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Randomly Chosen Index Assignments Are
Asymptotically Bad for Uniform Sources

András Méhes and Kenneth Zeger,Senior Member, IEEE

Abstract— It is known that among all redundancy-free codes (or
index assignments), the natural binary code minimizes the mean-squared
error (MSE) of the uniform source and uniform quantizer on a binary
symmetric channel. We derive a code which maximizes the MSE and
demonstrate that the code is linear and its distortion is asymptotically
equivalent, as the blocklength grows, to the expected distortion of an
index assignment chosen uniformly at random.

Index Terms—Index assignment, noisy channel vector quantization.

I. INTRODUCTION

An index assignment is a mapping of source code symbols to
channel code symbols. The usual goal of index assignment design for
noisy channel vector quantizers is to minimize the end-to-end mean-
squared error (MSE) over all possible index assignments. The MSE is
computed with respect to the statistics of both the source and channel.
Previous work has examined the theoretical and practical aspects
of index assignment in noisy channel vector quantizer systems. In
particular, it is known that the performance of such a system can be
significantly affected by the choice of index assignment.

The problem of algorithmically finding good index assignments has
been previously studied in [1]–[6], and analytic formulas have been
found for binary symmetric channels and certain sources [7]–[12].
The optimality of the natural binary code was conjectured in [8] and
proved in [10] for uniform scalar quantization of a uniform source and
later extended to binary lattice vector quantizers with equiprobable
quantization points in [11].

In this paper, we derive an index assignment whichmaximizes
the MSE for a uniform scalar source and show that the worst
case performance thus obtained is asymptotically equivalent to the
expected performance of an index assignment chosen uniformly
at random. This indicates that the majority of index assignments
are asymptotically bad. Also, this result analytically reveals the
entire range of possible performances achievable by different index
assignments.

The overall MSE of a quantizer optimized for a noiseless channel
can be decomposed into a “source distortion” due to quantization
and a “channel distortion” due to channel noise [13]. The source
component is a result of representing the source with a finite
number of quantization points and thus is independent of the index
assignment. The channel component, on the other hand, results from
confusing the indices of quantization points because of channel errors.
Hence, we focus on the channel distortion, when evaluating index
assignments. With this in mind, the index assignment problem can
be reformulated as a discrete problem with no direct reference to
quantization. Forn-bit uniform scalar quantization of a uniform
source, the quantization points are scaled and translated versions
of 0; � � � ; 2n � 1. The usual index assignment problem is to assign
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indices to quantization points to minimize the mean squared distance
between pairs of these points, with respect to their prior probabilities
and the channel transition probabilities. In this paper, however, we
maximize the MSE.

The paper is organized as follows. Section II gives notation and
definitions. In Section III, we derive a distortion-maximizing index
assignment (the worst code) for uniform scalar quantization of a
uniform source (Theorem 1) and compare the performances of the
best, worst, and randomly chosen index assignments (Corollary 1).
A counterexample in Section IV shows that the MSE-maximizing
property of the worst code does not extend to arbitrary binary lattice
vector quantizers (Corollary 3), even though it is known that the
MSE-minimizing property of the natural binary code does extend to
binary lattice vector quantizers. We establish, however, that among
all affine index assignments, the worst code does maximize the MSE
of arbitrary binary lattice vector quantizers (Corollary 2).

II. PRELIMINARIES

For any positive integern, let Zn

2 denote the field ofn-bit
binary words, where arithmetic is performed modulo 2. Every integer
i 2 S = f0; � � � ; 2n � 1g has a unique binary representation
i = n�1

l=0 2lil, whereil 2 f0; 1g. We denote byi 2 Zn

2 the binary
n-tuple (row vector) corresponding toi, i.e.,

i = [in�1; in�2; � � � ; i1; i0]:

The transpose ofi 2 Zn

2 is denoted byiT . For i; j 2 Zn

2 , iT j is a
binary matrix, whileijT = n�1

l=0 iljl 2 f0; 1g is the binary inner
product of the two vectors. We denote bye(m) the binary vector
corresponding to2m, i.e., e(m)

l
= Ifm=lg, whereI is the indicator

function. The all-zero vector is denoted by0 and the all-one vector
by 1.

Definition 1: An index assignmentis a mapping� : Zn

2 ! Zn

2

which is a bijection. An index assignment is a permutation ofZn

2 ,
and thus there are(2n)! different index assignments.
An affine index assignment� : Zn

2 ! Zn

2 is an index assignment
of the form

�(i) = iG + t; �
�1(i) = (i+ t)G�1

whereG is a binary nonsingularn� n generator matrix, t is ann-
dimensional binarytranslation vector, and the arithmetic is performed
in Zn

2 . If t = 0, then� is called linear.
The family of affine index assignments is attractive due to its low-

implementation complexity and was first systematically studied in
[12] and [14]–[16]. An unstructured index assignment requires a table
of sizeO(n2n) bits to implement, whereas affine assignments can be
described byO(n2) bits. Many useful index assignments are known
to be affine, including the natural binary code, folded binary code,
gray code, and two’s complement code [12].

Definition 2; The natural binary code�N is the identity index
assignment�N(i) = i. It is a linear index assignment with generator
matrix GN = I, the identity matrix.
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TABLE I
A 4-b EXAMPLE OF THE NATURAL BINARY CODE AND THE WORST CODE.

We define theworst code�W to be the linear index assignment
with generator matrix

GW =

n 1 1 � � � 1

1 1 0 � � � 0

1 0
. . .

. . .
...

...
...

. . .
. . . 0

1 0 � � � 0 1

where the “n” in the top-left component ofGW is taken modulo 2.
The inverse of the generator matrix is

G�1
W =

1 1 1 � � � 1

1 0 1 � � � 1

1 1
. . .

. . .
...

...
...

. . .
. . . 1

1 1 � � � 1 0

:

Table I gives an explicit listing (in both decimal and binary) of these
two index assignments forn = 4.

Let the channel transition probabilities of a binary symmetric
channel be denoted by (for� < 1=2)

p(a j b) =
1� �; if a = b
�; if a 6= b

a; b 2 f0; 1g:

Definition 3: The Hamming weightof a binaryn-tuplea 2 Zn
2 is

the number of its nonzero components

w(a)

n�1

l=0

Ifa 6=0g:

The transition probabilities for binary n-tuples on a binary

symmetric channel are

P (a j b) =

n�1

l=0

p(al j bl) = �w(a+b)(1��)n�w(a+b); a;b 2 Zn
2 :

We denote the probability that an error patterna 2 Zn
2 occurs on a

binary symmetric channel by

�a P (b+ a j b) = �w(a)(1� �)n�w(a); b 2 Zn
2 : (1)

Definition 4: Let � be an index assignment and suppose an ele-
menti is chosen uniformly at random from the setS = f0; � � � ; 2n�
1g, where the binaryn-tuple �(i) is transmitted over a binary
symmetric channel with error probability�. The end-to-end MSE
is defined as

D 2�n

i2S j2S

(i� j)2��(i)+�(j): (2)

It may be assumed without loss of generality that�(0) = 0, which
for an affine index assignment�(i) = iG + t is equivalent to setting
t = 0. Thus, we omit the translation vectort in what follows.

Definition 5: For each i; j 2 Zn
2 , let hi;j = (�1)ij . The

Hadamard transformf̂ : Zn
2 ! R of a mappingf : Zn

2 ! R
is defined by

f̂(j) =
i2Z

f(i)hi;j

and the inverse transform is given by

f(i) = 2�n

j2Z

f̂(j)hji:

The Hadamard transform provides a tool for analyzing the mean-
squared distortion [5], [12], [16]–[19]. The following properties of
Hadamard transforms are useful. For anyi; j; a;b 2 Zn

2 :

1)

hi;j = hj;i

2)

hi;a+b = hi;ahi;b

3)

i2Z

hi;j =
2n; if j = 0

0; otherwise

4)

i2Z

imhi;j =
2n�1; if j = 0

�2n�1; if j = e(m);
0; otherwise.

m2 f0; 1; � � � ; n� 1g

The first two properties are straightforward. Property 3) follows from
the fact that exactly half of the binary vectors inZn

2 are orthogonal
to any fixed nonzero vectorj 2 Zn

2 . To see Property 4), leti0;
j0 2 Zn�1

2 , respectively, denote the binary vectorsi; j 2 Zn
2 , but

with the mth component removed. Then, we can rewrite Property
4) as

i 2Z i 2f0;1g

im(�1)
i j hi ;j

= (�1)j

i 2Z

hi ;j = (�1)j 2n�1Ifj =0g

where the last equality follows from Property 3) forZn�1
2 .
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Lemma 1: The Hadamard transform̂� of the error pattern distri-
bution � is

�̂j = (1� 2�)w(j):

Proof:

�̂j =
i2Z

�
w(i)(1� �)n�w(i)

hi;j

=
i 2f0;1g i 2f0;1g

� � �
i 2f0;1g

n�1

l=0

�
i (1� �)1�i (�1)i j

=

n�1

l=0 i 2f0;1g

�
i (1� �)1�i (�1)i j =

n�1

l=0

(1� � + �(�1)j )

= (1� 2�)w(j):

III. CONSTRUCTION OF THEWORST CODE

The following lemma gives an expression for the distortionD in
the Hadamard transform domain. Variants of this result were used to
show the optimality of the natural binary code in [10] and [11]. The
lemma is useful for identifying a “worst” code.

Lemma 2: Let �(i) = ��1(i) for all i 2 Zn
2 . Then the distortion

in the Hadamard transform domain is

D = 2
a2Z nf0g

[2�n
�̂(a)]2 1� (1� 2�)w(a) :

Proof: Rewriting (2) using� yields

D = 2�n

i2Z j2Z

(�(i)� �(j))2�i+j

= 2�n

i2Z j2Z

2�n

a2Z

�̂(a)(ha;i � ha;j)

2

�i+j

= 8�n

i2Z j2Z

�i+j
a2Z b2Z

�̂(a)�̂(b)

� (ha+b;i � ha;ihb;j � ha;jhb;i + ha+b;j)

= 8�n

a2Z b2Z

�̂(a)�̂(b)
i2Z

ha+b;i

�
j2Z

�i+j(h0;i+j � ha;i+j � hb;i+j + ha+b;i+j)

= 4�n

a2Z b2Z

�̂(a)�̂(b) 2�n

i2Z

ha+b;i

�
c2Z

�c(h0;c � ha;c � hb;c + ha+b;c)

= 4�n

a2Z b2Z

�̂(a)�̂(b)Ifa=bg(�̂0 � �̂a � �̂b + �̂a+b)

= 2
a2Z

2�n
�̂(a)

2
(�̂0 � �̂a)

= 2
a2Z nf0g

2�n
�̂(a)

2
1� (1� 2�)w(a) :

The following bounds onD follow from Lemma 2 using1 �
w(a) � n for a 2 Zn

2 nf0g:

4�
a2Z nf0g

[2�n
�̂(a)]2

� D � 2(1� (1� 2�)n)
a2Z nf0g

[2�n
�̂(a)]2: (3)

The lower bound was established in [10] and can be achieved with
equality if �̂(a) = 0 for every a 2 Zn

2 with Hamming weight
w(a) > 1. For example, the natural binary code satisfies this
requirement [10], [11]. To achieve the upper bound with equality,
we must havê�(a) = 0 for every a 2 Zn

2 such thatw(a) < n,
i.e., �̂(1) must be the only nonzero Hadamard transform component.
Note, however, that for any index assignment�

a2Z nf0g

[2�n
�̂(a)]2 =

a2Z

2�n

i2Z

�(i)hi;a

2

� 2�n

i2Z

�(i)hi;0

2

= 2�n

i2S j2S

ij 2�n

a2Z

h�(i)+�(j);a

� 2�n

i2S

i

2

= 2�n

i2S

i
2 � 2�n

i2S

i

2

(4)

=
4n � 1

12
(5)

= �
2
S ;

the variance of a random variable chosen uniformly at random from
S. On the other hand, for any�

[2�n
�̂(1)]2 = 2�n

i2Z

�(i)hi;1

2

= 2�n

i2S

i(�1)�(i)1
2

� 2�n

2 �1

i=2

i�

2 �1

i=0

i

2

= [2�n4n�1]2

= 4n�2 (6)

<
4n � 1

12
;

for everyn > 1. Thus, the upper bound given in (3) is not achievable
whenn > 1. The next tightest upper bound from Lemma 2 is obtained
usingw(a) � n � 1 for all a 6= 1, i.e.,

D � 2(1� (1� 2�)n)max
�

[2�n
�̂0(1)]

2 + 2(1� (1� 2�)n�1)

�
a2Z nf0g

[2�n
�̂(a)]2 �max

�
[2�n

�̂0(1)]
2

: (7)

Indeed, the worst code achieves (7). To prove this, consider the
Hadamard transform components�̂(a) of an arbitrary linear index
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assignment�(i) = iG, and for anya 2 Zn
2 nf0g

�̂(a) =
i2Z

�(i)hi;a

=
i2S

ih�(i);a

=
i2S

n�1

l=0

2lil hiG;a

=

n�1

l=0

2l

i2Z

ilh
i;aG

= �2n�1
n�1

l=0

2lIfaG =e g (8)

where (8) follows from Property 4) sinceaGT 6= 0 for a 6= 0

by the nonsingularity ofG. Therefore, the only nonzero Hadamard
transform components are those corresponding toa = e

(l)(GT )�1,
for l = 0; � � � ; n� 1. Thus, to achieve the lower bound given in (3),
every row of (GT )�1 must have Hamming weight 1, as with the
natural binary code.

Similarly, the upper bound given in (7) can be achieved by setting
e
(n�1)(GT )�1 = 1 (i.e., the first row of the inverse of the transposed

generator matrix must be all ones) and choosing the remainingn�1
rows of(GT )�1 to have Hamming weightn�1. An example isG�1W ,
given in the definition of the worst code. Note that the all-one vector
has to be the first row of(GT )�1 to ensure the maximization of

[2�n�̂(1)]2 = [2�n(�2n�12n�1)]2 = 4n�2:

Thus, combining the lower bound from (3) and the upper bound
from (7) and using (5) and (6) to eliminate the remaining Hadamard
transforms from the expressions, we obtain the following theorem.

Theorem 1: Suppose an integeri is chosen uniformly at random
from the setS = f0; � � � ; 2n � 1g and then-bit word �(i) is
transmitted over a binary symmetric channel with bit error probability
� 2 [0; 1=2], using an index assignment�. Then the resulting MSE
D satisfies

�
4n � 1

3
� D � �(1� 2�)n�14n�1 + (1� (1� 2�)n�1)

4n � 1

6

where the lower bound is achieved by the natural binary code and
the upper bound by the worst code.

Let us denote the distortion of the natural binary code and the
worst code, respectively, byDmin = � 4 �1

3 and Dmax = �(1 �

2�)n�14n�1 + (1 � (1 � 2�)n�1)4 �1
6

. If an index assignment is
chosen uniformly at random, then the average distortion is

Dave
1

(2n)!
�

2�n

i2S j2S

(i� j)2��(i) + �(j): (9)

Since�0 = (1 � �)n, and

1

(2n)!
�

��(i)+�(j)

=
a2Z b2Z

�a+b

1

(2n)!
�

If�(i)=a;�(j)=bg

=
a2Z b2Z

�a+b Ifi=j;a=bg
(2n � 1)!

(2n)!

+ Ifi 6=j;a6=bg
(2n � 2)!

(2n)!

= Ifi=jg�0 + Ifi6=jg
1� �0
2n � 1

this gives

Dave =
1� (1� �)n

2n(2n � 1)
i2S j2S

(i� j)2

= (1� (1� �)n)
4n + 2n

6
:

The values ofDmin andDave were apparently first reported in [7].
Clearly, the inequalitiesDmin � Dave � Dmax hold for every

� 2 [0; 1=2] andn � 1. It is interesting to examine the asymptotic
behavior of the minimum, maximum, and average distortions, both
as the blocklengthn grows and as the channel error probability�
decreases. The partial derivatives ofD

D
; D

D
; and D

D
with

respect to� are all strictly negative for all� 2 (0; 1=2) and for
all n > 1. Hence, the largest performance gain of a best index
assignment over a worst index assignment or over an average index
assignment occurs in the limit as� ! 0. Asymptotically as� ! 0,
for a fixed blocklengthn, these gains are given by

lim
�!0

Dmax

Dmin
= n� 1 +

3

4

1

1� 4�n

lim
�!0

Dave

Dmin
=

n

2(1� 2�n)

lim
�!0

Dmax

Dave
= 2(1� n�1)(1� 2�n) +

3

2

1

n(1 + 2�n)
:

On the other hand, for a fixed bit error probability�, lettingn!1
yields

lim
n!1

Dmax

Dmin
=

1

2�

lim
n!1

Dave

Dmin
=

1

2�

lim
n!1

Dmax

Dave
= 1:

Thus, for asymptotically large block lengths, the performance gain of
a best index assignment over a worst index assignment or an average
index assignment is1=2�, which can be very large. In this sense, a
large fraction of index assignments can be considered “bad.”

Corollary 1: For any fixed largen, as� ! 0 the relative MSE’s
of worst, average, and best index assignments for the uniform source
obey the following ratios:

Dmax : Dave : Dmin � 1 : 1=2 : 1=n

and for any fixed�, asn!1 the relative MSE’s obey the ratios:

Dmax : Dave : Dmin = 1 : 1 : 2�:

That is, for any� > 0, the expected distortion of a randomly chosen
index assignment asymptotically equals (as the blocklength grows)
that of the worst index assignment. If an integer chosen uniformly at
random fromS is normalized to have zero mean and unit variance,
then the resulting distortions corresponding to the best, worst, and
random index assignments are given by

~Dmin
Dmin

�2S
= 4�

~Dmax
Dmax

�2S
= 2(1� (1� 2�)n�1) + 3�

(1� 2�)n�1

1� 4�n

~Dave
Dave

�2S
= 2

1� (1� �)n

1� 2�n
:

Fig. 1 compares~Dmin; ~Dmax; and ~Dave. The horizontal line at
normalized distortion 1.0 represents the distortion achievable with
no information transmission (by simply reproducing the mean of the
source at the receiver). Thus, the usefulness of any index assignment
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Fig. 1. The best, worst, and average performance achievable by index assignments for a uniform source. The solid line corresponds to~Dmin. The
dashed and dotted curves show~Dmax and ~Dave, respectively, forn = 4; 12. The horizontal line represents the variance of the source, an achievable
distortion at zero transmission rate.

is limited to values of� smaller than the bit error probability
determined by the intersection of this horizontal line and the distortion
curve corresponding to the index assignment. Sincelimn!1

~Dmax =
limn!1

~Dave = 2 for any� 2 (0; 1=2], the useful region of bit error
probabilities for the worst and average index assignments shrinks
steadily as the blocklength increases. Ifn� � 1, then we obtain the
approximations (linear in�)

~Dmax � 4(n� 1) +
3

1� 4�n
� and ~Dave �

2n

1� 2�n
�:

These hold for small� on the curves in Fig. 1 for whichn is
not too large. Suppose these linearized approximations hold and
suppose thatn is large, but not too large (i.e., if2�n � 1 while
maintainingn� � 1). Then, the useful regions of the worst and
average index assignments can be approximated as� 2 (0; 1=(4n))
and � 2 (0; 1=(2n)), respectively. These intervals are obtained by
examining which values of� yield distortions less than 1. Note
that ~Dmin = 4� is independent ofn and linear on the full range
� 2 [0; 1=2]. Thus, the useful region of the best index assignment is
(0; 1=4) irrespective of the blocklengthn.

IV. GENERALIZATION TO VECTOR QUANTIZERS

The natural binary code was shown to minimize the distortionD
for a uniform scalar quantizer and a uniform source in [10] and was
generalized to a class of vector quantizers in [11]. The class of vector
quantizers in [11] is the same class studied in [12] and [17]–[19]
and was referred to in [12] as “binary lattice vector quantization.”
In contrast, we demonstrate by means of a counterexample that the
distortion maximization property of the worst code for a uniform
scalar quantizer cannot be generalized to arbitrary binary lattice vector

quantizers. We do, however, show that the worst code maximizes the
distortion among allaffine index assignments for arbitrary binary
lattice vector quantizers.

For any positive integerd, let Rd denoted-dimensional Euclidean
space. We use a horizontal bar to distinguish between real vectors
�x 2 Rd and binary vectorsi 2 Zn

2 . The Euclidean norm of a vector
�x 2 Rd is denoted byk�xk.

Definition 6: A d-dimensional, 2n-point binary lattice vector
quantizeris a vector quantizer with code vectors of the form�yi =
�y0+

n�1
l=0 �vlil for i 2 S, where�y0 2 Rd, andV = f�vlg

n�1
l=0 � Rd

is a generating setordered byk�v0k � k�v1k � � � � � k�vn�1k.
Analogous to (2), thechannel distortionof a binary lattice vector

quantizer with equiprobable code vectors is defined as

D 2�n

i2S j2S

k�yi � �yjk
2��(i)+�(j): (10)

A uniform scalar quantizer with step size� is a special case of
a binary lattice vector quantizer withd = 1 and �vl = 2l� for
l 2 f0; 1; � � � ; n � 1g.

The results of Section III also apply for binary lattice quantizers if
we replace�(i) by �z(i) = �y� (i). In particular, Lemma 2 becomes

D = 2
a2Z nf0g

k2�n�̂z(a)k2 1� (1� 2�)w(a) (11)

and thus (3) becomes

4�
a2Z nf0g

k2�n�̂z(a)k2

� D � 2(1� (1� 2�)n)
a2Z nf0g

k2�n�̂z(a)k2: (12)
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We also have by (4) that

a2Z nf0g

k2�n�̂z(a)k2 = 2�n

i2S

k�yik
2 � 2�n

i2S

�yi

2

=
1

4

n�1

l=0

k�vlk
2 (13)

for any choice of index assignment�. It is difficult, however, to
find max� k2

�n�̂z(1)k2 for an arbitrary index assignment. For affine
index assignments, we have by (8)

�̂z(a) = �2n�1
n�1

l=0

�vlI
faG =e g

and thus

max
� a�ne

k2�n�̂z(1)k2 =
1

4
k�vn�1k

2: (14)

Using (13) and (14), the same argument that led to the upper bound
in Theorem 1 yields the following corollary.

Corollary 2: The channel distortion of a binary lattice vector
quantizer, with generators�v0; � � � ; �vn�1, followed by an affine index
assignment and a binary symmetric channel with bit error probability
� 2 [0; 1=2] satisfies

D �
1

2
(1� (1� 2�)n)k�vn�1k

2

+
1

2
(1� (1� 2�)n�1)

n�2

l=0

k�vlk
2

and the worst code achieves the upper bound with equality.
Note that from (14), Corollary 2 can be generalized to all (i.e.,

affine and nonaffine) index assignments ifmax� k2
�n�̂z(1)k2 =

1

4
k�vn�1k

2. However, in general Corollary 2 cannot be generalized
in this manner, as demonstrated in the following corollary.

Corollary 3: The worst code does not maximize the MSE of an
arbitrary binary lattice vector quantizer over all index assignments
for a binary symmetric channel.

Proof: We show by means of a counterexample that for some
binary lattice vector quantizer there exists an index assignment�X
yielding a higher MSE than that of the worst code�W . Specifically,
define the nonaffine 3-bit index assignment�X by

�X(i) =
�W (100); if i = 011
�W (011); if i = 100
�W (i); otherwise:

The table given at the bottom of the page explicitly lists the index
assignments�W and�X , along with the Hadamard transform vectors
�̂zW and �̂zX . The identity

k�u+ �wk2 + k�u� �wk2 = 2k�u2k+ 2k �wk2 �u; �w 2 Rd

will be used frequently in what follows. Also, to simplify notation
we set = 1�2�. By (11) the channel distortion of the worst code is

DW = 2(1� 3)k(�4=8)�v2k
2 + 2(1� 2)

� (k(�4=8)�v0k
2 + k(�4=8)�v1k

2)

=
1

2
[(k�v2k

2 + k�v1k
2 + k�v20k)

� 2(k�v1k
2 + k�v0k

2)� 3k�v2k
2]

and the channel distortion of the index assignment�X is

DX = 2(1� 3)k(�2=8)(�v2 + �v1 + �v0)k
2

+ 2(1� 2)(k(�2=8)(�v2 � �v1 + �v0)k
2

+ k(�2=8)(�v2 + �v1 � �v0)k
2)

+ 2(1� )k(2=8)(�v2 � �v1 � �v0)k
2

=
1

8
[4(k�v2k

2 + k�v1k
2 + k�v0k

2)� k�v2 � (�v1 + �v0)k
2

� 22(k�v2k
2 + k�v1 � �v0k

2)� 3k�v2 + (�v1 + �v0)k
2]:

Thus,DX > DW whenever

0 > 2(k�v2 + (�v1 + �v0)k
2 � 4k�v2k

2)

+ 2(k�v2k
2 + k�v1 � �v0k

2 � 2(k�v1k
2 + k�v0k

2))

+ k�v2 � (�v1 + �v0)k
2

= 2[2(k�v1 + �v0k
2 � k�v2k

2)� k�v1 + �v0 � �v2k
2]

� 2(k�v1 + �v0k
2 � k�v2k

2) + k�v1 + �v0 � �v2k
2

= ([2(k�v1 + �v0k
2 � k�v2k

2)� k�v1 + �v0 � �v2k
2]

� k�v1 + �v0 � �v2k
2)( � 1):

Hence, for any eight-point binary lattice vector quantizer satisfying

k�v1 + �v0k
2 > k�v2k

2 + k�v1 + �v0 � �v2k
2 (15)

the index assignment�X is worse than the worst code if

k�v1 + �v0 � �v2k
2

2(k�v1 + �v0k2 � k�v2k2)� k�v1 + �v0 � �v2k2
<  < 1

or equivalently, whenever

0 < � <
(k�v1 + �v0k

2 � k�v2k
2)� k�v1 + �v0 � �v2k

2

2(k�v1 + �v0k2 � k�v2k2)� k�v1 + �v0 � �v2k2
: (16)

In particular, if �v1 + �v0 = ��v2 for � > 1, then (15) is satisfied
and (16) reduces to

0 < � <
2k�v2k

k�v1 + �v0k+ 3k�v2k
=

2

�+ 3
: (17)

The right-hand side of (17) can be arbitrarily close to1=2 as�! 1.
Thus, for any� 2 (0; 1=2), a binary lattice vector quantizer can be
found for which the index assignment�X is worse than the worst
code.

i �W (i) �̂zW (i) �X(i) �̂zX(i)

000 000 8�y0 + 4(�v0 + �v1 + �v2) 000 8�y0 + 4(�v0 + �v1 + �v2)
001 101 �0 101 �0
010 110 �0 110 �0
011 011 �0 111 �0
100 111 �0 011 +2(�v2 � �v1 � �v0)
101 010 �4�v1 010 �2(�v2 + �v1 � �v0)
110 001 �4�v0 001 �2(�v2 � �v1 + �v0)
111 100 �4�v2 100 �2(�v2 + �v1 + �v0):
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Efficient Code Constructions for Certain
Two-Dimensional Constraints

Roman Talyansky, Tuvi Etzion,Member, IEEE,
and Ron M. Roth,Senior Member, IEEE

Abstract—Efficient encoding algorithms are presented for two types
of constraints on two-dimensional binary arrays. The first constraint
considered is that of t-conservative arrays, where each row and each
column has at leastt transitions of the form ‘0’ !‘1’ or ‘1’ ! ‘0.’ The
second constraint is that of two-dimensional DC-free arrays, where in
each row and each column the number of ‘0’s equals the number of ‘1’s.

Index Terms—Balanced arrays, conservative arrays, two-dimensional
constraints, two-dimensional DC-free arrays, two-dimensional runlength-
limited constraints.

I. INTRODUCTION

Recent developments in optical storage—especially in the area of
holographic memory—are attempting to increase the recording den-
sity by exploiting the fact that the recording device is asurface. Under
this new model, the recorded data is regarded as two-dimensional (2-
D), as opposed to the track-oriented one-dimensional (1-D) recording
paradigm [5], [22]. The new approach, however, introduces new types
of constraints on the data—those now become 2-D rather than 1-D.

One-dimensional constraints were extensively studied, and there
are several known methodologies for designing codes for such
constraints; see, for instance, [15], [16], and [24]. On the other hand,
our knowledge of 2-D constraints is much less profound. This might
be attributed in part to the fact that the practical interest in those con-
straints has been risen only recently; however, it seems that the main
reason for such a lack of knowledge is the provable difficulty of 2-D
constraints compared to the 1-D case [4], [23]. Nevertheless, there
have been several results reported on 2-D runlength-limited coding
[7], [8], coding for holographic memory [2], [3], [27], and multitrack
modulation coding [14], [17], [18]. Reference [9] deals with the
computation of the capacity of 2-D constraints, and bounds on the
capacity of certain specific constraints are presented in [6] and [28].

We next describe briefly two applications of 2-D constrained codes:
holographic storage and barcodes. In holographic recording, data is
stored optically in the form of 2-D pages. Each data page is a pattern
of ‘0’s and ‘1’s, represented by dark and light spots, respectively.
What is actually stored is the interference pattern between an optical
representation of the data page and a so-called reference beam.
Several holograms can be stored in the same physical volume,
each being encoded with a distinct reference beam. To increase the
reliability of the holographic recording system, the patterns of ‘0’s
and ‘1’s need to satisfy certain modulation constraints. One example
of such a constraint is avoiding long periodic stretches of dark or
light spots in both dimensions [5], [27]. In addition, it is desirable
to use coding techniques that do not permit a large imbalance
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