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Binary Lattice Vector Quantization with Linear
Block Codes and Affine Index Assignments

András Méhes and Kenneth Zeger,Senior Member, IEEE

Abstract—We determine analytic expressions for the perfor-
mance of some low-complexity combined source-channel coding
systems. The main tool used is the Hadamard transform. In
particular, we obtain formulas for the average distortion of
binary lattice vector quantization with affine index assignments,
linear block channel coding, and a binary-symmetric channel.
The distortion formulas are specialized to nonredundant chan-
nel codes for a binary-symmetric channel, and then extended
to affine index assignments on a binary-asymmetric channel.
Various structured index assignments are compared. Our an-
alytic formulas provide a computationally efficient method for
determining the performance of various coding schemes. One
interesting result shown is that for a uniform source and uniform
quantizer, the Natural Binary Code is never optimal for a
nonsymmetric channel, even though it is known to be optimal
for a symmetric channel.

Index Terms— Index assignment, lattices, linear error-cor-
recting codes, source and channel coding, vector quantization.

I. INTRODUCTION

A useful and frequently studied communication system
model includes a source encoder and decoder, a chan-

nel encoder and decoder, a noisy channel, and a mapping
of source codewords to channel codewords (known as an
index assignment). We consider the situation where the source
encoder/decoder is a vector quantizer (VQ), the channel en-
coder/decoder is a binary linear block code with maximum-
likelihood decoding, and the channel is binary and memory-
less, as shown in Fig. 1. The source is assumed to be a random
vector of a fixed dimension and whose statistics are knowna
priori . The end-to-end vector mean-squared error (MSE) is
used to measure the performance.

Ideally, one would optimize the end-to-end MSE over all
possible choices of source encoders and decoders, channel
encoders and decoders, and index assignments. But because of
the large computational complexity of this task, it is presently
unknown how to perform the joint optimization. The most
common approach to finding good, but suboptimal, systems is
to assume that all but one component of the system is fixed
and then to optimize the choice of that component. Even this
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suboptimal approach is often algorithmically very complex and
it is generally difficult to quantify the performance analytically.
Finding good algorithms and acquiring theoretical understand-
ing of their performance are two of the most important research
goals in this field.

Even when the channel is noiseless, the optimal design
of a source coder is in general unknown, as is an analytic
description of the performance of an optimal system. The well-
known generalized Lloyd algorithm is a useful technique for
obtaining good, but possibly suboptimal, vector quantizers,
and the Bennett–Zador formulas give analytic performance
descriptions for asymptotically high-resolution quantizers [1].
For large vector dimensions and high source-coding rates,
quantizers generated with the Lloyd algorithm can require
extremely large computational complexities (linear in the
codebook size) for full-search nearest neighbor encoding. As
a result, much recent research has focused on structured (but
suboptimal) quantizers which trade off reduced complexity
for reduced performance [1]. One example of a structured
quantizer is a “multistage vector quantizer” (sometimes called
a “residual quantizer”). A special case, with two codevectors
per stage, is referred to here as a “binary lattice vector
quantizer” and is studied in this paper.

A number of studies have considered the communication
system in Fig. 1 when the channel is noisy. Optimality con-
ditions and a suboptimal design algorithm for the quantizer
encoder and decoder (with a nonredundant channel coder)
have been derived for the scalar case by Kurtenbach and
Wintz [2], and for the vector case by Dunham and Gray
[3] and Kumazawaet al. [4], and were further studied in
[5]–[13]. The resulting source coder is often referred to as
“channel-optimized vector quantization” (COVQ) and obeys
generalized versions of the well-known nearest neighbor and
centroid conditions. Very little is known analytically about
the performance of these quantizers, and their implementation
complexity is at least that of a full-search vector quantizer for
a noiseless channel. Thus their usefulness diminishes as the
source vector dimension increases.

A useful technique to combat channel noise and avoid the
large complexity of COVQ is to design a source coder for the
noiseless channel and cascade it with an error-control code.
Results for the cascade of a variety of efficient, but subop-
timal source-coding schemes, such as DPCM and transform
coding, with channel codes have been reported in the liter-
ature [14]–[17], but few similar results for vector quantizers
followed by channel coding exist. For a given transmission
rate and fixed vector dimension, the optimal tradeoff be-
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Fig. 1. Communication system model.

tween source and channel coding was examined in [18] for
high-resolution quantization. However, little else is known
theoretically about this problem, other than Shannon’s rate-
distortion theorem, which assumes unboundedly large source
vector dimensions [19]. Also, little is known about good
index assignments when error control codes are used, i.e.,
assignments of quantizer codevectors to channel codewords.

Another approach to source coding in the presence of
channel noise has been to use, on a noisy channel, a source
coder designed for a noiseless channel, but with an optimized
index assignment and with no explicit channel coder [8],
[20]–[24]. Other nonredundant methods exploiting specific
quantizer structures can be found in [25]–[27]. In [28], a
random coding argument is used to give analytic bounds
on the performance of an optimal index assignment. One
appealing feature of index assignments is that they require
no extra channel rate nor any extra storage to implement;
index assignments are implicitly contained in the ordering of
the codevectors in the vector quantizer codebook. However,
for large source-coding rates and high vector dimensions the
increased complexity of full-search vector quantization often
forces system designers to implement structured (and thus
suboptimal) source coders. In this case, quantizer codebooks
are generally not stored explicitly, and the cost of specifying
an index assignment can be equally prohibitive.

This motivates the study of structured (but possibly subopti-
mal) index assignments with low implementation complexities.
Various families of recursively defined index assignments have
been extensively studied in the past, including the well-known
Natural Binary Code (NBC), Folded Binary Code (FBC),
Two’s Complement Code (TCC), and Gray Code (GC) [29].
Huang [30]–[32] computed distortion formulas for the Natural
Binary Code and the Gray Code for uniform scalar quantizers
and uniform scalar sources. He asserted that the Natural Binary
Code was optimal among all possible index assignments for
the uniform source [31]. This was proven by Crimminset al.
[33] and later, in the more general setting of binary lattice
vector quantization, by McLaughlin, Neuhoff, and Ashley
[34]. The exact performance of structured classes of index
assignments has not been generally known except for the
Natural Binary Code and the Gray Code, and with a uniform

source. Experimental results for the NBC, FBC, and GC can be
found in [35]–[37] for example for speech sources. One of the
interesting features of the four index assignments above is that
they are all “affine” functions in a vector space over the binary
field. In fact, affine index assignments are relatively easy to
implement with low storage and computational complexity.
Specifying an affine index assignment requires only
bits for a -point quantizer, as opposed to bits for an
unconstrained index assignment.

Affine index assignments have been studied for several
decades as an effective zero-redundancy technique for source
coders that transmit across noisy channels. Linear index as-
signments are special cases of affine index assignments. They
are also special cases of nonsystematic linear block channel
codes whose minimum distance is, and their purpose is to
reduce end-to-end mean-squared error instead of reducing the
probability of channel error. In [33], [38], and [39], Crimmins
et al. showed that for uniform scalar quantization of a uniform
source, using a linear block code and standard array decoding
for transmission over a binary-symmetric channel, there exists
a linear index assignment that is optimal in the mean-squared
error (MSE) sense. They use a binary alphabet and assume that
both the encoding and the decoding index assignments are one-
to-one mappings. Redinbo and Wolf extended these results in
two directions. In [40] they generalized to-ary (prime-power)
alphabets, and in [41] they allowed the decoder mapping to
produce outputs outside the codebook (e.g., linear combina-
tions of codevectors). Ashley considered channel redundancy
for uniform scalar quantizers [42], and obtained a formula for
the MSE in terms of the weight distribution of the cosets of
the dual code. Khayrallah examined the problem of finding
the best linear index assignment when an error-control code is
used with a uniform scalar quantizer on a uniform source [43].

In the present paper, we derive exact formulas for the
performance of general affine index assignments when explicit
block channel coding is used on a binary-symmetric channel.
We also derive related formulas for the performance of index
assignments on binary-asymmetric channels, with no explicit
channel coding. These are specialized to several known classes
of index assignments. As an interesting special case, we show
that while the Natural Binary Code is optimal on the binary-
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Fig. 2. The channel-mismatch performance of source-optimized VQ, channel-optimized VQ, and binary-lattice VQ. The input vectors are taken from
a Gauss–Markov process with correlation0:9. The COVQ was designed for a BER of0:1. The 16-dimensional 2048-point quantizers are followed by
a (16; 11;4) extended binary Hamming code.

symmetric channel for uniform sources, it is inferior in general
to the Two’s Complement Code on the binary-asymmetric
channel.

In order for a channel-optimized quantizer to perform opti-
mally, a good estimate of the channel’s bit-error rate (BER)
is required. In this paper we study a reduced complexity
structured vector quantizer combined with an affine index
assignment, which together give enhanced channel robustness
over a wide range of error rates. We considerbinary lattice
vector quantization(BLVQ), the class of source coders studied
in [34], and a variant of the VQ by a Linear Mapping of a
Block Code introduced by Hagen and Hedelin [44]–[46].

Another motivation for studying BLVQ is its inherent
robustness to channel noise, in particular under “channel-
mismatch” conditions, i.e., when the exact level of channel
noise is not perfectly known. While channel-optimized vector
quantization is an optimal encoding technique if the statistics
of a noisy channel are known, a quantizer designed for a
noise-free channel using the generalized Lloyd algorithm,
referred to here as Source-Optimized VQ (SOVQ), delivers
nearly optimal performance for small effective (i.e., after
channel coding) bit-error rates. As an example, Fig. 2
compares the performance of SOVQ, COVQ, and BLVQ
for a Gauss–Markov source with correlation coefficient
using a extended Hamming code. The plot displays
signal-to-noise ratio versus the bit-error rate of the binary-
symmetric channel. The signal-to-noise ratio is defined as

, where is the variance of the source
components, is the average vector distortion, andis the

vector dimension of the source. The source vector dimension
of the Hamming coded system is. All three quantizers were
obtained using appropriate variants of the generalized Lloyd
algorithm. The COVQ was designed for the coded channel at
the uncoded (BSC) bit-error rate of (a bit-error rate that
can occur in certain low-power radio channels and near cell
boundaries in cellular telephony).

A tradeoff between structured (e.g., BLVQ) and unstructured
(e.g., SOVQ) quantizers can be observed over the range of
error probabilities where the channel code is effective (i.e., the
coded channel can be considered practically noise-free). But,
as the coding advantage disappears, the BLVQ outperforms
the SOVQ. The COVQ is inferior to the SOVQ and BLVQ
under channel mismatch for small BERs and outperforms the
SOVQ and BLVQ for large BER’s. Thus BLVQ can offer a
reasonable compromise. The BLVQ is uniformly robust and
close to optimum over a large range of error rates. The price
paid for the memory savings due to the structured codebook
of the BLVQ is relatively small. Fig. 2 is not meant to be
a comprehensive comparison between SOVQ, BLVQ, and
COVQ, but rather is to partially motivate the study of BLVQ.

In this paper we generalize much of the previously men-
tioned work to the case of redundant channel codes and
BLVQ’s. We make extensive use of the Hadamard transform,
which has been used either implicitly or explicitly in many
previous works. The Hadamard transform is also the main
tool used by Hagen and Hedelin to construct implicit in-
dex assignments without error-control coding [44]–[46]. Also,
Knagenhjelm [47], and Knagenhjelm and Agrell [23] used the
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notion of “Hadamard classes” to search for an optimal index
assignment in the Hadamard transform domain.

The main contributions of our paper include: 1) a general-
ization of the analytic performance calculations of Hagen and
Hedelin for BLVQ, to include error-control coding (equiva-
lently, a generalization of the Crimminset al., formulas to
nonuniform sources and to vector quantizers); 2) analytic
performance calculations for nonredundant channel coding,
which extend the formulas obtained by Huang, by Crimminset
al., and by McLaughlin, Neuhoff, and Ashley from the NBC
and GC to any affine index assignment and nonsymmetric
channels; and 3) comparison between the performances of
NBC, FBC, GC, and TCC.

In Section II, we give the necessary notation and termi-
nology. In Section III, we prove Theorem 1, which gives a
general formula for the channel distortion of a BLVQ using
an affine index assignment, a linear error-correcting code,
and transmission across a BSC. The formula is given in
terms of the Hadamard transforms of the source and channel
statistics. Our formula reduces the complexity of computing
the distortion from to , where is the
vector quantizer codebook size. In Section IV, we consider
quantization systems without the use of redundancy for error
control. For binary-symmetric channels, Corollaries 2–4 give
explicit formulas for the channel distortions of the NBC,
FBC, and GC in this case. Corollary 5 characterizes the
class of sources for which the NBC outperforms the FBC.
For binary-asymmetric channels, Theorem 2 gives a general
formula for the channel distortion of BLVQ using affine index
assignments and no channel-coding redundancy. Corollaries
6–8 give explicit formulas for the channel distortions of the
NBC, TCC, FBC, and GC in this case. Corollary 9 identifies
the best assignment among all affine translates of the NBC for
a nonsymmetric channel. Finally, Theorem 3 gives explicit
comparisons between the performances of the NBC, TCC,
FBC, and GC for all possible binary-asymmetric channels.
In particular, it is shown that the TCC outperforms the other
three codes for most useful bit-error probabilities, when the
channel is nonsymmetric.

II. DEFINITIONS

A. Noisy Channel VQ with Index Assignment

For any positive integer , let denote the field of -bit
binary words, where arithmetic is performed modulo. The
results in this paper are given for binary channels (although
generalization to more general channels can be made).

Notation: For any binary -tuple , we write
, where denotes the coeffi-

cient of in the binary representation of, i.e.,

For any Euclidean vector , we write
, where is the th component of .

In this paper we assume for convenience, that elements
of any Euclidean space are column vectors, whereas we

assume that elements of any Hamming spaceare binary row
vectors. We denote the inner product of two binary vectors

by

and the inner product of two Euclidean vectors by

The following definition corresponds to Fig. 1.
Definition 1: A -dimensional, -point noisy channel vec-

tor quantizerwith codebook , and
with an channel code , is a
functional composition ,
where is a quantizer encoder,
is a quantizer decoder, is a channel encoder,

is a channel decoder, is an index
assignment(bijection), and is a random mapping
representing a noisy channel.

When , we say that the noisy channel vector quantizer
has anonredundant channel code. Let be a random vector
in . Let P denote the probability
that the quantizer encoder produces the index, and define

P , the transition probabilities of
the coded channel, i.e., the probability that the channel decoder
emits the symbol given that the input to the channel encoder
was . Let denote the indicator function of a set.

In Fig. 1, the quantizer is assumed to be
designed for a noiseless channel with an optimal (i.e., nearest
neighbor) encoder . (To allow for low-complexity structured
codebooks the decoder is not required to be optimal.) The
index assignment is a permutation of the set . The channel
encoder maps a -bit binary source index to an -bit
binary-channel codeword. This codeword is then transmitted
across a binary memoryless channel, where it may get
corrupted by noise. The channel decodermaps the received

-bit word back to a -bit source index, which then goes
through the inverse index assignment . The quantizer
decoder then generates the associated output vector in

from the resulting index.
We measure the performance of the noisy channel vector

quantizer for a vector source by its mean-squared error
E . Define the source distortion

E (the distortion incurred on a noiseless

channel), and thechannel distortion E
(the component due to channel errors). If the centroid
condition is satisfied (i.e., E , ), then

. If the codevectors are not the centroids of
their respective encoding regions then ,
where E . The magnitude
of the cross-term is usually very small in practice,
and in [28] is shown to asymptotically vanish for regular
quantizers (see also [48]). As an example, Table I lists the
three components of for the BLVQ example of Fig. 2. It
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TABLE I
THE THREE COMPONENTS OF THEDISTORTION (PER DIMENSION) FOR THE BLVQ OF FIG. 2

can be seen in these cases that is negligible compared
to and .

Hence, under the assumption , for a given quantizer
one should minimize to optimize the overall performance.
This paper determines the value of for various noisy-
channel vector quantizer systems. With no redundancy (i.e.,

), an approach to this problem is to find a reordering
of the codevectors that yields the lowest (i.e., the best
index assignment ). Indices that are likely to be mistaken
due to channel errors should correspond to code vectors whose
Euclidean distance is small.

Fact 1: Let be a random vector encoded by a
noisy-channel vector quantizer. The channel distortion can be
written as

(1)

B. Linear Codes on a Binary-Symmetric Channel

Definition 2: A binary linear code with
binary generator matrix is the set of all -bit binary
words of the form , for . The dual codeof is
defined as

We assume a linear code is used with standard array
decoding. The channel encoder is given by ,
and we denote the set of coset leaders by. Note, that

, the set of -bit binary words decoded into
the all-zero codeword, and that by linearity the set of all-
bit words decoded into an arbitrary channel codewordis

, a translate of .
Notation: The probability that the error pattern oc-

curs on a binary-symmetric channel with crossover probability
is denoted by

P

where is an arbitrary element of , and denotes
Hamming weight.

Notation: The probability that the information error pattern
occurs when an linear block code is used to

transmit over a binary-symmetric channel is denoted by

(2)

C. Affine Index Assignments

Definition 3: An affine index assignment is a
permutation of the form

where is a binary nonsingular generator matrix, is
a -dimensional binarytranslation vector, and the operations
are performed in . If , then is called linear.

The family of affine index assignments is attractive due to
its low implementation complexity. An unconstrained index
assignment requires a table of size bits to implement
for a -point quantizer, whereas affine assignments can
be described by bits. The number of unstructured
index assignments is , whereas the number of affine
index assignments is . Many well-known
useful redundancy-free codes are linear or affine, including the
Natural Binary Code (NBC), the Folded Binary Code (FBC),
the Gray Code (GC), and the Two’s Complement Code (TCC):

• Natural Binary Code

• Folded Binary Code (or Sign-Magnitude Code)

...

• Gray Code (or Reflected Binary Code)

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
. . .

. . .

. . .
. . .

...
...

. . .
. . .

• Two’s Complement Code

• Worst Code
It has been shown [33], [34] that the Natural Binary
Code is a “best” index assignment on a BSC for any
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TABLE II
EXAMPLES OF 4-BIT INDEX ASSIGNMENTS

source resulting in a uniform distribution on the BLVQ
codevectors. Using similar arguments it can be shown that
a “worst” affine assignment (i.e., maximizing under
the same conditions among affine index assignments) is
the following linear code:

...

...

where if is even, and if is odd; and
is the one’s complement of the identity matrix .

Table II gives an explicit listing of these affine index
assignments in both decimal and binary.

The following recursive relationships between these index
assignments can be used to obtain formulas for (e.g., see
[49]):

D. Binary Lattice VQ

Definition 4: A -dimensional, -point binary lattice vec-
tor quantizeris a vector quantizer, whose codevectors are of
the form

for

and where is the generating set, ordered
by

A binary lattice quantizer can be considered a direct sum
quantizer (or multistage, or residual quantizer) with two
codevectors at each stage, when the codebook is written
as Conversely, any direct sum
vector quantizer with two vectors per component codebook,

, can be viewed as a binary lattice VQ by setting

and , and reordering the generating set if needed.
Given an arbitrary lattice with basis vectors ,

any set of nonnegative integers satisfying
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defines a -point lattice vector quantizerwith codebook

For each , the vectors in the direction of are addressed
with bits.

The class of binary lattice VQ’s includes lattice VQ’s (or
any of their cosets). In this case, the generating set of the
BLVQ is

and the index of the vector

is the concatenation of the binary representations of the lattice
coefficients . The codebook of this binary
lattice VQ contains the origin . By choosing
(while keeping the same generating set) other BLVQ’s
can be obtained corresponding to truncations of cosets of
the original lattice. A -level uniform scalar quantizer with
stepsize and granular region is a special case of a
binary lattice quantizer, obtained by setting ,
and .

A binary lattice VQ is similar to the nonredundant version of
the “VQ by a Linear Mapping of a Block Code” (LMBC-VQ)
presented in [44]–[46]. Theth codevector of an LMBC-VQ
is defined as

where is a real matrix with columns , and
the -dimensional column vector with
is obtained from the th codeword of a systematic
linear code by the mapping for each
bit, and a leading is prepended to allow translation of the
codebook by . In the nonredundant case (i.e., ),

. Hence

Thus setting and gives the
codevector in the form of a binary lattice VQ codevector.
Conversely, given a binary lattice VQ we obtain a nonredun-
dant LMBC-VQ by setting

and

for .

Hagen and Hedelin [44]–[46] adapted the generalized Lloyd
algorithm for the design of LMBC-VQ’s, and obtained locally
optimal “noiseless” LMBC-VQ codebooks. Their scheme does
not include error control coding, and there is no explicit men-
tion of index assignments, either. They use a linear block code
exclusively as a tool for quantizer design. When this “design
code” is nonredundant, their scheme can only implement index
assignments corresponding to bit-permutations of the indices
(since the codevectors uniquely determine the columns
of up to sign and order). On a memoryless channel these
index assignments all have the same value ofas the NBC.
However, by increasing the redundancy of the “design code,”
more general index assignments can be obtained. Indeed, in
the maximum redundancy case (i.e., ), the matrix
of codevectors is related to by the Hadamard transform as
described in [47], and thus any index assignment (reordering of
the codevectors) can be modeled by choosingaccordingly.
An optimal and a fast suboptimal algorithm for finding a good
assignment in that case are presented in [23].

E. The Hadamard Transform

Definition 5: For each let and let
. The Hadamard transform of is

defined by

and the inverse transform is given by

We refer to the numbers as Hadamard coefficients. The
transform equations can be expressed in vector form using the

Sylvester-type Hadamard matrix
and viewing the functions as -dimensional row vectors (i.e.,

):

The Hadamard transform extends to vector valued functions
in a straightforward manner:

or equivalently

where is a real matrix.
The Hadamard transform is an orthogonal transform, and the

convolution and inner product properties (e.g., Parseval’s iden-
tity) of Fourier transforms also hold for Hadamard transforms.
The following useful identities also hold:
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The bits of any binary word are related to the
Hadamard matrix entries by

(3)

where is the binary row vector with its only
nonzero component in the th position.

(4)

III. RESULTS

The following lemma gives an expression for the channel
distortion of a noisy channel vector quantizer in terms of the
Hadamard transforms of the source distribution (the’s), the
quantizer codebook (the’s), and the channel statistics (the
’s). A similar expression is found in [50], and a concise proof

is provided here for completeness.
Lemma 1: Let be a random vector that is

quantized by a -point vector quantizer with encoder
and decoder , index assignment , and using a linear
block channel code on a binary-symmetric channel. Let

P , , and .
Then the channel distortion in the Hadamard transform domain
is

Proof: Using a linear block channel code on a binary-
symmetric channel the transition probabilities only depend
on the (modulo ) sum . With the notation ,
(1) can be written as

In Lemma 1 “complete” channel decoding is assumed. That
is, every received word from the channel is decoded to a
nearby channel codeword (to the one in the same coset as
the received word), as opposed to incomplete decoding (or
bounded-distance decoding), where a received word is decoded
only if it is within a prescribed Hamming distance (usually,
the code’s minimum distance) to a codeword—otherwise it
is deemed uncorrectable. The form of the expression for
for incomplete decoding of a linear block code is similar;
has an additional term , where is the codebook
energy, and is the probability of an uncorrectable
error. Since this additional term is independent of, it is not
significant in determining the optimal index assignment.

The following theorem specializes Lemma 1 to Binary
Lattice VQ’s and affine index assignments.

Theorem 1: The channel distortion of a -point binary
lattice vector quantizer with generating set , affine
index assignment with generator matrix, linear code

with generator matrix , and a binary-symmetric channel
with crossover probability , is given by

(5)

where

(6)

F , F is a binary matrix satisfying F ,
is the dual code of , is the characteristic

function of the set of coset leaders of , is the th
component of the Hadamard transform of the distribution on
the quantizer codevectors, denotes Hamming weight, and

is the binary row vector with its only nonzero entry in the
th position.

Theorem 1 makes explicit the dependence of the channel
distortion on the BLVQ structure, the affine index assignment,
and the channel code. Also, computing based on (1)
requires complexity for a codebook of size ,
whereas using (5) reduces the complexity of computing
to . (In (1) each of the nested sums contributes
a factor of , whereas in (5) the corresponding sums only
require steps, but each of the Hadamard transforms
inside the sums takes steps.)

Note that on a binary-symmetric channel the translation
vector of the affine assignment is irrelevant. Thus without
loss of generality we may assume that the index assignment
is linear. A linear index assignment can be incorporated in the
channel encoder by setting . Then F F F ,
the transpose of an inverse of . To obtain , the sum
in (6) is taken over the coset of the dual code containing

F F F , the th row of F .
Proof: We find expressions for the Hadamard transform

quantities of Lemma 1. The transform of the BLVQ codevec-



MÉHES AND ZEGER: BINARY LATTICE VECTOR QUANTIZATION 87

tors is

Since is an affine index assignment, for we have

Thus

for . Exactly one term in this summation is nonzero. The
transform of the discrete distribution on the codevectors is

If either or equals , then , so
without loss of generality we can write

Since

the ’s for an linear code can be expressed in terms of
the ’s and the Hadamard transform of as

(7)

F
(8)

where

which completes the proof.

A. Uniform Output Distribution

If the quantizer codevectors are equiprobable, then
for all , and . In this case the channel
distortion of BLVQ with an affine assignment simplifies to

Since is independent of the index assignment, minimizing
is equivalent to maximizing

By assumption, the ’s are ordered by their norms. Thus an
affine assignment which minimizes must satisfy
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as observed in [23], [33], and [43]. This is achieved by
making the -bit index of a maximal the first row
(corresponding to ) of F . Then the th row is selected to
be the index of a largest that it is linearly independent of
the first rows. More formally

where denotes theth row of .
It was shown in [33] that among all possible index assign-

ments the best affine index assignment achieves the minimum
MSE possible for a uniform scalar quantizer and a uniform
distribution. We conjecture that the same result is valid for
BLVQ’s. It is known to be true for nonredundant channel
codes [34], and we have verified that it is true for some
simple codes such as the Hamming code and the

first-order Reed–Muller code, and it trivially holds
for all repetition codes. One can also use a result in
[38] to determine the best choice of a coset leader setand
an affine index assignment (even if the best affine assignment
does not coincide with the global optimum).

IV. NONREDUNDANT CODES FOR THEBLVQ

A. Binary-Symmetric Channels

Theorem 1 can be specialized to nonredundant codes (i.e.,
, , , F ), giving the

following result (similar to a result obtained in [46]).
Corollary 1: The channel distortion of a -point binary

lattice vector quantizer with generating set , which
uses an affine index assignment with generator matrix, and
nonredundant channel coding, to transmit across a binary-
symmetric channel with crossover probability, is given by

(9)

where denotes Hamming weight, F , is the
th component of the Hadamard transform of the distribution

on the quantizer code points, andis the binary row vector
with its only nonzero entry in theth position.

1) Formulas for Common Index Assignments:One useful
consequence of Theorem 1 is that exact expressions for the
channel distortion can be obtained for certain well-known
structured classes of index assignments, such as the NBC, the
FBC, and the GC. Since on a binary-symmetric channel the
TCC and the NBC have the same channel distortion, the NBC
formula also holds for the TCC. In the formula for the GC the
double sum of Theorem 1 cannot be further simplified, since

is not a separable function ofand . For the
NBC and the FBC we can express in terms of the means
and the component variances of two discrete random variables
as follows. Let be a random vector distributed according
to over the quantizer codevectors with mean and

E , and let be a random vector uniformly
distributed over the quantizer code points with meanand

E . Then

(10)

(11)

where (3) and (4) were used to obtain (10) and (11), respec-
tively.

Note that and do not depend on the index assignment
or the input distribution.

Corollary 2: Given the conditions of Corollary 1, the chan-
nel distortion of the Natural Binary Code is

A related formula also appears in [46], and we provide a short
proof for completeness.

Proof: Using Corollary 1, and the fact that

and

for all and , we have

E

E
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Corollary 3: Given the conditions of Corollary 1, the chan-
nel distortion of the Folded Binary Code is

Proof: The Hamming weights of the rows of F are

or

and thus

Substituting these into (9), and using (11) we obtain

E

E

where follows, since the basis vectors
are ordered by their norms.

Corollary 4: Given the conditions of Corollary 1, the chan-
nel distortion of the Gray Code is

Proof: Substituting

and

in (9), the result is immediate.
2) Comparison of the NBC and the FBC:While the NBC

is known to be optimal for the binary-symmetric channel
with a uniform source, little is known about optimal codes
for nonuniform sources. Corollaries 2 and 3 can be used to
compare the MSE performance of the NBC and the FBC
for nonredundant source-channel coding. Noll found that for
certain speech data the FBC achieves better performance than
the NBC when used in conjunction with the optimal noiseless
quantizer [36]. Corollary 5 characterizes sources for which the
FBC outperforms the NBC, using BLVQ. The variance of the
source determines which code is better.

Corollary 5: Given the conditions of Corollary 1, and for
all

B. Codes for Binary-Asymmetric Channels

Definition 6: For , let

i.e., the set of positions where the binary row vectorhas
nonzero coordinates. Then

defines a partial ordering “” of the elements of . Equiv-
alently

Theorem 2: If a -point binary lattice vector quantizer
with generating set induces equiprobable quantizer
codevectors, and an affine index assignment with generator
matrix G and translation vectoris used to transmit across a
binary-asymmetric channel with transition probabilities

and and with a nonredundant channel code, then
the channel distortion is given by

(12)
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Fig. 3. Channel subsystem with affine index assignment.

where , , denotes Hamming
weight, F G , is the binary row vector with its only
nonzero entry in theth position, and denotes
a Hadamard transform coefficient.

Note that at most one of the two indicator functions in
Theorem 2 can be nonzero for any pairand .

Proof: For nonsymmetric channels, does not depend
only on the (modulo ) sum , so an approach different
from the one used in the proof of Theorem 1 is necessary. Let
the random variable denote the -bit source-coded
index, and let denote the -bit binary channel error vector.
The decoded -bit index is then

G G G

as depicted in Fig. 3.
Thus the channel distortion of a BLVQ (with codevectors

for ) can be written as

E

E

E G

E

E E

(13)

The bits of are conditionally independent given, and
satisfy

P

P

on a binary-asymmetric channel. Thus

E

Hence, for any -bit binary row vector

E E

With equiprobable codepoints, thebits of are independent,
and equally likely to be or . Hence, E for any
nonzero -bit binary row vector , and we have

E E

E

Substituting , , and for , the last three
terms within the expectations in (13) are obtained. Noting that
E and factoring out common terms gives

and the proof is complete.
1) Formulas for Structured Index Assignments:Here we

specialize Theorem 2 to the FBC, the GC, the NBC, and
the affine translates of the NBC. The formulas presented
generalize those given in [49] for the uniform scalar quantizer
case (the , , notation is consistent with [49]), and
generalize those given in [30] and [32] to nonsymmetric
channels. Also, by letting , the special cases of
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Corollaries 2–4 for the uniform output distribution case are
recovered.

Corollary 6: Given the conditions of Theorem 2, the chan-
nel distortion of the affine translate of the Natural Binary Code
corresponding to translation vectoris

where , and

In particular, the channel distortion of the NBC
is

and the channel distortion of the TCC is

Proof: Since

and

for all and , no row of can precede the sum of
two rows in the partial ordering. Using this and Theorem 2,
the statement follows.

For a uniform scalar quantizer with step size, we have
and the above expressions simplify to

and

The formula for generalizes results in [31] and [33]
to the asymmetric-channel case.

Corollary 7: Given the conditions of Theorem 2, the chan-
nel distortion of the Folded Binary Code is

where .

For a uniform scalar quantizer with step size, we have
. Thus and the above formula

becomes

Proof: For

otherwise

and thus the indicator functions in Theorem 2 will only be
nonzero if either or . Using this and

, and substituting the Hamming weights of the
rows of F in (12), one gets

Corollary 8: Given the conditions of Theorem 2, the chan-
nel distortion of the Gray Code is

For a uniform scalar quantizer with step size, we have
. Thus and the above formula

becomes
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i)

ii)

iii)

iv)

v) if

if

and

vi) if

if

and

Proof: The statement follows by observing that the
precedence is satisfied if and only if ,
and substituting , for

, and in (12).
2) Affine Translates of the NBC:The family of affine

translates of the NBC is known to perform optimally for
BLVQ’s with a uniform output distribution on a BSC. If,
however, the channel is asymmetric, different translates result
in different distortions. The best one is identified next.

Corollary 9: If a -point binary lattice vector quantizer
induces equiprobable quantizer codevectors for a given source,
and transmits an affine translation of the Natural Binary
Code across a binary asymmetric channel with crossover
probabilities and and with a nonredundant
channel code, then the channel distortion is minimized if and
only if the translation vector satisfies

where

is the arithmetic mean of the codebook. In particular, the Two’s
Complement Code is optimal among the NBC translates for
uniform scalar quantization.

Proof: Immediate from Corollary 6.
For a uniform scalar quantizer with step size, ,

and . Thus both

and

have the same performance (optimal among the translates of
the NBC). The latter translate is the Two’s Complement Code
(a rotation of the Odd–Even Code of [49]).

3) Comparisons for Uniform Scalar Quantization:Based
on the formulas presented in Corollaries 6–9 for uniform scalar
quantization, the structured index assignments we have consid-
ered can be compared. First, we define the one’s complement
of an index assignment. This corresponds to changing’s to
’s and ’s to ’s in the binary representation of the indices.

Unless the performance of an assignment is symmetric in
and , it is advantageous to use the one’s complement of the
assignment instead of the assignment itself, either when
or .

Definition 7: The one’s complement index assignment,
of an index assignment , is defined by

where (the vector of weight ).
The one’s complement of an affine index assignment can be

obtained by replacing its translation vectorby , the one’s
complement of (the generator matrix remains unchanged).
The distortion formulas are also easily updated, as only the
roles of and have to be exchanged (or equivalently,
is to be replaced by ). Hence, the one’s complement of an
index assignment whose distortion formula includes only even
powers of (e.g., NBC, TCC) has the same performance as
the original assignment. Furthermore, since odd powers of
change sign when , the one’s complement outperforms
the original assignment either when or .

Theorem 3: Given a uniform -level scalar quantizer for a
uniform source, the channel distortions of the Natural Binary
Code (NBC), the Folded Binary Code (FBC), the Gray Code
(GC), and the Two’s Complement Code (TCC) on a binary
memoryless channel with and and with a
nonredundant channel code satisfy (assuming and

) the inequalities shown at the top of this page. The
inequalities i), ii), and iii) hold with equality if .
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(a) (b)

(c) (d)

Fig. 4. Performance comparisons of various nonredundant codes for a uniform scalar source on a binary-asymmetric channel withp1j0 = � andp0j1 = �,
and � + � < 1. The region where one code is uniformly better (i.e.,8 k > 2) than the other is marked by the name of the superior one. In the unmarked
area (between the thick and the thin curves, where applicable) the winner depends on the value ofk. The thick curves correspond to ties between the codes.
(a) TCC versus NBC. (b) TCC versus FBC. (c) NBC versus FBC. (d) FBC versus GC.

The above inequalities follow from Corollaries 6–8 by
straightforward algebraic manipulations; thus their proofs are
omitted. The code comparisons of the above theorem are
shown in Fig. 4. In each graph two index assignments (and/or
their one’s complements) are compared for binary-asymmetric
channels (each point corresponds to a different channel).
The region where one code is uniformly better (i.e., )
than the other is marked by the name of the superior one.
In the unmarked area (between the thick and the thin curves,
where applicable) the winner depends on the value of.
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