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Asymptotic Capacity of Two-Dimensional Channels
With Checkerboard Constraints

Zsigmond Nagy and Kenneth Zegé&ellow, IEEE

Abstract—A checkerboard constraint is a bounded measurable
setS C R?, containing the origin. A binary labeling of the Z>
lattice satisfies the checkerboard constraintS if whenevert € Z>
is labeled1, all of the other Z?-lattice points in the translatet + S
are labeled0. Two-dimensional channels that only allow labelings
of Z? satisfying checkerboard constraints are studied. LetA(S)
be the area ofS, and let A(S) — oo mean that S retains its shape
but is inflated in size in the form aS, asa — oo. It is shown
that for any open checkerboard constraintS, there exist positive
reals K; and K, such that asA(S) — oo, the channel capacity
Cs decays to zero at least as fast a3 log, A(S))/A(S) and
at most as fast as{ K log, A(S))/A(S). Itis also shown that
if S is an open convex and symmetric checkerboard constraint,
then as A(S) — oo, the capacity decays exactly at the rate
46(S)(log, A(S))/A(S), where §(S) is the packing density of
the setS. Animplication is that the capacity of such checkerboard
constrained channels is asymptotically determined only by the

If a two-dimensionald, co) run-length constraint is further
constrained along one diagonal direction to similarly only allow
(d, co)-constrained sequences (e.g., in the northwest-southeast
direction as shown in Fig. 1 f)), then this is equivalent to a
channel that allows binary labeled patterns of a hexagonal grid
(as opposed to a rectangular grid) such that ax) run-length
constraint must be met along the three natural axes of the hexag-
onal grid. A complicated nonrigorouderivation of the capacity
for the casel = 1 (known as the “hard hexagon model”) was
given in [3], from which an analytic expression for the capacity
was presented in [15], [19], and [26].

Various interpretations of two-dimensional run-length-con-
strained capacities appear in other fields of study. For example,
the two-dimensiond]l, co) capacity is equal to the growth rate

areas of the constraint and the smallest (possibly degenerate) (@SN — oo) of the number of configurations of mutually nonat-

hexagon that can be circumscribed about the constraint. In
particular, this establishes that channels with square, diamond, or
hexagonal checkerboard constraints all asymptotically have the
same capacity, sincé(.S) = 1 for such constraints.

Index Terms—Asymptotics, constrained channel coding, optical
data storage, run-length-limited codes.

I. INTRODUCTION

NE-DIMENSIONAL channels satisfying run-length con

tacking princes on aiv x N chessboard, where a “prince” acts
as a chess piece that can move to any square that shares an edge
with its current location. Likewise, the analytic capacity in [15],
[19], [26] gives the growth rate of the number of configurations
of mutually nonattacking princes on a hexagonal chessboard.
The growth rates of the number of certain configurations of mu-
tually nonattacking chess pieces onfdn< N chesshoard have
been extensively studied (e.qg., for kings, in [18], [30]). The ca-
pacity calculations in [4] were formulated in terms of counting
independent sets of vertices in graphs. The capacities are also

strallnts are important in magnet_lc recording apphcathrﬁosely related to gases, lattices, and Ising model entropies in
and two-dimensional channels satisfying run-length constrailiSyistical mechanics 2]

have been considered in relation to optical recording appllca—ln addition to run-length constraints, other types of con-

tions (see the references in [14]). One-dimensigdak) run-

straints can be used to model two-dimensional channels for

length constraints require that in any binary sequence, thereéé?tain applications [1], [8]-[10], [12], [13], [23]-[25], [27],

at least! 0's between consecutiviés, and the longest run ofs

28]. For example, run-length constraints along diagonals in

be of length at most.Two-dimensional run-length constraints, 1, irections (northwest—southeast and northeast—southwest)

require that one-dimensional run-length constraints be satisfi

be imposed, in addition to horizontal and vertical con-

both horizontally and vertically in a two-dimensional rectangy aints. An example of a circularly symmetric two-dimensional

gular binary array.

An important special two-dimensional channel is one Satiﬁiensionalzz
fying the (d, co) run-length constraint. In two dimensions, thg-
(1, c0) constraint, for example, has been studied in terms

constraint occurs by requiring that any point in the two-di-
lattice be labeled) if it is within a prescribed
clidean distance from a lattice point with laldelin other
Wgrds, each must be surrounded by a certain circled&.

computing the channel capacity [4], [7] and for efficient coding One could alternatively require that everybe surrounded

algorithms [21], [22]. The capacity of thd, oo)-constrained b
channel is not known exactly, but has been very accuratpé

upper- and lower-bounded.
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rounded by a set df's arranged in the shape 6f Such a code whereu, v € R? are independent. In particul&? denotes the
is said to satisfy the constraiit These constraints are knowntwo-dimensional integer lattice. Given a sett R?, alabeling
as checkerboard constraints [29]. Two-dimensiddabo) con-  of S is any function

straints are examples of checkerboard constraints, in which case )

the setS is the union of the intervalg-d, d] on both the hor- f:8NZ° — {0, 1}.

izpntal and vertical axes in the pl_ane (i.e_.,a’_”‘shape). Like- For any setS C R?, let A(S) be the area of and let

wise, the hexagonal-grid constraint studied in [2] is a checker-

board constraint. It was noted in [29]: A(S) = ‘S n 22‘

“For example, in two-dimensional optical recording _— ] . )
systems bits may be stored on media in the form of dark orPe the number oZ”-lattice points contained i.
bright patterns. As the storage ‘disk’ is read, these patterns AseztS - R2 is symmetridf = € S & —x € S. For any
pass through various lenses and other image-forming® C B,y € R”, anda € RletS +y = {l’j y:x € S}and
devices, thus producing intersymbol interference (ISI). @S = {ax: z € S}. Also, for setsS, T' C R” let
Checkerboard constraints will reduce this ISI, so naturally S+T={e+yreS yecT)
we wish to analyze such constraints.” ' '
h'Ehe closure ofS is denoted bys.

In this paper, we focus on the asymptotic behavior of t 9 L
dFor anya € R andb € R, alineis a set

capacity of two-dimensional channels satisfying checkerboar
constraints. In the special case of the two-dimensidiabo) l={zeR> (a-7)+b=0}
run-length-constrained channel, the asymptotic behavior of the
capacity is well understood. It was shown in [16] that the cavherea - z is the dot product of andz. A line [ is asupporting
pacity decays to zero at the exact rélieg, d)/d asd — oco. linetothe setS ¢ R?if NS # § and one of the two closed
For a general checkerboard constraint, the asymptotics andlaH-planes determined bycontainssS.
gous to run-length constraints are when the constfanetains LetR, S, T C R®. Foreach € T, the setS + ¢ is called a
its shape but is inflated in size in the fod asa — oco. T-translateof S. The setl’ ¢ R is called an

As o goes to infinity, the amount of information that can be . g-packingof R if the interiors of thel-translates are dis-
stored per unit area shrinks to zero. In other words, the capacity joint and are contained if;
decays to zero. We determine the rate at which the capacity goes,
to zero as a function of the ared(.S) of the constraint, for
certain classes of checkerboard constraints. If the checkerboard - o ) )
constraintS is assumed to be open, then we show (Theorem V.2) * S-tiling of R if itis both anS-packing and as-covering
thatasA(S) — oo, the capacity decays to zero at a rate bounded of R.
between K log, A(S))/A(S) and(K»log, A(S))/A(S), for A rectangleis any set
some positive finite constanfs; and K». Theorem V.2 makes v 2.
precise a prediction given in [29]: “Intuitively, we expect that the RE&*% - {(x’ yER: ko< ASys V}
capacity of a given constraint will be inversely proportional téor somex, A\, u, v € R.
the number oferosin the constraint.” If the checkerboard con- The following definitions are from [20]. Le§, 7' c R* and
straintS is additionally assumed to be convex and symmetridefine

S-coveringof R if the union of the closures of tHe-trans-
lates containgk;

then we show (Theorem 1V.4) that a$.5) — oo, the capacity o

decays to zero at the raté(S)(log, A(S))/A(S), wheres(S) p+(5,T) = lemﬁsyufm P, T, iy Xy s v)

is the packing density of the s&t Thus, for example, since the p—(S,T) = liminf p(S, T, k, A, p, 1)
packing density (in the plane) of squares or convex-symmetric KA v =00

hexagons i$(S) = 1, this implies that the capacity of two-di- where

mensional channels satisfying square or hexagon checkerboard A ((S +n RE’i’:)_A))
constraints is asymptotically equa@og, A(S))/A(S) asthe o(S, T, k, A i, v) = 25 ?
area grows without bound. Similarly,  is a circular con- o A (RE’i’:)_A))

straint, then the asymptotic capacity-\%(log2 A(S9))/A(S)
sinced(S) = 7/(2V/3).

Since the constrain§ corresponding to a two-dimensional 6(8) =suppy(S, T) 1)
(d, oo) run-length constraint is neither open nor convex, the re- T
sults in this paper do not specialize to the o) constraint Where the supremum is taken over g#packingsT of R?, and
case, but they do provide an interesting related checkerbo#tgcovering densitpf S is

constraint result. —
6(5) = infp_(S, T) )

The packing densitpf S is

where the infimum is taken over al-coveringsT’ of R”.
The following lemma states that the densest packing and the
Let R? denote the two-dimensional plane. A two-dimensionalparsest covering using convex symmetric sets are attained by a
lattice is a setl’ C R? of the formT = {ku+ \v: k, A € Z} lattice packing and lattice covering, respectively.

Il. PRELIMINARIES
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a) b) c) d)

e) 1)

Fig. 1. Various checkerboard constraints: a) diamond; b) hexagon; c) square; d) citdlese) run length; and e)d, oc) hexagonal-grid run length.

Lemma 1.1 [20, pp. 12, 17]:For every convex-symmetric mond, hexagonal, square, afitl o) run-length checkerboard
setS C R? there exist latticed.; and L, such that)(S) = constraints, and are shown in Fig. 1.

p+(8, L1) andf(S) = p— (S, La). Lemma II.2: Let V C R?, let S be a checkerboard con-
A two-dimensionakonstrained channes$ a set of labelings straint, and letf be a labeling ofV. If f is S-valid thenf is
of R?. Such labelings are callaglid. A constraint is a descrip- —S-valid.
tion of which labelings are valid for a particular constrained  Proof: Suppose is not—S-valid. Then there exist, y €
channel. Acheckerboard constrairis a bounded measurableV such thatf(z) = f(y) = 1 andy € = + (—5). This implies
setS c R” that contains the origin. The terminology “checkerthatz € y + S and, thereforef is notS-valid. O
board constraint” was introduced in [29] to mean a “two-di-
mensional arrangement agrosthat must surround evene . ¢ pe o'aneling of”. Then f is S-valid if and only if f is
in a two-dimensional binary code,” which is consistent with th{eS U —S)-vali
" )-valid.
present definition.
Given a set’ ¢ R’ and a checkerboard constraifita la- Corollary 1.3 follows immediately from Lemma 11.2. It fol-
beling f of V is said to beS-valid on V' if lows from Corollary 11.3 that every checkerboard constr&iig
. . equivalent to the symmetric checkerboard constréiat—S in
f(y) =0 Whegeverf(x) =L the sense that the sets $fvalid labelings and.s U —S)-valid
VeeVnz labelings of any set’ c R? are identical. That is, any non-
Vye(z+S)Nn(V\{z})n VA symmetric checkerboard constraintis also a symmetric checker-
board constraint. Therefore,

Corollary I1.3: LetV ¢ R?, S be a checkerboard constraint,

That is, f satisfies the checkerboard constrathton the set
V c R?. Note that anyS-valid labeling of a subset aR” can Ng(V) = Ngu-s(V)

be extended to afi-valid labeling ofR” by making the labeling for any sef” ¢ R?, establishing Corollary 11.4 below. Thus, no
equal0 outside of the subset. The number¥alid labelings  generality is lost if we restrict attention to symmetric checker-

ofasetV’ C R” is denoted byVs (V). ThecapacityCss corre- poard constraints when computing capacities.
sponding to the checkerboard constréiiit . _
Corollary 11.4: If S is a checkerboard constraint théfz =

e EN(RETN) o
S = 1m .
mAmr=oe g (RET:)—A)) Lemma I1.5: If S is a convex symmetric checkerboard con-

, . o straint which is either open or closed, anib a positive integer,
A proof given in [16] shows that the above limit exists.

Co n
An example of a checkerboard constraint is a run-length con-

straint. For each nonnegative integérthe two-dimensional 15 c k+1 S w4+ up
(d, co) run-length constraints defined as the following subset 2 2
of R”: for anyus, ..., u, € 15.
Sg00 ={(0,2): —d <z <d}yU{(x,0): —d <z <d}. Proof: Lety € 1S. Then
4 (k+1)ye % S
The capacities of various channels satisfying convex checker- +

k — .
board constraints were studied in [29]. These included the dia- (k+1)u; € ——8, fori=1, ...k
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SinceS is symmetric
E+1—
(k4 1) € % S.
The quantity

is a convex combination (with weigh;;%) of the points
(k’—|— ) —(k—l—l)ul,... —(k—i—l)uk

and*= ’““ S is a convex set. I is open thery lies in the interior
of 55 and thus also in the interior éf}"F—S Therefore, by con-
veX|ty

(see [17, p. 111, Theorem 5]). #fis closed then

E+1—- k+1
1/—2%6;5—%5.

In both cases

k k
1=1 1=1

O

Lemma I1.6: Let S be a convex symmetric checkerboarq:

constraint which is either open or closed. For aﬁy/alid
labeling f of R?, any setQ C 1S and everyw € R’, the
set@ + w cannot contain more than o -lattice point with
label 1.

Proof: Suppose to the contrary that there exétlattice
points

1
x,y€Q+wC§S+w
such that
f(x) = f(y) = 1.
Then
ElS
T —w, Yy —w 5"

Takingk = 1 in Lemma II.5 implies that
r—weS+y—w
and, therefore,
r€S+y

which contradicts the assumption thfais S-valid. O

Remark 11.7: Supposef is a valid labeling. In the special hotS-valid.

case where the set @ -lattice points with label forms a lat-

tice, Lemma 1.6 follows from Minkowski’s Convex Body The-

orem [5, pp. 71-724.
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Lemma I1.8: Let S be an open convex symmetric checker-
board constraint, and Igtbe a labeling oR?. Thenf is S-valid
if and only if the set

) = {a: € 2% f(z) = 1}

is a1 S-packing of R”.

Proof: Supposef is notS-valid. Then there exist distinct
z, y € f~1(1) suchthay € S+ z. SinceS contains the origin,
y € 1S+y Ifye 1S—|—a: then( S+z)n ( S+y)#0
WhICh impliesf~1(1 ) is not als-packmg smce? is open. So
assume; ¢ 1S + x and likewiser ¢ 15 + y. Let

lo={tz + (1 —t)y: te[o, 1]}

denote the line segment between the paingdy.

Since S is convex andr lies in the interior of%S + z, the
line segmenti intersects the boundary (%fS + z in exactly
one point, say; (see [17, p. 112, Theorem 9]). Similarly, let
be the point wheré, intersects the boundary éfs* +y. By the
symmetry ofS, one gets

o =-T1+x+Yy
and, therefore,

|re — ] = |ra —y.

Sincex, y € S + x andS is convex, we havéy, C S + x.

Letr3 be the unique point on the extension@beyondy, that
intersects the boundary of the set- x. SinceS is symmetric
nd since the line segment connectingp r3 is contained in
S + z, we have

llo] < |z —73] = 2|z — 71| = |r1 — 2| + [r2 — y|.

Consequently;; is between the points andy only, and hence
all points ofly betweenr; andr, are contained irﬁ%S +z)N
(35 +y). Thus,f~*(1) is not a3 S- packlng

Now suppose thaf 1) is not azS- packlng of R?. Then
there existc y € f~1(1) such tha(§5+x) (1 S—i—y) #0.
If y € S + z, thenf is not S-valid, so assumg ¢ 3 1+
(and, I|keW|se,r g =S + y) and letly, 1, andrs be defmed as
above. Sincc—%S + x is convex, there exists a supporting lihe
at the pointr, to the sett S + z (see [17, p. 143, Corollary 6]).
Similarly, by symmetry; .S + y has a supporting line

12:—l1+1}+y

at the points. The lined; andl; are parallel. Lef’; denote the
closed halfplane defined by that contains, S + =, and letP;
denote the closed halfplane definedibyhat contalns}S + .
Then,l; C P, 1, C Py, andl; # I, for, otherwise 2 55 +xand
%S + y would be disjoint. Since, € I; andry € 12, it follows
thatr; is between the points, andy only, and, therefore,

llo| < |r1i—z| +|r2 —y| = 2|r1 — |-
This implies thaty, C S + =, and henceg € S + x. Thus,f is
O
Il

By ahexagorwe mean any convex six-sided polygon, where

HEXAGONAL CHECKERBOARD CONSTRAINTS

2There is a typographical error in the last line of the statement of the corollérty)s possible that more than two vertices are colinear. A checker-

in [5]. It should read “whose differenckr, — S5 isin A.”

board constraint ieexagonaif it is an open, convex, symmetric
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hexagon. An open regular hexagon is an example of a hexagdbafine the sets

checkerboard constraint. By the definition of a hexagon, the di- ,, R (n,v)

amond and square constraints shown in Fig. 1 a) and c) are also T = {t €T 2 (L= Ho +tC R(—m -X)

considered hexagonal checkerboard constraints. 1 . ()
Notation: Let U be the set of all checkerboard constraints, 1t = {t €T: 0 # <§(1 —B)Ha + t) NRZ N

f: U — R,andL € R. ForanyS € U, if A(S) > 0thenwe

1 —
write # 5(1—ﬂ)Ha+t}
lim f(S)=1L and denote their cardinalities as
A(S)—oo
to mean thatim,,~, f(aS) = L. That s, the sef is inflated m =|Tp|.

yvithom_Jt bound 2by the factar but r.etains the same shape. Simyp,o integers: andm count the number of translates bf1 —
ilarly, if SN Z7| > 2 then we write 3)H ,, from the tiling T' that are contained in the rectangle or

lim f(S)=1L partially intersect the rectangle, respectively.
A(S)—o0” Since for any distinct,, t, € T;, the set%(l —B)H, + t1
to mean thatim, . f(aS) = L. andi(1 — B)H, + t, are disjoint, we get the lower bound
Theorem I11.1: If H is a hexagonal checkerboard constraint A (RE‘fK”)ﬂ\)) > Z A (%(1 - B)H, + t)
with capacityCy and aread(H ), then ’ teT;
: A(H)  _ :n-A<1(1—[3)H>
A(zlﬁrioo Cn- log, A(H) 4 2
Proof: It follows immediately from Lemmas 1Il.3 and =n-A (lHa> (1-B)2. (6)
[11.4 that follow. O 2

. . ) SinceH is open, Lemma 1.6 implies that at most af#é-lat-
The proof of the following lemma is an easy exercise left tg., pointin(1 — 8)H., can be labeled in an H,,-valid la-
2 a a

the reader. beling. By independently choosing at most dfielattice point
Lemma lI.2: If H is a hexagonal checkerboard constrainto be labeled with a in each of them + nT-translates of

then there is a latticé/-tiling of the plane. 5(1—pB)H, that intersecRE’i’,:)_A) , we obtain an upper bound
H 1 (‘7 V)
Lemma I11.3: If H is a hexagonal checkerboard constrain® the number off,-valid labelings offz ™”_,,, namely
then (1, v)
Nu, (B )
limsup Cpg - M <1 < A ! 1-8)H, +t 1
A(H)—o0 10g2A(%H) N o H 5( _[) o *
teT; UT,
Proof: Let € (0, 1), and for eactx > 0 let H, = aH. 1 o |T:UT, |
By Lemmallll.2, there exists &(1 — 3)H ,-tiling 7 of R*. The S sup Al SA-p)Ha+1t)+1

setT depends omx andf. Since L mn
— <(A(z(1-B)H. | (1+en)+1 7
S~ 0. C L H, —( <2< P) >( Tea) > @)
m-4n

and H is open, Lemma I1.6 implies that for all e T" and for = (A <1HQ> (1—=P)2(1 4 eq) + 1) (8)

eachH,,-valid labeling of R*, at most oneZ>-lattice point in 2

t+ 1(1— B)H., has labell. The number ofi,,-valid labelings Where (7) follows from (5); and (8) follows from(5H) =

of R™")__is upper-bounded if we independently assign afl(3 ). Using (3), the lower bound in (6), and the upper bound
(=, ~2) 2 in (8), the capacity of the checkerboard constraiptis upper-

H-valid labeling to theZ~-lattice points in each of the closed '

translate$+ 3 (1—8)H, thatintersectﬂRE’j’K’,’)_A (labelings of bounded as lome (A(LE (1— 8)2(1 )
boundary points of translates may be overcounted). Recall thgt < lim Og2( (5 a) (1-6)°(1 +€a) + )

m+4n

A(S) counts the number &>-lattice points in a se$. For each TR A p,v—00 nA(3H,) (1-0)?
a > 0, let 9)
A(3(1-PB)H, +1)
€q = SUp T — -1 . m logZA(lHa)
T A(5(1-p08)H, = 1 1+ —)- 2
et AG0-HH.) kA ,HLOO( +) A(LH) (1-p)?

Different translates o§(1 — B)H , from the tiling7" may con-
tain different numbers ofZ>-lattice points, butt, — 0 as )
a — co. From the definition ot,,, we have for alk € 7', log, ((1 =B (1+ea) + 4A(%HQ)>

(10)

A <%(1 - B)H, + t) <A <%(1 - /S)Fa> (14 €a). (5)
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Fig. 2. The checkerboard constrafdt, and its scaled versiongQ.

log, A (%Ha)

T A(RH.) (1-p)2
o (1= 92014 €0) 4 s

11
A(EH) (-5 ()

+

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

Note that each transla@Ha + z (wherez € T.) can be
written in the form
1 1 1 iy
sHo+2=SHo+iz+jy =5 Ha+ ; w,

where
v-—1 -1
L <« R
2 =" )=
T
u17"'7u2i::§
U241, - - -5 U242y 25
u; =0, forall I > 23 + 25.
Thus,

1 1
ule{:t§$7:|:§y70}, fori=1,...,2y—2.

where the existence of the limit in (9) follows from the existence

of the limitin (10); and (11) follows from the fact that/n — 0
ask, A, p, v — oo. Sincee, — 0 andA(3H,) — oo as
a — o0, it follows that

3Ho) 1

limsupCy_ - A(2 .
a— 00 “ IOgZA(%Ha) - 1—,82

Sinceg was chosen arbitrarily from the intervdl, 1) we have
A(iH,) 1

2\ <« ipf ——
logy A (LH,) — pe(0,1) 1 — B2

limsup Cp, - =1 0O

a— 00

In order to establish a lower bound éhy, we design a la-

Since+ 3z and+1y lie on the boundary of H,, we have

1 1 1—
:i:§1‘7 +—y € §HQ

2
(and0 € $H,). Therefore, by Lemma I1.5, we have

2y—2

beling algorithm forR?. We again consider translates of inflate@nd: therefore,

copies of$ H that tile R?, and assign labels to th&*-lattice

points in a block ofy x v neighboring scaled copies éfH in
the tiling.

1 29 —1
Elya C ——??——]Ya'— j{: uy
1=1
2y—2
1 29 -1 2y
- H, C H,C —H,.
2 +;“l 2 2

Lemma Ill.4: If H is a hexagonal checkerboard constraint,

then

agm

lim inf - AGH)
iminf Cg long(%H) 2

A(H)—o0

Proof: For eachy > 0 let H, = aH, and define

A (3Ho +1t)
A(3Ha)

By Lemmallll.2, one can til&” with copies of; H, (seeFig. 2)

€ = Inf
teER?

on a lattice. Letr, y € R? be independent vectors such that the

lattice
T = {iz + jy: i, j € Z}

is a%H(,—tiIing. The latticeT depends om. For each positive
odd integery, define the sets

o -1 .. -1
T, = {’wf+.7y: —VT <i,j< VT}

B, = U (Z+%Ha)

z€T,

and defines = 1/(27).

Thus,B, C %' H, and, henceg B, C iH,.
Forallz, w € T, define the hexagonatinicell

1
Dz7w:z+0<w+§Ha>.
Then

1 1
K <w+ 5Ha> = 0B, C 5 Ha.

wGTH

Thus, for eachx € T',, the minicellD. . lies inside the hexag-
onalcell

1
2+ —H,
7—1—2

and is in the same relative position within thex ~ block z +
oB., of minicells in the cellz + %Ha, as is the position of the
cell z + 3 H, within they x ~ block of cellsB,. The vectomw
determines the position within+ %Ha that the minicell lies.
Let f be alabeling of3,, defined as follows. For eache 77,
label exactly oneZ?-lattice point in the minicelD. . withal
and label all otheZ?-lattice points inD., . with a0. For each
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Fig. 3. Four(y +2) x (v + 2) blocks of translates (cells) ¢fH,, fory = 3. In each block, the outermost row on each of the four sides has padding cells filled
with only 0’s. Each nonpadding cell hasyax + block of minicells in it. Of all theZ>-lattice points in each minicell, only the darken&d-lattice points have
label1 in the illustrated labeling. Repeating this construction giveglanvalid labeling ofZ2.

w, z € Ty, if w # z, then label all theZ?-lattice points in the where we used that fact thgtH, = %HM. For everyw €

minicell D, ,, with a0. Label all otherZ>-lattice points witha (v + 2)T, let f,, be any suctf,-valid labeling of B, 1> N Z?
0, if they are not in a minicell (i.e., alf>-lattice points in and assume its value @selsewhere orZ>. Then an extension
1 to anH,-valid labelingf of all of Z* can be defined by
<z + §HQ> U P

wer, f@) = > fulz—(v+2w).
for eachz € T7,). we(y+2)T
So exactly oneZ>-lattice point in each of the? cells is la-
beled1 and all others are labeldil Each such labeling is an
H -valid labeling of3,,. In addition,f can be extended 8-
by labeling everyZ*-lattice point inB,42 \ B, with a0. Then
fisanH,-valid labeling of B, 1». Fig. 3 illustrates an example

Although the capacity of a checkerboard constraint is defined in
(3) as a limit as the rectangle grows in size, it is straightforward
to show that the limit can also be taken over a set sudh,gs,

as+~y grows without bound. Thus, since

labeling.
1
The total number of such labelingsof B, is a lower bound A(Byi2) = (v +2)°A <§Ha> (13)
to the total number ofi,-valid labelings ofB,». That is,
Ny, (By+2) > Nu (B,) the capacity can be lower-bounded using (12) and (13) as
> [ A=) logy N, (By+2)
€y O 2B )
|Ty | ( 'y+2) .
> (g0 , o8 (A1) 20+ )’
2 - (v+2)24 (3H.)
. ag
> <Z,111;1£TA ((z + ow) + B Ha)> B < v >2 log, A (3H.,) N logs(02(1 + €a0))
- 1 1 :
¥ T+2 A (3Ha) A (3Ha)
> (4G ) 1)
. For eachn, choose

(A <%HQ> o*(1+ eM))V (12) v = |logy .
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Then, asax — oo, we have Proof: Let H be a symmetric (by Lemma IV.1) hexagon
containingsS, of minimal aread(H). Then

v+ 2

a « : A(H)

- > __— . 4= Ilim Cyp - ———F—— 15

ao 2y ~ 2log, « e A(H)— o0 H log, A(H) (15)

Thus,ene — 0 asa — oo. Since — 1 T Cyr - ﬂ 16
5(S) A e T Tog, A(S) (16)

—log,0?  —2logyo
log, A (%Ha) " log, (a2A (%H)) where (15) follows from Theorem IIl.1 and (16) follows from
21og, (27) Lemma IV.2. SinceéS C H, we haveCs > Cy and, therefore,
~ 2logy o + logy, A (LH) 1 o A(S)
2 1 21log, log —— - liminf Cg- ————— >
82 108, & 46(S) A(S)—o log, A(S)
_210g2oz+10g2A(%H) . . . .
=0 SinceA(15) = 1 A(S), in order to prove the theorem it suffices
to show that
asa — oo, we get A(lg
A(lH ) L-limsup CS~(7§1)§1. a7
liminf Cy 2 la > 1. O 5(5) A(S)—o0 log, A (ES)
a—00 log, A (§HQ)
Lets € (0, 1), and for eachw > 0, let
IV. OPEN CONVEX SYMMETRIC CHECKERBOARD S, = as.

CONSTRAINTS

In this section, we generalize Theorem Il1.1 to any open coMVe prove (17) by upper-bounding the numberSafvalid la-
vex symmetric checkerboard constraint. The following lemni2elings OfR( ; )_k) Let p be the maximum number &”-lat-
guarantees that among all minimal-area hexagons containingca points that can be labelécbn R V> ,, Without violating
given convex symmetric set, atleast one is itself also convex af@ checkerboard constraifit,. By Lemma 1.1, there exists a

symmetric. 3(1 — B)S,-coveringT of R’ that attaing)(5). Let
Lemma IV.1[6, p. 122]:Let S C R’ be a convex symmetric _

set. Then there exists a hexagon contairfirtat is of minimal T = {t €T: (3(1-B)Sa+1t)N RET»:,)—A) # @}

area, symmetric, and convex. g=IT"].

The following lemma shows that the packing density of a -
convex symmetric set is achieved by a symmetric circumscrib&éfie setsl’ and7” depend on botlx and 3, and the quantities
hexagon of minimal area. p andq are both functions ok, A, u, v, andS, (¢ is also a

9 . function of 8). For everya > 0, define
Lemma V.2 [20, p. 12]:Let.S C R” be a convex symmetric

tse.t agd _:%tH be a minimal area symmetric hexagon that con- ] wp AR —B)S. +1)
ainsS. Then a= =
err A(3(1-p)5,)
()
(8) = A(H) and note that, — 0 asa — oco. Also, foralla > 0O andt € T

Lemma IV.3 [11, p. 163]:Let R be a convex hexagon and A(l(l —B)Sa + t) <(1+4en)A (1(1 _ 5)§a>
S c R? a convex set. The cardinality of arypacking of R 2 2

is at mostA(R)/A(H), whereH is a hexagon of least possible — (14 ea)(1— ﬂ)2A<lS ) (18)
area containing. “ 27

Note that fora > 0, if H, is a minimal-area symmetric sjnce S is open and
hexagon that containsS, then the ratioA(«S)/A(H, ) is a
constant independent of Thus, if the ternd(S) appears inside 1(1 —B)S. C 15
alimitasA(S) — oo, then the$(S) can be brought outside the 2 ¢ T

limit. This fact is used in the proof of Theorem V.4 that follows. _
Lemma 11.6 implies that each of thecopies of}(1 — 3)S,

mtersectlngR(“ V) _x can contain at most or152 lattice point
with label1 in anyS -valid labeling ofR?. Thus,p < gq.

The number ofS,-valid labelings of R ”lA can be
upper-bounded by considering all possible COﬁeCtIOHSZ of
of the 7"-translates ofl(l — B)Sa, fori = 0, ..., p, and

Theorem IV.4:1f S is an open convex symmetric checker-
board constraint with are4(.S), capacityC's, and packing den-
sity 6(.5), then

A(S)

I W) ys(s). 14
adm_Cs og ags) — 49) (14)
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assuming that each such translate has exactly one point lab8lad quantityg; denotes the number @t translates of the set

1 and no other translate has any points labdle@his counts

3(1-8)S. thathe|n3|detheboundary(ﬁ‘(” V) n- Theg(1—

everyS,-valid labeling at least once. Since different coIIectlong S.,-coveringT of R? satisfies

of 4 of the T'-translates might yield the same setigboints

being labeled, someS,,-valid labelings may be counted more

than once in this manner. Thus,

8)S. +t)
SZ (supA (1—0)S, +f>>
0 teR?

(e(ie)o-mare) oo
({00

< (A(%S(,> (1-3)*(1+ e(,)>p ;q

where (19) follows from (18).

Lemma I1.8 implies that in ang,,-valid labeling, theZ>-lat-
tice points with labell in RET;:,)—A) are aiS,-packing of
R?. By the definition ofp, there exists ar$,,-valid labeling of
RE“"’) with exactlyp points labeled. For thel S, -packing
of R? determlned by the points labeledin this particular
labeling, letp; denote the number of translates§,, that lie

inside the boundary ORE’i’:)_A). Then

(20)

pA (55.)
(p,v)

(,F_A))

= liminf <£) p; -
K\, v—00 \ Pj A

lim inf

Ky A, L,V — 00 A (R
A(35a)

(m,v)
(R(lin,—k))
(u,v)
< lAiminf AgR((;;_)A))- (AE%S(;) ) (21)
whuwv—oe  A(3Ha) 4 (RimY
(_K7_>‘)
_ A(ESa) _ _
AN 6(Sa) = 6(9) (22)

where (21) follows from Lemma IV.3 (since the rectangle =

R{™?_,, is a convex hexagon), and the fact thp; — 1 as

K, A, i, v — oo; and (22) follows from Lemma IV.2.
Let

T = {t €T 5(1—PB)Sa+tC RE’_L’:_)—A)}
— |T”|.

lim inf a4 (l( _ﬁ)ga)
Ky A, pb, V—00 A (REH:)—A))
<2> qLA (%(1 - /B)ga)
4“5 A (RET:,)—M)
(1 - ﬂ)ga + t)

= liminf
Ky A, b, ¥—00

]
S
N

= liminf
Ky A, b, ¥—00

(23)

~ 3)Sa +1) N R

)
A (RE“ . A))
(24)
(25)

where (23) follows from the fact thafq; — 1ask, A, u, v —
oo; and (24) follows from (2). The capacity is then bounded as

liminf log, (( ( 1+ Ea))p 2q)

Csa < Koy Ay, V200 )(R(H :)_,\)>

o

(26)
plogs (A (35a) (1= B)*(1 +€a))
A (RE“ :LA))

= liminf
Ky A,y V00

N #]

(B )

_loga (A (35) (1= A)*(1 + )
- 1A(%Sn)

aga-as)

where (26) follows from (3) and (20); and (27) follows from
(22), (25), and the fact that, — 0 asa — oc. Thus,

-8(5)

(27)

A(35)

logy A (15.)

limsupCg, -

a— 00

. logy (1= A)*(1 + €a))
< 6(5) Tim sup <1 LR )
. 1
+6(S) lim sup (1—B)%log, A (15.)
8(S). )

V. ARBITRARY CHECKERBOARD CONSTRAINTS

For a given checkerboard constraisit the areaA(S) was
grown without bound in Theorem V.4 to obtain convergence
rates for the capacity of channels constrained'bgs S grows,
the area ofS becomes approximately equal to the number of
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Z*-lattice points inS, in the sense that their ratio approaches  Proof: Since the origin lies in the interior of, there is an
1. A larger class of constrained channels may be examined dgyen regular hexagoR contained inS and whose center is the
relaxing the requirement that a constraining set be open and haxigin. SinceS is bounded, it is contained in an open regular
nonempty interior. However, the area of such a set may be zenexagon) whose center is the origilk and(@ are hexagonal
in which case it is more useful to identify the number of internaheckerboard constraints with packing densities
Z*-lattice points.

The following corollary restates Theorem V.4 in terms of 8(R)=46(Q) =1L
the number ofZ>-lattice points in a constraint instead of thesjnce R C S C Q, we have
area of a constraint, since both are equal asymptotically as the
constraint grows in size. This allows a comparison with two- 1 <A(R) < A(S) < AQ) < 0
dimensional run-length-constrained capacities. Cq <Cs < Cp.

Corollary V.1: If S is an open convex symmetric checkerThys, by Theorem Il1.1
board constraint, then

: A(aQ)
A 4= lim Cog - ——————
lim Cs - _AS) 46(9) a=co ? log, A(aQ)
A(S)—o0 10g2 A(S) o A(OéQ)
whereé(S) is the packing density of. = lhnilo%f Cs - logy A(aQ)
Proof: It follows immediately from Theorem IV.4 and the o2
fact that =A(Q) - liminf Cg - oo a7
A(S) AQ o es)
lim —<=1. O 2 iminf Ce . NY2)
A(8)—o0 A(S) A(S) e 7% log, A(aS)
The(d, oo) constraintS, . defined in (4) is a checkerboard®° that
constraint but it is neither convex nor open, two properties which 0< 4A(S) < liminf Cg - A(S) .
were used to obtain Corollary V.1. Furthermore A(Q) T A(S)—oo log, A(S)
(54, 00) = 0. Also, by Theorem IlIl.1
However, a similar result is still true. It is known [16] that the 4= lim Cg- _AleR)
capacity Cj ., of the two-dimensionald, o) run-length- a—oco log, A(aR)
constrained channel asymptotically decays to zero at the rate > limsup Ce - A(aR)
(log, d)/d. That s, = P  10g, A(aR)
d . o’
. ) _ = A(R) -1 =
Fm G, 00 logod L (28) (R) P Cs log,
. A . A(aS
Slnce = % . hm sup CS . m
a— 00 2
A(S,0) =4d + 1 so that
for all d, the asymptotic capacity in (28) can be written as . 4A(S) > limsup Cs - A(S) . 0
A(S4, ) A(R) ™ A(s)—oo  logy A(S)

lim Cd, 00 - =4

A(S4, 00)—00 logy A(Sq, o) ) _ )
Note that special cases of Theorem V.2 include wKeis

which is s:;nﬂar in form to Corollary V.1, but is for the non-,, ohen checkerboard constraint or wisis the closure of an
convex and nonopen constray, . open checkerboard constraint.
In fact, a more general rate of convergence can be ob-

tained for the capacity of two-dimensional channels with
checkerboard constraints whose interior contains the origin, ~ VI. CAPACITY RELATIVE TO A SCALED LATTICE

but without exactly identifying the convergence constant. Suchhe results obtained in this paper have indicated the asymp-

constraints are not necessarily convex. The capacity is shoyflc capacities of certain two-dimensional checkerboard con-
in Theorem V.2 that follows to still decay asymptotically at thgyrained channels. The capacities are given in terms of the “area”

rate (log A(S))/A(S) in these cases. of the constrain. The quantityA(S) was defined as the two-
Theorem V.2:If S is a checkerboard constraint whose intedimensional Lebesgue measure of the $efhe units of ca-
rior contains the origin, then pacity were given as bits per lattice point location onZelat-
A(S) A(S) tice, or equivalently, bits per area in the plane. It is reasonable
0 < liminf Cg- ———— < limsup Cs- ———— < oo. 10 ask what happens to the results if the lattice itself is scaled.
A(S)—00 logy A(S) ™ A(s)—o0 logy A(S) For example, suppose we ask how many bits of information per

3The more common notatiofi,;, . is used here, instead of the more cum-arei?t in the plane Can_ be stored on_a_latﬂﬂé subject t_O a con-
bersomeCs, __ . straintS. This is identical to determining how many bits per area
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in the plane can be stored on the us#atlattice using a con-  [4]
straint(1/5)S.

Let As(S) be the number oBZ>-lattice points inS. Then, Bl
the aread(.S) of an open sef is related ta\g(S) by the esti- 6]
mate

(7]
A(S)/Ap(S) = B° [8]

where the approximation becomes equality in the limit as (9]
A(S) — oo. Thus, using Corollary V.1, if the checkerboard
constraintS is open, convex, and symmetric, the asymptoticl10]
number of bits that can be stored per lattice poin&ft is

[11]

) 1 [12]
15(5). B As8) _ oo 1Y (%9)
As(5) A (%S) [13]
log, A(S) — 2log, B
z4:6(51) . 2 ( ) 2 4]

A(S)/p?

The capacity per unit area in the plane is therefore asymptoty g
ically equal to the capacity per lattice point multiplied by the

number of lattice points per unit area, that is, (6]

logy A(S) — 2log, 8 1
A

45(8)

46(S) [17]

log, A(S) — 2log,
' A(S)

(18]

[19]

Thus, for any fixeds, in the limitasA(S) — oo, the capacity

still decays at the rate [20]

[21]
A(S)
[22]
even though for any fixedd < 1, the capacity is larger than
for 8 = 1. In summary, the asymptotic results presented argyg,
independent of the scaling of the underlying lattice, although
for finite-constraint areas there may be a difference. [24]
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