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Performance of Quantizers on Noisy Channels Using
Structured Families of Codes

Andras Méhes and Kenneth ZegEellow, IEEE

Abstract—Achievable distortion bounds are derived for the cas- are powers of Euclidean distances and with no channel noise,
cade of structured families of binary linear channel codes and bi- the minimum average distortion is known to decay to zero expo-
nary lattice vector quantizers. It is known that for the cascade of nentially fast as the transmission rate increases [3]. It was shown

asymptotically good channel codes and asymptotically good vector . - L .
quantizers the end-to-end distortion decays to zero exponentially in [4], [5] that when the source information is transmitted across

fast as a function of the overall transmission rate, and is achieved & NOiSy channel, the minimum average distortion again decays
by choosing a channel code rate that is independent of the overall to zero exponentially fast as the transmission rate increases, al-
transmission rate. We show that for certain families of practical though the exponential decay constant is reduced by an amount
cha_nnel codes and binary lattice vector quantizers, the overall dis- dependent on how poor the channel is. In fact, the rate of decay
tortion can be made to decay to zero exponentially fast as a func- . Lo . .

tion of the square root of transmission rate. This is achieved by of Q|stort|on In _the noisy chgnn_el case is closely related to t_he
carefully choosing a channel code rate that decays to zero as theOptimal allocation of transmission rate between source coding

transmission rate grows. Explicit channel code rate schedules are and channel coding (via the channel code rate).

obtained for several well-known families of channel codes. The results in [5] provide mathematical guarantees for a po-
Index Terms—PData Compressi(}nl lattice vector quantization, tentla”y achievable minimum quan“zer distortion in the pres-
linear error-correcting codes, source and channel coding. ence of channel noise. However, those results assume the ex-

istence of optimal channel codes, namely, those described in
Shannon’s channel coding theorem using random coding argu-
ments. Similar techniques were used to generalize the results
OSSY source coding, or quantization, plays an importagf [5] to Gaussian channels [6] and to certain algebraic-geom-
role in many practical data compression systems sucheigy codes [7]. Hence, the results in [5]-[7] are existence con-
voice and image transmission devices. The primary mathemstructions and do not necessarily correspond to achievable per-
ical tool for obtaining an analytical understanding of the propefermance based on the best presently known implementable
ties of optimal quantizers has been the asymptotic theory. Twhannel codes. There is thus motivation to find a high resolution
important types of asymptotic theories exist: 1) fixed transmigaeory for quantization with a noisy channel, using families of
sion rate and growing block length; 2) fixed block length angtructured algebraic channel codes.
growing transmission rate. The first type of asymptotic theory However, finding such a high resolution theory appears to be
was studied by Shannon [1] and is known as rate-distortiendifficult task for general unstructured source coders, even if
theory. The second type is the study of high resolution quative channel coders are structured. In this paper, we approach
tization theory [2], [3]. The high resolution theory indirectly asthe problem by examining systems with structure in both the
sumes delay and complexity constraints and thus is typicaipurce coder and channel coder. Such systems are practical to
more closely related to practical considerations. The high resmplement and also give insight (via distortion bounds) into the
lution results in [2], [3] specifically assume a noiseless channehstructured source coder case.
In our present paper, we will exploit results from the high reso- To illustrate the problem at hand by way of an example, sup-
lution theory to obtain new quantization results for noisy chapose a random variable uniformly distributed [ 1] is uni-
nels. form scalar quantized, and transmitted across a binary sym-
High resolution quantization theory for noisy channels givagaetric channel using a repetition code. For a fixed number of
analytic descriptions of the minimum achievable average disvailable bitsk per transmission, how many times should each
tortion, as a function of the transmission rate, the source denformation bit be repeated in the repetition code to minimize
sity, and the vector dimension. For distortion functions whicthe end-to-end mean-squared error? In other words, what is the
optimal rate allocation between source and channel coding? If

) ) ) ) the channel code rate is decreased, fewer uncorrected bit errors
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ilies of channel codes (e.g., Hamming, Bose—Chaudhuri—-Hatiow that the minimum distortion with certain structured codes
guenghem (BCH), Reed—Muller) do not have this property. biecays to zero ag(2~2%9(/)) whereg(R) — 0 asR — oc. The

the repetition code example, keeping the channel code rate fixgétortion bounds are obtained by choosii&®) = O (ﬁ) for
is equivalent to keeping the number of repetitions constant. This

in turn implies that the probability of incorrectly decoding an inrepetition codes angl(R?) = O <\/ @ for Reed—Muller

formation bit does not change. Therefof&,is bounded away ¢4 ges and duals of BCH codes. The constants insideHede-
from zero, since the probability of decoding error (i.€., an iNCOfang on the channel noise level. In contrast, for optimal unstruc-
rect block) is at least as large as the probability of a single Bif,eq vector quantizers and no channel noi&) = 1 for all
error. In this paper, we investigate the rate allocation problem and for optimal unstructured vector quantizers and optimal
for structured families of source coders which are asymptofip,2nnel codes on a noisy channglR) < 1 (depending on the
cally good and for structured families of channel coders whigly, 5 nnel noise level) and is bounded away from zero. Since
are not asymptotically good, but which can be used in practicg,ctyred source coders are assumed in this paper, the distor-
A common method for lossy transmission of source daf,, hounds given are also upper bounds on the distortion using
across a noisy channel uses independently designed SOWGgma| unstructured vector quantizer (VQ) with the same struc-
coders and channel coders. This follows Shannon’s bagiged channel codes. In addition, the derivations of the bounds
“separation principle” in source and channel coding, which |§ Theorem 1 may be useful tools for future research (e.g., see
known to be optimal for asymptotically large block lengths. Ap g1y since they are not specific to the codes used. Section Il in-
important design parameter is the allocation of the availalle,y,ces necessary notations, definitions, and lemmas. Section

transmission rate between source and channel coding. Tightives the framework for the source/channel coding problem
upper and lower bounds on the optimal tradeoff between soutee; saction IV gives the results of the paper.

and channel coding are known for certain codes and channels
and pth-power distortion measures [5]-[7], [4]. These results
exploit the fact that the distortion contributions of optimal
source coding and optimal channel coding decay exponentiallyFor real-valued sequencégsn) andg(n), we write
fast as functions of the overall transmission rate. The source
coder is taken to be a “good” vector quantizer (one that obeys
Zador's decay rate) in [5]-[7], [4], and index assignment ) -
randomization is used. In both [5] and [6], the channel codes * / = o(g), if g has only a finite number of zeros, and
are assumed to have exponentially decaying error probabilities f(7)/g(n) — 0 asn — oc.

achieving the expurgated error exponent for the given channel (&or any positive integek, let Z% denote the field ofi-bit

noise channel in [6]). Although such codes are known to exigt.tuples; e z% will be written as row vectors

no efficiently decodable ones have yet been discovered. In [7],

the results of [5] are extended geary symmetric channels, and @ = [ig—1,%k—2,...,101,%0]
a class of asymptotically good channel codes (namely, thos ) - : :
attaining the Gilbert—-Varshamov and Tsfasmaraejt-Zink wﬁerezl tet'{o’ 1%tcrj]enotes the ‘;‘.’eﬁ'?'f”.t ‘ﬁl in the binary
bounds) is examined. Constructions of channel codes beffepresentation otthe corresponding integere.,

Il. PRELIMINARIES

* f=0(g), ifthereis a positive real numberand a positive
integerng such that f(n)| < ¢|g(n)|, whenevem > ng;

than the Gilbert—Varshamov bound are known [8], [9], but the k—1
best known algorithms are not currently practical. 1= 2t
The channel codes considered in [5]-[7] all have the prop- 1=0

erty that th.eir channel code rates are bounded away from' Z&lR denote by the binary row vector with its only nonzero
for increasing block lengths. In the present paper we mvestlg%ttemy in thelth position, thus; = ict. The inner product of two
the tradeoff between source and channel coding for structuqﬁﬂary vectors, j € 7%

: 5 is denoted by

classes of codes whose channel code rates approach zero in the
limit as the block length grows. Hence, we seek a decay schedule - it
of the channel code rate as a function of the overall transmission = Z i € {0,1}.
rate which minimizes the overall distortion. The channel codes =0
we examine are classical binary linear block codes includinthe Hamming weight (the number of nonzero bits) of a binary
repetition codes, Reed—Muller codes, and BCH codes. We oadctori ¢ 7% is denoted byw(i).
(as in [10]) the structured source coders in this paper binaryEuclidean vectorg € R¢ will be written as column vectors
lattice vector quantizers (BLVQs). Vector quantizers with eg = (1, 22, ..., z4)". The inner product of two Euclidean vec-
sentially identical structure have been extensively studied undersz,y € R¢ is denoted by
various different names in [10]-[15]. g

The main results of this paper are collected into Theorem 1 (@|y) = me cR
in Section IV, which gives achievable bounds on the asymptotic — ’
mean-squared error performance of binary lattice vector quan-
tizers and several useful families of binary linear block channalso, ||z|| = /(x| ) denotes the usual Euclidean norm of the
codes on a binary symmetric channel. The bounds in Theoremekttorz € R¢. The symbols/;y, Pr[], andE [] are used to



2470 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

denote indicator functions, probabilities, and expectations, 1€- Source Coding—Vector Quantization

spectively. Definition 4: A d-dimensional,2"‘-point vector quantizer

(VQ) with index setZ = {0,...,2% — 1}, and codebook

A. Entropy and Relative Entropy Y ={y, €¢ R . i € I}, is a functlonal composition
Definition 1: Let P and P be probability distributions on a Q, = Dg 0 &y, wheret, : R¢ — T is aquantizer encodeand
finite set. Do : I — Y is aquantizer decoderThe subscrip0 denotes
TheentropyofP (in bits) is association with a noiseless channel.) The elements of the
Z P(x)log, P(x). 1) codebooly, € Y are calleccodevectorsAssociated with each

codevectoy, isitsencoder regioR; = {z € R | £o(x) = i}.
The set of encoder regions forms a partitiorR8t The source
codingrate (or resolution) of a vector quantizer is defined as
(z) Rs = k/d
D(P| P) Pz 2 > '
I Z (x) @ The mean-squared errofor source distortioh of a VQ Qg
for a source random variabl€ € R is
Definition 2: Lete, é € [0, 1/2], and letP. andPs be prob- Ac = ElIX — Ou( X2 = ' —aul2d 7
ability distributions on{0, 1} with P.(1) = 1 — P.(0) = ¢ and s=BIX - QP =2 | e —ul*duz) ()

Therelative entropybetweenP and P (|n bits) is

1€T
Ps(1) = 1= P5(0) = 6. wherey. is the probability distribution of the inpuX .
Thebinary entropy functioris Necessary conditions for the optimality of a vector quantizer

A using the mean-squared distortion are (see [18], for example)
h(c) = H(P) = —clogye — (1 —¢)loga(1 —¢)  (3)  the Centroid Condition

and thebinary relative entropy functiorfinformation diver- y,=E[X|X € R VieZl (8)
gence) is and theNearest Neighbor Condition
/ d .
Do(6||€) 2 D(Ps || P.) = 510g2§ +(1-8)log, § 170 @ ={zeR:[lo -yl <lz—y;ll Vi€ I\{i}} Viel
€
i 9)

The following lemma provides a bound on the tail of a bin

mial distribution. OLocally optimal vector quantizers satisfying both necessary

conditions (8) and (9) can be obtained using the Generalized

Lemmal ([17, p. 531]):For0 < e< 6 <1 Lloyd Algorithm [18].
nn ‘ 7 The high resolution (i.e., larg&s) behavior ofAs for op-
> ( ) (1 —e)nt < 27 P20l timal quantization of a bounded source is described by Zador’s
imns formula, which is stated below in a convenient form.

Lemma 2 (Zador [3]): The minimum mean-squared error of
. arateRs vector quantizer is asymptotically (&; — o) given
Definition 3: For eachi, j € Z5% let hi; =(=1)" andlet py
f : 7t — R¢. TheHadamard transformf : 7% — R¢ of the

B. The Hadamard Transform

mappingf is defined by Ag = 27 2Rs+0O), (10)
f(j) = Z fh;; This is often referred to as the “6 dB per bit” rule, since
ezt 1010g10(2—2RS+0(1)/2—2(RS+1)+0(1))
and the inverse transform is given by — 20log;, 2 ~ 6 dB.
=2 k 7 hz . . .
;Zk Fh, We say that a sequence of quantizeraggmptotically good
J 2 :
if
We refer to the numbgr&m as Hadamard coefficien_ts. limsup As22Bs < 0o, (11)
The Hadamard transform is an orthogonal transform equipped Rs—oo

with the same convolution and inner product properties (e.
Parseval's identity) as other Founer transforms. The followi
useful identities also hold far, j, 7/ € Z5:

n%e say that a sequence of quantizerbasinded if the code-
gomts of the quantizers are bounded, that is,

k)
hi,j = hjﬂ‘, Sl;p <IZIEI%X ‘ yz H) <0 (12)
hi,jhi g = hi i, whereZ;, denotes the index set and tg” denote the code-
Z hi ;= zk]{jzo}, (5) points of thek-bit quantizer in the sequence. Lemma 2 shows
izt that optimal quantizers are asymptotically good. In fact, a large

. . ) class of quantizers including uniform quantizers and other lat-

k

Theﬁt_)lt_s 0: aSy binary word € Z; are related to the Hadamardnce based vector quantizers are also asymptotically good, al-

coetlicients by though the limit in (11) may be larger than for optimal quan-
1—hie,, = 2im, meq0,1,....k—1}. (6) tizers. Unrestricted optimal quantizers for a bounded source are
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also bounded, as are large classes of other useful quantizerglecoded block is in error (i.e., at least one of its bits is incorrect).

cluding truncated lattice VQs, for example. Then

1) Binary Lattice VQ: (bit)

Definition 5: For positive integerd andk, ad-dimensional, By = Z qil{i =1}
2*_point binary-lattice vector quantizeis a vector quantizer i€z

with index setZ = 7%, whose codevectors are of the form bt
andP, =1 — ¢p. Let Péla;) denote the maximum of the error

k—1
Y, = Yo + vam Vi € Z’Qv (13) probabilities for decoded bits. Then
=0 P(bit) = Inlax Pl(bit) < Pe-

max

wherey, € R¢is anoffset vectoand{v;};=; C R?is the set of _ o _
generator vectorsordered byjlvo|| < |jv1]] < -+ < |lwr_u]. Since a code with minimum distanég;,, can correct all pos-
_ sible | (dyin — 1)/2]-bit errors and since(duin — 1)/2] +1 >
In this paper, we focus on BLVQs. There are several equiy- . /2 | emma 1 can be used to bouft as follows.
alent formulations of BLVQ as, for example, truncated lattice

VQ, direct sum (or residual) VQ, and VQ by a Linear Mapping Lemma 3: For any|[n, k, dwin] linear block channel code

of a (nonredundant) Block Code. BLVQs can save in memo@fd for any < dwin/(2n), the probability of a block error with

requirements and encoding complexity. They can also be ugednear encoder and a symmetric maximum-likelihood (ML)

for progressive transmission and possess a certain natural4gcoder on a binary symmetric channel with bit-error proba-

bustness to channel noise (see [10] for details). bility ¢ satisfies
BLVQs encompass a broad class of useful structured quan-

tizers. For example, 2*-level uniform scalar quantizer on the

interval(a, b) is a special case of a binary-lattice quantizer, ob-

tained by settingyy = a + s/2 andv; = 2's, wheres = To obtain asymptotic results we consider families of

(b — a)2~* denotes the quantizer stepsize. As a consequenge, k, d,.i,] linear channel codes indexed by the block length

sequences of asymptotically good BLVQs exist. In fact, for any. All families of channel codes fall into exactly one of the

bounded source, a sequence of increasingly finer (properly trdolowing three categories (assuming the limitsdyf;, /» and

cated and rotated) cubic lattices containing the support of thén exist asn — oo):

source is both bounded and asymptotically good. Thus in what

follows, we restrict attention to asymptotically good bounded

sequences of binary lattice vector quantizers.

dmin lle)

P, < 2_"D2( 2n

e lim,, .. d‘;‘;“ =0
For codes of this type, the upper bound on the proba-
bility of decoding error in Lemma 3 becomes trivial as
D. Channel Coding—Linear Codes on a Binary Symmetric the block length increases. The best known families of
Channel block channel codes in this category haye: — 1 as
n — oo. Examples include Hamming codes, families of
t-error-correcting binary BCH codes for any fixedand
lth-order Reed—Muller codesliis an increasing function
of the block length. From a source—channel tradeoff per-
spective, the best codes in these families are those with
small block lengths. Hence, these codes are not relevant
Associated with a channel code isteannel encodef~ and a to our asymptotic investigations, although their duals are.
channel decodeP.. The channel encoder is a one-to-one map-
ping of messages (e.g., quantizer indexes) to channel codewords
for transmission. The channel decoder, on the other hand, is a
many-to-one mapping. It maps receivedbit blocks (not neces-

Definition 6: A linear binary [n, k, dmin] block channel
codeis a linear subspace @@ containing2* binary n-tuples
calledcodewordsEach of the2* — 1 nonzero codewords has at
leastd,,;;, nonzero components. Tlohannel code rates given
byr = k/n, and theelative minimum distandey 6 = dyin /7.

lim,, oo % > 0 andlim,, oo % >0

Families of codes with both their rate and relative
minimum distance bounded away frofth are called
asymptotically good[19]. Examples include Justesen

sarily codewords) to messages. Ket(m) den_olte the channel codes ([19, p. 306 ff]) and codes satisfying the Zyablov
cod_eword correspondl_ng to messageand D" (1) _the set of bound ([19, p. 315]), the Gilbert-Varshamov bound
n-bit blocks decoded into messa@eThen on a binary sym- (119, p. 557]), or the Tsfasman-&tyt-Zink bound [20].

metric channel with crossover probabilitythe transition prob-
abilities of the coded channel are

pl|m, = Z 6’LU('LL+5(,‘(TH)) (1 _ G)n—w(u+gc(m)) )

weDS' (1)

Bounds on the asymptotically optimal source/channel rate
allocation were derived in [7] for some of these codes.

o lim, oo fmin > 0 andlim, .. £ =0
o Codes that fall into this category include repetition codes,
If the code is linear thed- and D can be chosen to ensure Ith-order Reed—Muller codes for any fixed ordet-error-

Pt)m = Pi+m|o (€.9., any linear encoder and coset decoder will correcting binary BCH codes with= O(n), and duals

do). Inwhat follows, lety; 2 i | o denote the probability that the of t-error-correcting binary BCH families for any fixed

information error patters € 7% occurs when afn, k] linear Lemma 3 guarantees that the probability of decoding error

block code is used to transmit over a binary symmetric channel.  decays to zero exponentially fast for families of this type.
Let Pl(b“) denote the probability that thigh bit of the de- Sincek/n — 0, relatively less information is transmitted

coded block is in error and I€t. denote the probability that the as the block length increases, but more reliably.
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d dimensional vector, Quantizer dRr bits Channel dR bits
X Encoder i Encoder
Binary
Symmetric
Channel
d dimensional vector Quantizer dRr bits Channel dR bits
Y; Decoder i Decoder

Fig. 1. Cascaded vector quantizer and channel coder system.

In this paper, we focus attention on the third category. One sedisa function of the overall transmission rate both As and
an optimal “schedule” of the raig/n converging td) as afunc- A decay to zero exponentially fast for optimal quantization

tion of the block length. of a bounded source and with optimal channel coding. The
exact rate of decay is determined by the channel coderrate
E. The Cascaded System An asymptotically optimal channel code rate implies that both
The following definition corresponds to Fig. 1. terms in (16) must decay at the same exponential rate [5].

. ) . . R . Structured vector quantizers, however, are often suboptimal.
Definition _7' A d?dlmenS|oQ§I, 2"-point noisy channel In most cases, the structure dictates the placement of code-
vector_quantlzelvvlth index setzZ '_C°deb°°k?" and with an vectors and the encoding regions are chosen to satisfy the
[, ] linear channel codé operating on a binary channel, iSyearest Neighbor Condition (i.e., the Centroid Condition need
a functional composition not hold). When the codevectors are not the centroids of their
Q=DgoDconolcoly respective encoding regions, the Minkowski inequality can be
where&g : R — 7§ is a quantizer encodeRg : Z5 — Y used to bound the distortion as
is a quantizer decode€~ : Z5 — C is a channel encoder,
Dc : 73 — 7% is a channel decoder, and: 75 — 7% is a
random mapping representing a noisy channel.

A < (VAs+VAc) 17)

The mean-squared distortion of a noisy channel vector quany

or asymptotically good sequences of BLVQs, the source dis-
tizer for a source random variahlé € R¢ is ymp 9 q Qs,

tortion decays to zero exponentially fast as the source coding
A=E|X -QX)|*= Z Z (]i+j/ ||z — yj||2du(w) rate Rs — oo. In what follows, we find the asymptotic be-
iczk jezk R havior of the channel distortion for the cascade of binary lattice
(14) vector guantizers and practical families of channel codes (which
are not asymptotically good), and obtain the channel code rate
which asymptotically (inZ) minimizes the bound in (17) for this
system. This is done by equating the exponent& gfandAc.
In contrast to [5]-[7], however, for this system the minimizing
channel code rate is a (decreasing) function of the overall trans-

_ o ) ) ~ mission ratef.
Analogous to the source distortion in (7) (i.e., the distortion

incurred on a noiseless channel due to quantization only), We Rate Allocation for BLVQ
define thechannel distortiorof a noisy channel vector quantizer
as

where is the probability distribution of the inpuX, and for
i,j € Z5 theq;y; = Pr[Dc(n(Ec(4))) = j] are the transition
probabilities of the coded channel.

I1l. RATE ALLOCATION TRADEOFF

Consider ad-dimensional 2¥-point binary-lattice vector
quantizer cascaded with dn, k, d,,;,] binary linear channel
Ac 2 E||Qo(X) — QX)) (15) code on a binary symmetric channel with an overall transmis-
) o sion rateR2. The source coding raiB is related to the overall
(the component of the distortion influenced by channel errorg)ansmission raté and the channel code rateby Rs = Rr-.
If the quantizerQ, satisfies the Centroid Condition then Eachd-dimensional input vector is quantized ko= dRr bits
A=As+ Ac. (16) and channel-coded with = dR bits, as shown in Fig. 1.
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For a fixed transmission rat®, increasing the channel code Next, we examine the remaining portion of the sum in (18),
rate results in higher quantizer resolution and a decrease in the source-dependent component. Again using the Hadamard
BLVQ source distortiom\ s, but leaves less redundancy to protransform definition and its identities, we obtain

tect against channel errors, which results in an increase in the =L
channel distortiom\¢. There is thus a tradeoff between source = Z Z W1 | V)P, 1.,
and channel coding governed by the choice of the channel code 4 =0 m=0

x>~
—

rate. In order to minimize the right-hand side of (17), we seek an T
exponentially decaying (i) expression for the channel distor- =1 Z (v | vm) Z Dili ey te,,
tion A¢ of the cascade of a binary lattice vector quantizer with =0 m=0 iczk

certain practical channel codes (i.e., wWithh — 0 asn — o),

and we wish to find the dependences: on the channel code _1
rater. 4

Lemma 4 gives a formula for the channel distortion of a bi-

nary-lattice quantizer cascaded with the identity index assign- =
ment and a linear channel code on a binary symmetric channel. icz}
In this paper, we do not use an explicit (i.e., nonidentity) index
assignment. Instead, the original ordering of the BLVQ code-
vectors is preserved (the BLVQ basis vectors are ordered by icZ
their Euclidean norms). Not using an explicit index assignment < p? (22)
is equivalent to specializing the result from [10] to the case of

the Natural Binary Code (identity index assignment). therez ',S the one's complement of the binary |nq§>(|.e.,
1y = 1 —1;), andp is the radius of some sphere containing every

Lemma 4 ([10]): Let X € R“ be a source random variablecodevector of every quantizer in a sequence of bounded quan-
quantized by a*-point binary-lattice vector quantizer withtizers (independent of the source coding rate) as guaranteed by
generating sefv; }1~1 and transmitted on a binary symmetriq12).
channel using the Natural Binary index assignment and anCombining (19) and (22), the channel distortion in (18) can
[, k] binary linear channel code. Let = Pr[X € R;] be upper-bounded as
denote the source distribution on the codevectors, and let

k—1 2

Z ‘!)1(1 — 2'51)

=0

pilly: — will? (20)

IN

pillysll + llw:lD* (21)

% = Pr[De(n(éc(u))) = w + i] denote the transition A <4PDRp?. (23)
probabilities of the coded channel. Then, the channel distortion . (bit) .
is given by It remains to show thakPy,. , the largest of the error probabil-
ities for a decoded bit, can be made to go to zero exponentially
1 Rt ket fast as a function of the overall transmission r&te
Ao = 1 Z Z W |V Perge. (G0 — Gey — Ge,. + Gerge.) We consider a family ofn, &, d,,in] channel codes satisfying
1=0 m=0 lim, oo k/n = 0 andlim,, 0o dmin/n > 2¢ > 0, wheree

(18) s the crossover probability of the underlying binary symmetric
channel. We further assume thais a monotone nondecreasing

where the hats denote Hadamard transformseaisdhe binary function ofn, which implies a one-to-one relationship between
row vector with its only nonzero entry in thh position. the channel code rateand the block length (e.g., this holds
. . . for repetition and Hamming codes). We divide tRée bits per
Equation (18) can be viewed as containing a source-depely ce yector into blocks of shorter channel codes from the same
dent component and a channel-dependent component. We s ily of [n, k, dynin] codes, and assume that each has the same
thgt t.he source component is positive and bounded for all trapss ek Iengt’hn’ (a divisor of Rd). Thus the lengttRd channel
mission rates? and the_ channel component can be made_ to absqe is the( Rd/n)-ary Cartesian product of identical length
proach zero exponentially fast &— oo, and thus the desired ., jeq This maintains the overall transmission dathits per
bound onA is obtained. vector component, and allows a variety of channel code rates
We first examine the channel-dependent component of (18).Thjs channel coding scheme is not in general optimal, but it
Using the Hadamard transform definition and its identities giV%‘iovides a conceptually simple means of obtairdchievable
bounds. Within each-bit block, the decoding error probability

Go — Ge; — e, T erten, of any given bit is upper-bounded by the decoding error prob-

- Z G (1= hie) (1 =hie,) ability of that block. Since the-bit blocks have identical code
iczt parameters, the same bound applies to the decoding error prob-

o ability of any bit in the overall lengttRd code. Then for each
=4 Z qititm n (and, consequently, for each corresponding channel code rate
i€z} r), Lemma 3 can be used to upper-bound the largest bit-error

= 4 Pr[lth andmth bits both in errdr probability of decoding in the lengtRd code using the block

< dmin ( Pl(bit)’ Pr(#it)) error probabilities of the length constituent codes, namely,

< 4pdiv). (19) Pt < g=nDa(Spi 1) (24)

max max
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Thusﬂgf’;f() can be made to decay to zero exponentially fastin  Proof: Lemma 5 follows by direct substitution, since

R by choosing the constituent block lengtho satisfyn — oo 2Rk [2Rc\ . o .
asik — . 712—/3 = 7 nR = ].7
Substituting (24) in (23) yields and R
Ac < 97D (BE)+0) (25) 2 \TEe
- TR :cn%_l =c <ﬁR> . O

Combining this with the formula for the source distortion of
asymptotically good quantizers in (11) and using (17), the total

distortion is bounded as Note thatae = 1 corresponds to asymptotically good codes

) (where the optimal rate is asymptotically constant as shown in
A< (Q—Rf—;JrO(l) + 9= 5Da ("B I|e)+0(1)> . (26) [7])anda = 0 corresponds to repetition codes. for= 0, the
- channel code rate decaysas= O(1/+/R), in contrast to the
The value of the right side of (26) for anythat dividesRd  case in [5] for Shannon optimal codes whegeis a positive
represents an achievable distortion, since there exist binary lggnstant. The distortion decays at least as fagz(@g%/f_?), in
tice vector quantizers and families of channel codes that satigtyntrast to theD(2~2%) Zador rate. Many structured families
such a bound (it can easily be shown that < Rd). We seek of codes that satisfy/n — 0 asn — oo, however, have a
n as a function ofz to minimize the right side of (26) asymp-|ogarithmic dependence betwekmndn.
totically in R. As argued in [5], since one of the exponents is
increasing im while the other is decreasing, in the asymptotic
sense the minimum is achieved when the two exponents &rg 0 @nd somé > 0, then
asymptotically equal, for then both terms on the right side of 2¢ 1 !
nR = \/ <§ log, R)

Lemma 6: If k/ (log, n)’ — casn — oo for some finite

(26) decay at the same rate. (A recent application of the same ﬁR

idea is found in [16].) Lehir denote_ a value of obtained by gaiisfies (27), and the corresponding asymptotic channel code
equating the exponents. Asymptotically @), ng — oo must o160 is

hold, for otherwise the second term in (26) would be bounded

away from zero. Sincer — oo asR — oo and the families of (% log, R)l

of codes considered satisfyn,,, . dmin/n > 2¢ by assump- TR = — oRr

tion, the limit of the information divergence in the exponent of '

the second term in (26) is a finite nonzero constant which we Proof: Lemma 6 follows by direct substitution

denote by _ . _ 2R k (logy ng)*
W25 T a\ G ) Qogyna) . 2
B = Dy(1/2 lim (duin/n) | ). f ’ f N\
e log R l10‘]*2})
Thus the asymptotically minimizing g satisfies — lim 2Rc < & { 7 (2 & )
. 2Rk R—co f3 2R (11ogy R)'
lim —— =1 (27) /
R—>oo7’LR/3 11 Rl 2 11 Rl l
Let r5 denote the channel code rate corresponding touthe oy 31082 At Og?{ 7 (3l R) }
which solves (27). Then by (26), the overall distortion vanishes e %10g2 R
at least as fast a& 2%"=+0(1) The next section presents the
rate allocations r obtained from solutions to (27) for various =1
code families. and
) k . k (logy ng)
IV. ASYMPTOTIC DISTORTION DECAY RATES lim — = lim - 7 -
R—oco NRTR R—o0 (1Og2 7‘LR) NRTR

First, two lemmas are given that solve (27) for different de- 1\
pendencies ok onn. Then, the main theorem describing the <1082[ RQ—QC (2 log, R) D
behavior of several families of codes cascaded with BLVQ fol- = Rlim c l
lows. —ee . 1 cA(ilog, R

2R (Ylog, B) TUEpe)

Lemma 5: If & = ¢n® for somec > 0 and somev € [0,1), l
then <10g2 \/ R% (% log, R)l} )

2c _\ 7= o Rh—1>rcl>o 1 l
Nnr = <—R> (§1Og2 R)
p —1. O
solves (27) (asymptotically inR), and the corresponding
channel code rate is

The casel = 0 corresponds to repetition codes, while
e larger values ofl correspond to more powerful codes
- £\ ({th-order Reed—Muller codes, for example). For simplex codes
'R=C <ﬁ> ' (I = 1), the channel code rate; decays a)(y/log R/R).
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Reed-Muller codes (often punctured) cover a large range of L
code families. Zeroth-order Reed—Muller codes are themselves .
repetition codes. Simplex codes (the duals of Hamming col
codes) are shortened first-order Reed—Muller codes. Puncture’ - #1 |
Reed—-Muller codes are cyclic and as such are related to BCH \
codes. See [19, p. 384] for the nesting properties of BCH and 0.6 4‘

Reed-Muller codes. '
0.4 N

Theorem 1:Let X € R? be a bounded random variable T
which is transmitted at a rat& bits per component across .2 1
a binary symmetric channel with crossover probability
Suppose the source coder is chosen from a sequence ¢ . XLEEEET R
asymptotically good bounded binary lattice vector quantizers, 20 40 60 0

?‘nd the channel coder is Chosen, fro_m_ a famll){mﬂf’ dmm] Fig. 2. An illustration of Theorem 1 for uniform scalar guantization of
linear block channel codes satisfyifgm, ...k/n = 0 a uniform source or(0, 1) using repetition codes to transmit on a binary
and lim,, ..o din/n > 2¢. Then, the overall minimum symmetric channel with = 10~°. The distortion minimizing channel code

_ : i rater is plotted against the overall transmission r&eThe dashed curve is
mean Squared error decays (asymptotlcall at least as obtained directly from (29), the solid-line step function is the closest channel

fast as code rate for an odd-length repetition code, and the individual dots represent
the rates of the best repetition codes found by exhaustive search.

A< 272R1‘R+O(1) (28)

i) An [th-order lengtlm = 2™ Reed—Muller code has

k= zl: (77) = m! /(1 + o(1))

i) forafamily of [n, 1, n] repetition code$n > 1) i=0

which is achieved by a channel code rag for various channel
code families as follows:

information symbols as — ~c. Hence, Lemma 6 can be
- \/—10g2 2ve(1—¢) ¢ € (0,1/2); (29) applied withe = 1/1!. Substitutingd,,in/7 = 27" in
2R ’ ’ ’ yields the desired expression fog.
iii) Often, only bounds are available on the parameters of
i) for a family of lth-order[2"’,2220(’;’),2"’—1] Reed- BCH codes. For simplicity, we assume a family of “ex-
Muller codes(m > 1) tremal” BCH codes at our disposal, which meet these
bounds with equality. A-error-correcting binary BCH

2l+1 1\ 7T code of lengthn = 2™ — 1 has at least — mt infor-
- <10g2 21+t <c (QZ}Jil) ) ) (logy R)! mation bits. Thus its dual hds < mt = tlog,n(1 +
rp = o(1)) (which we treat as an equality). This corresponds to
12H1R ’ Lemma 6 withl = 1 andc = ¢. By the Carlitz—Uchiyama
e € (0,1/2%1);  (30) bound ([19, p. 280])lim,, dyin/n = 1/2. The result then
follows by substitution. O

i) ar:g for a fa”jjjylof duals of extrematerror-correcting  ig 2 provides an illustration of Theorem 1 for the special
27 =1, mt,2 — [log(2¢ —1)]| BCH codegm > 1) ag¢ of using a uniform scalar quantizer for a uniform source on
(0, 1) and a family of repetition codes on a binary symmetric

_+{1oe 4(6(1_6)3)5 log. R channel withe = 1072, For eachR = 1,2,3,...,128, the
o 52 3 52 repetition code with the smallest distortion was found by ex-
"R = 4R ’ haustive search and the resulting rate was plotted (discrete dots).

ce(0,1/4). (31) Since deleting a bit of an even-length repetition code results
in an odd-length repetition code with the same bit-error prob-
) . o . . ability, using the extra bit for source coding always results in a
Proof: The inequality in (28) is a direct consequence &l jier overall distortion. Hence, in addition to the analytic ex-
(26) and_the ensuing dlscu_ssmn. The various expressmmsﬁormession forr from (29) (dashed curve), we also plotted the
are obta!ned from the solutions, c,)f_ (27)as given by Ler_nma 6 channel code rate corresponding to the closest odd block length
(alternatively, Lemma 5 for repetition codes) withsubstituted (step function).

using the actual code parameters. As with Zador's lemma, Theorem 1 also gives a rule of thumb

i) Sinced..in/n = 1 for repetition codes, for the expected gain in system performance per bit increase in
the overall transmission rate. Unlike on an error-free channel
B="Ds(1/2|¢) = —logs(21/e(1 — ¢)). or on a noisy channel using asymptotically good codes (as in

[5]-[7]), however, there is no fixed increase in the signal-to-
Substituting this in Lemma 5 withh = 0 andc = 1 (or noise ratio per “bit investment.” Instead, the number of “deci-
in Lemma 6 withi = 0 andc = 1), the result follows. bels per bit” of performance gain in the bound (28) diminishes
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as the ratéz grows. For example, increasing the total transmis- [3] P. Zador, “Asymptotic quantization error of continuous signals and the

sion rateR by 1 bit per component for a cascaded system using

repetition codes yields a signal-to-noise ratio increase of

SNR(R + 1) — SNR(R)
_ 1010g10(272\/1_3+O(1)/2*2\/R—-H+O(1))

3
N 0B)

V. CONCLUSION

quantization dimension,[EEE Trans. Inform. Theorwol. IT-28, pp.
139-149, Mar. 1982.

K. Zeger and V. Manzella, “Asymptotic bounds on optimal noisy
channel quantization via random codin¢fZEE Trans. Inform. Theory
vol. 40, pp. 1926-1938, Nov. 1994.

B. Hochwald and K. Zeger, “Tradeoff between source and channel
coding,” IEEE Trans. Inform. Theorywol. 43, pp. 1412-1424, Sept.
1997.

B. Hochwald, “Tradeoff between source and channel coding on
a Gaussian channel,JEEE Trans. Inform. Theoryvol. 44, pp.
3044-3055, Nov. 1998.

_ _ ) [7] A.Méhes and K. Zeger, “Source and channel rate allocation for channel
However, the bounds presented might be improved in the future.

codes satisfying the Gilbert-Varshamov or Tsfasma@eyt-Zink
bounds,”IEEE Trans. Inform. Theoryol. 46, pp. 2133-2151, Sept.
2000.

[8] G.L.Katsman, M. A. Tsfasman, and S. G adut “Modular curves and

codes with a polynomial constructiodEEE Trans. Inform. Theoryol.
IT-30, pp. 353—-355, Mar. 1984.

The paper presented bounds on the performance of implefs] C.Voss and T. Hgholdt, “An explicit construction of a sequence of codes

mentable communication systems as a function of the overall
transmission rat&. The systems employ a binary-lattice vector
guantizer for source-coding a bounded random input, and a bi-
nary linear channel code for transmission over a binary sym-
metric channel. The channel code is obtained as a Cartesidh’
product of short codes from channel code families with van-

attaining the Tsfasman—&tlyt-Zink bound the first steps|EEE Trans.
Inform. Theoryvol. 43, pp. 128-135, Jan. 1997.

] A. Méhes and K. Zeger, “Binary lattice vector quantization with linear

block codes and affine index assignment&EE Trans. Inform. Theory

vol. 44, pp. 79-95, Jan. 1998.

R. Hagen and P. Hedelin, “Robust vector quantization by linear map-
pings of block-codes,” ifProc. IEEE Int. Symp. Information Theogry
San Antonio, TX, Jan. 1993, p. 171.

ishing rate. Many well-studiefh, k] linear channel codes have [12] —— “Design methods for VQ by linear mappings of block codes,” in

k proportional to some power dbg, n. We showed that for

Proc. IEEE Int. Symp. Information Thegryrondheim, Norway, June
1994, p. 241.

such codes, using a rate allocation between source and chanqie] ——, “Robust vector quantization by a linear mapping of a block code,”
. log!, R . IEEE Trans. Inform. Theoryol. 45, pp. 200-218, Jan. 1999.
coding of O = asR — oo, one gets an asymptotic [14] S. w. McLaughlin, D. L. Neuhoff, and J. J. Ashley, “Optimal binary

distortion decay of2—2VRles: B Since the exponent is sub-
linear in R, we see diminishing returns in the per-bit perfor-
mance increase instead of the usual 6 dB/bit for error-free trans-

mission (or some other constant return for optimal or asymptott6]

ically good codes).
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