
670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999
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Performance of Lattice Codes
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Abstract—We present a lower bound on the probability of
symbol error for maximum-likelihood decoding of lattices and
lattice codes on a Gaussian channel. The bound is tight for error
probabilities and signal-to-noise ratios of practical interest, as
opposed to most existing bounds that become tight asymptotically
for high signal-to-noise ratios. The bound is also universal; it
provides a limit on the highest possible coding gain that may
be achieved, at specific symbol erro.r probabilities, using any
lattice or lattice code in n dimensions. In particular, it is shown
that the effective coding gains of the densest known lattices are
much lower than their nominal coding gains. The asymptotic (as
n ! 1) behavior of the new bound is shown to coincide with
the Shannon limit for Gaussian channels.

Index Terms—Coding gain, Gaussian channels, lattice codes,
lattices, Shannon limit.

I. INTRODUCTION

DETERMINING the maximum possible coding gain of an
-dimensional lattice code is a fundamental problem in

communications. This problem has been extensively studied,
for instance in [6], [9], [10], [11], [16], [19], [20], [23], and
references therein.

It is well known [9], [11], [16] that, assuming high rates and
high signal-to-noise ratio (SNR), the gain of a lattice code over
uncoded QAM transmission can be separated into a shaping
gain due to the shape of a support regionand a coding gain
due to the structure of the underlying lattice. Asymptotically,
as SNR , the latter approaches the nominal coding gain
of which, in turn, depends only on the density of. Thus for
very high SNR’s, determining the maximum possible coding
gain of an -dimensional lattice code is equivalent to finding
the densest possible lattice packing indimensions.

Nevertheless, there is usually a sharp discrepancy between
the nominal coding gain and the effective coding gain observed
at signal-to-noise ratios of practical interest. Hence a more
careful analysis of the effective coding gain of lattices and
lattice codes is necessary.
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The union bound [6, p. 70] is a well-known upper bound
on the probability of symbol error for maximum-likelihood
decoding of lattices and lattice codes on a Gaussian channel.
This bound is tight for SNR . However, as noted in [15],
[19], and [20], the union bound is often inadequate. More
elaborateupperbounds on the probability of error for block-
coded and lattice-coded modulation schemes were developed
by Berlekamp [3] and, more recently, by De Oliveira–Battail
[23] and by Herzberg–Poltyrev [19], [20]. Our objective in
this paper is to provide alower bound on the probability
of symbol error , which would be reasonably accurate at
signal-to-noise ratios of practical interest.

We note that the union bound as well as the bounds of [3],
[19], [20], and [23] all depend on the distance spectrum (or
theta series [6, p. 45]) of the lattice code at hand. In contrast,
we develop auniversalbound, namely, a bound that provides
a limit on the highest possible coding gain that may be
achieved, usingany lattice or lattice code in dimensions.

Such a bound is presented in the next two sections. Specif-
ically, Section II is concerned with maximum-likelihood de-
coding of lattices, while Section III deals with lattice codes.

The bound developed in the next section is based on the
well-known geometric notion of an equivalent sphere [19],
[25], [28] and on the fact that no decoding region of a given
volume can be better than a spherical decoding region of the
same volume (cf. [28]). Furthermore, although it is difficult,
and often impossible, to compute the integral of a Gaussian
distribution over the Voronoi region of a nontrivial lattice, the
integral over a sphere may be computed in closed form. This
computation, detailed in Section II, leads to a lower bound
on in terms of the fundamental volume of the lattice at
hand. The resulting bound is further converted into a powerful
upper bound on the highest possiblecoding gainthat may be
achieved, for specific symbol error probabilities, using any-
dimensional lattice. Invoking the latter form of our bound, we
show that the effective coding gains (at symbol error rates of
10 to 10 ) of the densest known lattices are much lower
than their nominal coding gains. Finally, we investigate the
asymptotic (as ) behavior of the new bounds, and show
that it coincides with the Shannon limit for Gaussian channels.
This is consistent with the converse to the Shannon theorem,
although our proof of this result relies solely on geometric
notions.

In practice, only afinite set of points of a lattice can be
used as a signal constellation in a communication system. This
set consists of those points ofthat are contained in a bounded
support region , and is known as the lattice code
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based on and . The performance of a lattice code
on a Gaussian channel depends not only on the underlying
lattice but also on the shape of the support region.

Lattice codes are considered in Section III of this paper. To
extend the bounds of Section II to lattice codes, we rely on the
continuous approximation [4], [9], [16], and express our results
in terms of the normalized signal-to-noise ratio [9], [16]. For
completeness, an overview of some basic facts about lattice
codes and a brief primer on the continuous approximation
technique are also included in Section III. Herein, we observe
that the continuous approximation becomes exact for high-rate
codes [1], [18].

Another issue with lattice codes is that the Voronoi region
of a point in the lattice code may be larger than
the Voronoi region of in the lattice , if this point lies
sufficiently close to the boundary of the support region.
Thus, lower bounds on based on the examination of
the Voronoi regions of are not necessarily valid for the
lattice code . This issue is considered in detail in the
Appendix, where it is shown that this boundary effect becomes
negligible for high-rate codes.

II. BOUNDS FOR LATTICES

We first establish the relevant notation. An infinite set
is called asphere packingif the minimum distance

between distinct points of is . Such a set is called
a lattice packing, or simply alattice, if is a group under
addition in . The density of is the fraction of the
space covered by spheres of radius about the points
of . The center density of is the density divided by
the volume of a unit sphere in . It is known [6, p. 9] that

(1)

where for both odd and even, and

is Euler’s gamma function. For even , we have
by the Stirling approximation, where is

the natural base of logarithms.
The Voronoi regionof a point is a convex polytope,

which consists of all the points in that are at least as close
to as to any other point in . We let denote the Voronoi
region of the origin of . (It is easy to see that for lattice
packings, Voronoi regions of all the points are congruent to
each other.) Thevolumeof a lattice is defined as the volume
of , that is . The asymptotic, or thenominal,
coding gain (cf. [10]) of can then be expressed as

(2)

The highest possible value of the coding gain of an -
dimensional lattice is called the Hermite parameter. The value
of is presently known [6] only for .

A. Lower Bound on the Probability of Error

In this section, we derive a universal lower bound on the
probability of symbol error for maximum-likelihood decoding
of -dimensional lattices on an additive white Gaussian noise
(AWGN) channel. In contrast to the nominal coding gain, our
bound is not asymptotic in SNR; it is reasonably tight at signal-
to-noise ratios of practical interest. Moreover, since the bound
applies to any lattice of a given volume, we will effectively
bound the performance of thedensestlattices.

If a point is transmitted through an AWGN channel,
the received point is given by , where is a vector of
independent and identically distributed (i.i.d.) Gaussian ran-
dom variables with zero mean and varianceper dimension.
The channel output is decoded to under maximum-
likelihood decoding if and only if belongs to the Voronoi
region of in the lattice . Thus the probability of correct
decoding is given by

(3)

where

is the probability density function of . Now let denote the
-dimensional sphere of radiusabout the origin, having the

same volume as . This sphere is sometimes called [17], [28]
theequivalent sphereof . Forney [13] defines thenormalized
radius of by the relation . The volume of
is , and, therefore,

(4)

in view of (1). The corresponding expression for the normal-
ized radius of is considerably simpler. For even ,
the normalized radius of is lower-bounded by

(5)

This follows from (4) and the fact that for all
. Later in this section, we will use this lower bound as

a crude approximation of for .
The following simple, but key, observation dates back to the

work of Shannon [25], and was mentioned in several recent
papers [19], [28].

Lemma 2.1:

(6)

Proof: Let and . Notice that
, by the definition of the equivalent sphere.

It is obvious that (6) is equivalent to
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Furthermore,

for all

for all

as is a decreasing function of the distance from the origin.
Since and have the same volume, this completes the proof
of the lemma.

The probability of error under maximum-
likelihood decoding of is the probability that a white
Gaussian -tuple with variance per dimension falls
outside the Voronoi region of . Similarly, we define

Thus is the probability that the-tuple falls outside the
equivalent sphere . With this notation, Lemma 2.1 reduces
to the inequality . This means that no decoding
region can be better that a spherical decoding region of the
same volume.

The usefulness of Lemma 2.1 lies in the fact that the integral
on the left-hand side of (6) is difficult, often impossible, to
compute, whereas the integral on the right-hand side of (6)
can be computed in closed form. Indeed, consider a change of
variables to the following spherical coordinates:

...

where

while

The Jacobian of this transformation is given by

where the function does not depend on. Thus

The integral on the right-hand side of this expression separates
into a product of two independent integrals, one of which is
given by

But

is precisely the volume of a unit sphere in . In view of (1),
this yields

Thus we have

(7)
and integrating by parts gives the following recurrence rela-
tion:

(8)

where . Further, it can be easily verified that

erfc

where erfc is the complementary error-function given by
erfc . We are now ready to prove
one of our main results in this section.

Theorem 2.2:If points of an -dimensional lattice are
transmitted over an AWGN channel with noise varianceper
dimension, the probability of symbol error under maximum-
likelihood decoding is lower-bounded as follows:

(9)

for even, while for odd , we have

erfc

(10)

where

(11)

Proof: By Lemma 2.1 and (3), we have

The expressions (9) and (10) follow immediately by induction
on (8). The expression for in (11) follows from
(1) and (4).
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Remark: For even , the value of in (9) can
be also computed as follows. Consider a sequence ofpairs

of i.i.d. Gaussian random variables with zero
mean and variance , where . The energy

of each pair is then an exponential
random variable with mean . Furthermore, and are
independent for . With this notation, we have

(12)

If the random variables are thought of as the
interarrival times of a Poisson random process , then
is precisely the probability that there are fewer thanarrivals
in the interval . The probability of arrivals during the
interval is given by the Poisson distribution

for

where . Since for all , we have
. It follows that the probability of fewer than

arrivals in the interval is given by

where . This argument, pointed out by For-
ney [13], avoids the explicit integration in (7) and (8), but
unfortunately does not extend to odd values of.

B. Upper Bound on Coding Gain

When designing a communication system for a band-limited
Gaussian channel, it is more conventional to consider effective
coding gains rather than probabilities of symbol error. In this
subsection, we will show how the lower bound onobtained
in Theorem 2.2 can be converted into an upper bound on the
highest possible coding gain that may be achieved, at specific
symbol error probabilities, using any-dimensional lattice.
The resulting bounds for are summarized in
Table I, and compared with the nominal coding gains of the
best known lattices in the corresponding dimensions.

Coding gain is usually defined in terms of the signal-to-
noise ratios required by the coded and uncoded systems to
achieve a given probability of error. Thus to discuss coding
gains, we first need to discuss signal-to-noise ratios. It is
not immediately clear what the signal-to-noise ratiois in
the context of maximum-likelihood decoding of lattices on
a Gaussian channel (as opposed to lattice codes, the signal
power is, in principle, unlimited in the case of lattices). In
this regard, we will follow the suggestion of Forney [13], [14]
and use

(13)

as a measure of signal-to-noise ratio. Hereis the normalized
radius of the equivalent sphere and is the noise variance
per dimension. We will refer to as thelattice signal-to-noise
ratio. In the next section, we will show that the lattice SNR

for a lattice is closely related to the normalized SNR for
a lattice code based on , provided the number of
points in is sufficiently large.

For the sake of brevity, we only consider the case where
is even. The development forodd is similar [27], and the re-
sults are summarized in Table I for all odd . For even ,
let and define the function

(14)

Thus the lower bound (9) of Theorem 2.2 can be written as
. Furthermore, it follows from the definition of

in (13) that . Thus
is a nonasymptotic lower bound on the

probability of symbol error in terms of the lattice SNR defined
above. Forney [13] suggests that should be normalized per
two dimensions, and defines as the normalized
probability of symbol error. With this notation, the lower
bound of Theorem 2.2 can be rewritten as

(15)

for all even . This bound is plotted in Fig. 1 for
. We have also included in Fig. 1 simulation

results for the 16-dimensional Barnes–Wall lattice BW,
which suggest that the bound of (15) is quite tight at all signal-
to-noise ratios. The curve for plotted in Fig. 1 results
by manipulating the lower bound in (10) in a manner analo-
gous to (15). This curve is achieved by the integer lattice,
since the Voronoi region of is a one-dimensional sphere.
It presents an approximate baseline for the measurement of
effective coding gains. We will provide a more precise analysis
below.

Let denote afixed desired probability of symbol error.
We first ask the following question. What is the minimum
lattice SNR that is required to achieve a probability of symbol
error using an -dimensional lattice? The answer to this
question follows by examining (9) and (14). It is easy to see
that the function in (14) is continuous, and is strictly
decreasing in the interval . Furthermore, and

, for all . From these properties, it
follows that the equation has a unique solution.
We denote this solution by .

Theorem 2.3:Achieving a probability of symbol error
using an -dimensional lattice requires a lattice signal-to-
noise ratio of at least

(16)

Proof: The probability of symbol error is lower-bounded
by for . If the lattice signal-to-noise ratio
does not satisfy (16), then . Since is a
strictly decreasing function, we then have and
the theorem follows.

We now consider the uncoded case, namely, the case where
a scaled version of the integer lattice is used to
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TABLE I
UPPER BOUNDS ON THE CODING GAIN OF LOW-DIMENSIONAL LATTICES

transmit information over a Gaussian channel. The probability
of symbol error for the uncoded case can be computed exactly.
Indeed, the Voronoi region for the lattice is a hypercube
of side , and, therefore

erfc (17)

Let denote the unique solution of the equation

erfc

Then to achieve a symbol error probability of in the
uncoded case, we need . The volume of

is , and hence the corresponding lattice
SNR is given by

assuming that is even. It follows that in the uncoded
case the desired probability of symbol error is achieved
precisely at a lattice SNR of

(18)
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Fig. 1. Lower bounds on the performance of lattices.

The ratio of the expressions on the right-hand side of (16) and
(18) is an upper bound on the effective coding gain that can
be obtained using any lattice in dimensions. Thus we
have established the following result.

Theorem 2.4:Let be an -dimensional lattice, and let
. Then the coding gain of over is upper-bounded

as follows:

(19)

The coding gain is defined in terms of lattice SNR, and
the foregoing bound is parametrized by both the dimension and
the probability of symbol error.

The bound of (19) is tabulated for normalized error prob-
abilities and dimensions
in Table I. All the entries in Table I are given in terms of
decibels. The upper bound in the last column is the Rogers
bound [24], except for dimensions where the densest
possible lattice packings are known [6, p. 164]. Observe that
the upper bound of Theorem 2.4 is not asymptotic for ;
it is reasonably tight for symbol error rates of practical interest.
As can be seen from Table I, it is generally much tighter than
the results obtained by computing the nominal (asymptotic for

) coding gains of the densest known-dimensional
lattices, and/or the upper bounds thereupon.

C. Further Results and Asymptotics

We conclude this section with some further remarks and
observations. First, we investigate the asymptotic behavior of
our bounds as a function of the dimension, as .

All the bounds in this section follow from the assertion
established in Lemma 2.1. Recall that denotes

the probability that a white Gaussian-tuple with variance
per dimension falls outside the-dimensional sphere of

radius . It follows that if ,
and if , by the weak law of large
numbers.

Combining this fact and Theorem 2.2 we conclude that
asymptotically, reliable communication is impossible unless

the lattice SNR satisfies 0 dB. This result is
analogous to the Shannon limit [17], discussed in more detail
in the next section. If , then according to our results

could, in principle, approach zero as . In his
1975 paper, De Buda [7] essentially asserts that there do exist
lattices with this property.

Here are some observations regarding the normalized radius
of the equivalent sphere and the lattice SNR. Using the
Stirling approximation of in (4), the expression
on the right-hand side of (5) becomes an approximation of,
and we get

(20)

by the definition of in (13). This approximation for
was suggested by Forney in [13]. The lattice signal-to-noise
ratio has another insightful interpretation as follows. Define
the equivalent noise sphere as the -dimensional sphere
of squared radius . Then

(21)

Thus is the normalized ratio of the volume of the lattice
at hand to the volume of the equivalent noise sphere. Notice
that, unlike (20), the derivation in (21) is exact.

Finally, we notice here that the main results of this section
hold not only for lattices, but also for geometrically uniform
sphere packings [12], since the Voronoi regions in a geomet-
rically uniform packing are always congruent to each other.
Forney [13] remarks that these results, in fact, hold for all
sphere packings that have a well-defined volume in, for in-
stance, packings that have points per basic cell of volume
which tiles . As a specific example, consider a coset code

, based on an -dimensional lattice partition and a
code over whose rate is bits per two dimensions
(cf. [10]). Then the coset code has a normalized volume

, regardless of whether it is a lattice
or not. Extending this argument, we see thatmultilevel coset
codes [10], [15] also have well-defined normalized volumes.
The lower bounds on the probability of symbol error and the
upper bounds on coding gain derived in this section thus hold
for all such codes.

III. B OUNDS FOR LATTICE CODES

In practice, only a finite set of points of a lattice can
be used for transmitting information over a channel. This set
of points is usually called a lattice code based on. In this
section, we convert the bounds developed in the previous
section in the context oflattices into powerful bounds on
the performance oflattice codes. To do so, we rely on the
continuous approximation technique [4], [9], [16], which is
briefly reviewed in what follows.

A. Preliminaries: Continuous Approximation

Let be the translate of an-dimensional lattice
by a vector , and let be a convex, measurable, nonempty
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bounded region of . Then alattice code is
defined by , and is called thesupport region
of the code. Because the support region is bounded, a lattice
code has finitely many points, say . The
quantity is called therate of the code .

Given a point , we define the average energy per
dimension, or thepowerof as . The average power
of the code is then given by

If the number of codewords is large, then it can be
approximated as . Thus we have

(22)

and

(23)

where is a function of the number of codewords
that tends to zero as . The numerator of (23) is a
Riemann sum that can be further approximated by .
This, along with (22) and (23), is known as thecontinuous
approximation[4], [9], [16]. The continuous approximation
implies that

(24)

where

is the normalized second moment of the support region.
Thus under the continuous approximation, the average power
of a lattice code depends only on . The quantity

is known [4], [16] as theshaping gain
of the support region . It is well known [4], [9] that the
highest possible shaping gain is obtained whenis a sphere,
in which case

(25)

We now introduce the signal-to-noise ratio that will be used
in the remainder of this paper. As in [9] and [16], we define
the normalized signal-to-noise ratioas

SNR (26)

where is the noise variance per dimension. The normalized
signal-to-noise ratio allows one to compare lattice codes of
different rates on the same scale. Another motivation for the
definition in (26) is as follows. Since the capacity of the
AWGN channel is given by

Shannon’s theorem [25] for Gaussian channels has a concise
statement in terms of SNR . Namely, arbitrarily small
probabilities of symbol error can be achieved arbitrarily close
to SNR 0 dB.

For high rates , we have in the denominator
of (26), and therefore by (22) and (24), the normalized signal-
to-noise ratio can be written as

SNR (27)

where denotes a function of the rate that tends to zero
as . This expression makes it possible to establish the
connection between SNR and the lattice signal-to-noise
ratio introduced in the previous section. Specifically, we
have

SNR (28)

For a spherical support region, this reduces to

SNR

Thus the lattice signal-to-noise ratio is closely related to
the more conventional normalized SNR.

Now let denote the minimum distance between the points
of the underlying lattice . Combining (27) with the definition
of the coding gain in (2) and the definition of the shaping
gain gives the following result.

Lemma 3.1:

SNR

Lemma 3.1 is well known; see for instance [9], [16], and
[26]. Since the proof of Lemma 3.1 relies, as in [16]
and [26], on the continuous approximation, the expression

SNR is an accurate estimate of only
for lattice codes of high rate.1 For more details on the accuracy
of the continuous approximation, we refer the reader to [1]
and [18].

B. The Main Results

If a point is transmitted through an AWGN
channel, then the channel output is decoded to under
maximum-likelihood decoding if and only if belongs
to the Voronoi region of in the code . Thus if is
sufficiently far from the boundary of the support region, the
probability of correct decoding is still given by

(29)

1Given a latticeL and a support regionD of certain shape, there are two
ways to make the rate of a lattice code based onL andD sufficiently high. The
first option is to set� = L and = cD. By making the scaling constantc
arbitrarily large, we can make the rate of(�; ) arbitrarily high. However,
in view of (24), this increases the average power of. Another option is to
set = D and� = cL for a sufficiently small scaling constantc. This
way the rate of (�; ) can be made as high as desired, while keeping the
support region (and, hence, the power) constant. This is the option we assume
throughout this paper. We note that both the coding gain
(L) and the shaping
gain 
s(D) are invariant under scaling.
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Fig. 2. Lower bounds on the performance of lattice codes.

as in (3), where is the Voronoi region of the underlying
lattice . If lies close to the boundary of , then (29) is
not necessarily valid, since then the Voronoi region ofin the
lattice code is not necessarily equal to the Voronoi
region of in the lattice . In fact, points in that
lie close to the boundary of may have unbounded Voronoi
regions. However, we show in the Appendix that for high-
rate codes, this boundary effect is negligible. This observation
makes it possible to translate the results of the foregoing
section into the language of lattice codes. In particular, the
following theorem is the counterpart of Theorem 2.2.

Theorem 3.2:If an -dimensional lattice code is
used to transmit information over an AWGN channel, then
the probability of symbol error under maximum-likelihood
decoding is lower-bounded by (9) and (10), with

SNR (30)

Proof: It is easty to see from (29) that for high-
rate latttice codes, the probability of symbol error is
still bounded by (9) and (10), as in Theorem 2.2. Fur-
ther, the expression for in Theorem 2.2
follows from (2), (4), (11), and Lemma 3.1. The term in
(30) denotes a function of the rateof that tends to
zero as .

Theorem 3.2 is a fundamental bound on the performance
of any -dimensional lattice code on an AWGN channel. This
bound is plotted in Fig. 2 for , ignoring
the term in (30). We have assumed in Fig. 2 the highest
possible shaping gain for asphericalsupport region in
dimensions, given by (25). We again include in Fig. 2 the
simulation results for a lattice code based on the Barnes–Wall
lattice BW with a spherical support region. It is instructive
to compare the corresponding curves in Figs. 1 and 2. These
figures confirm that our bounds are tight for both lattices and
lattice codes.

We now convert the bound of Theorem 3.2 into an upper
bound on the coding gain of lattice codes. The derivation of

this bound is similar to the development in Section II-B. First
observe that for a spherical support region, the expression
for in (30) reduces to

SNR

SNR (31)

where we have assumed that is even. Now recall that
was defined in Section II-B as the unique solution of

the equation , where is the function defined
in (14). Together with (31), this establishes the following
result, which is the counterpart of Theorem 2.3 for lattice
codes.

Theorem 3.3:To achieve a probability of symbol error
using a lattice code of rate in dimensions,
a normalized signal-to-noise ratio of at least

SNR

is required, where is a function of the rate that tends
to zero as .

Now recall that was defined in Section II-B as the
unique solution of the equation erfc .
Further observe that from (2), and hence under
the continuous approximation we can write

SNR (32)

in view of Lemma 3.1. This is so because the minimum
distance between the points of is precisely . Together
with (17), this establishes the following result, which is the
counterpart of Theorem 2.4 for lattice codes.

Theorem 3.4:Let be a high-rate -dimensional
lattice code with a spherical support region, and let .
Then the coding gain of over is upper-
bounded by

The coding gain is defined in terms of the normalized
SNR, and the scaling constantis chosen in such a way that

and have the same rate.
The asymptotic results for lattice codes are also analogous

to the asymptotics for lattices, discussed in Section II-C.
Specifically, it is possible to show, using the weak law of
large numbers, that

regardlessof the desired symbol error rate . Thus the
lower bound of Theorem 3.3 coincides with the Shannon limit
SNR 0 dB as . This is consistent with the
converse to the Shannon theorem for lattice codes. Notably,
our proof of this result relies solely on the geometric notion of
equivalent sphere, and does not involve information-theoretic
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arguments. A well-known conjecture in coding theory [9],
[16] says that lattice codes achieve capacity on the Gaussian
channel. (De Buda [8] attempted to prove this for lattice codes
whose support region is a “thick” shell. However, his proof
was shown to be incorrect in [22], although [22] includes an
alternative proof that only applies to “thin” shells. See also
the recent work of Loeliger [23] and Urbanke [29] on this
problem.) If this conjecture is true, this would imply that the
bounds derived in this paper are asymptotically (for )
exact at all signal-to-noise ratios.

Remark: Although our focus in this paper is on maximum-
likelihood decoding, it is possible to extend the lower bounds
of Theorem 2.2 and Theorem 3.2 to suboptimal decoding algo-
rithms, such as bounded-distance decoding. Indeed, consider
a decoding algorithm with decision region , namely,
an algorithm that decodes a channel output to if
and only if for some , and
declares a decoding failure otherwise. Ignoring for simplicity
the distinction between decoding errors and decoding failures,
we can proceed as in Lemma 2.1 and Theorem 2.2, with the
equivalent sphere of replaced by the equivalent sphere of.
The radius of the equivalent sphere ofis given by

as in (4). This implies that the probability of error or failure
is lower-bounded by (9) and (10), with

(33)

for a lattice , and

(34)
for a lattice code . Thus the volume of the deci-
sion region is an important indicator of the performance of
a decoding algorithm. We observe, however, that the bounds
based on (33) and (34) are likely to be less tight than
the corresponding bounds for maximum-likelihood decoding
in Theorem 2.2 and Theorem 3.2. This is so because the
proximity of our lower bounds to the actual performance (as
evidenced for BW in Figs. 1 and 2) is largely due to the fact
that the Voronoi regions of dense lattices are “nearly” spherical
[4], [5], [6], [11]. There is no reason why this should be so
for the decision regions of a suboptimal decoding algorithm.

APPENDIX

In this Appendix we prove that for a lattice code
with a spherical support region, the probability of correct
decoding is given by

(35)

where is the Voronoi region of , and is a function of
the rate of that tends to zero as . Thus (29)
used in Section III is a valid approximation of the probability

Fig. 3. Partition of (�; ) into boundary points and points with
�(yyy) = �.

of correct decoding for high-rate lattice codes. We observe that
although only spherical support regions are considered in this
Appendix, a similar proof applies for other support regions,
such as a cube (QAM constellation [10], [28]) or a Voronoi
region of a sublattice (Voronoi constellation [5], [11]).

If a codeword of a lattice code is transmitted
through an AWGN channel, and a maximum-likelihood de-
coder is applied to the channel output, then the probability of
correct decoding is

(36)

where is the Voronoi region of in the code .
Clearly, , and, therefore,

(37)

Furthermore, as illustrated in Fig. 3, is congruent to ,
unless the point lies sufficiently close to the boundary of.
The basic idea is that for a “well-behaved” support region,
the percentage of such points must approach zero as the rate
increases. Although this is intuitively clear, we will provide a
proof of this statement in this Appendix.

Assuming that is a sphere centered at the origin, let
denote the radius of . We further assume for simplicity that

, and let denote the covering radius of.
It is clear that , provided the rate of is high enough,
and we assume that this relation holds in what follows. Later
in this Appendix we will prove that for all lattice
codes of sufficiently high rate, based on nontrivial lattices.

Lemma A.1: If is at distance from the
boundary of , namely if

then is congruent to .
Proof: The faces of the Voronoi region of in are

determined by the neighbors ofin , and all these neighbors
are within distance from . Thus if , then all
the neighbors of in are contained in ,
and the Voronoi region of in coincides with the
Voronoi region of in .
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(a) (b)

Fig. 4. Estimation of the number of boundary points in a spherical constellation. (a) Lower bound on the total number of points in(�; ). (b) Upper
bound on the number of points in the code2.

In view of Lemma A.1, we now partition as
illustrated in Fig. 3. Namely, we partition into two
disjoint subcodes and defined by

Let and denote the number of codewords in
and , respectively. Then, assuming equal a priori

probability of transmission we have

(38)

It follows from (37) and (38) that in order to establish the
claim of (35), it remains to show that the ratio
tends to zero as the rate .

As illustrated (for the hexagonal lattice) in Fig. 4, the
number of codewords in is lower-bounded by

(39)

since every point in a sphere of radius about the origin
belongs to for a unique point . On the
other hand,

(40)

since the set is properly contained within a
shell of inner radius and outer radius (see,
again, Fig. 4). Combining (39) and (40) yields

(41)

where the second inequality follows from the relation .
Furthermore,

for all , which together with (41) implies

(42)

We can now relate the upper bound in (42) to the rateof
as follows. Clearly,

(43)

and, therefore,

(44)

where is the packing radius of and is the packing
density of .

It follows from (42) and (44) that

(45)

Since for a given -dimensional lattice , the parameters
and are fixed, the bound in (45) implies that for all

and for any givenlattice, there exists a rate , such
that for all . In view of (37)
and (38), this suffices to prove the claim in (35), which is our
main objective in this Appendix.

However, it is worthwhile to establish the following slightly
stronger result. We say that an-dimensional lattice is non-
trivial if it is at least as dense as the integer lattice. In the
remainder of this Appendix, we prove that for all and
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for all nontrivial -dimensional lattices, there exists a rate
such that for all . To this end,
we first recast the bound of (45) as

(46)

where is the coding gain defined in (2). Next, we make
use of the following lemma, due to Hermite [21].

Lemma A.2:For any -dimensional lattice , there exists
a basis with

(47)

Dividing both sides of (47) by yields

Since for all nonzero , we may further
conclude that

for

(48)
Now, consider the fundamental parallelotope (or the fun-
damental region) of the lattice spanned by the basis

, that is,

By the definition of a fundamental region, every point of
lies in the translate of by some point of . Thus the distance
from any point of to the lattice cannot be greater than the
distance from the farthest point of to the origin. This leads
to the following upper bound on the covering radius of:

Since for all , the triangle inequality
now yields

Combining this with (48), we conclude that the ratio of the
covering radius to the packing radius of is upper-bounded
as follows:

(49)

Note that this is a very crude bound. In fact (cf. [6]), in many of
the densest known lattice packings the ratio is less than .
Nevertheless, the bound in (49) will suffice for our purposes.

First, we use (49) to prove that for all lattice codes
of sufficiently high rate based on a nontrivial lattice.

Assume to the contrary that . Then, as in (43), the
number of codewords in is upper-bounded by

since a sphere of packing radiusis properly contained in the
Voronoi region . Hence, if is a nontrivial lattice, then the
rate of is at most

(50)

where the second inequality follows from (49), along with the
observation that if is nontrivial then .
It follows that for all nontrivial -dimensional lattice codes
whose rate exceeds (50), we must have .

Finally, combining (49) with (46), we see that for nontrivial
lattice packings

(51)

As the right-hand side of (51) depends only on the rate
and the dimension of , we may conclude that
the percentage of codewords that lie close to the boundary
of the support region converges to zero uniformly (and
exponentially) as , for all nontrivial -dimensional
lattice codes.
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