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Randomly Chosen Index Assignments Are indices to quantization points to minimize the mean squared distance
Asymptotically Bad for Uniform Sources between pairs of these points, with respect to their prior probabilities
and the channel transition probabilities. In this paper, however, we

Andras Mehes and Kenneth ZegeSenior Member, IEEE maximize the MSE.

The paper is organized as follows. Section Il gives notation and

definitions. In Section Ill, we derive a distortion-maximizing index

~ Abstract—It is known that among all redundancy-free codes (or assignment (the worst code) for uniform scalar quantization of a
index assignments), the natural binary code minimizes the mean-squared yniform source (Theorem 1) and compare the performances of the
error (MSE) of the uniform source and uniform quantizer on a binary peqt \yorst, and randomly chosen index assignments (Corollary 1).
symmetric channel. We derive a code which maximizes the MSE and . . o
demonstrate that the code is linear and its distortion is asymptotically A counterexample in Section IV shows that the MSE-maximizing
equivalent, as the blocklength grows, to the expected distortion of an property of the worst code does not extend to arbitrary binary lattice
index assignment chosen uniformly at random. vector quantizers (Corollary 3), even though it is known that the
Index Terms—index assignment, noisy channel vector quantization, ~ MSE-minimizing property of the natural binary code does extend to
binary lattice vector quantizers. We establish, however, that among
all affine index assignments, the worst code does maximize the MSE

I. INTRODUCTION of arbitrary binary lattice vector quantizers (Corollary 2).

An index assignment is a mapping of source code symbols to
channel code symbols. The usual goal of index assignment design for
noisy channel vector quantizers is to minimize the end-to-end mean-
squared error (MSE) over all possible index assignments. The MSE is
computed with respect to the statistics of both the source and channefor any positive integem, let Z; denote the field ofn-bit
Previous work has examined the theoretical and practical aspdeiRary words, where arithmetic is performed modulo 2. Every integer

Il. PRELIMINARIES

of index assignment in noisy channel vector quantizer systems.in€ S = I{U,"',Qn — 1} has a unique binary representation
particular, it is known that the performance of such a system can be >_/—, 2'i;, wherei; € {0,1}. We denote byi € Z3 the binary
significantly affected by the choice of index assignment. n-tuple (row vector) corresponding  i.e.,

The problem of algorithmically finding good index assignments has
been previously studied in [1]-[6], and analytic formulas have been
found for binary symmetric channels and certain sources [7]-[12]. 1= [inztyin—2,""",11,40].
The optimality of the natural binary code was conjectured in [8] and
proved in [10] for uniform scalar quantization of a uniform source and
later extended to binary lattice vector quantizers with equiprobabl@e transpose of € Z3 is denoted byi”. Fori, j € z7,iTjis a
quantization points in [11]. binary matrix, whileij” = "7 "i;j; € {0,1} is the binary inner
In this paper, we derive an index assignment whishximizes product of the two vectors. We denote k™ the binary vector
the MSE for a uniform scalar source and show that the worghiresponding te™, ie., el™ = Ij,.—:, wherel is the indicator
case performance thus obtained is asymptotically equivalent to figction. The all-zero vector is denoted byand the all-one vector
expected performance of an index assignment chosen unifornav 1.
at random. This indicates that the majority of index assignmentSpefinition 1: An index assignmeris a mappingr : 22 — Z&

are asymptotically bad. Also, this result analytically reveals thgnich is a bijection. An index assignment is a permutationZgf,
entire range of possible performances achievable by different indgxy thus there are2™)! different index assignments.

assignments. ) o ) An affine index assignment : Z5 — Zy is an index assignment
The overall MSE of a quantizer optimized for a noiseless channg{ the form

can be decomposed into a “source distortion” due to quantization
and a “channel distortion” due to channel noise [13]. The source
component is a result of representing the source with a finite
number of quantization points and thus is independent of the index
assignment. The channel component, on the other hand, results from
confusing the indices of quantization points because of channel errors. . . . o
Hence, we focus on the channel distortion, when evaluating ind®{€reG is a binary nonsingulan x n generator matrixt is ann-
assignments. With this in mind, the index assignment problem C_gp;nensmnal binaryranslation vectorand the arithmetic is performed

be reformulated as a discrete problem with no direct reference b2z - If t = 0, thenw is calledlinear. _ _
quantization. Forn-bit uniform scalar quantization of a uniform ' ne family of affine index assignments is attractive due to its low-

source, the quantization points are scaled and translated versilffydlémentation complexity and was first systematically studied in
of 0,---,2" — 1. The usual index assignment problem is to assigH‘z] and [14]-[16]. An unstructured index assignment requires a table
i of sizeO(n2") bits to implement, whereas affine assignments can be
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TABLE | symmetric channel are
A 4-b ExaMPLE OF THE NATURAL BINARY CODE AND THE WORST CODE.
n—1
] @ | () Plalb) =[] plac[b) = " (1= =" a e 73,
0| O {0000 | O {0000
1 170001 9 |1001
2 | 2 10010} 10 | 1010 We denote the probability that an error pattere Z occurs on a
31l 3 |oo11| 3 |o011 binary symmetric channel by
4 | 4 {0100 { 12 | 1100 o
5 | 5 0101 5 | o101 pa2Pb+alb)=e"®1-" ™ bezy (1)
6 | 6 | 0110 6 [0110
7 4 7 ]0111 || 15| 1111 Definition 4: Let = be an index assignment and suppose an ele-
8 |l 8 11000 7 |o111 menti is chosen uniformly at random from the se&= {0,---,2" —
91l 9110011141110 1}, where the binaryn-tuple = (i) is transmitted over a binary

symmetric channel with error probability. The end-to-end MSE

10§ 10 | 1010 || 13 | 1101 ; .

11| 11 | 1011 | 4 | 0100 is defined as

12 | 12 | 1100 || 11 | 1011 D 227" "N (i = )2 pa(iy4=Gi)- @)
13| 13 | 1101 {| 2 | 0010 €S JES

14 || 14 | 1110 || 1 | 0001 It may be assumed without loss of generality th&0) = 0, which
15| 15 | 1111 || 8 | 1000 for an affine index assignmenti) = iG +t is equivalent to setting

t = 0. Thus, we omit the translation vectorin what foIIov&s.
Definition 5: For eachi, j € Z%, let hy; = (—=1)Y . The
We define theworst codery to be the linear index assignmentHadamard transformf : Z3 — R of a mappingf : Z7 — R

with generator matrix is defined by
FG)y =37 Flihi;
n 1 1 -1 iezn
1 1 0 --- 0 and the inverse transform is given by
Gw=11 o o =23 fG)hg.
. T iezy
1 o .- 0 1 The Hadamard transform provides a tool for analyzing the mean-

squared distortion [5], [12], [16]-[19]. The following properties of
where the %" in the top-left component oGy is taken modulo 2. Hadamard transforms are useful. For dnjia, b € Z3:

The inverse of the generator matrix is 1)
hij = hj,i
1 1 1 1 g
2)
G = 1 0 .1 1 hiatb = hiahip
w 1 1 . . e
3)
; S 2" ifj=0
1 1 ... 1 0 R J="
GZZ hig {07 otherwise
1 2'
Table | gives an explicit listing (in both decimal and binary) of these 4
two index assignments for = 4. N o
Let the channel transition probabilities of a binary symmetric ) 2" 2, 'f.l 20( ,
channel be denoted by (fer < 1/2) imhig=q-=2""", ifj=e", me{0,1,---.n -1}
iezy 0, otherwise.

_ The first two properties are straightforward. Property 3) follows from
_J1-—e if a =10 the fact that exactly half of the binary vectors 4 are orthogonal
pla]b) = : a,b e {0,1}. _ . a
if a0 to any fixed nonzero vectoy € Z3. To see Property 4), let,
j’ € Z27*, respectively, denote the binary vectdars € Z5, but
with the mth component removed. Then, we can rewrite Property
Definition 3: The Hamming weightf a binaryn-tuplea € Z3 is 4) as

the number of its nonzero components Z Z i
7m( 1) e mh i’,j’
ne1 i EA” 1im€{0,1}
A ; : n—
a) = ZI{W¢U}' = (—1)'7m Z hi’.j’ = (—1)‘]m2 ][{j/:()}
— sr o mn—1
i 642

The transition probabilities for binary n-tuples on a binary where the last equality follows from Property 3) g —*.
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Lemma 1: The Hadamard transform of the error pattern distri-  The following bounds onD follow from Lemma 2 usingl <

bution p is w(a) < n for a € Zy\{0}:
pi=(1— QF)“’(J')_ 4e Z 27" A(a)]
aczp\{o}
Proof: <D<2AL-(1-29") > [27"j(a)”. (3)
. . acZp\{o}
pi = Z Ew(l)(l — E)niw(l)hiyj

o The lower bound was established in [10] and can be achieved with
z . equality if 7j(a) = 0 for everya € Z7 with Hamming weight
Z Z Z Heil(l_e)l—il(_l)iu‘l w(a) > 1. For example, the natural binary code satisfies this
heToa) a0} in_ieton) requirement [10], [11]. To achieve the upper bound with equality,
N L e ot » we must havej(a) = 0 for everya € 77 such thatw(a) < n,
H Z (1- 6)1_,1( ,m - H(l Cete(— 1),1) i.e., (1) must be the only nonzero Hadamard transform component.

Note, however, that for any index assignment

1=0 i;€{0,1} =0
= (1 -2¢)"®, . ’
Yoo oRT@P = Y 277 ) ahia
| acZr\{0} aczy P
2
[lI. CONSTRUCTION OF THEWORST CODE _ |9—n Z n(i)hio
The following lemma gives an expression for the distortidrin iczy
the Hadamard transform domain. Variants of this result were used to
show the optimality of the natural binary code in [10] and [11]. The —9 " Z Z ij 27" Z Dr(i)n(i)
lemma is useful for identifying a “worst” code. ies jes aczy
Lemma 2: Let n(i) = 7' (i) for all i € Z7. Then the distortion 9
in the Hadamard transform domain is _ [z_n ZZ}
€S
D=2 > [27"j@)(1-(1-29"™). 2
i€S €S
Proof: Rewriting (2) usingy yields 4™ — 1 .
EENTE ©)
- 2
D=2""3">"(n(i) = n(3)’pits =03,
164” JEZ” . . .
2 the variance of a random variable chosen uniformly at random from
. T R S. On the other hand, for any
=2 Z Z 2 Z fH(a)(hai— haj)| pitj .
€Ly jezy aczy ) -
. . . 27n¢ 2 — —n (3 i
=575 Y X5 aiwith) PR [ 2 e
i€zy jezy acZy bezy L €4
X_(ha+b,i - ha{hb’j A— haihbi+ hatbj) _ |y Zi(—l)ﬂ—(i)lT
=8 Z Z i(a)j(b) Z hatb.i L =
a€Zy bezy iezy r on_y on—1_1 2
X > piri(hoits = haiti — Bbiti + hatb,its) <l D Z
jezy i imgn—1
— [27n47171]2
=47" 3 > @) [ 27" D hatba =42 )
aezg beZ;’“ ieZ;I < 4m — 1
12

X Z pc(hO,c - ha,c - hb,c + ha-&-b‘c)

=, for everyn > 1. Thus, the upper bound given in (3) is not achievable
c 7o

whenn > 1. The next tightest upper bound from Lemma 2 is obtained
=4"" Z Z 7(a)f(b)Ija=b} (o — fa — fb + patb) usingw(a) < n —1foralla # 1, ie.,

a€Z0 beny
D <2(1—(1-26)")max[2" r/o(l)] +2(1-(1- 25)"71)

=2 Z a po — pa) no

aczy . .
_ —n . w(a X 27" (a)]” — max[2” "o (1)) |. @
—2 Y @)1 (120", N

2
aEZé’“\{O}

Indeed, the worst code achieves (7). To prove this, consider the
O Hadamard transform componenjsa) of an arbitrary linear index
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assignmentr(i) = iG, and for anya € Z3\{0} this gives
n(a) = (1) hi a _1-(1-e" S 2
i(a) igl 1)k, Dave = oIt 0 ZZ@ )
2 i€S jeS
:Zihw(i)‘a :<1_(1_€)n)4 +2 )
i€S 6
il .. The values ofDmin and D,.. were apparently first reported in [7].
= Z Z 21 | hic.a Clearly, the inequalitieDmin < Dave < Dumax hold for every
eS8 \=0 e €[0,1/2] andn > 1. It is interesting to examine the asymptotic
i ] behavior of the minimum, maximum, and average distortions, both
= 2 Z ”h’i,aGT as the blocklengttn grows and as the channel error probability
=0 \iezy decreases. The partial derivatives gfex, Jav= and Dmax with
- n-l ; respect toe are all strictly negative for alk € ((),1/2)( and for
=2 ZQ Taer=etty (8) all » > 1. Hence, the largest performance gain of a best index

1=0 assignment over a worst index assignment or over an average index

where (8) follows from Property 4) sinceG’ # 0 for a # 0 assignment occurs in the limit as— 0. Asymptotically asc — 0,

by the nonsingularity ofz. Therefore, the only nonzero Hadamardor a fixed blocklengthn, these gains are given by

transform components are those corresponding te eV (G7)~*, Doy - <3) 1
=n—

for 7 =0,.--,n — 1. Thus, to achieve the lower bound given in (3), ~ Lim 1/1_-4-n

e—0 i
every row of(GT)*1 must have Hamming weight 1, as with the Drlmvn n
natural binary code. lim === = ST—2)
Similarly, the upper bound given in (7) can be achieved by setting i
e D(GT)"! = 1 (i.e., the first row of the inverse of the transposed  [jy, 2max — 21—n H(1-2"")+ <3) ( 1
n

generator matrix must be all ones) and choosing the remaining =0 Dave 1+27)

2

rows of (G* )" to have Hamming weight —1. An example isG};',  On the other hand, for a fixed bit error probabilityletting n — oo
given in the definition of the worst code. Note that the all-one vectgfelds

has to be the first row O(fGT)_1 to ensure the maximization of

. max 1
2D = 27 (=2 e PP =42 M D %
Thus, combining the lower bound from (3) and the upper bound Jim Dm_e = %
from (7) and using (5) and (6) to eliminate the remaining Hadamard D::
transforms from the expressions, we obtain the following theorem. nlirlgo — =1
Theorem 1: Suppose an integédris chosen uniformly at random . ' e .
from the setS = {0,---,2" — 1} and then-bit word =(i) is Thus, for asymptotically large block lengths, the performance gain of

transmitted over a binary symmetric channel with bit error probabilif§ best |nd_ex assignment over a worst index assignment or an average
€ € [0,1/2], using an index assignment Then the resulting MSE index assignment i$/2¢, which can be very large. In this sense, a
D satisfies large fraction of index assignments can be considered “bad.”

4™ 1 4n _ Corollary 1: For any fixed large:, ase — 0 the relative MSE'’s
SD<e(l—20)" 4" T4 (1—(1—2¢)" ) —— of worst, average, and best index assignments for the uniform source

6 obey the following ratios:
where the lower bound is achieved by the natural binary code and

€

the upper bound by the worst code. Diax : Dave : Dinin ®1:1/2:1/n
Let us denote the_ distortion of they@fural binary code and t%%d for any fixeds, asn — oo the relative MSE’s obey the ratios:
worst code, respectively, bYrmin = ¢=5— and Dmax = €(1 —

26)" 714" 4 (1 = (1 = 2¢)"7 )2 =L If an index assignment is Dimax * Dave : Diin = 1:1: 2e.
chosen uniformly at random, then the average distortion is . . .
That is, for anye > 0, the expected distortion of a randomly chosen

1 o ) N . . .
Do & G 22" L 2 =i im0 vt ndex assignment.f an integer chosen unformly ot
T 1ES JES .
random fromsS is normalized to have zero mean and unit variance,
then the resulting distortions corresponding to the best, worst, and
random index assignments are given by

Sincepo = (1 — ¢)", and

1
(211)! Z pr(1)+1r(j)

- Dmin
Dmin é 5 = 4e
1 Ts
= Z Z Pat+b n yZI{w(i)a,r(j)b}> - Doax _ 1 — 9671
acZy bezy <(2 4 Diax & 02‘ =2(1-(1-29)""H+ 367( T ?_n
S
(2" -1 . C(1_
S I DY (TN pu2 Do _y1=(=0
a€Zy bezy e o3 1-2-n
+ Ijiz a¢b}w> Fig. 1 comparesDmin, Dmax, and D.... The horizontal line at
’ (2m)! normalized distortion 1.0 represents the distortion achievable with

= Ticirpo + L Po no information transmission (by simply reproducing the mean of the
=i (i#il on 1 source at the receiver). Thus, the usefulness of any index assignment
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0 1 1 1 1

0 0.1 0.3 0.4 0.5

0.2
Bit Error Probability

Fig. 1. The best, worst, and average performance achievable by index assignments for a uniform source. The solid line correBpopdsThe
dashed and dotted curves shdWw,.x and D..., respectively, forn = 4,12. The horizontal line represents the variance of the source, an achievable
distortion at zero transmission rate.

is limited to values ofe smaller than the bit error probability quantizers. We do, however, show that the worst code maximizes the
determined by the intersection of this horizontal line and the distortialistortion among allaffine index assignments for arbitrary binary
curve corresponding to the index assignment. Sinag .. D..., = lattice vector quantizers.
littty o0 Dave = 2 for anye € (0,1/2], the useful region of bit error ~ For any positive integed, let R? denoted-dimensional Euclidean
probabilities for the worst and average index assignments shrirdgsace. We use a horizontal bar to distinguish between real vectors
steadily as the blocklength increasesn# < 1, then we obtain the % € R? and binary vectors € Z7. The Euclidean norm of a vector
approximations (linear ir) % € R is denoted by||x|.
. 3 . om Definitign 6: A d-dimen.sional,.Z”-point binary lattice vector
Diax ~ <4(77 -1+ ﬁ)e and Dgye = <ﬁ)‘ quantlzeills a vector quantizer with code vectors of ;he fogmn=
Yo+ 3, v fori € S, whereyo € R, andV = {v,};)' C R*

These hold for smalk on the curves in Fig. 1 for which, is IS @generating sebrdered by|vol| < |[vi[| < --- < [[va]l.
not too large. Suppose these linearized approximations hold and\nalogous to (2), thehannel distortiorof a binary lattice vector
suppose that is large, but not too large (i.e., #=" < 1 while 9uantizer with equiprobable code vectors is defined as
maintainingne < 1). Then, the useful regions of the worst and B8 5—n o2
average index assignments can be approximated&s0,1/(4n)) b=2 Z Z y: =35l Py t= - (10)
ande € (0,1/(2n)), respectively. These intervals are obtained by
examining which values of yield distortions less than 1. Note A uniform scalar quantizer with step siz& is a special case of

€S jES

that Dyin = 4¢ is independent of. and linear on the full range @ binary lattice vector quantizer with = 1 and ¥, = 2'A for
e € [0,1/2]. Thus, the useful region of the best index assignmentis€ {0.1,---.n — 1}.
(0,1/4) irrespective of the blocklength. The results of Section Il also apply for binary lattice quantizers if
we replacey(i) by z(i) = ¥.—1(;y. In particular, Lemma 2 becomes
IV. GENERALIZATION TO VECTOR QUANTIZERS D=9 Z 2= %(a)|? (1-(1- QF)w(aJ) (11)
The natural binary code was shown to minimize the distorfibn aczy\{0}

for a uniform scalar quantizer and a uniform source in [10] and was

generalized to a class of vector quantizers in [11]. The class of vec?cﬂd thus (3) becomes
quantizers in [11] is the same class studied in [12] and [17]-[19] 4e Z 127"Z(a)||?
and was referred to in [12] as “binary lattice vector quantization.” acZ3\{0}

In contrast, we demonstrate by means of a counterexample that the o s )
distortion maximization property of the worst code for a uniform <D <2(1-(1-2¢)") Z 27"2()I%. (12
scalar quantizer cannot be generalized to arbitrary binary lattice vector a€7;\{0}
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We also have by (4) that will be used frequently in what follows. Also, to simplify notation
2 we sety = 1—2e¢. By (11) the channel distortion of the worst code is
STl =2 Y vl - |27 Y

Duy =21 =) (=4/8)%al* +2(0 = 7?)
aczr i€s ies 5 .
o : < ((=4/8)%l* + 1 =4/5)

1 _ 2 Loe 2 Lne 12 4 a2
=12 Il (13) = Sl + [0 + 1961)
=0

= Ul + 190l1*) = +*[192117]

for any choice of index assignment It is difficult, however, to
find max, ||27"%(1)||* for an arbitrary index assignment. For affineand the channel distortion of the index assignmestis

index assignments, we have by (8) Dx = 2(1 = v)[|(=2/8)(F2 + %1 + ¥0)|?

+2(1 = 7*)([(=2/8)(F2 = 91 + Vo) ||”

n—1

ﬁ(a) = —2n71 il T
; (nG=ey +11(=2/8)(%2 + %1 = %0)[I*)
and thus +2(1 = )[(2/8) (V2 — w1 — Vo)
1 e e _ 2 _ _ e
max |27 (1) = %”‘7%1”2_ (14) = U0 + 19l + [Voll*) = 1192 = (v1 +v0)I*
2 o112 1 — Voll2) — A3 % - — (12
Using (13) and (14), the same argument that led to the upper bound = 20712l H 1191 = oll™) = 27Iv2 + (V1 + Vo))
in Theorem 1 yields the following corollary. Thus, Dx > Dw whenever
Corollary 2: The channel distortion of a binary lattice vector 9 ~ e -
quantizer, with generatofg, - - -, v._1, followed by an affine index 0> 57 ([lve + ("1 + Vo)l - '4”"2” ) ‘ [
assignment and_ a.binary symmetric channel with bit error probability + 2q/(||\72||Z +||lv1 — \70||2 — 2(||\71||Z + ||\70||Z))
e € [0,1/2] satisfies + ||v2 = (¥1 + o) |)?

D< %(1 —(1=26)")|[Val® TR+ %ol = 1920°) = 191 4 %0 = %]

I = 29(|91 + Vol|* = [[92]1”) + (91 + ¥o — V2|”

(1—(1=2""") > vl = (23191 + %oll* = I92/1") = 91 + %0 — %[’y
=0

— 191+ ¥o = %) (y = 1).

L1
2

and the worst code achieves the upper bound with equality. H ; ight-noint bi latti ; ti tisfvi
Note that from (14), Corollary 2 can be generalized to all (i.e.,ence‘ or any eight-point binary lattice vector quantizer satisfying

affine and nonaffine) index assignmentsnifax, [|27"z(1)[]> = 191 + %ol|” > [|¥2” + |¥1 + ¥o — ¥2]|? (15)

+|[¥n—1]/*. However, in general Corollary 2 cannot be generalized ) ) ]

in this manner, as demonstrated in the following corollary. the index assignment. is worse than the worst code if
Corollary 3: The worst code does not maximize the MSE of an |91 + Vo — Va|?

arbitrary binary lattice vector quantizer over all index assignments 2([[%1 + %012 = [[92]12) = [[¥1 + Vo — v2|2 <y <l
for a binary symmetric channel.

Proof: We show by means of a counterexample that for sonfd €auivalently, whenever
binary lattice vector quantizer there exists an index assignmgnt O<e< (II¥1 + Vo[> = [|9211*) = |1 + %o — ¥2|? 16
yielding a higher MSE than that of the worst codg-. Specifically, ¢ 2([[v1 + o2 = [V2[12) = V1 + vo — v2 |2 (16)

fine th i i )
define the nonaffine 3-bit index assignment by In particular, if vy + vo = av, for « > 1, then (15) is satisfied

mw(100), if i=011 and (16) reduces to
mx(i) = { mw (011), if i =100 2| 5
aw (i), otherwise 0<e< @an

V1 + Vol +3[¥2] _ a+3

ref‘he right-hand side of (17) can be arbitrarily closel j@ as« — 1.
Sl'hus, for anye € (0,1/2), a binary lattice vector quantizer can be
found for which the index assignmenty is worse than the worst

The table given at the bottom of the page explicitly lists the ind
assignmentsy andwx, along with the Hadamard transform vecto
Zw andzx. The identity

o+ w|®> +|lu — w|® = 2|’ + 2[|w|®> @ weR’ code. O
i mw (i) Zw (i) mx (i) zx (i)

000 000  8yo + 4(vo + Vi + V2) 000 8yo+ 4(vo + V1 +V2)

001 101 0 101 0

010 110 0 110 0

011 011 0 111 0

100 111 0 011 +2(%2 — %1 — o)

101 010 —4v, 010 —2(V2 + V1 — Vo)

110 001 —4vy 001 —2(vy — V1 + Vo)

111 100 — 4%, 100 —2(%2 + V1 + ¥o).
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