Hf( ) ( )
P o T I 7 )V(A)2/n norm + 0(1) Furthermore, as illustrated in Fig. Bl(y) is congruent tdl,

(34) unless the poing lies sufficiently close to the boundary Bf
for a lattice codeC(A,D). Thus the volume of the deci- The basic idea is that for a “well-behaved” support region
sion region is an important indicator of the performance ehe percentage of such points must approach zero as the rate
a decoding algorithm. We observe, however, that the bouriéigreases. Although this is intuitively clear, we will provide a
based on (33) and (34) are likely to be less tight thgsroof of this statement in this Appendix.
the corresponding bounds for maximum-likelihood decoding Assuming thatD is a sphere centered at the origin, et
in Theorem 2.2 and Theorem 3.2. This is so because fénote the radius db. We further assume for simplicity that
proximity of our lower bounds to the actual performance (as(A,D) = A ND, and letc denote the covering radius df.
evidenced for BWs in Figs. 1 and 2) is largely due to the fact is clear thatw > 3¢, provided the rate of is high enough,
that the Voronoi regions of dense lattices are “nearly” sphericghd we assume that this relation holds in what follows. Later
[4], [5], [6], [11]. There is no reason why this should be sgy this Appendix we will prove thats > 3c for all lattice
for the decision regions of a suboptimal decoding algorithmeodes of sufficiently high rate, based on nontrivial lattices.

Lemma A.1:If y € C(A,D) is at distance> 2¢ from the

APPENDIX N
boundary ofD, namely if

In this Appendix we prove that for a lattice cod&A, D)

with a spherical support regiof, the probability of correct Iyl < w—2c
decoding is given by then Il(y) is congruent tall.
Proof: The faces of the Voronoi region af in A are
P, = / flz)dz + o(1) (35) determined by the neighbors gfin A, and all these neighbors
II

are within distanc&c from y. Thus if ||y|| < w —2¢, then all
wherell is the Voronoi region of\, ando(1) is a function of the neighbors of in A are contained iIrC(A,D) = AND,
the rateR of C(A, D) that tends to zero a8 — oo. Thus (29) and the Voronoi region of in C(A,D) coincides with the
used in Section Il is a valid approximation of the probabilityforonoi region ofy in A. O
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support region support region
of C(A, D) of the code C»

() (b)

Fig. 4. Estimation of the number of boundary points in a spherical constellation. (a) Lower bound on the total number of fontsDin (b) Upper
bound on the number of points in the cod®.

In view of Lemma A.1, we now partitionC(A,D) as where the second inequality follows from the relatior> 3c.
illustrated in Fig. 3. Namely, we partitiof(A,D) into two Furthermore,

disjoint subcode€C; and C, defined by
<w—3c>" 4c < w—3c  (w—3c)?
1- = 1+ +

C, < {yeCA,D): |yl < w—2¢} wee we wte  (wte)?
deff (w— 3e)n~t c
Cy; = € C(A,D) : > w — 2¢}. e ) <L
2 = e CAD):lyll > w —2¢} + ot (w—l—c)"—l) < 4n<w+c>

Let M, and M, denote the number of codewords i, o, \hich together with (41) implies
C; andC,, respectively. Then, assuming equal a priori

probability of transmission we have M c
My n2n+2<_). (42)
Ml + M2 w + C
P, < Priye Cl}/ f(@)dz + Pr{y € Co}
I M We can now relate the upper bound in (42) to the rtef
< de+ ——2 38) C(A,D) as follows. Clearly,
< [ @ (39)
V(w4 o)™ > MV(ID) = 2™V (1) (43)

It follows from (37) and (38) that in order to establish the
claim of (35), it remains to show that the rafié. /(M + M>)
tends to zero as the rate — oo.

As llustrated (for the hexagonal lattice) in Fig. 4, the

and, therefore,

1/n R
number of codewords ift(A, D) is lower-bounded by w4c>28 VY _ % (44)
Vi T AW
Vilw— )"
My + My > v (39) wherep is the packing radius o and A(A) is the packing
density of A.
since every point in a sphere of radius- ¢ about the origin It follows from (42) and (44) that
belongs toy + II for a unique pointy € C(A,D). On the M, 1 /¢
— 2 < ()2t PPA)Y .
other hand, M., S om <p>” (A) (45)
M, < Valw + )" = Valw = 3¢)" (40) Since for a givem-dimensional lattice\, the parameters/p

V(i) and A(A) are fixed, the bound in (45) implies that for all
_ ) _ o e > 0 and forany givenlattice, there exists a rat&y, such
since the setycc,(y + 1I) is properly contained within a 5t M /(My + Ms) < e forall R > Ro. In view of (37)
shell of inner radiusw — 3¢ and outer radiuss + ¢ (See, and (38), this suffices to prove the claim in (35), which is our
again, Fig. 4). Combining (39) and (40) yields main objective in this Appendix.
. However, it is worthwhile to establish the following slightly

My _(wto"—(w=39" ., [1 B <w - 30) } stronger result. We say that andimensional lattice\ is non-
M+ My — (w—c) - w+ec trivial if it is at least as dense as the integer lat#ée In the
(41) remainder of this Appendix, we prove that for all> 0 and
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for all nontrivial n-dimensional lattices, there exists a rétg
such thatM, /(M + M;) < e for all R > Ry. To this end,
we first recast the bound of (45) as
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since a sphere of packing radiupss properly contained in the
Voronoi regionIl. Hence, ifA is a nontrivial lattice, then the
rate R of C(A,D) is at most

M, 1 /¢ NG log, M <c>
= < (Z)pontt ¥ A 46 R=——<2+log, | -
s 2R<p)n F(%H)W\/fw ) (46) 2 5 (
n(n —1) 2
where~(A) is the coding gain defined in (2). Next, we make S ——5 logy <%> +logon+3 (50)

use of the following lemma, due to Hermite [21].

Lemma A.2:For anyn-dimensional latticeA, there exists
a basisvy,vs,- -+, v, with

ili[lnvin <v (%)

Dividing both sides of (47) byi(A)" yields

nin—1)
2

(47)

n

I1

=1

n(n—1)
2

o . 1 <3
ah) = A7\ V3

Since|lv|]| > d(A) for all nonzerov € A, we may further
conclude that

d(A)
il < W

n(n—1)
(5) - rri-ie
— s ore=12,---,n.
V3

(48)

Now, consider the fundamental parallelotope (or the fun-

where the second inequality follows from (49), along with the
observation that ifA is nontrivial theny(A) > ~(Z™) = 1.
It follows that for all nontrivial n-dimensional lattice codes
whose rate exceeds (50), we must have> 3c.
Finally, combining (49) with (46), we see that for nontrivial
1 ﬁn22n+2

Iattice paCkingS
r 1 < )
= 2R ( g ) l/n \/3

As the right-hand side of (51) depends only on the rBte
and the dimensiomn of C(A,D), we may conclude that
the percentage of codewords that lie close to the boundary
of the support regiord converges to zero uniformly (and
exponentially) asR — oo, for all nontrivial n-dimensional
lattice codes.

n(n—1)
2

M,
M, + Mo

(51)
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distance from the farthest point &f to the origin. This leads
to the following upper bound on the covering radius/of

c < max

O0<ay, - an

L vt + v + - + v,

Sinceq; < 1foralli = 1,2,---,n, the triangle inequality
now vyields

¢ < ol + [l + - + Jlwall.

Combining this with (48), we conclude that the ratio of the

covering radius to the packing radius &fis upper-bounded
as follows:

n(n—1)
2

2n
< =0
~ (A2

c 2c

o = ) )

(%

9
Note that this is a very crude bound. In fact (cf. [6]), in many of[

the densest known lattice packings the rafip is less thar®.

Nevertheless, the bound in (49) will suffice for our puUrposes,

First, we use (49) to prove that > 3¢ for all lattice codes
C(A, D) of sufficiently high rate based on a nontrivial lattite
Assume to the contrary that < 3ec. Then, as in (43), the
number of codewords if£ (A, D) is upper-bounded by

Vilw+ )" < Vo (de)™ _22n<2>n
N p

M <
- V(1) Voo™
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