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Bit-Stuffing Algorithms and Analysis for Run-Length
Constrained Channels in Two and Three Dimensions

Zsigmond Nagy and Kenneth Zeger, Fellow, IEEE

Abstract—A rigorous derivation is given of the coding rate
of a variable-to-variable length bit-stuffing coder for a two-di-
mensional (1 )-constrained channel. The coder studied is
“nearly” a fixed-to-fixed length algorithm. Then an analogous
variable-to-variable length bit-stuffing algorithm for the three-di-
mensional (1 )-constrained channel is presented, and its
coding rate is analyzed using the two-dimensional method. The
three-dimensional coding rate is demonstrated to be at least
0 502, which is proven to be within 4% of the capacity.

Index Terms—Bit allocation, lossy source coding, quantization,
transform coding.

I. INTRODUCTION

Abinary sequence satisfies the run-length constraint
if the number of consecutive ’s is at most , and between

any two ’s in the sequence are at least ’s. A subset of
satisfies the -dimensional constraint if it satisfies the
one-dimensional constraint along directions parallel with
every coordinate axis. Run-length constrained binary sequences
in one and more dimensions have applications in magnetic and
optical data storage systems, and have been studied extensively
[1]. Other two-dimensional constraints such as asymmetric
run-length constraints, run-length constraints along diago-
nals, and constraints defined by two-dimensional sets are
also of theoretical and practical interest [2]–[7]. Three-di-
mensional constraints were studied in [8] and [9], and the
positive capacity region of general -dimensional run-length
constraints was determined in [10]. The mathematical analysis
of high-dimensional constraints often is more difficult than the
one-dimensional case.

For practical applications, implementable and efficient
coding schemes are needed, but only a few such algorithms
exist for two- and higher dimensional constraints. Some ex-
amples for conservative and weight-constrained arrays can be
found in [6], [11], and [12].

An important special channel is when and (or
equivalently, when and ) and this paper will concen-
trate exclusively on the run-length constraint. In one di-
mension, the -constrained channel capacity is known ex-
actly. In two dimensions, the channel capacity has been studied
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by Calkin and Wilf [13] and Engel [14], and for three dimen-
sions it was studied in [9]. The capacity of the con-
straint is not known exactly in two and higher dimensions but
has been very accurately upper- and lower-bounded in two and
three dimensions.

One particularly efficient algorithm for coding under a
constraint is called “bit stuffing” and was first proposed

in 1988 by Lee [15] for the one-dimensional constraint.
Bit stuffing was then generalized in 1993 by Bender and Wolf
[16] to the one-dimensional constraint and in 1998 by
Siegel and Wolf [17] to the two-dimensional constraint.
In 2002, Halevy et al. [18] generalized bit stuffing to hexagonal
two-dimensional lattices for certain constraints.

An analysis of a two-dimensional bit-stuffing algorithm for
the constraint was presented by Roth, Siegel, and Wolf
[19]. The algorithm converts an infinite unbiased independent
and identically distributed (i.i.d.) binary input sequence into a
biased i.i.d. sequence, before mapping the bits into . In a
subsequent paper [20], they improved the bit-stuffing encoder
(i.e., increased the coding rate closer to the channel capacity)
by converting the input into two biased i.i.d. sequences. They
also use a randomized initial labeling of certain points in in
order to facilitate analysis.

The coding rate calculations in [17], [19], and [20] were
performed without a precisely defined mapping from unbiased
input sequences to biased sequences, and without prescribing
how the infinite biased sequence is encoded using finite size
regions in . One specific (and efficient) implementation of
the Roth–Siegel–Wolf coding algorithm would be to transform
the unbiased input sequence into a biased sequence using an
ideal arithmetic decoder, and then encode the biased sequence
using bit stuffing. However, a rigorous analysis of such an
implementation appears difficult because of the behavior of
arithmetic coders on finite-length input sequences.

In this paper, we first examine a close variant of the
Roth–Siegel–Wolf two-dimensional algorithm using their same
underlying bit-stuffing building block. Our encoder maps an
infinite binary sequence into a -constrained labeling
of , by parsing the input using a prefix code. The encoder
is variable-to-variable length and uses a deterministic initial
labeling, in contrast to the encoders in [17], [19], and [20]. We
give a rigorous derivation for the coding rate of our two-di-
mensional algorithm (our coding rate is exactly the same as
theirs, as expected). While the Roth–Siegel–Wolf algorithm
is implementable but not easily analyzable, our modification
is analyzable but apparently not easily implementable. How-
ever, the strong resemblence between the two algorithms can
give confidence in the theoretical basis for the implementable
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version. We then modify the two-dimensional algorithm to
create a three-dimensional algorithm based on bit stuffing
that maps an input binary sequence into and satisfies the

constraint. Finally, the two-dimensional coding rate
analysis is used (in part) to rigorously derive the coding rate
of the three-dimensional algorithm. We prove that the coding
rate in three dimensions is within 4% of the three-dimensional
channel capacity. The three-dimensional algorithm studied,
while only marginally stronger (in terms of coding rate) than a
trivial algorithm that places information bits in positions whose
coordinates sum to an even number, nevertheless demonstrates
that improved performance can be achieved with bit stuffing
and can be rigorously analyzed as in two dimensions.

The paper is organized as follows. In Section II, basic def-
initions and terminology are introduced. Two-dimensional bit
stuffing is described in Section III and our variable-to-variable
length algorithm and analysis are given in Section IV. The two-
dimensional coding rate derivation is given in Theorem IV.1.
Three-dimensional bit stuffing is described in Section V and our
variable-to-variable length algorithm and analysis are given in
Section VI. The three-dimensional coding rate result is given in
Theorem VI.2 and its maximum value is given in Theorem VI.5.
Various tedious calculations are relegated to the appendices.

II. PRELIMINARIES

For any binary string let denote its length, the
number of ’s in the string, and the th bit in the string.
Let denote the integers and the positive integers. For
any , let be the -dimensional integer lattice.
Throughout the paper, will denote a positive integer and
random variables will be denoted with “hat” notation. Let

denote the binary entropy function.
A sequence of random variables taking on values

from a set is called a Markov chain, if

for all and . A Markov chain is homogeneous
(or time invariant) if

for all and . For every the conditional
probabilities

of a homogeneous Markov chain are called the transition prob-
abilities. A Markov chain is stationary if

for all and . We say that two homogeneous
Markov chains are identical if both Markov chains take on

values from the same set , and have the same transition
probabilities and initial probabilities.

For any , a function is a labeling of
. Let denote the set of all labelings of that satisfy

the -dimensional constraint. Such labelings are called
valid. The capacity of the -dimensional constraint
(or of the constrained channel) is

where (there are various other equiv-
alent definitions). The exact value of the capacity is not known
in general. If , then , and it has been shown [10],

[21] that if and , then .

Numerical upper and lower bounds on were established
in [13], and these bounds were later improved in [7] and then
in [9]. The best known bounds on agree in the first nine
decimal places as

Numerical bounds on the three-dimensional capacity
were calculated in [9] as

(1)

The -dimensional capacity associated with a constraint is a the-
oretical bound on the average number of information bits that
can be stored per position in . The lower bound in (1), how-
ever, was not derived using a constructive encoding technique.

A constrained coding algorithm serves as a method for map-
ping an input binary information source into the lattice such
that the constraint is not violated and such that the information
source can be perfectly recovered from the labeling of . The
quality (or efficiency) of a coding algorithm is generally de-
scribed by its coding rate. The coding rate of an algorithm is
a measure of the average ratio between the length of the input
and the number of points in that are labeled for a particular
input, in the limit as the amount of source information grows
to infinity. The coding rate of any coding algorithm provides a
lower bound on the capacity of the constraint.

An -dimensional -constrained encoder is an injection

and its inverse is called a decoder. The encoder maps an
infinite binary input sequence into a labeling of a subset of .
An encoder and decoder are together called a coding algorithm.

One way to implement an encoder is to first parse the infinite
binary source and then independently map each resulting finite-
length binary string into disjoint regions of , such that no
two such regions have neighboring points. Then zero padding
can be added between regions to assure the constraint is
not violated, provided each parsed string is mapped into a region
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without locally violating the constraint. This is described
formally below.

Let be a finite complete prefix code,1 and for each let
. An -dimensional -constrained word encoder

is an injection

(2)

that maps the elements of into labelings of subsets of .
Let be an arbitrary infinite binary sequence that is
parsed by the prefix code as

where for all . If two points in are a distance
apart, then we call them neighbors. For any set , the
closure of is denoted by , and it contains the points that
are either in or have at least one neighboring point in . The
elements of

are called translation vectors if for all , the sets are
disjoint and no points in different sets are neighbors. An -di-
mensional -constrained composite encoder (with re-
spect to ) is defined by

if
if
and .

That is, is a labeling of translates of the sets
composed of the labelings

The labeling of points in outside of any by is
called zero padding. It is possible to choose the word encoder

and translation vectors such that the composite
encoder is injective (i.e., is an encoder).

Define the following quantities for a word encoder:

These quantities upper- and lower-bound, respectively, the av-
erage ratio between the input length and the number of points
in that are labeled for a particular prefix code . The prob-
ability is taken with respect to the distribution of an unbi-
ased random source.

If is a constant for all , then if is a constant,
is a fixed-to-fixed length encoder, and if is not a con-

stant then is a fixed-to-variable length encoder. Similarly,

1The code V is a prefix code if no codeword is a prefix of any other codeword.
Complete means that in the decoding tree, every node is either a leaf or has two
children.

Fig. 1. The parallelogram� and its diagonals D and rows R .

if is not a constant, then if is a constant, is a vari-
able-to-fixed length encoder, and if is not a constant then

is a variable-to-variable length encoder.
If is a sequence of prefix codes with increasing cardi-

nality, then the coding rate of a composite encoder (with
respect to ) is

provided that the limits exist and are equal. It is known [22] that
the capacity upper-bounds the coding rate.

In this paper, we discuss specific coding algorithms related to
the concept of “bit stuffing” for which the following particular
parameter choices apply: For , the code is a prefix code
with at most two codeword lengths; the sets are parallelo-
grams with one fixed side length (the other side length depends
on ); the translation vectors are such that the parallelograms

lie next to each other in parallel rows, with zero padding be-
tween the rows. For , the code is a prefix code with at
most two codeword lengths; the sets are parallelepipeds with
two fixed side lengths (the third side length depends on ); the
translation vectors are such that the parallelepipeds are next
to each other in parallel rows in three-dimensional space, with
zero padding between the rows.

For , the bit-stuffing technique of [17] and [19] pre-
scribes how the word encoder operates, that is, how a word
from a prefix code is mapped to a parallelogram in . The
main idea is that a string is copied directly into a parallelogram
bit-by-bit but skipping over ’s which were added whenever a

appeared previously in . For the encoder defined in Sec-
tion IV, and a given prefix code , the length of one side of the
parallelograms is fixed and the other side length is a function of
the parsed word being processed. Then, as the prefix code
grows in size, so does the fixed side length of the parallelograms.

III. TWO-DIMENSIONAL BIT STUFFING

A binary sequence is called a -sequence if the bits are i.i.d.
and if a occurs with probability . Throughout, we let be
a -sequence and a -sequence. For ,

, and let
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Fig. 2. A method of mapping an infinite binary source into ZZZ satisfying the (1;1) constraint. The source is mapped into labelings of translates of �
separated by rows and diagonals of 0’s. The shaded areas indicate the padding 0’s.

The set is a parallelogram whose diagonals and rows are
and , respectively, as shown in Fig. 1. The set of points

is called the boundary of .
One way to map a binary sequence into a -con-

strained labeling of is the following. The bits
are written into the diagonals of top to bottom, and left to
right (i.e., along , then , up to ). To ensure that the
resulting labeling of is -constrained, every time a

is written, extra ’s are written (said to be “stuffed”) in the po-
sitions to the right and below the . These positions are skipped
in the process of labeling the next diagonal. This procedure is
continued until is filled up, i.e., until every element of

is assigned a label.
Thus, a finite number of input sequence bits are mapped into

a -constrained labeling of . An arbitrary number of
bits of the input can be encoded into by choosing and
large enough, or into a collection of translates of by using
the same mapping on translates of with zero padding rows
and diagonals between translates, as shown in Fig. 2. Note that
a bit sequence mapped into can never be a proper prefix
of a different bit sequence mapped into .

The bit-stuffing method proposed by Siegel and Wolf [17] is
based on the above encoding scheme with the following modi-
fications. To increase the performance, the unbiased source is
transformed into a sequence , whose bits are independent, but
whose ’s and ’s have unequal probabilities. The transforma-
tion increases the average length of a finite-input sequence from

, but the transformed bits of more efficiently fit into if
the bias is carefully chosen, since fewer ’s in implies fewer
stuffed ’s in . To make the mathematical analysis of the
algorithm simpler in [19] and [20], the boundary diagonal
and boundary row are “initialized” with random labels inde-
pendent of the sequence . Their initialization of the boundary
points guarantees that for every , the labels of

form a stationary Markov chain. The initialization degrades
the performance of the algorithm, but the degradation is negli-
gible as and get large. Roth, Siegel, and Wolf [19] studied
a certain two-dimensional bit-stuffing algorithm, and computed
that the expected coding rate is within 1% of the capacity .
The algorithm was later improved in [20] with an encoding rate
within 0.1% of the capacity .

TABLE I
PARAMETERS USED IN SECTIONS III AND IV

A list of variables defined in Sections III and IV and the pa-
rameters they depend on is given in Tables I and II as a reference.

A. A Variable-to-Fixed Length Bit-Stuffing Encoder

In Appendix I, we formally define a variable-to-fixed length
encoder

to label and then use the encoder as a building block in
a variable-to-variable length encoder to label larger portions of

. Then we take .
Define the following total ordering on the points of :

or
and

for any . That is, if
the diagonal that lies on is above and to the left of the
diagonal that lies on, or if they lie on the same diagonal
but with above and to the right of .

To encode a given binary input sequence, the encoder
first initializes the boundary of . Then it labels the points
of in increasing order with respect to the ordering ,
such that every point of is labeled either with a bit of
the input sequence or with a “stuffed” to ensure that the la-
beling is -constrained. The encoder is invertible; the
inverse mapping scans the diagonals skipping
over stuffed ’s to recover the input sequence. A pseudo-code
description of the encoder is given in Table III.
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TABLE II
VARIABLES INTRODUCED IN SECTIONS III AND IV AND THE PARAMETERS THEY DEPEND ON

TABLE III
THE VARIABLE-TO-FIXED LENGTH (1;1)-CONSTRAINED TWO-DIMENSIONAL BIT-STUFFING ENCODER ~E . THE ALGORITHM MAPS A

FINITE-INPUT STRING s FROM V INTO A (1;1)-CONSTRAINED LABELING OF �

The encoder is completely determined by the integer
and the initial labeling (defined in Appendix I). If is a fixed
constant then is a variable-to-fixed length encoder, as de-
fined in [17] and [19] (they actually used a more general par-
allelogram instead of ). In Section IV-A, we de-
fine a fixed-to-variable length encoder by letting a parameter
be a function of the input . The set is decomposed into
multiple translates of , which allows to grow large
enough to accommodate certain long input strings. Then, in Sec-
tion IV-B, we use the fixed-to-variable length encoder to de-
fine a variable-to-variable length encoder. The variable-to-vari-
able length encoder is “nearly” a fixed-to-fixed length encoder,
which allows precise mathematical analysis of its coding rate.

IV. A TWO-DIMENSIONAL VARIABLE-TO-VARIABLE

LENGTH ENCODER

Using a finite complete prefix code defined in Section IV-B
a sequence is parsed into finite variable length strings

. Each string in the prefix code is mapped
into a -constrained labeling of the set
where is a positive integer chosen so that the mapped
prefix code fits into using bit stuffing. The in-
finite sequence of finite length strings is
mapped into labelings of translates of the parallelograms

that tile a quadrant of . The
translates are separated by one diagonal and one row of zero
padding (see Fig. 3). The tiling can be generalized to all of
by alternately placing the parallelograms in the four quadrants.
Henceforth, we abbreviate with .

A. An Intermediate Fixed-to-Variable Length Encoder

For each , define the following translations of ,
its boundary diagonal , boundary row , and an arbitrary

:

Fig. 3. Translates of the parallelograms � ; . . . ; � ; . . .

are used to encode the words w ; . . . ; w ; . . ., respectively. The shaded
areas indicate the padding 0s.

Let be a positive real number. Let , called the target
number of translates, and let be an input
string. For each let

be a union of boundaries of translates of , and let

be an initial labeling of satisfying for all .
For each let

be the restriction of to the set ; that is,
for all . Let be an infinite binary string called
an auxiliary sequence.

The process of encoding the input string is described in
detail below. The points of are assigned a fixed initial la-
beling using . The translates are labeled
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Fig. 4. The set � consists of � translates of � , and a diagonal of zero padding after each translate.

with the bits of using the variable-to-fixed length encoder
and the fixed initial labelings , respectively. The
inter-translate diagonals , for , are
filled with ’s (see Fig. 4).

Labeling all translates of using the encoder
(with the initialization on the th translate) and adding the
padding diagonals after each translate, defines a labeling of the
set . Each is a variable-to-fixed length en-
coder, so it is possible that to encode exactly input bits
might require either more or less space in than just the set

. If is too short to label all of , then
uses the auxiliary sequence as input to finish labeling

, and if is too long to label , then
continues the encoding process and maps the remaining bits

of into the additional translates , using the

auxiliary sequence to finish filling the last translate ,
and using the all zero initialization on the boundary elements of
the additional translates. The inter-translate diagonals

are filled with padding ’s.
The fixed-to-variable length encoder

described above is formally defined in Appendix II. The encoder
is completely determined by , , , , and will serve

as the second stage of a variable-to-variable length -con-
strained bit-stuffing encoder to be defined in Section IV-B. Note
that can be recovered from the labeling of .

In Section IV-C, we will choose and to guarantee that
fills up almost perfectly with high probability,

and therefore the number of additional translates will typically
be small.

The set is defined in Appendix II. It consists of the strings
that “fit well” into , i.e., for every the frac-
tion of bits of that are not mapped into is smaller
than about . The set is determined by , , , , and .

B. Restriction to Typical Sequences

An -typical set of block length is formally de-
fined in Appendix II.

Let be a complete prefix code of cardinality , whose
codewords are one of two possible lengths,2 and let

2For any i � 2 there exists a complete prefix code with i codewords, all of
length blog ic or blog ic + 1.

Fig. 5. A two-dimensional (1;1)-constrained bit-stuffing algorithm.
The input bits w ;w ; . . . are mapped into the sequence s ; s ; . . ., which is
encoded into a labeling of ZZZ by �E .

be any bijection. Both and are determined by the parameters
, , , , , and .
The code parses an infinite-input sequence and maps a

finite parsed string to an -typical (with respect to ) sequence
that is likely to fit into the first translates of . Since

is a complete prefix code, a binary sequence can uniquely be
parsed into strings . A variable-to-variable
length -constrained bit-stuffing encoder is defined
as the composition

The encoder is completely determined by the parameters
, , , , , , and .
That is, each string of the parsed sequence is

transformed into the typical, well-fitting string by
the bijection , and then is mapped into a -constrained
labeling of using the encoder . The transformation

approximates transforming an infinite -sequence into a
-sequence with an arithmetic decoder. The variable-to-vari-

able length two-dimensional -constrained bit-stuffing al-
gorithm consists of the mapping and its inverse. The map-
ping is referred to as the algorithm’s encoder, and the in-
verse is called the algorithm’s decoder (see Fig. 5).

Note that it is guaranteed by the encoder that the last
diagonal of is filled with ’s. An additional row
of padding ’s is added to to ensure that a tiling by the
parallelograms defines a valid labeling of .

C. Coding Rate Analysis

Consider the encoder with the boundary elements
and assigned random initial labels independently of the -se-
quence by the stationary homogeneous Markov chains
and , respectively (see Fig. 6(a) and (b)).

The transition probabilities , , are constrained such
that the stationary distribution of the Markov chains and

are the same; thus, the labeling of fixes the label of
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Fig. 6. The homogeneous Markov chains �̂ and �̂ generating the labels
of: (a) a boundary diagonal; and (b) a boundary row.

the origin, which is used to initiate the labeling of . It fol-
lows from [19], [20] that for any the parameters , ,
can be chosen to guarantee that the labels of each diagonal

form a stationary homogeneous Markov chain
identical to the Markov chain labeling (see Theorem
IV.2). If , , are chosen such that the labels of the ’s
form identical Markov chains, then the initialization is called a
standard initialization corresponding to and the resulting la-
beling of is a standard labeling corresponding to .

Let

and

are both labeled with by

For a standard initialization , the probability depends only on
the probability (i.e., it is independent of ) and is the proba-
bility that any position in is unstuffed by .

A number is said to be an achievable coding rate of a
two-dimensional -constrained bit-stuffing algorithm
if

The proof of the following theorem can be found in
Appendix III.

Theorem IV.1: The two-dimensional bit-stuffing algorithm
achieves a coding rate of

For the parameters , , , the value of needed to make
as close to as desired is implied in Lemma III.1

and Theorem IV.1. For a fixed value of , the existence of the
initial labeling used by the encoder is given in Lemma
III.1. The parameter is a function of (see (4)).

Note that if is close to , then the -sequence contains
fewer ’s, and fewer stuffed ’s are forced into the labeling of

making the encoder more efficient (i.e., increasing ).
This in turn makes smaller. However, small values of have
the disadvantage of decreasing . Thus, to maximize the
coding rate , there is a tradeoff between increasing
and decreasing in the range . (The maximum of is
attained for in the range , since both and decrease
as goes above .)

D. Coding Rate Maximization

Let the -sequence be encoded into a labeling of
using the encoder with a random initial labeling assigned

to the boundary elements as defined in Section IV-C.
Let denote the random label assigned to the point .
To simplify the notation, we will use

to denote the joint random variables for any
integer and for . Necessary and suffi-
cient conditions for the labels on each diagonal
to form a Markov chain identical to the labels of will be
given in Theorem IV.2 (proof in Appendix III). In the theorem,
the random initial labeling assigned to the boundary elements

is that defined in Section IV.C, and the parameters
and are given in Fig. 1.

Theorem IV.2: Let the -sequence be encoded into a la-
beling of using the encoder with the random initial
labeling assigned to the boundary elements . The fol-
lowing statements are equivalent.

1) The labels assigned to the elements of , for
, form a stationary homogeneous Markov

chain identical to the labels of (i.e., the labeling of
is a standard labeling).

2) The labels assigned to the elements of , for
, form a stationary homogeneous Markov

chain identical to the labels of .

3) The transition probabilities of the Markov chains and
satisfy

4) The joint distribution of the random variables ,
, , , for

is independent of the choice of
and .

Remark IV.3: Equations (C12)–(C14) imply that

(3)

where . The conditions of Theorem IV.2
imply that for a bit-stuffing encoder with standard initial-
ization, the probability that the label of any point
is equals (independent of and ).

Using Theorems IV.1, IV.2, Remark IV.3, and the fact that

(4)

the achievable coding rate can be written as a function of
as

(5)
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Fig. 7. Layers of� are shown on the left-hand side. The relative position of layers L and L is illustrated on the right-hand side. The diagonalsD ,
D , D , and the rows R , R are shaded.

since and are implicit functions of . The largest coding
rate is found by maximizing (5) over the parameter . In [19],
this maximization was computed approximately as

and occurred at . The performance of the bit-stuffing
algorithm was later improved in [20]. The authors implicitly
split a source into two subsources and apply different trans-
formers to each subsource to create two different biased sources
for stuffing. The authors obtained the approximate expected
coding rate of their encoder as

In the present paper, we generalize our previously described
two-dimensional variable-to-variable length -con-
strained bit-stuffing encoder to three dimensions. We
show (in Theorem VI.5) that the three-dimensional algorithm
achieves the approximate coding rate of

E. Remarks on Computational Complexity

Although the bit-stuffing algorithm analyzed here closely
resembles the Roth–Siegel–Wolf algorithm and is easier to
analyze, it nevertheless appears computationally difficult to
implement. The largest contribution to complexity occurs in
constructing the sets and in the map ,
defined in Section IV-B, and determining the initial labeling
in Lemma III.1. An exhaustive construction of consists of
examining at most binary sequences and determining
(in time) whether each sequence is typical. For each
of these binary sequences, it can be determined in polynomial
time whether it lies in by computing the ’s by a stuffing
simulation. Once is constructed, the prefix code

(and thus the bijection ) can be constructed in time linear in
. An initial labeling implied in Lemma III.1 can be

found by an exhaustive search in at most steps.
The mapping is polynomial time contructible, and thus,
the total complexity of determining is at most .
Similarly, the complexity occurring for the three-dimensional
algorithm to be described in Section V is at most .

V. THREE-DIMENSIONAL BIT STUFFING

In this section, we describe a generalization of the two-dimen-
sional bit-stuffing algorithm to three dimensions. Often, iden-
tical notation to that used in earlier sections for two-dimensional
bit stuffing will be redefined for three dimensions in an analo-
gous way.

For and , define the sets

as shown in Fig. 7. The set is a translate of the parallelogram
defined in Section III, and is called the th

layer of . For and let

be the same subsets of as in Section III. For
, define similar subsets on each layer , namely

for and (see Fig. 7). The points
in , , , for , are called the boundary
of . That is, the boundary points consist of the entire
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TABLE IV
PARAMETERS USED IN SECTIONS V AND VI

TABLE V
VARIABLES INTRODUCED IN SECTIONS V AND VI AND THE PARAMETERS THEY DEPEND ON

Fig. 8. The coordinates [i; j; k] denote the point on the ith layer, jth diagonal,
kth position. In the Cartesian coordinate system this point is [i; j; k] = (X +
j � k; Y + i � k; i).

first layer and the first diagonal and first row on every
other layer. The nonboundary points of are the internal
points.

Notation: Every point of can be determined by the
layer, the diagonal on a given layer, and the relative position
within the diagonal where the point lies. Therefore, to simplify
the notation, the elements of will be addressed by a
three-tuple , where determines the layer

, determines the diagonal on layer
, and is the position within the diagonal
. The point has coordinates

in the Cartesian coordinate system (see Fig. 8).

An efficient three-dimensional coding algorithm would be to
transform the unbiased input sequence into a biased sequence,
and use a three-dimensional generalization of the bit-stuffing
encoder to map the biased sequence into a -constrained
labeling of . To perform a rigorous analysis of the coding
rate, we introduce a close variant of this implementation. We
present a three-dimensional bit-stuffing algorithm similar to the
two-dimensional one defined in Section IV.

The three-dimensional algorithm’s encoder is denoted by
, and works as follows. As in two dimensions, a sequence

is parsed into the sequence of strings using
a complete prefix code. Then, the string is mapped
into , where is an -typical string with
respect to of length and is an -typical
string with respect to of length . The value of
is defined similarly as in the two-dimensional case;
are defined in Section VI-C; and and are calculated in
Section VI-D. Then, the three-dimensional fixed-to-variable
length -constrained bit-stuffing encoder maps

into a -constrained labeling of .
The exact definitions of and are given in Section VI.

A list of variables defined in Sections V and VI and the param-
eters they depend on are given in Tables IV and V as a reference.

A. A Variable-to-Fixed Length Encoder

The ordering defined in Section III-A is extended to in
the following way. For any
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TABLE VI
THE VARIABLE-TO-FIXED LENGTH (1;1)-CONSTRAINED THREE-DIMENSIONAL BIT-STUFFING ENCODER ~E .

THE ALGORITHM MAPS s AND s INTO A (1;1)-CONSTRAINED LABELING OF �

let

or
and

Note that the ordering of the elements in with respect
to is equivalent to lexicographic ordering if we use the coor-
dinates to represent the points of .

Let

be an initial labeling of the boundary of . The three-
dimensional variable-to-fixed length bit-stuffing encoder

labels the points of in increasing order with respect
to the ordering . The set consists of pairs of strings

that perfectly fit into under the mapping
(analogous to the two-dimensional case in (A1)). For

, every point of is labeled either
with a bit of or or with a stuffed . A pseudocode
description of is given in Table VI. Note that in Step 6
the encoder makes a decision whether the first or the second
input string is used to label the current position. This selection
process ensures that the encoder is invertible (see Remark
VI.4). The inverse mapping scans the elements of in
increasing order with respect to the ordering , skipping over
stuffed ’s to recover the input sequences.

In the following section, is used to define a three-di-
mensional variable-to-variable length -constrained bit-
stuffing encoder.

VI. A THREE-DIMENSIONAL VARIABLE-TO-VARIABLE

LENGTH ENCODER

A three-dimensional variable-to-variable length -con-
strained bit-stuffing encoder is defined analogously to the
two-dimensional encoder . Using a finite complete prefix
code defined in Section VI-B, an input sequence is parsed
into variable-length strings . Each string is
mapped into a -constrained labeling of a translate of the

set , where is a parameter of the encoder, and
where is a positive integer chosen so that the mapped
prefix code fits into using bit stuffing. Henceforth,
we abbreviate with . An analysis of the coding rate
of is given in Section VI-C when the input is the -se-
quence .

A. An Intermediate Fixed-to-Variable Length Encoder

The set can be decomposed as

The translates

are labeled with information bits and stuffed ’s, the layers
are padded with ’s, and some additional “over-

flow” layers

are filled randomly. Let

be a union of boundaries of the first translates of .
The elements of are assigned a fixed initial labeling (to

be determined from Lemma VI.1). The translates of
are labeled with input strings

using the variable-to-fixed length bit-stuffing encoder for
each translate with the fixed initial labeling on the boundary
points.

Labeling all translates of using the encoder ,
and adding the padding layers after each translate defines a la-
beling of the set . In a similar manner as in two
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dimensions, if the sequence is shorter than the necessary
bits to label , the auxiliary sequence is ap-
pended as a suffix to the string . Likewise, the auxiliary se-
quence is used if all bits of are encoded before the
labeling of is complete. Note that is an
upper bound on the number of auxiliary bits needed.

It is also possible that some bits of or do not get
encoded into . In this case, first the unencoded
bits of are copied into the even-numbered diagonals

of the first overflow layer with a padding diagonal of
’s separating them. Unlike in two dimensions, the input bits

are copied bit-by-bit into these diagonals, i.e., without using
bit stuffing. The encoder continues this process on consecu-
tive layers until all bits of are encoded. After that, the re-
maining bits of are encoded using a similar method. The
last layer used to encode the last input bits may contain unla-
beled points which are labeled with ’s. Finally, an additional
layer of padding ’s is added, whose index is defined to be .

The fixed-to-variable length encoder

described above is formally defined in Appendix IV. The en-
coder will serve as the second stage of a variable-to-vari-
able length encoder and is defined with respect to the fixed and
finite auxiliary binary sequences

which are described in Lemma VI.1.
The padding diagonals on each overflow layer guarantee that

the labeling of the layers

is -constrained. By choosing appropriately, and by ad-
justing the parameters and , it will be guaranteed that
and fill up almost perfectly (for large
and small ), and therefore the number of overflow layers added
will be small.

The set is defined in Appendix IV. It contains the pairs of
strings that “fit well” into .

B. Restriction to Typical Sequences

A set of -typical pairs of strings of block length
and is formally defined in Appendix IV. The sets and

can be shown to have nonempty intersection, by an argument
similar to that used to obtain the lower bound in (C6).

Let be a finite complete prefix code of cardinality
whose codewords are one of two possible lengths. Let

be any bijection. The code parses an infinite input sequence,
and maps a finite parsed string to a pair of -typical (with
respect to and , respectively) sequences that
are likely to fit into the first translates of . Since

is a complete prefix code, a binary sequence can uniquely be
parsed into a sequence of words such that

. We define a three-dimensional variable-to-variable length
-constrained bit-stuffing encoder as the composition

That is, a string of the parsed sequence is trans-
formed into the typical, well-fitting string

by the bijection , and then is mapped into a
-constrained labeling of using the bit-stuffing

encoder . The variable-to-variable length three-dimen-
sional -constrained bit-stuffing algorithm consists of the
mapping , a bit-stuffing encoder, a bit-stuffing decoder, and
the inverse mapping of . The mapping is referred to as the
algorithm’s encoder, and the inverse is called the algorithm’s
decoder. An arbitrary number of words can be transformed
into , and mapped into labelings of translates of

. The translates are separated by padding ’s in three
dimensions similarly as in two dimensions.

C. Coding Rate Analysis

Let be a -sequence and be a -sequence. Let
the variable-to-fixed length encoder map and into

. Before the encoding, let the boundary elements

be randomly assigned initial labels by . For every internal point
define

probability is labeled by a bit from

probability is labeled by a bit from

as in Steps 7 and 9 of Table VI.
The random initial labeling is called a standard three-di-

mensional initialization corresponding to and if
for and for every internal point (where

) the quantity

is independent of , , , . The corresponding labeling of
is called a standard three-dimensional labeling corre-

sponding to and . Let

there exists a random initialization

such that the labeling of by

is a standard labeling

It is shown in Section VI-D that is nonempty (in the paragraph
preceding Remark VI.4).

A fixed initial labeling of , and auxiliary sequences
and used by , are implied in the following lemma (proof
in Appendix V). The set in the lemma is defined in (D1).
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Lemma VI.1: Consider the -sequence

and the -sequence

for some . For any and any , there
exists such that for any there is an initial labeling

and auxiliary sequences and such
that

A number is said to be an achievable coding rate of
a three-dimensional -constrained bit-stuffing algorithm

if

Theorem VI.2: For any , the three-dimensional
bit-stuffing algorithm achieves a coding rate of

Proof: Let , and let the -sequence and
the -sequence be independent. We have

for large enough (see [23, pp. 51–52]). The rest of
the proof is analogous to the proof of Theorem IV.1 using
Lemma VI.1.

As in two dimensions, for given parameters , , , , the
value of is induced by Lemma VI.1 and Theorem VI.2. For a
fixed , the initial labeling and the auxiliary sequences
and are implied in Lemma VI.1. The parameters and
are given in (F3) and (F4) of Appendix VI.

D. Coding Rate Maximization

In this subsection, we consider the labeling of the set
by the encoder , where the input sequences are the -se-
quence and the -sequence , and where the boundary
elements of are assigned random initial labels by

described in what follows.
The initial labels of are chosen independent of the input

sequences and such that the labels of constitute a stan-
dard two-dimensional labeling. More precisely, let ,
and let , , be defined as in Theorem IV.2. The diagonal

and the row are initialized by the stationary homo-
geneous Markov chains and , respectively. Let be
an auxiliary -sequence independent of and , used only
to initialize . Using and the two-dimensional bit-stuffing
encoder , we label the remainder of the elements of .

Fig. 9. Elements of D , D , D , D in Conditions a)-d). Labels
represent the centers of cubes.

Thus, the resulting labeling of is a standard two-dimen-
sional labeling. The points of and on each layer
(for ) are initialized independently for each
by the Markov chains and used to initialize and

, respectively.
Note that is a parameter of the above random initialization

of . We show that and can also be expressed in
terms of such that the resulting labeling of by
is a standard three-dimensional labeling corresponding to
and .

Let the random label of the point be de-
noted by . Our goal is to prove that if is la-
beled by , then Conditions a)-d) below are sufficient for the
labels of to be a standard labeling. In Appendix VI, we
show that there exist parameters , , , , , , such that
Conditions a)-d) are satisfied.

Let , , , ,
, , , , as

shown in Fig. 9.
• Condition a): The joint distribution of is

identical to the joint distribution of .
• Condition b): The joint distribution of is

identical to the joint distribution of .
• Condition c): The joint distribution of is

identical to the joint distribution of .
• Condition d): The joint random variables are

conditionally independent of given .

Theorem VI.3: If the labeling of by satisfies
Conditions (a)-(d), then the labeling of is a standard
three-dimensional labeling.

Proof: Consider the points in Fig. 13 for
. Lemma V.8 implies that the joint probability

distribution of

is independent of the layer , the diagonal , and the position ,
which proves the theorem.

Conditions a)-d) translate into a set of equations for the pa-
rameters , , , , , , (see Appendix VI). Using Con-
dition 3 in Theorem IV.2, (3), and (F1)–(F4), we expressed the
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TABLE VII
THE NUMERICAL VALUES OF THE PARAMETERS THAT MAXIMIZE r

parameters , , , , , , , in terms of . Therefore,
for

that also satisfy Condition 3 in Theorem IV.2, (3), and
(F1)–(F4), it follows that , i.e., the corresponding
labeling of by is a standard labeling. Optimization
for the achievable coding rate

over gives the numerical results in Table VII.

Remark VI.4: Conditions a)-d) with the additional require-
ment that yield the trivial solution

Thus, to obtain a nontrivial solution, it was necessary to use two
sequences and with parameters .

Theorem VI.5: The three-dimensional bit-stuffing encoder
achieves a coding rate of

which is within 4% of the capacity.
Proof: Substituting the numerical values given in

Table VII into the formula determined in
Theorem VI.2 gives . Using the bounds
in (1) we get

VII. CONCLUSION

In order to improve the theoretical foundation of the
Roth–Siegel–Wolf bit-stuffing algorithm for two-dimensional

run-length constrained coding, we rigorously analyzed
a close variant of the algorithm. The studied algorithm closely
resembles the original bit-stuffing algorithm, is precisely de-
fined, and achieves the same coding rate. It is, however, not as
readily implementable due to higher computational complexity.
We generalized the algorithm to three dimensions, and then
rigorously analyzed it using techniques similar to those we
used in two dimensions. The rate of the three-dimensional
coder is less than 4% from the capacity and is higher (although
only slightly) than a trivial coder that places information bits in
locations whose coordinates sum to an even number, and places
zeros elsewhere.

APPENDIX I
DEFINITION OF A TWO-DIMENSIONAL VARIABLE-TO-FIXED

LENGTH ENCODER

This appendix formally defines an encoder used in
Section III-A.

For any , let and
be the left and top neighbors of . Also let

be the least upper bound of the points in
under the ordering . Let

be an initial labeling of the boundary of . Then de-
fine a two-dimensional variable-to-fixed length -con-
strained bit-stuffing encoder recursively, with input string

, by
if
if

or
otherwise

The number is one more than the number of previously
nonstuffed bits in . Let

(A1)

be the set of all binary strings with length , i.e., such
a string perfectly fits into under the bit-stuffing mapping

. Then is a prefix code and the mapping

is a word encoder, as defined in (2).

APPENDIX II
DEFINITION OF A TWO-DIMENSIONAL INTERMEDIATE

FIXED-TO-VARIABLE LENGTH ENCODER

This appendix formally defines an encoder used in
Sections IV-A and IV-B.

For each , the labeling induces a prefix code based
on labeling , as in (A1). The sequence of prefix codes

induces a partition of the concatenation of the input and auxil-
iary strings as

Let

is a prefix of

be the number of translates of used to perform the la-
beling. That is, will be encoded into a labeling of

Later, we will force to be close to the target , with high
probability. Let

The parallelogram is decomposed into translates
, to be filled with information bits and stuffed ’s, and

diagonals , to be filled with zero padding.
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TABLE VIII
ADDITIONAL VARIABLES INTRODUCED IN APPENDIX II AND THE PARAMETERS THEY DEPEND ON

This is formalized by defining a fixed-to-variable length
encoder

by specifying the labeling

as

if

if

where is the encoder defined in Section III-A.
For a given , , , binary input string ,

auxiliary binary sequence , and initial labeling of , and
for each , let (see Table VIII)

number of bits of that maps into

If positive, is the number of bits of that do not get mapped
into , and otherwise is minus the number of
bits of that get mapped into .

For any and

let

(B1)

Note that even though is a function of the encoder by
way of , is, in fact, independent of the auxiliary sequence

, since whenever .
For any , the typical set of block length with

respect to is defined as [23, p. 51]

The term

is the probability of a length -sequence being equal
to . The set is determined by , , , , , , and an element
of is called an -typical sequence.

APPENDIX III
TWO LEMMAS AND THE PROOFS OF THEOREMS IV.1 AND IV.2

This appendix gives a lemma and a proof used in
Section IV-C. An initial labeling of used by is
implied in the lemma. The set in the lemma is defined in
Appendix II.

Lemma III.1: For the -sequence , and any
, and , there exists such that for every

there is an initial labeling

such that

(C1)

Proof: Suppose that for some the -sequence
is encoded into by , with a random initial labeling
of that assigns labels using the Markov chain for the
translates , the Markov chain for the
translates , and initializes and with

’s for . By choosing the auxiliary sequence to be a
-sequence, we will demonstrate that there is at least one initial

labeling such that for any auxiliary sequence
, (C1) holds.
Since each is initialized by , the labeling of each

is a standard labeling, and thus by the definition of , we
have

for every . For any two distinct
, the random variables and are inde-

pendent and have finite variances (independent of ). Therefore,
by the weak law of large numbers, for every , we have

(C2)

The random variables in (C2) are functions of the random
input -sequence , the random auxiliary sequence , and the
random initialization of . Then (C2) and the inequalities

(C3)
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imply that

(C4)

It follows from (C4) that there exists a such that

for all . Thus, there must exist at least one initial labeling
(depending on ) such that

(C5)

where the conditioning in (C5) is on the event that the random
labeling equals the fixed labeling .

Equivalently, for every , we have

Proof of Theorem IV.1: For and , let
be defined as in Lemma III.1. It is known [23, pp. 51–52] that

can be chosen large enough such that the -sequence

satisfies

Therefore, Lemma III.1 implies

which then implies

(C6)

Similarly, we have

which implies

(C7)

Any string has length either or
. Note that together with one row of

zero padding occupies points in . Therefore,
(C6), the definition of the set , and the fact that

imply that the coding rate is lower bounded as

(C8)

The term in the denominator is an upper bound on the
number of additional translates of needed after the first
translates, since every input bit is mapped into at most three bits
by , and each translate can be labeled by at most bits.
Using (C7) and the fact that

for any input word , the coding rate is upper-bounded as

(C9)

Taking limits as and , the theorem follows from
(C8) and (C9).

Several of the results in this paper are based on the following
property of Markov chains, whose proof is included here for
completeness.

Lemma III.2: Let be a Markov chain that takes
on values from a set . Let be a random variable that takes
on values from the set , and for some , let be con-
ditionally independent of if are given. Then

is conditionally independent of if is given.
Proof: Let . Then

where the summation is taken over all values such
that the event we condition on has positive probability. By the
assumption of the lemma, we have

Furthermore, since the reverse sequence is a Markov
chain, it follows that

Hence,
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Fig. 10. The diagonals D and D of � .

Proof of Theorem IV.2: The equivalence of Conditions 1),
2), and 3) follows from the results in [19]3 and [20]. We show
that Conditions 1), 2), and 3) are together equivalent to Condi-
tion 4). For a fixed , consider the points

for , of the diagonals and (see Fig. 10). Let
, , , be a valid labeling of the points , , ,
, for . Then

(C10)

(C11)

where (C10) follows from the definition of the bit-stuffing en-
coder; and (C11) follows from Lemma III.2 with

since the labels form a Markov chain, and

is independent of if

are given. Conditions 1) and 2) imply that the first three terms of
(C11) are independent of the diagonal and the position , and
the last term of (C11) is independent of and by the definition

3[19, eq. (24)] is incorrect. It should read

z =
(4� 3q)� (4� 3q) � 4(1� q)(4� 3q)

2(1� q)(4� 3q)
:

of the bit-stuffing encoder. Hence, Conditions 1) and 2) together
imply Condition 4).

To prove the converse, first note that

and, therefore, the Markov chains and must have the
same stationary probabilities. Let denote the stationary prob-
ability of the state . Then

(C12)

(C13)

Furthermore, by Condition 4) we have

which implies

and

which implies

(C14)

The solution of (C12)–(C14) for , , in terms of gives
the formulas in Condition 3).
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TABLE IX
ADDITIONAL VARIABLES INTRODUCED IN APPENDIX IV AND THE PARAMETERS THEY DEPEND ON

APPENDIX IV
DEFINITION OF A THREE-DIMENSIONAL INTERMEDIATE

FIXED-TO-VARIABLE LENGTH ENCODER

This appendix formally defines an encoder used in
Sections VI-A and VI-B.

A fixed-to-variable length encoder

is defined by specifying the labeling

as

if
for some

if
even,

,

otherwise .
where

and is the encoder defined in Section III-A;
is a parsing of for some auxiliary sequences

, ; and is the suffix of (for ) that does
not get encoded into the first translates of . The default
case when

includes those which lie in the intertranslate layers
for , as well as those

for which

and either is odd or else

Note that in the middle case above, the subscript refers to
a bit position in the string .

For given , , , , binary input strings and ,
auxiliary sequences and , and initial labeling of ,
we define the quantities (see Table IX)

number of bits of that

maps into

number of bits of that

maps into

length of the longest suffix of

not mapped into

length of the longest suffix of

not mapped into

If the auxiliary sequence (for ) is used during en-
coding, then is minus the number of bits of
that get mapped into .

For any , , , and for fixed , , , let

(D1)

Let

be -typical sequence pairs and with respect to and
, of length and , respectively.

APPENDIX V
DETAILS OF THREE-DIMENSIONAL CODING RATE

MAXIMIZATION

This appendix provides details used in Section VI-D.

Proof of Lemma VI.1: Suppose that and are en-
coded into by such that the random initial labels
defined by constitute a standard three-dimen-
sional initialization corresponding to and on each translate
of . Furthermore, let the auxiliary sequence
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be a -sequence, and let the auxiliary sequence

be a -sequence.
The rest of the proof is similar to the proof of Lemma III.1

and is therefore omitted.

The following lemmas about the two-dimensional standard
labeling of follow from Theorem IV.2 and the definition
of the two-dimensional bit-stuffing encoder. These results are
necessary for the analysis of the three-dimensional algorithm.
Let denote a standard two-dimensional random initializa-
tion of the boundary of by the stationary homogeneous
Markov chains and . The diagonals and in the
following lemma are illustrated in Fig. 10.

Lemma V.1: Let the -sequence be encoded into the par-
allelogram by using a standard initial labeling .
For a fixed , let and

denote the elements of the diagonals
and , respectively. The sequence forms a
stationary homogeneous Markov chain.

Lemma V.2: Let the -sequence be encoded into the par-
allelogram by using a standard initial labeling .
For , let the random vector denote the
labels of the diagonal . The sequence forms a
stationary homogeneous Markov chain.

In the following we show that Conditions a)-d) imply that for
every if

then the labels of the translates

have the same joint probability distribution as the labels

First, we show that it holds for the translates on the diagonals
, , , . In the following lemma, the elements

, , , are shown in Fig. 11.

Lemma V.3: Let , , ,
denote the elements of , , , , re-

spectively. If the labeling of by satisfies Condition
b), then for all , the joint distribution of

is identical to the joint distribution of

Proof: The lemma trivially holds for . Suppose the
lemma is true for , where . We will show that
the joint distribution of

is identical to the joint distribution of

Let be a valid labeling of the points

respectively. Then

(E1)

In what follows, we rewrite each of the three terms in (E1). First
we have

(E2)

(E3)

where (E2) follows from the induction hypothesis (summing out
four terms), and (E3) follows from Condition b). Furthermore

(E4)

(E5)

(E6)

where (E4) follows from Lemma III.2 with

since the labels form a stationary homogeneous
Markov chain by Lemma V.1; (E5) follows from Lemma V.1;
and (E6) holds since the initial labels of and are chosen
independently of the initial labels of , , , . Finally, since
the algorithm uses the same procedure to label and
as it did to label and , we have
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Fig. 11. The diagonals D , D , D , D .

(E7)

Combining (E1) with (E3), (E6), and (E7) gives

This completes the induction argument.

The elements , , , in the following corollary are illus-
trated in Fig. 11.

Corollary V.4: Let , , ,
denote the elements of , , , ,

respectively. If the labeling of by satisfies Condi-
tion b), then the sequence of labels forms
a stationary homogeneous Markov chain.

Proof: The fact that the sequence is
a Markov chain follows from the definition of the bit-stuffing
encoder. Lemma V.3 implies that this Markov chain is stationary
and homogeneous.

Lemma V.5: Let and be finite
sequences of random variables. If is a Markov chain,
and is conditionally independent of given , for

, then is a Markov chain.

Proof: To prove the lemma it suffices to show that the re-
verse chain is a Markov chain. Let take on values
from the alphabet . Let and . Then

(E8)

(E9)

(E10)

where the summation in (E8) is taken over all values
such that the conditioning event has positive probability; (E9)
follows since is a Markov chain; and (E10) follows
from the assumption that is conditionally independent of

given , for every .

The elements , , , in the following lemma are illus-
trated in Fig. 11.

Lemma V.6: Let , , ,
denote the elements of , , , ,

respectively. If a three-dimensional bit-stuffing algorithm
labeling satisfies Conditions a), b), and d), then the
sequence of labels forms a stationary homoge-

neous Markov chain identical to .
Proof: Let and . Corol-

lary V.4 implies that is a Markov chain. Furthermore,
Condition d) and Lemma V.3 imply that is condition-
ally independent of given . Hence, the conditions
of Lemma V.5 hold for and , and, therefore, is a
Markov chain. Condition a) and Lemma V.3 imply that the
Markov chain is identical to the Markov chain

.
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Fig. 12. The diagonals D , D , D , D .

TABLE X
EQUATIONS IMPLIED BY CONDITION a) AND GENERATED BY PPP (F̂ (A; C; E;G) = F̂ (B;D;F ;H) = (v ; v ; v ; v ))

Lemma V.7 below generalizes Lemma V.3 to the points of
. The elements , , , in the following lemma

are illustrated in Fig. 12.

Lemma V.7: Let . Let ,
, , denote the elements

of , , , , respectively. If the labeling of
by satisfies Conditions a), b), and d), then for all

, the joint distribution of

is identical to the joint distribution of

Proof: Recall that the random vector denotes

the labels of the diagonal for . Since
the labels of form a standard two-dimensional labeling,

is a stationary homogeneous Markov chain by
Lemma V.2. Using Lemma III.2 with

and

it follows that is conditionally independent of
given . Moreover, the joint distribution

of is identical to the joint distribu-
tion of by Lemma V.6. Similarly, the
joint distribution of is identical to the
joint distribution of by Lemma V.2.
The above argument implies that the joint distribution of

is identical to the joint dis-
tribution of . In other words,
when the algorithm labels the diagonal , it encounters
the same probability distribution on the neighboring diagonals

as it did on the diagonals , ,
when labeling . Therefore, Lemma V.3, Corollary V.4, and
Lemma V.6 hold for the elements of the diagonals , ,

, . Repeating this argument for consecutive diagonals

(for ) generalizes Lemma V.3 to the elements
of .
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TABLE XI
EQUATIONS IMPLIED BY CONDITION a) AND GENERATED BY PPP (F̂ (B;D;A;C) = F̂ (F ;H; E;G) = (v ; v ; v ; v ))

TABLE XII
EQUATIONS IMPLIED BY CONDITION c) AND GENERATED BY PPP (F̂ (A;B; E;F) = F̂ (C;D;G;H) = (v ; v ; v ; v ))

Fig. 13. The diagonals D , D , D , D , the internal point d , and its neighbors.

Lemma V.8 generalizes Lemma V.7 to the points of .
The elements , , , in the following lemma are illustrated
in Fig. 13.

Lemma V.8: Let . Let ,
, , denote the ele-

ments of , , , , respectively. If the la-
beling of by satisfies Conditions a)-d), then for
all , the joint distribution of

is identical to the joint distribution of

Proof: Let . Let
and (where ) denote the
elements of and , respectively (see Fig. 12). It
follows from Lemma V.7 and Condition c) that the labels

have the same probability distribution as
the labels (where , ,

, , as in Fig. 9). Thus, the labels
of satisfy Condition 4) of Theorem IV.2. This implies
that the probability distribution of the labelings of by
the three-dimensional bit-stuffing encoder is the same as the
probability distribution of a labeling of generated by

using a standard three-dimensional initialization and an
auxiliary -sequence as input (i.e., identical to the proba-
bility distribution of the initial labelings of ). Therefore,
the same arguments used to show Lemma V.3, Corollary V.4,
Lemma V.6, and Lemma V.7 for the elements of
can be used to prove the same results for the layers

Remark V.9: As noted in the proof of Theorem IV.2, since
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TABLE XIII
EQUATIONS IMPLIED BY CONDITION d) FOR DIFFERENT VALUES OF (v ; v ; v ; v ; v ; v )
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for , the stationary probabilities of the Markov
chains and must be identical. Let denote the sta-
tionary probability of the state . If the labeling of by

satisfies Conditions a)-d), it follows from Lemma V.8 and
Condition c) that the probability distribution of the labelings of

(for ) is identical to the probability distri-
bution of the labelings of . Hence,

for every .

APPENDIX VI
EQUATIONS FOR THREE-DIMENSIONAL BIT STUFFING

USED TO OBTAIN TABLE VII

In this appendix, we list the equations used to obtain
Table VII. The equations are given in their initial form without
any cancellation of variables. Recall that ,

, , , ,
, , as shown in Fig. 9.

Corresponding to each valid labeling of , , , and ,
, , there are 16 equations implied by Condition a). These

equations, generated by

are given in Table X for different values of .
Corresponding to each valid labeling of , , , and ,
, , there are nine equations implied by Condition b). These

equations, generated by

are given in Table XI for different values of .
Corresponding to the valid labelings of , , , and , ,

, there are eight equations implied by Condition c). Some
equations are tautologies—these are omitted. These equations,
generated by

are given in Table XII for different values of .
The equations corresponding to Condition d) are of the form

where is a valid labeling of the points
. Some equations are tautologies—these are

omitted. The list of equations is given in Table XIII for different
values of .

Substituting from Theorem IV.2 and from (3) the quantities

the preceding equations corresponding to Conditions a)-d) re-
duce to at most two independent equations. A set of independent
equations we used to express and is

(F1)

(F2)

where

The parameters and are given in terms of the other param-
eters as

(F3)

(F4)
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