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Correspondence

Capacity Bounds for the Three-Dimensional(0, 1) Run correspondence we consider the three-dimensithdl) constraint,

Length Limited Channel and by extending ideas from [3] and using two new bounds, our main
result is to derive (in Sections Il and Ill) the following bounds on the
Zsigmond Nagy and Kenneth Zegé&ellow, IEEE three-dimensional0, 1) capacity.
Theorem 1:
Abstract—The capacityCéf’l) of a three-dimensional(0, 1) run length 0.522501741838 < Cégl) < 0.526880847825.
constrained channel is shown to satisf).522501741838 < C§% < '
0.526880847825. It is assumed henceforth in this correspondence dhat 0 and
Index Terms—Channel capacity, constrained codes, magnetic and optical k =1 TV_VO Vali_d mi X ms re_ctar_lgles can be put next to each other
storage. in three dimensions without violating the three-dimensigfial ) con-

straint if they have no two zeros in the same positions. Defirersfer
mMatrixL, m, tobeanVyy;')  x N:') . binary matrix, such that the
rows and columns are indexed by the valid two-dimensienak m

A binary sequence satisfies a one-dimensi¢dat) run length con- patterns, and an entry @, ., is 1 if and only if the corresponding
straint if every run of zeros has length at ledsind at most: (if two ~ two rectangles can be placed next to each other in three dimensions
ones are adjacent in the sequence we say that a run of zeros of lefgthout violating the(0, 1) constraint. Then
zero is between them). An-dimensional binary array is said to satisfy ‘,ijl,}gnwg -1 T,Tf,;zlzl -1 Tffff,ﬁfgl =1 T,T;.Tnlgl 2)
a(d, k) run length constraint, if it satisfies the one-dimensidqwak )
run length constraint along every direction parallel to a coordinate a
Such an array is calledalid. The number of valich-dimensional ar-
rays of sizeni X ms X --- X m, is denoted b)(\’,ﬁfﬁ"'f%lz,u,mn and
the correspondingapacityis defined as

|. INTRODUCTION

wherel is the all-ones column vector and prime denotes transpose. The
)ﬁlﬁatrimel,m2 meets the conditions of the Perron—Frobenius theorem
[8], since it has nonnegative real elements and is irreducible (since the
all-one's rectangle can be placed next to any valid rectangle without vi-
olating the(0, 1) constraint). Therefore, the largest magnitude eigen-

ol — lim log, 4“77(714£l,€v)712,-«~n1,,,_ value A, in, Of Ty, iS pOSitive, real, and has multiplicity one.
’ my,ma, My =00 NN - My This implies that
By exchanging the roles ofand1 it can be seen that|") = Cl(”o)O lim (V(o,l) )1/mg _
forall n > 1. A simple proof of the existence of the two-dimensional g—eo X LTI2MS T mLme

(d, k) capacities can be found in [1], and the proof can be generalizaad

to n dimensions. o i log, A",(fl’})w,mg
Itis known (e.g., see [2]) that the one-dimensiq(tiall )-constrained 0,1 ™ ml,m;,l},llgﬁoo mimams
capacity is the logarithm of the golden ratio, i.e., ) ©.1) 1/ms
5 10{-’,‘2 hlnmg — 00 (lNY771£,7772,7773)

) = log, 1 2‘5 = 0694242 - - = o Jm e
and in [3] very close upper and lower bounds were given for the two-di- - lim logy Ay ims
mensional 0, 1)-constrained capacity. The bounds in [3] were calcu- myma—oo MMy
lated with greater precision in [4] and are slightly improved here (see . logy limpm, oo A™me
Section IV for more details), now agreeing in nine decimal positions = mllliqx mi

0.587891161775 < C*) < 0.587891161868. 1) C o 1082 A, )
These bounds were also independently obtained to eight decimal mi—ee 1y
positions in [5]. A lower bound oCéff > 0.5831 was obtained Where
in [6] by using an implementable encoding procedure known as . 1/mo
Am1 = lim Aml,nlz'

“pit-stuffing.” The known bounds orf‘éﬂ) have played a useful mg—o0
role in [1] for obtaining bounds on othéd#l, k)-constraints in two

dimensions. The three-dimension@l, 1)-constrained bounds given . d i dind to three.di ional ith
in this correspondence can play a similar role for obtaining differe jewed as capacities corresponding 1o three-timensional arrays wi

three-dimensional bounds, and are also of theoretical interest. In fatt\&(,) f|xeq sides (lengths:, andm.), and one fixed side (lengtir. ),
a recent tutorial paper [7] discusses an interesting connection betwEe ectively. . . .
run length constrained capacities in more than one dimension an pper anq lower bounds_ on the_ _three_-dl_mensmnal cap_acny can be
crossword puzzles (based on the work of Shannon from 1948). In tﬁ%mputed dlrect.Iy from the inequalities (similar to the two-dimensional
case, as noted in [4])
oy Amyms o 3) 108 Armi iy
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correspondence agree to withir).002 and were computed using lessviolating the(0, 1) constraint. Viewing these three-dimensional arrays

than 100 Mbytes of computer memory. along their side of lengtin., they can be described as a sequence of
mg cylindrically (0, 1)-constrained two-dimensional rectangles of size
1. LOWER BOUND ON 03"1) m1 X s (see Fig. 1), and thus the number of arrays counting in this

’ manner is the sum of the entriesBf; 27" . O

To derive a lower bound o@éiﬂ) we generalize a method of Calkin _ ) _ o
and Wilf [3]. SinceT’,, ., is a symmetric matrix, the Courant-Fischer The proof above generalizes the two-dimensional versionin [3]. Let

Minimax Theorem [9, p. 394] implies that s be a positive even integer. Then for every positive integerand
2 TP 2 me, the matrixTy;,, .., has nonnegative eigenvalues and thus any one
AP my,mo . . N .
Alims 2 2z (4)  ofits eigenvalues is upper-bounded by its trace. Hence
for any nonzero vectox and any integep > 0. Choosinge = Avnyomy < Trace [Tiju mz]‘/" = (1’ . Bglel)l/s (8)

T}, m,1 for any integer; > 0, and using identity (2) gives which gives the following upper bound oy

V.rptPa1 V-Tiet, il L
AL g > nLmes Lpt2al (G) Ar= Lm AYZZ< Lm (1-Br2'1)ve =€ (9)
’ 1. qulﬂ"'lzl 1. T::f 2q+l]‘ mo—o0 2 mo— 00 ! ’
Thus ’ where¢,. is the largest eigenvalue @, . (note thatB, , satisfies
b i AL/ (mims) P the Eerron-Frobenius theorem for the same reasons &5,fof., in
2ot = g e LM Section ). .
1/my The lower bound or@éi) in (7) can now be written as
= lim < lim A”m/l",",?qz) v NI/ (=) r andu odd, s even
mp—oo \ mg—oo Azv
1/m @y 1 u z>r>1
> qim [ Amiet2ee fr Coi 2 o log, 1/s o> u>1 (10)
~ mjp—oo £ my,2q+1 , S Z 2.
lim A,ln/lr’f]}HqH I To obtain the best possible lower bound, the right-hand side of (10)
= v = /’{J’ at (6) should be maximized over all acceptable choices, af «, v, ands,
,,Llllﬂ}x Ay a1 gl subject to the numerical computability of the quantities,, A ., and
and, therefore, for any odd integee> 1 and any integet > r £,~,S.. Table | shows.the largest eigenvalues of yarious transfer matrices
- 1 Al which were numerically computable. From this table, the best param-
Co 2 - log, <\> : (7)  eters we could find for the lower bound in (10) on the capacity were

. r=3,z=4,u=05v=06,ands = 10, yielding
This lower bound orCéfl) is analogous to a two-dimensional bound 1 9346.35893701
in [3], but A, andA, are not eigenvalues associated with transfer ma- Cé"f > — log, ———2102.T3125508 715 2 0.522501741838.
trices of two-dimensional arrays here, and cannot easily be computed 4-3 (80481.0598379)
as in the two-dimensional case. Instead, we obtain a lower bound on
A . and an upper bound aok,. From (5) and (6) a lower bound on.

is IIl. UPPERBOUND ON C)
A= Lm AV s g U Il BN Proposition 2: Lets; ands. be positive even integers and Bf, .,
B = el Bame 2 O 1.7 denote the transfer matrix whose rows and columns are indexed by all
A 1/(v—u) toroidally (0, 1)-constrained: x s. rectangles. I£:, ., is the largest
= <\“> eigenvalue of3}, ., thenC‘éff < 1/(s1s2)log, €5 5, -

Proof: LetT},, m, andB,,, ., be the same transfer matrices as
defined in Section II, and l&f..,.s, denote the largest eigenvalue of
B, s, - From Proposition 1 and the argument used to obtain inequality
(9) we can also conclude that

wherew is an arbitrary positive odd integer, > u, andA. , and
A. . are the largest eigenvalues of the transfer matflcesandT. ..,
respectively.

To find an upper bound on the quantity. for a givenr, we apply e
a modified version of a method in [3]. We say that a binary matrix Ay S &y
satisfies the0, 1) cylindrical constraintf it satisfies the usual two-di- Also, the same argument used to obtain (8) gives
mensiona[O,1).constraintafterj(.)ining its leftmost column to its right- Emye, < (Tmce [nyi .q1])l/52 _ (1’ (B, S2)7n1711)1/52
most column (i.e., the left and right columns can be put next to each ’ '
other without violating thé0, 1) constraint). A binary matrix satisfies 2Nd thus

m - mys * mq— 1/(mysys
the (0, 1) toroidal constraintif it satisfies the usual two-dimensional A < gfimiey < (1,(BE, )™ ') fmsas)
(0, 1) constraint after both joining its leftmost column to its rightmosthis uses the fact tha?, ., satisfies the Perron-Frobenius theorem
column, and its top row to its bottom row. (for the same reasons as 1By, , .., in Section I). Since
Proposition 1: Let s be a positive integer and 1&t,,, .., be the Césf = lim log, A}/™

transfer matrix whose rows and columns are indexed bipall)-con- we have !
strainedm x m» rectangles. LeB3,, ., denote the transfer matrix o ) \ . L/(s159)
whose rows and columns are indexed by all cylindricéllyl)-con- 270t = mlllgqx A" < (€ ) : =
strainedm; x s rectangles. Then

‘ s mo— Proposition 2 generalizes an upper bound in [3] and is illustrated

Trace[Ts .. 1=1.B"2'1. o i

[ b 2] L in Fig. 2. Note thatB, ., = B5 ,, and thustz ., = & ,,. The best

~ Proof: Trace[Ty;,, m,] is the number ofn, x m2 X (s + 1) parameters we were able to find (from Table I) were= 4 ands = 6,
valid arrays, whose first and last; x m- rectangles are the same, orynq the resulting eigenvalue gave the following upper bound:
equivalently the number of three-dimensional x m x s valid arrays,

- . @ o Lo . AR RO ATRY =
whose firstm; x m» rectangle can be put after the last one without Cy < 54 1082 6405.69924332 < 0.526880847825.



1032 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

TABLE |
THE LARGEST EIGENVALUES OF THE TRANSFERMATRICES T’ 5, Ba 5, AND B , ARE Ay 4, €45, AND € ,, RESPECTIVELY. THE
VALUES FOR B.,;, ARE ONLY GIVEN WHEN b IS EVEN, AND FOR B , WHEN BOTH @ AND b ARE EVEN. EIGENVALUE ENTRIES IN
THE TABLE WITH AN “*” N EXT TO THEM INDICATE THAT THEY WERE COMPUTED USING THE POWER METHOD INSTEAD OF BY
DIRECT COMPUTATION (SEE SECTION V). THE EIGENVALUES A, ; and{, , ARE SYMMETRIC IN THEIR INDICES

a bl Aap rowsof Ta 3 | €ap rows of B ;’b rows of B;,b
1 11 1.61803398875 2
2 | 2.41421356237 3 | 2.41421356237 3
3 | 3.63138126040 5 A
4 | 5.45770539597 8 | 5.15632517466 7
5 | 8.20325919376 13 ,
6 | 12.3298822153 21 | 11.5517095660 18
7 | 18.5324073775 34
8 | 27.8550990963 55 | 26.0579860919 47
9 | 41.8675533183 89
10 | 62.9289457252 144 | 58.8519350815 123
11 | 94.5852312050 233
12 | 142.166150393 377 | 132.947794048 322
13 | 213.682559741 610
14 | 321.175161677 987 | 300.345852027 843
15 | 482.741710897 1597
16 | 725.584002895* 2584 | 678.525669346 2207
17 | 1090.58764423* 4181
18 | 1639.20566742* 6765 | 1532.89283597* 5778
19 | 2463.80493521* 10946
20 | 3703.21728345* 17711 | 3463.03987027* 15127
21 | 5566.11363689* 28657
22 | 8366.13642876* 46368 | 7823.53857819* 39603
23 | 12574.7053170* 75025
24 | 18900.3867144* 121393 | 17674.5747630* 103682
2 2 | 5.15632517466 7 | 5.15632517466 7 | 5.15632517466 7
3| 11.1103016575 17
4 | 23.9250625386 41 | 21.9287654025 35 | 21.9287654025 35
5 | 51.5229210280 99
6 | 110.954925971 239 | 100.236549238 199 | 100.236549239 199
7 | 238.942175857 577
8 | 514.563569622 1393 | 463.203410887 1155 | 463.203410887 1155
9 | 1108.11608218* 3363
10 | 2386.33538059* 8119 | 2146.04060032* 6727 | 2146.04060032* 6727
11 | 5138.98917320* 19601
12 | 11066.8474924* 47312 | 9949.63685703* 39203 | 9949.63685703* 39203
3| 3| 34.4037405361 63
4 | 106.439377528 227 | 94.2548937790 181
5 | 329.331697608 827
6 | 1018.97101980* 2999 | 884.498791440 2309
7 | 3152.75734322* 10897
8 | 9754.81971205* 39561 | 8421.60680806* 30277
9 { 30181.9963196* 143677
10 | 93384.9044989* 521721 | 80481.0598378* 398857
4 | 4 | 473.069084944 1234 | 404.943621498 933 | 355.525781764 743
5 | 2102.73425567* 6743
6 | 9346.35893702* 36787 | 7799.87080772* 26660 | 6405.69924332* 18995
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Fig. 1. Cylindrically (0,1)-constrainedm; x s rectangles used to build
cylindric m; x ms X s arrays.

Fig. 2. Toroidally(0, 1)-constraineds; X s- rectangles used to build doubly
cylindric m; x s; X s, arrays.

IV. REMARK

1033

14th significant decimal place (computing s, A4 6, &3,10, andés 6).
The resulting eigenvector estimates were used as the valuesnof
Lemma 1 to obtairxactupper and lower bounds on the largest eigen-
values.

Similarly, we obtained the upper bound in (1) with the power
method (computing\i,21, Ay 23, and&, 24). Originally these bounds
were computed in [3] as

0.587891161 < C§) < 0.588339078

(computingA+ 13, A1,15, and & ¢) and were later improved in [4]
(computingA1,13, A1,14, and€; 14) to
0.587891161775 < € < 0.587891494943.
The lower bound in (1) is from [4].
We expect the bounds in (10) and in Proposition 2 to improve in the

future as increased computational speed and memory expand more of
Table I.
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symmetric, and easily computable, we were able to obtain the largest
eigenvalues of much larger matrices. Specifically, the eigenvalues used
to obtain the capacity bounds in Theorem 1 were computed using the
following result.

Lemmal ([10, p. 493]) : Let A be am x n matrix with nonnegative
entries only. Then for any-dimensional positive vectar we have

n 1 n
Zaij:vj <p(4) < max — Zaij:vj
J=1 J=1

.1
min —

1<i<n @; 4 1<i<n a; 4
and
i3 T
. @ij aij
min x; E . < p(4) € max z; E J
1<5<n x; 1<5<n T

=1 o= i=1
wherep(A) denotes the spectral radius of the matix

The convergence rate of the power method depends on the relative
size of the largest and second largest eigenvalues, but the second largest
eigenvalues are generally unknown to us. Hence, we iterated the eigen-
value computation until the eigenvalues appeared to stabilize in the
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