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Abstract—The capacity of a three-dimensional(0 1) run length
constrained channel is shown to satisfy0 522501741838
0 526880847825.

Index Terms—Channel capacity, constrained codes, magnetic and optical
storage.

I. INTRODUCTION

A binary sequence satisfies a one-dimensional(d; k) run length con-
straint if every run of zeros has length at leastd and at mostk (if two
ones are adjacent in the sequence we say that a run of zeros of length
zero is between them). Ann-dimensional binary array is said to satisfy
a (d; k) run length constraint, if it satisfies the one-dimensional(d; k)
run length constraint along every direction parallel to a coordinate axis.
Such an array is calledvalid. The number of validn-dimensional ar-
rays of sizem1 �m2 � � � � �mn is denoted byN (d;k)

m ;m ;���;m and
the correspondingcapacityis defined as

C
(n)
d;k = lim

m ;m ;���m !1

log2N
(d;k)
m ;m ;���m

m1m2 � � �mn

:

By exchanging the roles of0 and1 it can be seen thatC(n)
0;1 = C

(n)
1;1

for all n � 1. A simple proof of the existence of the two-dimensional
(d; k) capacities can be found in [1], and the proof can be generalized
to n dimensions.

It is known (e.g., see [2]) that the one-dimensional(0; 1)-constrained
capacity is the logarithm of the golden ratio, i.e.,

C
(1)
0;1 = log2

1 +
p
5

2
= 0:694242 � � �

and in [3] very close upper and lower bounds were given for the two-di-
mensional(0; 1)-constrained capacity. The bounds in [3] were calcu-
lated with greater precision in [4] and are slightly improved here (see
Section IV for more details), now agreeing in nine decimal positions

0:587891161775� C
(2)
0;1 � 0:587891161868: (1)

These bounds were also independently obtained to eight decimal
positions in [5]. A lower bound ofC(2)

0;1 � 0:5831 was obtained
in [6] by using an implementable encoding procedure known as
“bit-stuffing.” The known bounds onC(2)

0;1 have played a useful
role in [1] for obtaining bounds on other(d; k)-constraints in two
dimensions. The three-dimensional(0; 1)-constrained bounds given
in this correspondence can play a similar role for obtaining different
three-dimensional bounds, and are also of theoretical interest. In fact,
a recent tutorial paper [7] discusses an interesting connection between
run length constrained capacities in more than one dimension and
crossword puzzles (based on the work of Shannon from 1948). In this
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correspondence we consider the three-dimensional(0; 1) constraint,
and by extending ideas from [3] and using two new bounds, our main
result is to derive (in Sections II and III) the following bounds on the
three-dimensional(0; 1) capacity.

Theorem 1:

0:522501741838� C
(3)
0;1 � 0:526880847825:

It is assumed henceforth in this correspondence thatd = 0 and
k = 1. Two validm1 �m2 rectangles can be put next to each other
in three dimensions without violating the three-dimensional(0; 1) con-
straint if they have no two zeros in the same positions. Define atransfer
matrixTm ;m to be anN (0;1)

m ;m �N
(0;1)
m ;m binary matrix, such that the

rows and columns are indexed by the valid two-dimensionalm1�m2

patterns, and an entry ofTm ;m is 1 if and only if the corresponding
two rectangles can be placed next to each other in three dimensions
without violating the(0; 1) constraint. Then

N (0;1)
m ;m ;m = 1110 � Tm �1

m ;m 111 = 1110 � Tm �1
m ;m 111 = 1110 � Tm �1

m ;m 111 (2)

where111 is the all-ones column vector and prime denotes transpose. The
matrixTm ;m meets the conditions of the Perron–Frobenius theorem
[8], since it has nonnegative real elements and is irreducible (since the
all-one's rectangle can be placed next to any valid rectangle without vi-
olating the(0; 1) constraint). Therefore, the largest magnitude eigen-
value�m ;m of Tm ;m is positive, real, and has multiplicity one.
This implies that

lim
m !1

N (0;1)
m ;m ;m

1=m

= �m ;m

and

C
(3)
0;1 = lim

m ;m ;m !1

log2N
(0;1)
m ;m ;m

m1m2m3

= lim
m ;m !1

log2 limm !1 N
(0;1)
m ;m ;m

1=m

m1m2

= lim
m ;m !1

log2 �m ;m

m1m2

= lim
m !1

log2 limm !1�
1=m
m ;m

m1

= lim
m !1

log2 �m

m1
(3)

where

�m = lim
m !1

�1=m
m ;m :

The quantitieslog2 �m ;m =(m1m2) and log2 �m =m1 can be
viewed as capacities corresponding to three-dimensional arrays with
two fixed sides (lengthsm1 andm2), and one fixed side (lengthm1),
respectively.

Upper and lower bounds on the three-dimensional capacity can be
computed directly from the inequalities (similar to the two-dimensional
case, as noted in [4])

log2 �m ;m

(m1 + 1)(m2 + 1)
� C

(3)
0;1 �

log2 �m ;m

m1m2

but these do not yield particularly tight bounds for values ofm1 and
m2 for which the corresponding value of�m ;m could be computed
by us. (For example, Table I shows that the eigenvalues�m ;m cor-
respond to matrices with more than 40 million elements when roughly
m1m2 � 20.) The upper and lower capacity bounds derived in this
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correspondence agree to within�0:002 and were computed using less
than 100 Mbytes of computer memory.

II. L OWER BOUND ONC
(3)
0;1

To derive a lower bound onC(3)
0;1 we generalize a method of Calkin

and Wilf [3]. SinceTm ;m is a symmetric matrix, the Courant-Fischer
Minimax Theorem [9, p. 394] implies that

�p
m ;m �

xxx0 � T p
m ;m xxx

xxx0 � xxx
(4)

for any nonzero vectorxxx and any integerp � 0. Choosingxxx =
T q
m ;m 111 for any integerq � 0, and using identity (2) gives

�p
m ;m �

1110 � T p+2q
m ;m 111

1110 � T 2q
m ;m 111

=
1110 � Tm �1

m ;p+2q+1111

1110 � Tm �1
m ;2q+1111

: (5)

Thus

2
pC

= lim
m ;m !1

�1=(m m )
m ;m

p

= lim
m !1

lim
m !1

�p=m
m ;m

1=m

� lim
m !1

�m ;p+2q+1

�m ;2q+1

1=m

=
lim

m !1

�
1=m
m ;p+2q+1

lim
m !1

�
1=m
m ;2q+1

=
�p+2q+1

�2q+1
(6)

and, therefore, for any odd integerr � 1 and any integerz > r

C
(3)
0;1 �

1

z � r
log2

�z

�r
: (7)

This lower bound onC(3)
0;1 is analogous to a two-dimensional bound

in [3], but�z and�r are not eigenvalues associated with transfer ma-
trices of two-dimensional arrays here, and cannot easily be computed
as in the two-dimensional case. Instead, we obtain a lower bound on
�z and an upper bound on�r. From (5) and (6) a lower bound on�z

is

�z = lim
m !1

�1=m
z;m � lim

m !1

1110 � Tm �1
z;v 111

1110 � Tm �1
z;u 111

1=((v�u)m )

=
�z;v

�z;u

1=(v�u)

whereu is an arbitrary positive odd integer,v > u, and�z;v and
�z;u are the largest eigenvalues of the transfer matricesTz;v andTz;u,
respectively.

To find an upper bound on the quantity�r for a givenr, we apply
a modified version of a method in [3]. We say that a binary matrix
satisfies the(0; 1) cylindrical constraintif it satisfies the usual two-di-
mensional(0; 1) constraint after joining its leftmost column to its right-
most column (i.e., the left and right columns can be put next to each
other without violating the(0; 1) constraint). A binary matrix satisfies
the (0; 1) toroidal constraintif it satisfies the usual two-dimensional
(0; 1) constraint after both joining its leftmost column to its rightmost
column, and its top row to its bottom row.

Proposition 1: Let s be a positive integer and letTm ;m be the
transfer matrix whose rows and columns are indexed by all(0; 1)-con-
strainedm1 � m2 rectangles. LetBm ;s denote the transfer matrix
whose rows and columns are indexed by all cylindrically(0; 1)-con-
strainedm1 � s rectangles. Then

Trace T s
m ;m = 1110 � Bm �1

m ;s 111:

Proof: Trace[T s
m ;m ] is the number ofm1 � m2 � (s + 1)

valid arrays, whose first and lastm1 �m2 rectangles are the same, or
equivalently the number of three-dimensionalm1�m2�s valid arrays,
whose firstm1 � m2 rectangle can be put after the last one without

violating the(0; 1) constraint. Viewing these three-dimensional arrays
along their side of lengthm2, they can be described as a sequence of
m2 cylindrically (0; 1)-constrained two-dimensional rectangles of size
m1 � s (see Fig. 1), and thus the number of arrays counting in this
manner is the sum of the entries inBm �1

m ;s .

The proof above generalizes the two-dimensional version in [3]. Let
s be a positive even integer. Then for every positive integerm1 and
m2, the matrixT s

m ;m has nonnegative eigenvalues and thus any one
of its eigenvalues is upper-bounded by its trace. Hence

�m ;m � Trace T s
m ;m

1=s
= 1110 � Bm �1

m ;s 111
1=s

(8)

which gives the following upper bound on�r:

�r = lim
m !1

�1=m
r;m � lim

m !1

1110 � Bm �1
r;s 111 = �1=sr;s (9)

where�r;s is the largest eigenvalue ofBr;s (note thatBr;s satisfies
the Perron-Frobenius theorem for the same reasons as forTm ;m in
Section I).

The lower bound onC(3)
0;1 in (7) can now be written as

C
(3)
0;1 �

1

z � r
log2

�

�

1=(v�u)

�
1=s
r;s

;

r andu odd,s even
z > r � 1

v > u � 1

s � 2:

(10)

To obtain the best possible lower bound, the right-hand side of (10)
should be maximized over all acceptable choices ofr; z; u; v; ands;
subject to the numerical computability of the quantities�z;v,�z;u, and
�r;s. Table I shows the largest eigenvalues of various transfer matrices
which were numerically computable. From this table, the best param-
eters we could find for the lower bound in (10) on the capacity were
r = 3; z = 4; u = 5; v = 6; ands = 10, yielding

C
(3)
0;1 �

1

4� 3
log2

9346:35893701
2102:73425568

(80481:0598379)1=10
� 0:522501741838:

III. U PPERBOUND ONC
(3)
0;1

Proposition 2: Lets1 ands2 be positive even integers and letB�s ;s

denote the transfer matrix whose rows and columns are indexed by all
toroidally(0; 1)-constraineds1� s2 rectangles. If��s ;s is the largest
eigenvalue ofB�s ;s , thenC(3)

0;1 � 1=(s1s2) log2 �
�

s ;s .
Proof: Let Tm ;m andBm ;s be the same transfer matrices as

defined in Section II, and let�m ;s denote the largest eigenvalue of
Bm ;s . From Proposition 1 and the argument used to obtain inequality
(9) we can also conclude that

�m � �1=sm ;s :

Also, the same argument used to obtain (8) gives

�m ;s � Trace Bs
m ;s

1=s
= 111; (B�s ;s )m �1111

1=s

and thus

�1=m
m � �1=(m s )

m ;s � 111; (B�s ;s )m �1111
1=(m s s )

:

This uses the fact thatB�s ;s satisfies the Perron-Frobenius theorem
(for the same reasons as forTm ;m in Section I). Since

C
(3)
0;1 = lim

m !1

log2 �
1=m
m

we have

2
C

= lim
m !1

�1=m
m � ��s ;s

1=(s s )
:

Proposition 2 generalizes an upper bound in [3] and is illustrated
in Fig. 2. Note thatB2;s = B�2;s and thus�2;s = ��2;s . The best
parameters we were able to find (from Table I) weres1 = 4 ands2 = 6,
and the resulting eigenvalue gave the following upper bound:

C
(3)
0;1 �

1

24
log2 6405:69924332� 0:526880847825:
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TABLE I
THE LARGEST EIGENVALUES OF THE TRANSFERMATRICES T , B , AND B ARE � , � , AND � , RESPECTIVELY. THE

VALUES FORB ARE ONLY GIVEN WHEN b IS EVEN, AND FOR B WHEN BOTH a AND b ARE EVEN. EIGENVALUE ENTRIES IN

THE TABLE WITH AN “*” N EXT TO THEM INDICATE THAT THEY WERE COMPUTED USING THE POWER METHOD INSTEAD OF BY

DIRECT COMPUTATION (SEE SECTION IV). THE EIGENVALUES � and � ARE SYMMETRIC IN THEIR INDICES
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Fig. 1. Cylindrically (0; 1)-constrainedm � s rectangles used to build
cylindric m �m � s arrays.

Fig. 2. Toroidally(0;1)-constraineds � s rectangles used to build doubly
cylindric m � s � s arrays.

IV. REMARK

Direct computation of eigenvalues using standard linear algebra al-
gorithms generally requires the storage of an entire matrix. This se-
verely restricts the matrix sizes allowable, due to memory constraints
on computers. By exploiting the fact that our matrices are all binary,
symmetric, and easily computable, we were able to obtain the largest
eigenvalues of much larger matrices. Specifically, the eigenvalues used
to obtain the capacity bounds in Theorem 1 were computed using the
following result.

Lemma 1 ([10, p. 493]) :LetA be ann�nmatrix with nonnegative
entries only. Then for anyn-dimensional positive vectorxxx we have

min
1�i�n

1

xi

n

j=1

aijxj � �(A) � max
1�i�n

1

xi

n

j=1

aijxj

and

min
1�j�n

xj

n

i=1

aij

xi
� �(A) � max

1�j�n
xj

n

i=1

aij

xi

where�(A) denotes the spectral radius of the matrixA.

The convergence rate of the power method depends on the relative
size of the largest and second largest eigenvalues, but the second largest
eigenvalues are generally unknown to us. Hence, we iterated the eigen-
value computation until the eigenvalues appeared to stabilize in the

14th significant decimal place (computing�4;5, �4;6, �3;10, and��4;6).
The resulting eigenvector estimates were used as the values ofxxx in
Lemma 1 to obtainexactupper and lower bounds on the largest eigen-
values.

Similarly, we obtained the upper bound in (1) with the power
method (computing�1;21, �1;23, and�1;24). Originally these bounds
were computed in [3] as

0:587891161 � C
(2)
0;1 � 0:588339078

(computing�1;13, �1;15, and �1;6) and were later improved in [4]
(computing�1;13, �1;14, and�1;14) to

0:587891161775� C
(2)
0;1 � 0:587891494943:

The lower bound in (1) is from [4].
We expect the bounds in (10) and in Proposition 2 to improve in the

future as increased computational speed and memory expand more of
Table I.
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