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Abstract—We determine analytic expressions for the perfor- suboptimal approach is often algorithmically very complex and
mance of some low-complexity combined source-channel codingit is generally difficult to quantify the performance analytically.
systems. The main tool used is the Hadamard transform. In  rinqing good algorithms and acquiring theoretical understand-

particular, we obtain formulas for the average distortion of . fthei f ¢ f1h i tant h
binary lattice vector quantization with affine index assignments, Ing ortheir perrormance are two of the mostimportant researc

linear block channel coding, and a binary-symmetric channel. goals in this field.
The distortion formulas are specialized to nonredundant chan- Even when the channel is noiseless, the optimal design

nel codes for a binary-symmetric channel, and then extended of 3 source coder is in general unknown, as is an analytic
to affine index assignments on a binary-asymmetric channel. yoqqrintion of the performance of an optimal system. The well-

Various structured index assignments are compared. Our an- K lized Liovd alaorithm i ful hni f
alytic formulas provide a computationally efficient method for KNown generalized Lloyd algorithm is a useful technique for

determining the performance of various coding schemes. One obtaining good, but possibly suboptimal, vector gquantizers,
interesting result shown is that for a uniform source and uniform and the Bennett—Zador formulas give analytic performance

quantizer, tthe l;]laturall BinarythCodﬁ tls nkever 0?““;""' fotr_ al descriptions for asymptotically high-resolution quantizers [1].

ronsymmetric_channeél, even though 1L 1s known 1o be oplimal o, |arge vector dimensions and high source-coding rates,
for a symmetric channel. 8 ) . )

_ _ _ gquantizers generated with the Lloyd algorithm can require

"t‘.dex T(ejrms_'”dex %Ss'ﬁnme?t' g’.‘mces' t"”ear etr_rort'_cor' extremely large computational complexities (linear in the
recting codes, source and channel coding, vector quantization. ., yap ook size) for full-search nearest neighbor encoding. As
a result, much recent research has focused on structured (but

I. INTRODUCTION suboptimal) quantizers which trade off reduced complexity

useful and frequently studied communication systefd’ reduced performance [1]. One example of a structured
Amodel includes a source encoder and decoder, a chgHantizer is a “multistage vector quantizer” (sometimes called
nel encoder and decoder, a noisy channel, and a mappﬁ]gesidual quantizer”). A special case, Wi.th two chevectors
of source codewords to channel codewords (known as Bff Stage, is referred to here as a “binary lattice vector
index assignment). We consider the situation where the soufit@ntizer” and is studied in this paper.

encoder/decoder is a vector quantizer (VQ), the channel enf number of studies have considered the communication

coder/decoder is a binary linear block code with maximun$yStém in Fig. 1 when the channel is noisy. Optimality con-
likelihood decoding, and the channel is binary and mem0r91t'0n5 and a suboptimal _de5|gn algorithm for the quantizer
less, as shown in Fig. 1. The source is assumed to be a randdtfeder and decoder (with a nonredundant channel coder)
vector of a fixed dimension and whose statistics are knawr)ave been derived for the scalar case by Kurtenbach and
priori. The end-to-end vector mean-squared error (MSE) Y¥intz [2], and for the vector case by Dunham and Gray
used to measure the performance. [3] and Kumazawaet al. [4], and were further studied in

Ideally, one would optimize the end-to-end MSE over alpl-[13]. The resulting source coder is often referred to as
possible choices of source encoders and decoders, chanfi@gnnel-optimized vector quantization” (COVQ) and obeys
encoders and decoders, and index assignments. But becau$t®Bgralized versions of the well-known nearest neighbor and
the large computational complexity of this task, it is presentfggntroid conditions. Very little is known analytically about
unknown how to perform the joint optimization. The mosthe performance of these quantizers, and their implementation
common approach to finding good, but suboptimal, SyStemscgmplexity is at least that of a full-search vector quantizer for
to assume that all but one component of the system is fixBdhoiseless channel. Thus their usefulness diminishes as the
and then to optimize the choice of that component. Even tifigurce vector dimension increases.
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Fig. 1. Communication system model.

tween source and channel coding was examined in [18] feource. Experimental results for the NBC, FBC, and GC can be
high-resolution quantization. However, little else is knowfound in [35]-[37] for example for speech sources. One of the
theoretically about this problem, other than Shannon’s rateteresting features of the four index assignments above is that
distortion theorem, which assumes unboundedly large soutbey are all “affine” functions in a vector space over the binary
vector dimensions [19]. Also, little is known about goodield. In fact, affine index assignments are relatively easy to
index assignments when error control codes are used, iimplement with low storage and computational complexity.
assignments of quantizer codevectors to channel codeword3pecifying an affine index assignment requires o6lfk?)

Another approach to source coding in the presence lots for a2*-point quantizer, as opposed @ k2*) bits for an
channel noise has been to use, on a noisy channel, a sounceonstrained index assignment.
coder designed for a noiseless channel, but with an optimizedAffine index assignments have been studied for several
index assignment and with no explicit channel coder [8flecades as an effective zero-redundancy technique for source
[20]-[24]. Other nonredundant methods exploiting specifimoders that transmit across noisy channels. Linear index as-
quantizer structures can be found in [25]-[27]. In [28], aignments are special cases of affine index assignments. They
random coding argument is used to give analytic boundse also special cases of nonsystematic linear block channel
on the performance of an optimal index assignment. Ogedes whose minimum distance lisand their purpose is to
appealing feature of index assignments is that they requiegluce end-to-end mean-squared error instead of reducing the
no extra channel rate nor any extra storage to implemeptpbability of channel error. In [33], [38], and [39], Crimmins
index assignments are implicitly contained in the ordering et al. showed that for uniform scalar quantization of a uniform
the codevectors in the vector quantizer codebook. Howeveource, using a linear block code and standard array decoding
for large source-coding rates and high vector dimensions tloe transmission over a binary-symmetric channel, there exists
increased complexity of full-search vector quantization oftemlinear index assignment that is optimal in the mean-squared
forces system designers to implement structured (and tharsor (MSE) sense. They use a binary alphabet and assume that
suboptimal) source coders. In this case, quantizer codebobksh the encoding and the decoding index assignments are one-
are generally not stored explicitly, and the cost of specifyirtg-one mappings. Redinbo and Wolf extended these results in
an index assignment can be equally prohibitive. two directions. In [40] they generalized geary (prime-power)

This motivates the study of structured (but possibly suboptiphabets, and in [41] they allowed the decoder mapping to
mal) index assignments with low implementation complexitieproduce outputs outside the codebook (e.g., linear combina-
Various families of recursively defined index assignments hatiens of codevectors). Ashley considered channel redundancy
been extensively studied in the past, including the well-knowfor uniform scalar quantizers [42], and obtained a formula for
Natural Binary Code (NBC), Folded Binary Code (FBC)the MSE in terms of the weight distribution of the cosets of
Two’s Complement Code (TCC), and Gray Code (GC) [29he dual code. Khayrallah examined the problem of finding
Huang [30]-[32] computed distortion formulas for the Naturahe best linear index assignment when an error-control code is
Binary Code and the Gray Code for uniform scalar quantizeused with a uniform scalar quantizer on a uniform source [43].
and uniform scalar sources. He asserted that the Natural Binaryn the present paper, we derive exact formulas for the
Code was optimal among all possible index assignments foerformance of general affine index assignments when explicit
the uniform source [31]. This was proven by Crimmigtsal. block channel coding is used on a binary-symmetric channel.
[33] and later, in the more general setting of binary latticé/e also derive related formulas for the performance of index
vector quantization, by McLaughlin, Neuhoff, and Ashleyssignments on binary-asymmetric channels, with no explicit
[34]. The exact performance of structured classes of indekannel coding. These are specialized to several known classes
assignments has not been generally known except for thieindex assignments. As an interesting special case, we show
Natural Binary Code and the Gray Code, and with a uniforthat while the Natural Binary Code is optimal on the binary-
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Fig. 2. The channel-mismatch performance of source-optimized VQ, channel-optimized VQ, and binary-lattice VQ. The input vectors are taken from
a Gauss—Markov process with correlatiord. The COVQ was designed for a BER 6f1. The 16-dimensional 2048-point quantizers are followed by
a (16,11,4) extended binary Hamming code.

symmetric channel for uniform sources, it is inferior in generajector dimension of the source. The source vector dimension
to the Two’s Complement Code on the binary-asymmetraf the Hamming coded systemi§. All three quantizers were
channel. obtained using appropriate variants of the generalized Lloyd
In order for a channel-optimized quantizer to perform optalgorithm. The COVQ was designed for the coded channel at
mally, a good estimate of the channel’s bit-error rate (BERhe uncoded (BSC) bit-error rate 6f1 (a bit-error rate that
is required. In this paper we study a reduced complexigan occur in certain low-power radio channels and near cell
structured vector quantizer combined with an affine indéboundaries in cellular telephony).
assignment, which together give enhanced channel robustness tradeoff between structured (e.g., BLVQ) and unstructured
over a wide range of error rates. We consitdarary lattice (e.g., SOVQ) quantizers can be observed over the range of
vector quantizatiofBLVQ), the class of source coders studie@rror probabilities where the channel code is effective (i.e., the
in [34], and a variant of the VQ by a Linear Mapping of ecoded channel can be considered practically noise-free). But,
Block Code introduced by Hagen and Hedelin [44]-[46]. as the coding advantage disappears, the BLVQ outperforms
Another motivation for studying BLVQ is its inherentthe SOVQ. The COVQ is inferior to the SOVQ and BLVQ
robustness to channel noise, in particular under “channehder channel mismatch for small BERs and outperforms the
mismatch” conditions, i.e., when the exact level of chann8lOVQ and BLVQ for large BER’s. Thus BLVQ can offer a
noise is not perfectly known. While channel-optimized vectaeasonable compromise. The BLVQ is uniformly robust and
guantization is an optimal encoding technique if the statistickose to optimum over a large range of error rates. The price
of a noisy channel are known, a quantizer designed forpaid for the memory savings due to the structured codebook
noise-free channel using the generalized Lloyd algorithrof the BLVQ is relatively small. Fig. 2 is not meant to be
referred to here as Source-Optimized VQ (SOVQ), delivees comprehensive comparison between SOVQ, BLVQ, and
nearly optimal performance for small effective (i.e., afte€OVQ, but rather is to partially motivate the study of BLVQ.
channel coding) bit-error rates. As an example, Fig. 2 In this paper we generalize much of the previously men-
compares the performance of SOVQ, COVQ, and BLV@oned work to the case of redundant channel codes and
for a Gauss—Markov source with correlation coeffici®ft BLVQ's. We make extensive use of the Hadamard transform,
using a(16, 11, 4) extended Hamming code. The plot displaysvhich has been used either implicitly or explicitly in many
signal-to-noise ratio versus the bit-error rate of the binarprevious works. The Hadamard transform is also the main
symmetric channel. The signal-to-noise ratio is defined &0l used by Hagen and Hedelin to construct implicit in-
10 logy, (02 /(D/d)), whereo? is the variance of the sourcedex assignments without error-control coding [44]-[46]. Also,
componentsD is the average vector distortion, adds the Knagenhjelm [47], and Knagenhjelm and Agrell [23] used the
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notion of “Hadamard classes” to search for an optimal indessume that elements of any Hamming sp#tare binary row
assignment in the Hadamard transform domain. vectors. We denote the inner product of two binary vectors

The main contributions of our paper include: 1) a general- j € 7% by
ization of the analytic performance calculations of Hagen and
Hedelin for BLVQ, to include error-control coding (equiva- - o
lently, a generalization of the Crimminst al, formulas to = Z aj €10, 1}
nonuniform sources and to vector quantizers); 2) analytic 1=0
performance calculations for nonredundant channel codi
which extend the formulas obtained by Huang, by Crimnens
al.,, and by McLaughlin, Neuhoff, and Ashley from the NBC d
and GC to any affine index assignment and nonsymmetric (zly) = Z oy € R.
channels; and 3) comparison between the performances of =1
NBC, FBC, GC, and TCC. _ o _

In Section II, we give the necessary notation and terml-n€ following definition corresponds to Fig. 1.
nology. In Section IIl, we prove Theorem 1, which gives a Deflnm_on 1: .A d—dlmenS|onaI2’“-p0|ntnc(>1|sy channel vec-
general formula for the channel distortion of a BLVQ usind?" guantizerwith codebooky = {y; € R": ¢ € Z}}, and
an affine index assignment, a linear error-correcting codiith an (n, k) channel cod&” = {c;: i € 75} C 73, is a
and transmission across a BSC. The formula is given fdnctional compositionQ = Dgon* oD onocomoly,
terms of the Hadamard transforms of the source and chanWdere &o: IR? — 74 is a quantizer encoderDe: 75 —
statistics. Our formula reduces the complexity of computirig a quantizer decoder&e: Z3 — Cis a channel encoder
the distortion fromO (N?) to O (N log® N), whereN is the Dc:Z3 — Z5 is achannel decoderr: 2§ — Z5 is anindex
vector quantizer codebook size. In Section IV, we consid@gSignmentbijection), andy: Z; — Z3 is a random mapping
guantization systems without the use of redundancy for erf@Presenting a noisy channel.
control. For binary-symmetric channels, Corollaries 2—4 give Whenn =k, we say that the noisy channel vector quantizer
explicit formulas for the channel distortions of the NBCRas anonredundant channel codeet X be a random vector
FBC, and GC in this case. Corollary 5 characterizes the IR". Let p; = P[€o(X)] = ¢ denote the probability
class of sources for which the NBC outperforms the FBdhat the quantizer encoder produces the indeand define
For binary-asymmetric channels, Theorem 2 gives a genefal = P[Pc(n(€c(i))) = jl, the transition probabilities of
formula for the channel distortion of BLVQ using affine indexthe coded channel, i.e., the probability that the channel decoder
assignments and no channel-coding redundancy. Corolla/@8its the symboj given that the input to the channel encoder
6-8 give explicit formulas for the channel distortions of th&asz. Let xs denote the indicator function of a sét
NBC, TCC, FBC, and GC in this case. Corollary 9 identifies N Fig. 1, the quantizeQ) = Dq o & is assumed to be
the best assignment among all affine translates of the NBC figsigned for a noiseless channel with an optimal (i.e., nearest
a nonsymmetric channel. Finally, Theorem 3 gives explicte¢ighbor) encodef,. (To allow for low-complexity structured
comparisons between the performances of the NBC, Tceodebooks the decoder is not required to be optimal.) The
FBC, and GC for all possible binary-asymmetric channel§ldex assignment is a permutation of the s&;. The channel
In particular, it is shown that the TCC outperforms the othéncoderéc maps ak-bit binary source index to am-bit

three codes for most useful bit-error probabilities, when tHénary-channel codeword. This codeword is then transmitted
channel is nonsymmetric. across a binary memoryless channgl where it may get

corrupted by noise. The channel decofer maps the received
n-bit word back to ak-bit source index, which then goes
through the inverse index assignment!. The quantizer
decoderD( then generates the associated output vector in
Y c R from the resulting index.

We measure the performance of the noisy channel vector
%Jantizer for a vector sourcX by its mean-squared error

k—1

Hid the inner product of two Euclidean vectarsy € IR¢ by

Il. DEFINITIONS

A. Noisy Channel VQ with Index Assignment

For any positive integek, let Z5 denote the field of-bit
binary words, where arithmetic is performed modg@loThe
results in this paper are given for binary channels (althou E|IX — Q(X)||>. Define the source distortion
generalization to more general channels can be made). A A 9 . L .

Notation: For any binaryk-tuple i € Z%, we write i — Ds = E||X — Q(X)||* (the distortion incurred on a noiseless

. . A ol
.41, i0], wherei; € {0, 1} denotes the coeffi- channel), and thehannel distortionDc: = E[| Q(X)— Q(X)|1*

[ih—1, th—2, - .
cient of 2! in the binary representation of i.e., (the _qomponen_t .due_ to channel errors). If the centroid
1 condition is satisfied (i.ey, = E[X|Eq(X) = 4], Vi), then
. Al D = Ds + Dc. If the codevectors are not the centroids of
‘= Z uZ. their respective encoding regions thBn= Dg+ D¢ +2D,,.,
=0 whereD,, = E[(X — Q(X)|Q(X) — Q(X))]. The magnitude
For any Euclidean vectorz ¢ RY we write # = of the cross-termD,, is usually very small in practice,
(x1, x2, -+, x4)", wherez; is theith component ofe. and in [28] is shown to asymptotically vanish for regular

In this paper we assume for convenience, that elemenisantizers (see also [48]). As an example, Table | lists the
of any Euclidean spaci® are column vectors, whereas wehree components ab for the BLVQ example of Fig. 2. It
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TABLE |
THE THREE COMPONENTS OF THEDISTORTION (PER DIMENSION) FOR THE BLVQ oF FiG. 2

€ 10758 1074 1073 1072 1071
Do || 408 x 1078 | 4.08 x 107% | 4.06 x 107" | 3.83 x 1072 217
Do 1231 x 1075 | 231 x 1074 §2.30 x 107 | 2.20 x 1077 | 1.34 x 1077
Ds 0.52

can be seen in these cases thiat. is negligible compared C. Affine Index Assignments
to Ds and Dc.

Hence, under the assumptidh,. = 0, for a given quantizer
one should minimizeéD¢ to optimize the overall performance.
This paper determines the value &f- for various noisy- (i) =Gy +¢t i) = (i +t)G !
channel vector quantizer systems. With no redundancy (i.e
k = n), an approach to this problem is to find a reorderin
of the codevectors that yields the lowebt- (i.e., the best e . .
index assignmentr). Indices that are likely to be mistaken@'® performed 'm2: If t =0, ther.”r IS calle_dlmear. ,
due to channel errors should correspond to code vectors Whos-le;he family of affine index assignments is attractive due to
Euclidean distance is small. its low implementation complexity. An unconstrained index

Fact 1: Let X € R be a random vector encoded by %&gnment requires a table of si2¢k2*) bits to implement

e

noisy-channel vector quantizer. The channel distortion can a 2"-point quangzer’. whereas affine assignments can
written as described byO(k*) bits. The number of unstructured

index assignments i§2*)!, whereas the number of affine
i i ok k=1l ok _ oi
Do — D el — |12 1) index assignments &%) [[;—y (2% —2'). Many well-known
¢ Z Z PPy = ] @) useful redundancy-free codes are linear or affine, including the
Natural Binary Code (NBC), the Folded Binary Code (FBC),
the Gray Code (GC), and the Two’s Complement Code (TCC):

* Natural Binary Code

Definition 3: An affine index assignment. Z5 — 7% is a
permutation of the form

hereGy is a binary nonsingulak x k generator matrixt is
k-dimensional binaryranslation vector and the operations

iczk jezd

B. Linear Codes on a Binary-Symmetric Channel
Definition 2: A binary (n, k) linear codeC with & x n

binary generator matrixG¢ is the set of all2* n-bit binary G§NBC) =Ly t=[0 ... 0]
. 5 k .
wotds of the formiGg, for ¢ € 7Z5. The dual codeof C is « Folded Binary Code (or Sign-Magnitude Code)
defined as
N 11 - 1
G; =1 7. t=[01 - 1]
We assume a linear code is used with standard array 0
decoding. The channel encoder is given & (i) = iG¢, (FBC)\_1 (FBC)
and we denote the set of coset leaders &iyNote, that (G )T =Gy :

S = De"1({0}), the set ofn-bit binary words decoded into

; X ¢ Gray Code (or Reflected Binary Code)
the all-zero codeword, and that by linearity the set ofrall

bit words decoded into an arbitrary channel codewards 1 _1 _0 0
S. = S +u, a translate ofS. o) 0 :

Notation: The probability that the error patteine 73 oc- G = o s oo t=[0 - 0]
curs on a binary-symmetric channel with crossover probability : o
¢ is denoted by o -~ -~ 0 1

A w(u n—w(u [ 1 e 1
pu 2 Pln(v) = vt u] = #(9(1 - ) .
(@)= |

where v is an arbitrary element o}, and w(-) denotes o Tl
Hamming weight. 0 -~ 0 1

Notation: The probability that the information error pattern ¢ Two’s Complement Code
j € Z& occurs when ar{n, k) linear block code is used to

fin, ) G =7, t=[10 --- 0.

transmit over a binary-symmetric channel is denoted by

* Worst Code
—pz+J|z Z PutiGe » i, jezs. 2) It has been shown [33], [34] that the Natural Binary
ueS Code is a “best” index assignment on a BSC for any
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TABLE

EXAMPLES OF 4-BIT INDEX ASSIGNMENTS
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.

| 75 | 2 FEOG) | o

(@) [ =°0) | 7" ) |

© o N O U R W NN = O

e e e
=W N = O

—
ot

0 0000 | 7
1 0001} 6
2 0010 5
3 0011 4
4 0100 3
5 0101 2
6 0110 1
7 0111 | O
8 1000 | 8
9 1001 9
10 1010 | 10
11 1011 | 11
12 1100 | 12
13 1101 | 13
14 1110 | 14
15 1111 |15

(Ge)
0111 | 0 0000
0110 { 1 0001
0101 | 3 0011
0100 | 2 0010
0011 | 6 0110
0010 | 7 0111
0001 | 5 0101
0000 | 4 0100
1000 | 12 1100
1001 | 13 1101
1010 | 15 1111
1011 | 14 1110
1100 | 10 1010
1101 { 11 1011
1110 | 9 1001
1111} 8 1000

8
9
10
11
12
13
14

—_
(]

N Ot s Wy = O

1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

0
9
10
3
12
)
6
15
7
14
13
4
11

0000
1001
1010
0011
1100
0101
0110
1111
0111
1110
1101
0100
1011
0010
0001
1000

source resulting in a uniform distribution on the BLVQ

m ) =
27 -1 -m 96, 0<i<2 -
{ k=1 4 p(NBO (G _gk—1y  ok—1 < j <ok _
) =
D), 0<i<2=1-1
2h=1 4 7Ok 1) ok-l<i< ok

75890) = 0.

TCC), .
O ()

(NBC)

k=1 4 7 NBO Gy g <i<2b-1 1
Ty (i =2k, 2kl <y <ok —

) =

X{'w(i)odd}2k_l + W,(Clj?c)(ix 0<i<2k1_1
k—1
X{'L‘)(Qk—1—i)even}2
ey (2= 1) N

D. Binary Lattice VQ

Definition 4: A d-dimensional 2*-point binary lattice vec-
tor quantizeris a vector quantizer, whose codevectors are of
the form

k—1
Y, =Y+ Z V4
1—0

codevectors. Using similar arguments it can be shown that

a “worst” affine assignment (i.e., maximizing¢c under
the same conditions among affine index assignments) is

the following linear code:

G%V\’C) _

WC)\—
(G =

_ak 1

1

t ::[0 ce

0]

for
c s . . . k d
@ = [th—1, k=2, -, %1, 0] € Z3, Yo € R
and whereV = {v;}¥~} ¢ R? is the generating setordered
by
[voll < floall < -+~ < log—o]l-

A binary lattice quantizer can be considered a direct sum
guantizer (or multistage, or residual quantizer) with two
codevectors at each stage, when the codebook is written

as @;:&{yo/k, (yo/k) + vi}. Conversely, any direct sum
vector quantizer with two vectors per component codebook,

whereas, = 0 if k is even, andy;, = 1 if k is odd; and @f;ol{al, b}, can be viewed as a binary lattice VQ by setting

Z;_1 is the one’s complement of the identity matflix_; .

Table Il gives an explicit listing of these affine index B—1

assignments in both decimal and binary.

The following recursive relationships between these index =0

assignments can be used to obtain formulasi¥er (e.g., see

[49]):

NBC) /.
) =

NBC), .
{Wl(c—l )(7’)7

k—
2ty

(NBC) ('L _ 2k—1)

0<i<2kt—1

k-l <y

7§ P9(0) = 0.

andv; = b;—a, V1, and reordering the generating set if needed.
Given an arbitrary lattice with basis vectdrs; le c RY,
any set{kj}f=1 of nonnegative integers satisfying

L

S ki=k

=1
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defines a2*-point lattice vector quantizewith codebook Hagen and Hedelin [44]-[46] adapted the generalized Lloyd
algorithm for the design of LMBC-VQ's, and obtained locally
optimal “noiseless” LMBC-VQ codebooks. Their scheme does
not include error control coding, and there is no explicit men-
tion of index assignments, either. They use a linear block code
For eachy, the vectors in the direction ai; are addressed exclusively as a tool for quantizer design. When this “design
with k; bits. code” is nonredundant, their scheme can only implement index
The class of binary lattice VQ's includes lattice VQ's (o@Ssignments corresponding to bit-permutations of the indices
any of their cosets). In this case, the generating set of tt@nce the2™ codevectors uniquely determine the-1 columns

L
A= ijuj: ij{O,]_,---’ij—]_}
Jj=1

BLVQ is of © up to sign and order). On a memoryless channel these
L . index assignments all have the same valu®gfas the NBC.
V=A{2%u;:1; €{0,---, k; -1},  j€{l,---,L}}  However, by increasing the redundancy of the “design code,”

more general index assignments can be obtained. Indeed, in
the maximum redundancy case (i.e.= 2* — 1), the matrix
L of codevectors is related ® by the Hadamard transform as
Y = Z miu; described in [47], and thus any index assignment (reordering of
s=1 the codevectors) can be modeled by choogingccordingly.
is the concatenation of the binary representations of the lattidg optimal and a fast suboptimal algorithm for finding a good
coefficientsmy, mo, -+, mz. The codebook of this binary assignment in that case are presented in [23].
lattice VQ contains the origiy, = 0). By choosingy, # 0
(while keeping the same generating 3ét other BLVQ's E. The Hadamard Transform
can b_e_obtaine_d corrkesponding to truncations o_f cosets ohefinition 5: For eachi, j € 7% let by ; = (_1)71jt and let
the orlglnal lattice. A2 -Ieve! umform scalar quantizer with f: 7% — R. The Hadamard transformf: 75 — Rof fis
stepsizeA and granular regioria, b) is a special case of a yefined by
binary lattice quantizer, obtained by settigg = « + A/2,
andv; = A2L p_ o
A binary lattice VQ is similar to the nonredundant version of li= 2 fihi.
the “VQ by a Linear Mapping of a Block Code” (LMBC-VQ) ok
presented in [44]-[46]. Thgth codevector of an LMBC-VQ znd the inverse transform is given by

is defined as
—_ ok § : £r ..
yj _ GbJ fz =2 f]h]’Z.

jezk

and the index of the vector

where® is ad x (n+1) real matrix with columng@; 1}, and
the (n + 1)-dimensional column vector with; € {—1, 1}"+*
is obtained from thejth codeword of a systemati¢n, k)
linear code by the mapping — (—1)° = 1 — 2b for each
bit, and a leadingl is prepended to allow translation of the?"

We refer to the numbers; ; as Hadamard coefficients. The
transform equations can be expressed in vector form using the
2% x 2% Sylvester-type Hadamard matriX = [h; ;] (i, j €Z5)

d viewing the functions & -dimensional row vectors (i.e.,

codebook by#,. In the nonredundant case (i.en, = k), f="1o, fu, oy faral):
b, = [1, (=1)*, ..., (=1)]*. Hence s s
J [’( ) ’ ’( ) ] f:fH fzszfH
k
Yy, =00+ Z 0:(1 — 2j3,—1) The Hadamard transform extends to vector valued functions
=1 f: 7 — R% in a straightforward manner:
k k—1
=2 0+ (=200 F=Y fhis £=20 b
=0 =0 ezt jezt
Thus settmgy.0 = >0t anq v = _—20k_l gives the or equivalently
codevectory; in the form of a binary lattice VQ codevector.
Conversely, given a binary lattice VQ we obtain a nonredun- F=—FH F=9%pg
dant LMBC-VQ by setting
el where F' = [fo, f1, -+, for 1] is ad x 2* real matrix.
00 =y, + 1 Z v, The Hadamard transform is an orthogonal transform, and the
2 —o convolution and inner product properties (e.g., Parseval’'s iden-
and tity) of Fourier transforms also hold for Hadamard transforms.
1 The following useful identities also hold:
0= —-vi -
2 ® hij =hji 4,5 €L

for | = 1, -, k. [ h7‘,71h7‘,7m = h7‘,7l+m, %, l, m € Zé
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e The bits of any binary word € 7% are related to the In Lemma 1 “complete” channel decoding is assumed. That

Hadamard matrix entries by is, every received word from the channel is decoded to a
1—h nearby channel codeword (to the one in the same coset as
by = %, me{0,1,---,k—1} (3) the received word), as opposed to incomplete decoding (or

bounded-distance decoding), where a received word is decoded
wheree,, € 7§ is the binary row vector with its only only if it is within a prescribed Hamming distance (usually,
nonzero component in thexith position. the code’s minimum distance) to a codeword—otherwise it

is deemed uncorrectable. The form of the expressiorZfer

for incomplete decoding of a linear block code is similBx;:

* Z hi,; = 2"x (=0}, j €13 (4)  has an additional term3,(1 — o), whereo3, is the codebook
i€z} energy, and(1 — go) is the probability of an uncorrectable
error. Since this additional term is independentroft is not
lll. RESULTS significant in determining the optimal index assignment.

The following lemma gives an expression for the channel The following theorem specializes Lemma 1 to Binary
distortion of a noisy channel vector quantizer in terms of tHeattice VQ's and affine index assignments.
Hadamard transforms of the source distribution (¢, the ~ Theorem 1:The channel distortion of @*-point binary
quantizer codebook (th&'s), and the channel statistics (thd@ttice vector quantizer with generating set;};—;, affine
§'s). A similar expression is found in [50], and a concise prodpdex assignment with generator matéx, (n, k) linear code
is provided here for completeness. C with generator matriXG¢, and a binary-symmetric channel
Lemmal:Let X € R’ be a random vector that isWith crossover probability, is given by

quantized by a2*-point vector quantizer with encodei,

and decoderDg, index assignmentr, and using a linear k—1 k—1
block channel code on a binary-symmetric channel. LeDc = SN (wilvn)pe, e
r; = Pln(€q(X)) =], 2, = Do(n™*(4)), andg; = pj4),- 1=0 m=0
Then the channel distortion in the Hadamard transform domain (o = Ge¥y = depFy + dletenyrr) ()
is
Do =478 Y (&ile)iwildo — G — G + Givy)-  Where
icZk jezk R
=26 Y Jl(1-29@ (6)

Proof: Using a linear block channel code on a binary-
symmetric channel the transition probabilitigs; only depend
on the (modula2) sums + j. With the notationg;;; = p;:,

aE(CL-i—ti,)

(1) can be written as Fi= (G '), Fo is akxn binary matrix satisfyingacFs =T,
C*t is the dual code of, J, = X{res} IS the characteristic
Dc =Y > pillyi — 41’ Petii=0) function of the setS of coset leaders of, p; is the ith
iczk jczk component of the Hadamard transform of the distribution on
) 2 the quantizer codevectorsy-) denotes Hamming weight, and
=2 > nillz -zl e; is the binary row vector with its only nonzero entry in the
Sk gk l = y y y
el; i€l , Ith position.
Theorem 1 makes explicit the dependence of the channel
= Z - Z 2k Z S(he i — e )| gies distortion on the BLVQ structure, the affine index assignment,
iezk  jezk lezk and the channel code. Also, computidg- based on (1)
ok N o requiresO(N?) complexity for a codebook of siz& = 2%,
=4 2 K 2 its 2 Zk whereas using (5) reduces the complexity of computing
|k Ik icly mcl, to O(N log? N). (In (1) each of the nested sums contributes
(Z1|zm) (Mg, i — b, jhan, i — P, ibon, j + hagem, ) a factor of NV, whereas in (5) the corresponding sums only
—4k (21]Zm) riligm, i require log N steps, but each of the Hadamard transforms
gzzk n%;k g;k g;k inside the sums take®(N) steps.)
2 2 2 2

Note that on a binary-symmetric channel the translation
vector ¢ of the affine assignment is irrelevant. Thus without
loss of generality we may assume that the index assignment

Giti (1 = hajigs — homyigs + higem, its)

f— _k P P & . . - . . . . .
=4 Z Z {Zil2m) Z Tifigpm, i Z is linear. A linear index assignment can be incorporated in the

1czg mczh icZy eczy channel encoder by setting. = GiG¢. Then E. = FiF¢,

Ge(ho,c — hi,c — hm, e + higm, o) the transpose of an inverse 6f.. To obtaing.,r,, the sum

—4k 302, Vo (Go — G — G + G ). in (6) is taken over the coset of the dual code containing
Z Z < l| > H (qo 4 7+ ) eiFFe = CIFIC, the Ith row of F’C'

Proof: We find expressions for the Hadamard transform

O quantities of Lemma 1. The transform of the BLVQ codevec-

lezl mezl
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tors is

2o = E zihi,a

izt
= Z Zr(iyPa (@), a
iczy
= Z yihﬂ'(i),a
ezl
- Z <y0+zvl”> (%), a
z&ZA
1 k=t
:X{a=0}2k <y0 + 5 Z 'Ul)
=0
- hz - Theg ]
+ X{a0} Z u Z 5 n(i),a
zCZk
1 k=t
= X {a=0} 2" <y0 5 Z ’Ul>
=0
X{a;ﬁO} Z v Y hie gy, a
iezk

Sincer is an affine index assignment, far# 0 we have
> hisehtya =Y hiehicitd,a
izl izt
:hd,a Z hi,el—l—aG;’
izt
= X{aci—e 2R
—X{aGI:el} d,a-
Thus

k—1

2, = —2k—1hd, o Z VIX (a=e,F1}
=0

for a # 0. Exactly one term in this summation is nonzero. The
transform of the discrete distribution on the codevectors is

Po = Z Pibr(iy,a = Z pilici+d,a = ha, aPac-

iczy iczy

If either a or b equals0, thendgo — G, — G» + Gorv = 0, SO
without loss of generality we can write

k1
D¢ :4_k Z Z <_2k_1hd,a Z le{azezFI}

aCZk bczh =0

k—1
— 2’“71/1(1, b Z vrnX{a:emFT}>

=0
“hd, atbBlatrs)ct (Go — da — @b + dats)
=
=130 3 (wilen)
l 0 m=0
“Derten (30 = GeFy = Qe Py + Qe +en)Fr)-

87

Since

q; = ZpT-l—ch:

rCS

the g,'s for an(n, k) linear code can be expressed in terms of
the p;'s and the Hadamard transform df= ys as

-y (z p) )

J&Z" res

G = Z 7,5 szn Z ﬁaha, r+jGe

jeZIZv resS a,EZ’Z’“

—9—n Z ﬁa <Z hT’a) Z hi,jha,ch:

aCZy rcs jezk

=27 Z ﬁa Z Jrhr,a Z h’j: i+aGy

aCZy rCZy jEZ’Z"
=2"" Z pAa']asz{i=aGg}
aEZ;
=2t N e (8)
ac(C++iFc)
where
ﬁa Z Cw(z)(l _ C)n—w(i)hi’a

icZk

i0€{0,1} i1€{0,1}  in_1€{0,1}

. <1:[(_1)izaz>
=0

1:[ Z 1 zl( 1)ilal

=0 i;€{0,1}

_ f[ (1 et e(—1)™)
=0

_ (1 _ 26)'11)(0,)
which completes the proof. O

A. Uniform Output Distribution

If the quantizer codevectors are equiprobable, thea 2—*
for all i € 7%, andp; = X{i=0}- In this case the channel
distortion of BLVQ with an affine assignment simplifies to

1 k—1
=5 3 Il — deur,):
=0

Since o is independent of the index assignment, minimizing
D is equivalent to maximizing

k—1

> il

=0
By assumption, thay’s are ordered by their norms. Thus an
affine assignment which minimize3. must satisfy

quk_lFI Z qAﬁk_ZFI Z e Z éeOFI
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as observed in [23], [33], and [43]. This is achieved by} = E||U — U||?. Then

making thek-bit index of a maximalg; (¢ # 0) the first row
(corresponding t@_;) of Fr. Then thelth row is selected to
be the index of a largesy; that it is linearly independent of
the first! — 1 rows. More formally

Jfi= argmax ¢,
igspan [£;]47]
where f; denotes thdth row of F7j.

It was shown in [33] that among all possible index assign-
ments the best affine index assignment achieves the minimum
MSE possible for a uniform scalar quantizer and a uniform
distribution. We conjecture that the same result is valid for
BLVQ's. It is known to be true for nonredundant channel
codes [34], and we have verified that it is true for some
simple codes such as th&, 4, 3) Hamming code and the
(8, 4, 4) first-order Reed—Muller code, and it trivially holds
for all (n, 1, n) repetition codes. One can also use a result in
[38] to determine the best choice of a coset leaderSsahd
an affine index assignment (even if the best affine assignment
does not coincide with the global optimum).

IV. NONREDUNDANT CODES FOR THEBLVQ

A. Binary-Symmetric Channels

Theorem 1 can be specialized to nonredundant codes (ighere (3) and (4) were used to obtain (10) and (11), respec-
tively. .
Note thatU ando; do not depend on the index assignment

n==k C=175C+=38=1{0), Go = Fc = 1), giving the
following result (similar to a result obtained in [46]).

U=2" Z Y;
iezk
<y0 + wa)

_2—k2
1
=% + 52’01.
=0

7&1"
op =27 |ly; - U|I?

izt

—9k Z

iezk

2

k-1 ket
Yo+ ;’Um — Yo — 5 ;’01

(11)

Corollary 1: The channel distortion of &*-point binary or the input distribution.

k—1

lattice vector quantizer with generating sfi; },—;, which

Corollary 2: Given the conditions of Corollary 1, the chan-

uses an affine index assignment with generator mé&triand nel distortion of the Natural Binary Code is

nonredundant channel coding, to transmit across a binary-

symmetric channel with crossover probabilityis given by
k—1 k—1

=1 Z > (Wilvm)Pe e, (1= (1 — 2¢
=0 m=0
— (1 = 2e)¥lem ) 4 (1 — 2¢)wlcitenm) )y (9)
wherew(-) denotes Hamming weight, £ (G 1)t, 5, is the
lth component of the Hadamard transform of the distribution
on the quantizer code points, andis the binary row vector
with its only nonzero entry in thé&h position.

1) Formulas for Common Index Assignmen@ne useful
consequence of Theorem 1 is that exact expressions for the
channel distortioD~ can be obtained for certain well-known
structured classes of index assignments, such as the NBC, the
FBC, and the GC. Since on a binary-symmetric channel the
TCC and the NBC have the same channel distortion, the NBC
formula also holds for the TCC. In the formula for the GC the
double sum of Theorem 1 cannot be further simplified, since
(1 — 2¢)l=l is not a separable function éfandm. For the
NBC and the FBC we can expre$k- in terms of the means
and the component variances of two discrete random variables
as follows. LetY be a random vector distributed according
to {p;} over the quantizer codevectors with me¥n and
0% = E||[Y —Y]|?, and letU be a random vector uniformly
distributed over the quantizer code points with méarand

)'w(el F)

and

(NBC)

D(CNBC) _ 4(:((1 _ (:)0[2; + (:(O%' + ||? — ﬁ||2))

A related formula also appears in [46], and we provide a short
proof for completeness.
Proof: Using Corollary 1, and the fact that

w(e FNBO)Y =1

w((er + en) FNBD) = 2X {1£m}

for all [ andm we have

k—1 k-1

Z ||'”l||2¢+z Z (1|vm) Do, se,

=0 m=0
I#m

k—1 k—1

> (o)

=0 m=0

=deay + €2

D 7 seiten,

Z [l

iEZ
2

k—1
=4e(1 —€)of + 2 Z i Z v(2 — 1)
ezl =0
:4(:(1 — c)al?, + 462E||Y — ﬁ”?
=4e((1 - )of +<ElY - Y +Y - T|]?)
=4e((1 — o +e(op + |Y = U|). O
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Corollary 3: Given the conditions of Corollary 1, the chan-

nel distortion of the Folded Binary Code is
DEPY =4e(1 — )(af + o3 + [ - T|P)

—e(1—2¢) max ||'Ul||2-

Proof: The Hamming weights of the rows of %) are

FRO)y _ J L I=k-1
wled” )—{2, I<k—1
w((el + enl)F(FBC))
0, I=m
:{1 m<l=k—1 or Il<m=k-1
2, I<k=-1,m<k=11#m
and thus
1
- _ _ w(e F) _ w(e,, F)
4(1 (1 - 2¢) (1 - 2¢)
€, l:m:k—l
+(1_26)w<<ez+em>F>): 2(1—¢), l=m<k—1
el—e), l#£m.

Substituting these into (9), and using (11) we obtain
D(CFBC)

i—1

=D lwil2e(1 = &) = [lor—t|*(2e(1 = €) = ¢)

=0
k—1 k-1

+ Z Z 'vl|'vrn pel—l—em (1 - C)
=0 m=0

I#m
=8¢(1 — €)of — (1 — 26)||vp_1]|® + 6(1 - 6)

k—1 k-1

. Z ”l|vm Z pih i,etem Z ||'vl||2
=0 m=0 =y

=4e(l — o + (1 —¢) Z

ZCZ"

Z’U; 2L1 — 1

— (1 = 26) o |

= 461 — (o} + E|lY — TIP)
— (1 - 26) o]

=4de(l-e)(of +E|Y =Y +Y - U|]®)
— (1= 26) o2

=4e(l — e)(og + oy +|[Y = U|])
—e(1—2¢) max |Jvi]|?

where||vi_1|| = max; ||v|| follows, since the basis vectors

are ordered by their norms. O

Corollary 4: Given the conditions of Corollary 1, the chan-

nel distortion of the Gray Code is

le'vzll (1-(1-29")

(GC)

89

k—1 k-1

+ Z Z Wilvm)Pe,4e,,, (1 — (1 — 2c)k_l

=0 m=0
I#m

— (1 =2e)"™ 4 (1 —2e)l7mh,

Proof: Substituting

w(e FEOY =k —1
and
w((eg 4 e FE) =

in (9), the result is immediate. O

2) Comparison of the NBC and the FBGWVhile the NBC
is known to be optimal for the binary-symmetric channel
with a uniform source, little is known about optimal codes
for nonuniform sources. Corollaries 2 and 3 can be used to
compare the MSE performance of the NBC and the FBC
for nonredundant source-channel coding. Noll found that for
certain speech data the FBC achieves better performance than
the NBC when used in conjunction with the optimal noiseless
guantizer [36]. Corollary 5 characterizes sources for which the
FBC outperforms the NBC, using BLVQ. The variance of the
source determines which code is better.

Corollary 5: Given the conditions of Corollary 1, and for
all e < 1/2

|l —m|

DIBO « pIB9) & 62 L ¥ -T2 <

1
7 max w2

B. Codes for Binary-Asymmetric Channels
Definition 6: For i € 75, let

Bi={1e€{0,1,..., k—1}: (ile;) = 1}

e., the set of positions where the binary row vectdnas
nonzero coordinates. Then

L‘<]<:>BZCBJ

defines a partial ordering<” of the elements ofZ%. Equiv-
alently

= w(j) —w(i) Vi, j € Z5.

Theorem 2:1f a 2¥-point binary lattice vector quantizer
with generating sel{'vl}’“ ! induces equiprobable quantizer
codevectors, and an afflne index assignment with generator
matrix G and translation vectdris used to transmit across a
binary-asymmetric channel with transition probabilitieg, =
e and pg;; = ¢ and with a nonredundant channel code, then
the channel distortion is given by

1 k—1
> ol [2(1 =

i<j e w(+y)

w(ezF))

o

-1

bl
Ju

grl(erten)F)

M

<'vl |'vrn>ht, (e1t+em)F

L1
4 0

i

Il
S

my

#m

(1- X{(ei+em)F=<eF}Y
w(elF))

o~

w(enm F)

— X{(estem)F <en F}7Y (12)
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T n T
| _kbis : G Q E K bits i ? E K bits : ,? o E kbits g
| t ! A ot |
Fig. 3. Channel subsystem with affine index assignment.
wherey = 1—¢— 6, 8 = 6 — ¢, w(-) denotes Hamming = H (v + Bhrcst,e.)
weight, F= G, ¢; is the binary row vector with its only er <f
nonzero entry in théth position, and; ; = (—1)#" denotes _ w(f)—w(a) guwia)
’ = 1

a Hadamard transform coefficient. Z K f Gt o

Note that at most one of the two indicator functions in o/

Theorem 2 can be nonzero for any paandm (I # m). With equiprobable codepoints, tlebits of I are independent,
Proof. For nonsymmetric channels;|; does not depend and equally likely to bed or 1. Hence, Eh; .| = 0 for any

only on the (modula2) sumi + j, so an approach differentnonzerok-bit binary row vectora, and we have

from the one used in the proof of Theorem 1 is necessary. Let

the random variablé = £,(X) denote the:-bit source-coded Elh1, eite,. Elhw, £|1]]
index, and let¥ denote thek-bit binary channel error vector. = Z yeN=wl@ gw@p Elh; ote. tact]
The decoded:-bit index J is then a<f
=5 (w(D) = ((IG+D)+W]+H)G ™ =T+ WG~ = 3 O B Xty
as depicted in Fig. 3. o/ o+ erber)F)
Thus the channel distortion of a BLVQ (with codevectors = X{(ertenm) F=<f}Y e
Y, =Y+ E;‘;OI vd; for i € Z%) can be written as - pellaten) B, (crten ) F-

_ _ 2
De =Ellys vl Substitutinge; F, ¢, F, and(e; + e,,)F for f, the last three

terms within the expectations in (13) are obtained. Noting that

k—1
=F Z vl = 1) E[h1, e,4e..] = Xx{1=m} @nd factoring out common terms gives
=
2 =1 k—1
k— 1 h 1 1 _ h 1
Z < 1+w G le - Ie ) H De = 1 Z Z (VLU ) X {1=m)
=0 m=0
Rty =y .
= Z Wivm)E[hs, e, (1 = haw,e,F) +3 SO S ()5t IR,
=0 m=0 =0 m=0
hre, (1= hw e, r)] (=X (oo ey V2T
k—1 k—1 _ w(ey F)
! X{(e tem)F<em F}Y +1)
1 > Z (ilvm)E[h1, e 4e,, E[(1 — hw, e, r 1% |
=0 m= B w(edF)
= — v ]_ _ 11
- hw,emF‘ + hVV:(el‘f'em)F”I]]' (13) 2 —~ || l||( v )
The % bits of W are conditionally independent givdn and Rt it ’
SatiSfy T Z Z Z <’vl|’vm>/3w((el+GM)F) ht, (ertem)F
=0 m=0
PWi =1|(IG +1); =0] =¢ lo;ém
on a binary-asymmetric channel. Thus _ X[(el+em)F<emF},yw(elF))’
147/ e 1—7 . _
Elhw, . 1] = % (1—2¢)+ % (1—26) and the proof is complete. O

1) Formulas for Structured Index Assignmentdere we

===+ (6= hucyrc. specialize Theorem 2 to the FBC, the GC, the NBC, and

=7+ Phictte,- the affine translates of the NBC. The formulas presented

Hence, for anyk-bit binary row vectorf generalize those given in [49] for the uniform scalar quantizer
case (thew, £, v notation is consistent with [49]), and

Elhw, ¢|1] = H Elhw,e, generalize those given in [30] and [32] to nonsymmetric

er=<f channels. Also, by lettinge = 6, the special cases of
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Corollaries 2—4 for the uniform output distribution case are For a uniform scalar quantizer with step si2e we have

recovered. v, = 2'A. Thus (|v,,) = 4"7™A? and the above formula
Corollary 6: Given the conditions of Theorem 2, the chanbecomes

nel distortion of the affine translate of the Natural Binary Code

2
corresponding to translation vectoris D(CFBC) _ A (a(4k D4l a)(4k—1 _1)
6

D(NBC+t) + /32(4]&‘-1 _ 3 . 2k—l + 2)

k—1 k=1 1—1 — 3af(4ht — 2k 1Y),
|| + 57 (vi]v,) (= 1) )
1 O

=0 m Proof: Forl # m
= (2a = g%)og + F[ly, - Ul

er, m=k—-1
wherea = e+ 6 = 1 — v, and (e1+en )F(FBC) {cm, l=k-1
e+ e, oOotherwise

k—1
Y=t +) vt and thus the indicator functions in Theorem 2 will only be
=0 nonzero if eithel = k — 1 or m = k — 1. Using this and
In particular, the channel distortion of the NB@= [00 ¢=[01 --- 1], and substituting the Hamming weights of the
- 0]) is rows of EFBS) in (12), one gets

2

1 k—1 k—1 1 k—2
NBC FBC
D = 2| o= Y il + 57| D v DEPY = ||v —PA=m)+5 D el
=0 =0 =0
k 2 k-2
and the channel distortion of the TQ€= [10 --- 0]) is + = Z Z (Wilvm) he, eppe,, 3
D(CTCC) l()#’::l—o
. k-1 k=2 ||? 1 k=2
= | 2a-5%) ) P+ B v = > v +7 2wk )by (1 =)
=0 1=0 1=0
. 1 k—2
Proof: Since +7 E)(kallvnl)ht,emﬁ{z(l -)
w(e FONPO)Y = 1 nf_l
and :1
2

k— k—2
<C¥ lodl | + (20— @® — ) Y Il ?
w((el + enl)F(NBC)) = 2)({175771,} =0 =0

k—2 -1 k—2
for all I andm, no row of F(NBC) can precede the sum of + 872D (wlvn) — o (wifug- 1))
two rows in the partial ordering. Using this and Theorem 2, 1=0 m=0 =0
the statement follows. O O

For a uniform scalar quantizer with step si2e we have
v; = 2!'A and the above expressions simplify to Corollary 8: Given the conditions of Theorem 2, the chan-
nel distortion of the Gray Code is

(NBC) A? 2 k
D¢, :F(a(él 1)+ 32 (4% — 3.2 1 2))

k—1
1 —
and DEY =3 <§ P2 =747
=0

A2 4 —
D(CTCC) - (a(4" 1) — 2/32(4" L 1)). 1 4-1
+ § E (wi|vp)B™( —’Yk_l)>-

The formula forD(CNBC) generalizes results in [31] and [33] =0 m—0
to the asymmetric-channel case.
Corollary 7: Given the conditions of Theorem 2, the chan- For a uniform scalar quantizer with step si2e we have
nel distortion of the Folded Binary Code is v = 2'A. Thus (v|v,,) = 4/7™A? and the above formula
becomes

(FBC) 2 2
D <a2||vl|| +a(l—a) ; v | DLEe) =
k—2 1—1 k—2 A_2<4k—1_ 4k—7k+ &)
—l—ﬁQZ Z {(vilvm) —aﬁz {(v|vg_ 1) 2 3 7 4—r 2-p
=0 m=0 =0 gk 1 gk gk 2Bk — 1 (2B — 4
< 5 7Ti—4 21 7234 ))

wherea = e+ 6 =1 — .
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i) D(CFBC) <D(CFBC) Vk>1,Ve#S

i) DIV <DE?D WE>1,Ve#S

iy DD < DEBD V> 1,Ve#£6

iv) DEPY < piFP Vik>2 Ve b

V) DéTCC)<DgBC) vik>1 |f6+6+562_866—6220

(e+8)(e+6—1)

e+ 6+ 5e? — 8eb — 62
if e+6+5 —8e5— 6% <0
ande + 6 + 2¢2 — 5¢6 — 6% > 0,

V|) D(CNBC) < D(CFBC) VEk>1 if c+6— 62 + 4 — 7(52 >0
(e+8)(e+6—1)
€+ 6 — 2+ 4eb — 762
if e+6—e?+4e6— 767 <0
ande+ 6§ — ¢ + ¢ — 467 > 0.

Vi <1+ log,

Vi <1+ log,

Proof: The statement follows by observing that thdiave the same performance (optimal among the translates of
precedencée;+e,) F < e, F is satisfied if and only it > m, the NBC). The latter translate is the Two’s Complement Code
and substitutingu(e; ) = k — I, w((e; + en)F) =1—m for (a rotation of the Odd—Even Code of [49]).

[ >m, andt =0in (12). O 3) Comparisons for Uniform Scalar QuantizatiolBased
2) Affine Translates of the NBCThe family of affine onthe formulas presented in Corollaries 6-9 for uniform scalar
translates of the NBC is known to perform optimally foiquantization, the structured index assignments we have consid-
BLVQ's with a uniform output distribution on a BSC. If, ered can be compared. First, we define the one’s complement
however, the channel is asymmetric, different translates resofitan index assignment. This corresponds to chang@iago
in different distortions. The best one is identified next. 1's and1’'s to 0's in the binary representation of the indices.
Corollary 9: If a 2*-point binary lattice vector quantizer Unless the performance of an assignment is symmetric in
induces equiprobable quantizer codevectors for a given souraed é, it is advantageous to use the one’s complement of the
and transmits an affine translation of the Natural Binamgssignment instead of the assignment itself, either wherd
Code across a binary asymmetric channel with crossovare > 6.
probabilitiesp; ;g = € andpg;; = ¢ and with a nonredundant  Definition 7. The one’s complement index assignment
channel code, then the channel distortion is minimized if ard an index assignmenX, is defined by

only if the translation vectot satisfies 7r7(i) _ W(X)(i) t1, Vi e Z&
t = argmin |jy; — U|| wherel = [11---1] (the vector of weight).
{iczk} The one’s complement of an affine index assignment can be
obtained by replacing its translation vectoby %, the one’s
where complement oft (the generator matrix remains unchanged).
T—oF Z " The distortion formulas are also easily updated, as only the
¢ roles of ¢ and § have to be exchanged (or equivalently,

€23 is to be replaced by-/3). Hence, the one’s complement of an

is the arithmetic mean of the codebook. In particular, the Twotddex assignment whose distortion formula includes only even

Complement Code is optimal among the NBC translates fpwers ofj3 (e.g., NBC, TCC) has the same performance as
uniform scalar quantization. the original assignment. Furthermore, since odd powers of

Proof: Immediate from Corollary 6. ] change sign whem = 4, the one’s complement outperforms
For a uniform scalar quantizer with step size v; = 2!A,  the original assignment gither wher< 6 or e > 6. .
andT = yo + (21 — 1)A. Thus both Theorem 3: Given a uniform2*-level scalar quantizer for a
uniform source, the channel distortions of the Natural Binary
t=[01 --- 1] Code (NBC), the Folded Binary Code (FBC), the Gray Code
(e = yo + (281 = DA) (GC), and the Two’'s Complement Code (TCC) on a binary

memoryless channel with; o = ¢ andpg; = é and with a

nonredundant channel code satisfy (assunting 6 > ¢ and
t=[10 --- 0] e+ 6 < 1) the inequalities shown at the top of this page. The
(yr = yo + 2871A) inequalities i), ii), and iii) hold with equality it = é.

and
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3 &
1 1
0.75 0.75
0.5) TCC 0.5}
0.25 0.25
TCC TCC
0 0.25 0.5 0.75 1€ 0 0.25 0.5 0.5 1€
(@) (b)
8 8
1 1
0.75 0.75
FBC
0.5 0.5}k FBC
0.25 0.25
NBC FBC FBC
0 0.25 0.5 0.75 1€ 0 0.25 0.5 0.75 18
(c) (d)

Fig. 4. Performance comparisons of various nonredundant codes for a uniform scalar source on a binary-asymmetric chappetwitandpg); = 9,

ande 4+ 6 < 1. The region where one code is uniformly better (i¥ek > 2) than the other is marked by the name of the superior one. In the unmarked
area (between the thick and the thin curves, where applicable) the winner depends on the ¥allieeothick curves correspond to ties between the codes.
(a) TCC versus NBC. (b) TCC versus FBC. (c) NBC versus FBC. (d) FBC versus GC.

The above inequalities follow from Corollaries 6-8 by
straightforward algebraic manipulations; thus their proofs ar&!
omitted. The code comparisons of the above theorem are
shown in Fig. 4. In each graph two index assignments (and/d#]
their one’s complements) are compared for binary-asymmetri[g]
channels (each poirit, &) corresponds to a different channel).
The region where one code is uniformly better (i¥ek > 2)
than the other is marked by the name of the superior orf”
In the unmarked area (between the thick and the thin curves,
where applicable) the winner depends on the valug. of (11]
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