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Asymptotic Capacity of Two-Dimensional Channels
With Checkerboard Constraints

Zsigmond Nagy and Kenneth Zeger, Fellow, IEEE

Abstract—A checkerboard constraint is a bounded measurable
set 2, containing the origin. A binary labeling of the 2

lattice satisfies the checkerboard constraint if whenever 2

is labeled1, all of the other 2-lattice points in the translate +
are labeled0. Two-dimensional channels that only allow labelings
of 2 satisfying checkerboard constraints are studied. Let ( )
be the area of , and let ( ) mean that retains its shape
but is inflated in size in the form , as . It is shown
that for any open checkerboard constraint , there exist positive
reals 1 and 2 such that as ( ) , the channel capacity

decays to zero at least as fast as( 1 log2 ( )) ( ) and
at most as fast as( 2 log2 ( )) ( ). It is also shown that
if is an open convex and symmetric checkerboard constraint,
then as ( ) , the capacity decays exactly at the rate
4 ( )(log

2
( )) ( ), where ( ) is the packing density of

the set . An implication is that the capacity of such checkerboard
constrained channels is asymptotically determined only by the
areas of the constraint and the smallest (possibly degenerate)
hexagon that can be circumscribed about the constraint. In
particular, this establishes that channels with square, diamond, or
hexagonal checkerboard constraints all asymptotically have the
same capacity, since ( ) = 1 for such constraints.

Index Terms—Asymptotics, constrained channel coding, optical
data storage, run-length-limited codes.

I. INTRODUCTION

ONE-DIMENSIONAL channels satisfying run-length con-
straints are important in magnetic recording applications

and two-dimensional channels satisfying run-length constraints
have been considered in relation to optical recording applica-
tions (see the references in [14]). One-dimensional run-
length constraints require that in any binary sequence, there be
at least ’s between consecutive’s, and the longest run of’s
be of length at most .Two-dimensional run-length constraints
require that one-dimensional run-length constraints be satisfied
both horizontally and vertically in a two-dimensional rectan-
gular binary array.

An important special two-dimensional channel is one satis-
fying the run-length constraint. In two dimensions, the

constraint, for example, has been studied in terms of
computing the channel capacity [4], [7] and for efficient coding
algorithms [21], [22]. The capacity of the -constrained
channel is not known exactly, but has been very accurately
upper- and lower-bounded.
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If a two-dimensional run-length constraint is further
constrained along one diagonal direction to similarly only allow

-constrained sequences (e.g., in the northwest–southeast
direction as shown in Fig. 1 f)), then this is equivalent to a
channel that allows binary labeled patterns of a hexagonal grid
(as opposed to a rectangular grid) such that a run-length
constraint must be met along the three natural axes of the hexag-
onal grid. A complicated nonrigorous1 derivation of the capacity
for the case (known as the “hard hexagon model”) was
given in [3], from which an analytic expression for the capacity
was presented in [15], [19], and [26].

Various interpretations of two-dimensional run-length-con-
strained capacities appear in other fields of study. For example,
the two-dimensional capacity is equal to the growth rate
(as ) of the number of configurations of mutually nonat-
tacking princes on an chessboard, where a “prince” acts
as a chess piece that can move to any square that shares an edge
with its current location. Likewise, the analytic capacity in [15],
[19], [26] gives the growth rate of the number of configurations
of mutually nonattacking princes on a hexagonal chessboard.
The growth rates of the number of certain configurations of mu-
tually nonattacking chess pieces on an chessboard have
been extensively studied (e.g., for kings, in [18], [30]). The ca-
pacity calculations in [4] were formulated in terms of counting
independent sets of vertices in graphs. The capacities are also
closely related to gases, lattices, and Ising model entropies in
statistical mechanics [2].

In addition to run-length constraints, other types of con-
straints can be used to model two-dimensional channels for
certain applications [1], [8]–[10], [12], [13], [23]–[25], [27],
[28]. For example, run-length constraints along diagonals in
both directions (northwest–southeast and northeast–southwest)
can be imposed, in addition to horizontal and vertical con-
straints. An example of a circularly symmetric two-dimensional
constraint occurs by requiring that any point in the two-di-
mensional lattice be labeled if it is within a prescribed
Euclidean distance from a lattice point with label. In other
words, each must be surrounded by a certain circle of’s.

One could alternatively require that everybe surrounded
by ’s falling in a given sized hexagon, square, or more gen-
erally any other shape of interest. In general, a large class of
such two-dimensional constraints can be characterized by some
bounded measurable two-dimensional set, and the require-
ment that for every stored in the plane, it must at least be sur-

1Baxter comments on his derivation [2, p. 409]: “It is not mathematically
rigorous, in that certain analyticity properties of� are assumed, and the results
of Chapter 13 (which depend on assuming that various large-lattice limits can be
interchanged) are used. However, I believe that these assumptions, and therefore
(14.1.18)–(14.1.24), are in fact correct.”
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rounded by a set of’s arranged in the shape of. Such a code
is said to satisfy the constraint. These constraints are known
as checkerboard constraints [29]. Two-dimensional con-
straints are examples of checkerboard constraints, in which case
the set is the union of the intervals on both the hor-
izontal and vertical axes in the plane (i.e., a “” shape). Like-
wise, the hexagonal-grid constraint studied in [2] is a checker-
board constraint. It was noted in [29]:

“For example, in two-dimensional optical recording
systems bits may be stored on media in the form of dark or
bright patterns. As the storage ‘disk’ is read, these patterns
pass through various lenses and other image-forming
devices, thus producing intersymbol interference (ISI).
Checkerboard constraints will reduce this ISI, so naturally
we wish to analyze such constraints.”

In this paper, we focus on the asymptotic behavior of the
capacity of two-dimensional channels satisfying checkerboard
constraints. In the special case of the two-dimensional
run-length-constrained channel, the asymptotic behavior of the
capacity is well understood. It was shown in [16] that the ca-
pacity decays to zero at the exact rate as .
For a general checkerboard constraint, the asymptotics analo-
gous to run-length constraints are when the constraintretains
its shape but is inflated in size in the form as .

As goes to infinity, the amount of information that can be
stored per unit area shrinks to zero. In other words, the capacity
decays to zero. We determine the rate at which the capacity goes
to zero as a function of the area of the constraint, for
certain classes of checkerboard constraints. If the checkerboard
constraint is assumed to be open, then we show (Theorem V.2)
that as , the capacity decays to zero at a rate bounded
between and , for
some positive finite constants and . Theorem V.2 makes
precise a prediction given in [29]: “Intuitively, we expect that the
capacity of a given constraint will be inversely proportional to
the number ofzerosin the constraint.” If the checkerboard con-
straint is additionally assumed to be convex and symmetric,
then we show (Theorem IV.4) that as , the capacity
decays to zero at the rate , where
is the packing density of the set. Thus, for example, since the
packing density (in the plane) of squares or convex-symmetric
hexagons is , this implies that the capacity of two-di-
mensional channels satisfying square or hexagon checkerboard
constraints is asymptotically equal to as the
area grows without bound. Similarly, if is a circular con-
straint, then the asymptotic capacity is

since .
Since the constraint corresponding to a two-dimensional

run-length constraint is neither open nor convex, the re-
sults in this paper do not specialize to the constraint
case, but they do provide an interesting related checkerboard
constraint result.

II. PRELIMINARIES

Let denote the two-dimensional plane. A two-dimensional
lattice is a set of the form :

where are independent. In particular, denotes the
two-dimensional integer lattice. Given a set , a labeling
of is any function

For any set , let be the area of and let

be the number of -lattice points contained in.
A set is symmetricif . For any

, , and let and
. Also, for sets let

The closure of is denoted by .
For any and , a line is a set

where is the dot product of and . A line is asupporting
line to the set if and one of the two closed
half-planes determined bycontains .

Let . For each , the set is called a
-translateof . The set is called an

• -packingof if the interiors of the -translates are dis-
joint and are contained in ;

• -coveringof if the union of the closures of the-trans-
lates contains ;

• -tiling of if it is both an -packing and an -covering
of .

A rectangleis any set

for some .
The following definitions are from [20]. Let and

define

where

Thepacking densityof is

(1)

where the supremum is taken over all-packings of , and
thecovering densityof is

(2)

where the infimum is taken over all-coverings of .
The following lemma states that the densest packing and the

sparsest covering using convex symmetric sets are attained by a
lattice packing and lattice covering, respectively.
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Fig. 1. Various checkerboard constraints: a) diamond; b) hexagon; c) square; d) circle; e)(d; 1) run length; and e)(d; 1) hexagonal-grid run length.

Lemma II.1 [20, pp. 12, 17]:For every convex-symmetric
set there exist lattices and such that

and .

A two-dimensionalconstrained channelis a set of labelings
of . Such labelings are calledvalid. A constraint is a descrip-
tion of which labelings are valid for a particular constrained
channel. Acheckerboard constraintis a bounded measurable
set that contains the origin. The terminology “checker-
board constraint” was introduced in [29] to mean a “two-di-
mensional arrangement ofzerosthat must surround everyone
in a two-dimensional binary code,” which is consistent with the
present definition.

Given a set and a checkerboard constraint, a la-
beling of is said to be -valid on if

whenever

That is, satisfies the checkerboard constrainton the set
. Note that any -valid labeling of a subset of can

be extended to an-valid labeling of by making the labeling
equal outside of the subset. The number of-valid labelings
of a set is denoted by . Thecapacity corre-
sponding to the checkerboard constraintis

(3)

A proof given in [16] shows that the above limit exists.
An example of a checkerboard constraint is a run-length con-

straint. For each nonnegative integer, the two-dimensional
run-length constraintis defined as the following subset

of :

(4)

The capacities of various channels satisfying convex checker-
board constraints were studied in [29]. These included the dia-

mond, hexagonal, square, and run-length checkerboard
constraints, and are shown in Fig. 1.

Lemma II.2: Let , let be a checkerboard con-
straint, and let be a labeling of . If is -valid then is

-valid.
Proof: Suppose is not -valid. Then there exist

such that and . This implies
that and, therefore, is not -valid.

Corollary II.3: Let , be a checkerboard constraint,
and be a labeling of . Then is -valid if and only if is

-valid.

Corollary II.3 follows immediately from Lemma II.2. It fol-
lows from Corollary II.3 that every checkerboard constraintis
equivalent to the symmetric checkerboard constraint in
the sense that the sets of-valid labelings and -valid
labelings of any set are identical. That is, any non-
symmetric checkerboard constraint is also a symmetric checker-
board constraint. Therefore,

for any set , establishing Corollary II.4 below. Thus, no
generality is lost if we restrict attention to symmetric checker-
board constraints when computing capacities.

Corollary II.4: If is a checkerboard constraint then
.

Lemma II.5: If is a convex symmetric checkerboard con-
straint which is either open or closed, andis a positive integer,
then

for any .
Proof: Let . Then

for
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Since is symmetric

The quantity

is a convex combination (with weights ) of the points

and is a convex set. If is open then lies in the interior
of and thus also in the interior of . Therefore, by con-
vexity

(see [17, p. 111, Theorem 5]). If is closed then

In both cases

Lemma II.6: Let be a convex symmetric checkerboard
constraint which is either open or closed. For any-valid
labeling of , any set , and every , the
set cannot contain more than one -lattice point with
label .

Proof: Suppose to the contrary that there exist-lattice
points

such that

Then

Taking in Lemma II.5 implies that

and, therefore,

which contradicts the assumption thatis -valid.

Remark II.7: Suppose is a valid labeling. In the special
case where the set of -lattice points with label forms a lat-
tice, Lemma II.6 follows from Minkowski’s Convex Body The-
orem [5, pp. 71–72].2

2There is a typographical error in the last line of the statement of the corollary
in [5]. It should read “whose differencex � x is in�.”

Lemma II.8: Let be an open convex symmetric checker-
board constraint, and letbe a labeling of . Then is -valid
if and only if the set

is a -packing of .
Proof: Suppose is not -valid. Then there exist distinct

such that . Since contains the origin,
. If , then

which implies is not a -packing, since is open. So
assume and likewise . Let

denote the line segment between the pointsand .
Since is convex and lies in the interior of , the

line segment intersects the boundary of in exactly
one point, say (see [17, p. 112, Theorem 9]). Similarly, let
be the point where intersects the boundary of . By the
symmetry of , one gets

and, therefore,

Since and is convex, we have .
Let be the unique point on the extension ofbeyond , that
intersects the boundary of the set . Since is symmetric
and since the line segment connectingto is contained in

, we have

Consequently, is between the points and on , and hence
all points of between and are contained in

. Thus, is not a -packing.
Now suppose that is not a -packing of . Then

there exist such that .
If , then is not -valid, so assume
(and, likewise, ) and let , , and be defined as
above. Since is convex, there exists a supporting line
at the point to the set (see [17, p. 143, Corollary 6]).
Similarly, by symmetry, has a supporting line

at the point . The lines and are parallel. Let denote the
closed halfplane defined by that contains , and let
denote the closed halfplane defined bythat contains .
Then, , , and for, otherwise, and

would be disjoint. Since and , it follows
that is between the points and on , and, therefore,

This implies that , and hence . Thus, is
not -valid.

III. H EXAGONAL CHECKERBOARDCONSTRAINTS

By ahexagonwe mean any convex six-sided polygon, where
it is possible that more than two vertices are colinear. A checker-
board constraint ishexagonalif it is an open, convex, symmetric
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hexagon. An open regular hexagon is an example of a hexagonal
checkerboard constraint. By the definition of a hexagon, the di-
amond and square constraints shown in Fig. 1 a) and c) are also
considered hexagonal checkerboard constraints.

Notation: Let be the set of all checkerboard constraints,
, and . For any , if then we

write

to mean that . That is, the set is inflated
without bound by the factor but retains the same shape. Sim-
ilarly, if then we write

to mean that .

Theorem III.1: If is a hexagonal checkerboard constraint
with capacity and area , then

Proof: It follows immediately from Lemmas III.3 and
III.4 that follow.

The proof of the following lemma is an easy exercise left to
the reader.

Lemma III.2: If is a hexagonal checkerboard constraint,
then there is a lattice -tiling of the plane.

Lemma III.3: If is a hexagonal checkerboard constraint,
then

Proof: Let , and for each let .
By Lemma III.2, there exists a -tiling of . The
set depends on and . Since

and is open, Lemma II.6 implies that for all and for
each -valid labeling of , at most one -lattice point in

has label . The number of -valid labelings
of is upper-bounded if we independently assign an

-valid labeling to the -lattice points in each of the closed
translates that intersects (labelings of
boundary points of translates may be overcounted). Recall that

counts the number of -lattice points in a set . For each
, let

Different translates of from the tiling may con-
tain different numbers of -lattice points, but as

. From the definition of , we have for all ,

(5)

Define the sets

and denote their cardinalities as

The integers and count the number of translates of
from the tiling that are contained in the rectangle or

partially intersect the rectangle, respectively.
Since for any distinct , the sets

and are disjoint, we get the lower bound

(6)

Since is open, Lemma II.6 implies that at most one-lat-
tice point in can be labeled in an -valid la-
beling. By independently choosing at most one-lattice point
to be labeled with a in each of the -translates of

that intersect , we obtain an upper bound

on the number of -valid labelings of , namely

(7)

(8)

where (7) follows from (5); and (8) follows from
. Using (3), the lower bound in (6), and the upper bound

in (8), the capacity of the checkerboard constraintis upper-
bounded as

(9)

(10)
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Fig. 2. The checkerboard constraintH and its scaled versionH .

(11)

where the existence of the limit in (9) follows from the existence
of the limit in (10); and (11) follows from the fact that
as . Since and as

, it follows that

Since was chosen arbitrarily from the interval we have

In order to establish a lower bound on , we design a la-
beling algorithm for . We again consider translates of inflated
copies of that tile , and assign labels to the -lattice
points in a block of neighboring scaled copies of in
the tiling.

Lemma III.4: If is a hexagonal checkerboard constraint,
then

Proof: For each let , and define

By Lemma III.2, one can tile with copies of (see Fig. 2)
on a lattice. Let be independent vectors such that the
lattice

is a -tiling. The lattice depends on . For each positive
odd integer , define the sets

and define .

Note that each translate (where ) can be
written in the form

where

for all

Thus,

for

Since and lie on the boundary of , we have

(and ). Therefore, by Lemma II.5, we have

and, therefore,

Thus, and, hence, .
For all , define the hexagonalminicell

Then

Thus, for each , the minicell lies inside the hexag-
onalcell

and is in the same relative position within the block
of minicells in the cell , as is the position of the

cell within the block of cells . The vector
determines the position within that the minicell lies.

Let be a labeling of defined as follows. For each ,
label exactly one -lattice point in the minicell with a
and label all other -lattice points in with a . For each
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Fig. 3. Four(
+2)� (
+2) blocks of translates (cells) ofH for 
 = 3. In each block, the outermost row on each of the four sides has padding cells filled
with only 0’s. Each nonpadding cell has a
 � 
 block of minicells in it. Of all theZZZ -lattice points in each minicell, only the darkenedZZZ -lattice points have
label1 in the illustrated labeling. Repeating this construction gives anH -valid labeling ofZZZ .

, if , then label all the -lattice points in the
minicell with a . Label all other -lattice points with a
, if they are not in a minicell (i.e., all -lattice points in

for each ).
So exactly one -lattice point in each of the cells is la-

beled and all others are labeled. Each such labeling is an
-valid labeling of . In addition, can be extended to

by labeling every -lattice point in with a . Then
is an -valid labeling of . Fig. 3 illustrates an example

labeling.
The total number of such labelingsof is a lower bound

to the total number of -valid labelings of . That is,

(12)

where we used that fact that . For every
, let be any such -valid labeling of

and assume its value iselsewhere on . Then an extension
to an -valid labeling of all of can be defined by

Although the capacity of a checkerboard constraint is defined in
(3) as a limit as the rectangle grows in size, it is straightforward
to show that the limit can also be taken over a set such as,
as grows without bound. Thus, since

(13)

the capacity can be lower-bounded using (12) and (13) as

For each , choose
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Then, as , we have

Thus, as . Since

as , we get

IV. OPEN CONVEX SYMMETRIC CHECKERBOARD

CONSTRAINTS

In this section, we generalize Theorem III.1 to any open con-
vex symmetric checkerboard constraint. The following lemma
guarantees that among all minimal-area hexagons containing a
given convex symmetric set, at least one is itself also convex and
symmetric.

Lemma IV.1 [6, p. 122]:Let be a convex symmetric
set. Then there exists a hexagon containingthat is of minimal
area, symmetric, and convex.

The following lemma shows that the packing density of a
convex symmetric set is achieved by a symmetric circumscribed
hexagon of minimal area.

Lemma IV.2 [20, p. 12]:Let be a convex symmetric
set and let be a minimal area symmetric hexagon that con-
tains . Then

Lemma IV.3 [11, p. 163]:Let be a convex hexagon and
a convex set. The cardinality of any-packing of

is at most , where is a hexagon of least possible
area containing .

Note that for , if is a minimal-area symmetric
hexagon that contains , then the ratio is a
constant independent of. Thus, if the term appears inside
a limit as , then the can be brought outside the
limit. This fact is used in the proof of Theorem IV.4 that follows.

Theorem IV.4: If is an open convex symmetric checker-
board constraint with area , capacity , and packing den-
sity , then

(14)

Proof: Let be a symmetric (by Lemma IV.1) hexagon
containing , of minimal area . Then

(15)

(16)

where (15) follows from Theorem III.1 and (16) follows from
Lemma IV.2. Since , we have and, therefore,

Since , in order to prove the theorem it suffices
to show that

(17)

Let , and for each , let

We prove (17) by upper-bounding the number of-valid la-
belings of . Let be the maximum number of -lat-

tice points that can be labeledon without violating
the checkerboard constraint . By Lemma II.1, there exists a

-covering of that attains . Let

The sets and depend on both and , and the quantities
and are both functions of , , , , and ( is also a

function of ). For every , define

and note that as . Also, for all and

(18)

Since is open and

Lemma II.6 implies that each of thecopies of
intersecting can contain at most one -lattice point

with label in any -valid labeling of . Thus, .
The number of -valid labelings of can be

upper-bounded by considering all possible collections of
of the -translates of , for and
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assuming that each such translate has exactly one point labeled
and no other translate has any points labeled. This counts

every -valid labeling at least once. Since different collections
of of the -translates might yield the same set ofpoints
being labeled , some -valid labelings may be counted more
than once in this manner. Thus,

(19)

(20)

where (19) follows from (18).

Lemma II.8 implies that in any -valid labeling, the -lat-
tice points with label in are a -packing of

. By the definition of , there exists an -valid labeling of
with exactly points labeled . For the -packing

of determined by the points labeled in this particular
labeling, let denote the number of translates of that lie
inside the boundary of . Then

(21)

(22)

where (21) follows from Lemma IV.3 (since the rectangle
is a convex hexagon), and the fact that as

; and (22) follows from Lemma IV.2.
Let

The quantity denotes the number of -translates of the set
that lie inside the boundary of . The

-covering of satisfies

(23)

(24)

(25)

where (23) follows from the fact that as
; and (24) follows from (2). The capacity is then bounded as

(26)

(27)

where (26) follows from (3) and (20); and (27) follows from
(22), (25), and the fact that as . Thus,

V. ARBITRARY CHECKERBOARDCONSTRAINTS

For a given checkerboard constraint, the area was
grown without bound in Theorem IV.4 to obtain convergence
rates for the capacity of channels constrained by. As grows,
the area of becomes approximately equal to the number of
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-lattice points in , in the sense that their ratio approaches
. A larger class of constrained channels may be examined by

relaxing the requirement that a constraining set be open and have
nonempty interior. However, the area of such a set may be zero,
in which case it is more useful to identify the number of internal

-lattice points.
The following corollary restates Theorem IV.4 in terms of

the number of -lattice points in a constraint instead of the
area of a constraint, since both are equal asymptotically as the
constraint grows in size. This allows a comparison with two-
dimensional run-length-constrained capacities.

Corollary V.1: If is an open convex symmetric checker-
board constraint, then

where is the packing density of .
Proof: It follows immediately from Theorem IV.4 and the

fact that

The constraint defined in (4) is a checkerboard
constraint but it is neither convex nor open, two properties which
were used to obtain Corollary V.1. Furthermore

However, a similar result is still true. It is known [16] that the
capacity3 of the two-dimensional run-length-
constrained channel asymptotically decays to zero at the rate

. That is,

(28)

Since

for all , the asymptotic capacity in (28) can be written as

which is similar in form to Corollary V.1, but is for the non-
convex and nonopen constraint .

In fact, a more general rate of convergence can be ob-
tained for the capacity of two-dimensional channels with
checkerboard constraints whose interior contains the origin,
but without exactly identifying the convergence constant. Such
constraints are not necessarily convex. The capacity is shown
in Theorem V.2 that follows to still decay asymptotically at the
rate in these cases.

Theorem V.2:If is a checkerboard constraint whose inte-
rior contains the origin, then

3The more common notationC is used here, instead of the more cum-
bersomeC .

Proof: Since the origin lies in the interior of, there is an
open regular hexagon contained in and whose center is the
origin. Since is bounded, it is contained in an open regular
hexagon whose center is the origin. and are hexagonal
checkerboard constraints with packing densities

Since , we have

Thus, by Theorem III.1

so that

Also, by Theorem III.1

so that

Note that special cases of Theorem V.2 include whenis
an open checkerboard constraint or whenis the closure of an
open checkerboard constraint.

VI. CAPACITY RELATIVE TO A SCALED LATTICE

The results obtained in this paper have indicated the asymp-
totic capacities of certain two-dimensional checkerboard con-
strained channels. The capacities are given in terms of the “area”
of the constraint . The quantity was defined as the two-
dimensional Lebesgue measure of the set. The units of ca-
pacity were given as bits per lattice point location on the-lat-
tice, or equivalently, bits per area in the plane. It is reasonable
to ask what happens to the results if the lattice itself is scaled.
For example, suppose we ask how many bits of information per
area in the plane can be stored on a lattice subject to a con-
straint . This is identical to determining how many bits per area
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in the plane can be stored on the usual-lattice using a con-
straint .

Let be the number of -lattice points in . Then,
the area of an open set is related to by the esti-
mate

where the approximation becomes equality in the limit as
. Thus, using Corollary V.1, if the checkerboard

constraint is open, convex, and symmetric, the asymptotic
number of bits that can be stored per lattice point on is

The capacity per unit area in the plane is therefore asymptot-
ically equal to the capacity per lattice point multiplied by the
number of lattice points per unit area, that is,

Thus, for any fixed , in the limit as , the capacity
still decays at the rate

even though for any fixed , the capacity is larger than
for . In summary, the asymptotic results presented are
independent of the scaling of the underlying lattice, although
for finite-constraint areas there may be a difference.
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