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Robust Quantization of Memoryless Sources Using Dispersive FIR Filters

Kris Popat and Kenneth Zeger

Abstract—A novel approach to quantizing discrete-time mem-
oryless sources is presented. An important feature is that its
performance is largely insensitive to errors in modeling the input
pdf. The method involves changing the amplitude distribution of
the source to be approximately Gaussian by all-pass filtering, then
applying a Lloyd-Max quantizer designed for a Gaussian source.
After quantization, the samples are passed through another all-
pass filter, which is an approximate inverse of the first filter. The
mean-square error (MSE) for the overall process is roughly equal
to the quantization MSE for the intermediate Gaussian signal,
independent of the source statistics. For some sources, this is
actually an improvement over direct, correct-model Lloyd—-Max
quantization. The cost of this technique is some delay due to
filtering.

I. INTRODUCTION

UCH has been written about quantization of mem-
oryless sources, in particular, Laplacian and gamma
sources [1], [2]. The subject is important because these sources
are often used as models in image and speech coding [3], [4].
An irony associated with the quantization of Laplacian and
gamma sources is made evident by the graphs in Fig. 1.
Although the rate-distortion functions of these sources are
quite promising relative to, say, that of a Gaussian source,
simple quantization! does not fulfill that promise. In fact, it
can be seen that for any given rate, the Lloyd—Max quantizer
achieves a lower MSE for Gaussian sources than for Laplacian
or gamma sources. Errors in modeling the source further
reduce the performance of Lloyd—Max quantization. These
observations lead to the quantization scheme described in this
paper.

The present suggestion is to use simple quantization, but
to filter the source before and after quantizing. If the filters
are appropriately designed (see Section IV), then the filtered
input signal will have an approximately Gaussian distribution,
and the resulting quantization MSE of the overall system will
approximate that for direct quantization of a Gaussian source.
Moreover, since the initial filtering will tend to make any
memoryless source appear Gaussian, the performance of the
system is insensitive to errors in modeling the input. This
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I Throughout, the term simple quantization refers to fixed-rate minimum
MSE memoryless scalar quantization [5], [6].
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Fig. 1. Performance (mean-square error versus rate) of Lloyd—Max quanti-
zation of Laplacian, gamma, and Gaussian sources, relative to the respective
rate-distortion functions. Samples of the rate-distortion function for Laplacian
and gamma sources were computed by means of the Blahut algorithm [16].
Quantizer performance figures are taken from [3, p. 135].

robustness to the source statistics is a valuable feature, not
normally present in quantization systems.

Throughout this paper, it is assumed that the source is
stationary and memoryless. For simplicity of notation, it is
further assumed that the source has zero-mean and unit-
variance.

Many sophisticated alternatives to simple quantization have
been suggested for memoryless sources. These alternatives
include vector quantization [2] entropy-coded (variable-rate)
quantization {7] and trellis coded quantization [8], [9]. While
these techniques generally achieve better signal-to-noise ratios
than the proposed scheme, they are often more complex, and
do not assure the same degree of robustness.

The method of quantization proposed here appears to be
novel, despite its stark simplicity. The only similar proposal
of which the authors are aware is one by Strube [10]. In that
scheme, an all-pass filter is used in a speech ADPCM system
to disperse pitch pulses over time, so that quantizer overload-
distortion is reduced. Strube’s scheme does not make use of an
inverse filter, however, so that it does not result in a signal that
approximates the original. The use of an all-pass prefilter and
inverse postfilter to reversibly change the PDF of a signal has
been suggested by Zenith [11] in the context of transmission
of high-definition television signals. However, their suggestion
has nothing to do with quantization.

II. PRESERVATION OF QUANTIZATION MSE

In this section it is shown that the MSE for the proposed
system is nearly equal to that incurred by quantizing the signal
after prefiltering.
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Fig. 2. Quantization system employing a prefilter and a postfilter.

Let H(z) and G(z) denote the z-transforms of the prefilter
and postfilter, respectively, as shown in Fig. 2, and let h[n]
and g[n] denote the corresponding impulse responses. Let

r[n] = z[n — D] - y[n] ey

denote the error of the overall system where D is the delay due
to filtering, and let e[n] denote the error incurred by quantizing
the prefiltered signal u[n] into v[n]. In the following analysis,
it is not assumed that e[n] is independent of u[n).

By the linearity of the postfilter,

y[n] = g[n] * (u[n] — e[n])
= g[n] * u[n] — g[n] * e[n]
= g[n] * A[n]"z[n] — g[n] * e[n] @

«© o

where “*” indicates convolution. By hypothesis, H(z) and
G(z) are approximate inverses of one another within a delay
of D, so that (2) becomes

yln] = z[n — D] — g[n] * ¢[n] ©)

and the error r[n] for the overall system can be approximated
as

r[n] = g[n] * e[n]. O

By assumption, z[n| is stationary, so that e[n] and r[n],
which are derived as time-invariant (but nonlinear) functions
of z[n], are likewise stationary {12]. Let the power spectra
of e[n] and r[n] be denoted S..(w) and S,.(w), respectively,
where w is radian frequency. In terms of these power spectra,
(4) can be rewritten [12]

Spr(w) = |G(ej°”) ‘2See(w); —rT<w< . )

It is assumed that both prefilter and postfilter are ap-
proximately all-pass, meaning that their magnitude-frequency
responses are nearly flat over the full spectrum. Consistent
with this, it can be assumed without loss of generality that
|G(e?*)| = 1 for -7 < w < 7 (whatever scaling factor is
needed to make this true can be canceled by an appropriate
gain in the prefilter). Thus, (5) reduces to

Srr(w) & See(w), (O]

which implies that the mean-square value of r[n] is nearly
equal to that of e[n]. That is, the system’s MSE is nearly equal
to that incurred by quantizing the intermediate (prefiltered)
signal u[n].
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Fig. 3. Histograms of original and filtered sources, based on 10 000 pseudo-
random samples. A 31 tap filter was used in the Laplacian case, while a 60
tap filter was used in the gamma case. For reference, an appropriately scaled
version of the Gaussian PDF is also shown (dotted curve).

ITI. STATISTICAL CHARACTERIZATION OF THE
INTERMEDIATE SIGNAL

Since each sample in u[n] is the (weighted) sum of in-
dependent random variables, its probability density function
is approximately Gaussian, provided that the sum includes a
sufficient number of variables, each with nonnegligible but
not disproportionately large weight (by Liapounov’s central
limit theorem [13]). These conditions will be satisfied when
the impulse response of the prefilter h[n] has significantly
nonzero values distributed over a sufficiently long interval. It
is not difficult to show that for a memoryless input, a sufficient
condition for a sequence of FIR filters,

N
Pn(z2) = ZPN,iZ_l
=1
to asymptotically produce marginally Gaussian output is that
the sequence of numbers {min; |pn;|} be bounded and also
bounded away from zero. In this paper, a filter that has this
property will be called time-dispersive.

The most convenient measure of the extent to which the pdf
of the source is modified is the observed performance of simple
quantization of the intermediate signal under the assumption
of a Gaussian distribution. It has been found experimentally
that for a Laplacian source, FIR time-dispersive prefilters and
postfilters of length 30 are sufficiently long to yield a signal-
to-quantization MSE ratio within 0.2 dB of the best possible
(that for a Gaussian source) at rates up to 5 bits per sample.
In the case of a gamma source, a length of 120 is required for
the same level of performance. However, even when much
shorter filters are used, a significant improvement over direct
quantization results (see Section V). Design of appropriate
prefilters and postfilters of a given length is discussed in
Section IV.

Another way to gauge the extent to which the pdf of the
input is modified is to examine histograms. Fig. 3 shows
histograms based on 10000 samples from simulated sources,
before and after prefiltering.
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A legitimate objection to the foregoing analysis is that
in many applications, the assumption of independence of
successive source samples is unjustified, so that prefiltering
may not make the pdf approximately Gaussian. In fact, it
is easy to construct a source for which prefiltering makes
the distribution appear less Gaussian—for example, simply
filler a gamma source by G(z), and use the result as z[n].
In all such cases, the previous analysis can be made to
apply if the source samples are rearranged or scrambled in a
pseudorandom manner prior to prefiltering, and subsequently
restored to their original ordering after postfiltering. Note that
scrambling and inverse scrambling are linear and energy-
preserving operations, so that the analysis of Section II applies,
and quantization MSE is preserved. However, scrambling and
inverse scrambling necessarily introduce considerable delay,
and therefore may not be appropriate in some applications.

IV. DESIGN OF TIME-DISPERSIVE PREFILTERS
AND POSTFILTERS

It is desired that the prefilter and postfilter be approximate
inverses of one another, that their impulse responses have
envelopes that extend sufficiently over time, and that their
magpnitude-frequency responses be approximately flat. One
approach to obtaining such filters is to begin with “initial
guess” filters that have roughly the right properties, then refine
these by numerical optimization. In particular, the following
procedure has proven to be successful.

Begin with a windowed “chirp” signal (swept sinusoid) as
an initial guess for the impulse response of the prefilter, and
use the same chirp, but time-reversed, as the initial guess for
the impulse response of the postfilter. To simplify notation in
the present section, the postfilter is not required to be casual,
and the delay D of the cascade is taken to be zero. Each of
the two initial guess filters has the desired property that the
energy in its impulse response is distributed over the entire
region of support; that is, the filters are time-dispersive. In
order to ensure that the remaining requirements are met—that
the prefilter and postfilter be approximate inverses of each
other, and that each have an approximately flat magnitude-
frequency response—a numerical procedure is used to modify
the initial guess filters to minimize the total square difference
between the convolution of h[n]  g[n] and the unit-sample
sequence é[n]. That is, a local minimum is sought of the
objective function

2

E= ) [Z hiklgln — k] — 8[n] )

n=—o00 Lk=—oc0

over the joint space of prefilter and postfilter coefficients
{h[n], gn]}, beginning the search at the specified initial guess.

Observe that the initial guess filters, being time-reversed
versions of each another, have identical magnitude-frequency
responses. By maintaining this relationship throughout the
optimization, so that the optimized filters also end up as
time-reversed versions of each other, the magnitude-frequency
response of each optimized filter can be made to be approx-
imately flat. This follows because the magnitude-frequency
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response of the cascade—which is the product of the indi-
vidual responses—must be flat if the two filters are to be
inverses of each another. The time-reversed relationship can
either be maintained explicitly by adding a simple constraint
(i.e., optimizing over only one of the filters and fixing the other
according to the time-reversed relationship), or else the sym-
metry of the objective function can be relied upon to maintain
the relationship from the initial guess. The laiter approach was
found to work consistently in the present investigation.

It is natural to question the existence of local minima, con-
vergence issues, and so on, however, such a formal treatment
of the optimization problem is avoided here, on the grounds
that in practice, a local minimum seems fo be obtainable
quickly and consistently using any of a variety of well-known
optimization procedures.

Figs. 4 and 5 show the characteristics of the prefilter and
postfilter in a 60 tap design example, before and after optimiza-
tion, respectively. Also shown in each figure is the convolution
of h[n] and g[n] and the corresponding magnitude-frequency
response of the cascade of the two filters. In this example, the
chirp initial guess filters were taken to be

hin] = g[-n] = Asin(n(n? - n)/120), n=0,---,59
where A was chosen to make the sum of the squares of the
coefficients in each filter unity. Note that the optimized filters
(Fig. 5) have the desired properties: the prefilter and postfilter
are approximate inverses of each other, have nearly flat
magnitude-frequency responses, and have impulse responses
with significant energy distributed well over the entire region
of support.

V. EXPERIMENTAL RESULTS

The dependence of the performance of the proposed system
on the length of the filters is illustrated in Fig. 6, for the range
of 5-37 taps. To obtain each point in the graphs, the sources
were simulated using techniques described by Knuth [14]
and the performance of the proposed quantization system was
measured for 10000 samples. Observe that for both sources,
even very short filters yield a considerable improvement
in performance. Although not shown in the figure, it was
found that as the filters are made longer than 37 taps, the
improvement in performance continues to be noticeable for
the gamma source, but not for the Laplacian source.

In obtaining the remaining experimental results presented
in this section, filters of length 31 and 60 were used in
the Laplacian and gamma cases, respectively. Also, unless
otherwise stated, all measurements were based on 10000
samples.

Fig. 7 shows the SNR in dB as a function of the number of
quantization bits for simulated Laplacian and Gamma sources,
for both simple quantization and the filter-based quantiza-
tion scheme. Also shown are samples of the rate-distortion
functions for these two sources. Note that the performance
is, as expected, approximately that of simple quantization
of a Gaussian source. The improvement over quantization
without filtering is particularly significant at low bit-rates; in
fact, by comparing the results with those presented in [2] it
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Fig. 4. Prefilter and postfilter characteristics before optimization
Section IV).
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Fig. 5. Prefilter and postfilter characteristics after optimization (see

Section IV).

can be concluded that at 1 bit/sample, the improvement over
direct quantization obtained by prefiltering and postfiltering is
roughly the same as would be obtained by three-dimensional
vector quantization.

It should be noted that although one advantage of the
proposed technique over simple quantization is the reduced
MSE for some sources, alternative existing schemes such as
vector quantization can provide even better performance. The
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Fig. 6. Experimentally determined dependence of performance of the pro-
posed system on the length of the filters. The procedure described in
Section IV was used to design the filters.
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Fig. 7. Experimental performance (in terms of mean-square error) of the
proposed scheme relative to direct Lloyd-Max quantization for a Laplacian and
a gamma source. Also shown are samples of the corresponding rate-distortion
function, computed via the Blahut algorithm [16].

more important feature, however, is the proposed scheme’s
robustness to errors in modeling the input. Specifically, the
prefiltering operation will tend to make any memoryless source
appear more Gaussian, so that the performance of the system
does not depend critically on accurate modeling of the input
pdf. Fig. 8 illustrates the relative insensitivity of the proposed
technique to modeling errors. Shown is the performance of
the proposed system and that of direct quantization, when
each source is mistakenly modeled as the other. Note that
the performance of direct quantization is reduced because of
the mismatch, while that of the proposed system is unaffected.
This implies that the proposed system can be used with some
confidence even when relatively little is known about pdf
of the source. In some applications, this robustness is more
significant than reduction of mean-square error. The most
notable prior work in robust simple quantization is by Bath and
Vandelinde [15]. In their approach, a minimum level of MSE
performance is guaranteed so long as the input pdf belongs
to a certain class; however, that performance is considerably
worse than the performance of Lloyd—Max quantization of
a Gaussian source. In contrast, for the same class of input
pdf, the performance of the quantization scheme proposed
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Fig. 8. [Experimental mean-square error performance of the proposed system
and that of direct quantization in the case of quantizer mismatch. For reference,
also shown is the mean-square error of direct quantization when the input is
correctly modeled (dotted line). In (a) the source is Laplacian distributed, but
modeled as gamma. In (b) the source is gamma distributed, but modeled as
Laplacian.

in this paper is always roughly equal to that of Lloyd—Max
quantization of a Gaussian source.

Quantizers often play the role of fundamental building
blocks in more complex source coding systems. In such
systems it is often assumed that the input to the quantizer
is Gaussian and memoryless. In such systems, the scheme
presented in this paper may serve a useful role for the
quantization component of the overall system. For example,
in [8] the authors point out that trellis coded quantization
(TCQ) performs better for the Gaussian memoryless source
then any other known coding techniques. By embedding the
dispersive filtering scheme inside TCQ, it may be possible
to provide a high performance quantization system that is
very robust to changing source statistics. A similar application
might be found in DPCM systems designed specifically for
Gauss-Markov sources, in which a linear prediction filter is
assumed to produce a Gaussian i.i.d. output.

Finally, it should be noted that in evaluating the proposed
system’s performance, there are tradeoffs between delay, com-
plexity, and robustness. For example, the scheme proposed in
this paper requires two FIR filterings, each requiring a number
of arithmetic multiplies and additions in proportion to the filter
lengths D. In contrast, the Bath and Vandelinde quantizer is
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less complex to implement but does not provide the same
degree of robustness. Hence, the robustness of the scheme
presented in the present paper is achieved at the cost of some
extra complexity and delay.

VI. CONCLUSION

A novel technique for quantization of memoryless sources
has been presented. Experimental results have confirmed that
the system performs as expected. The technique results in a
reduction in mean-square quantization error for certain sources
and offers relative insensitivity to errors in modeling the input
distribution.
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