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Performance of Quantizers on Noisy Channels Using
Structured Families of Codes

András Méhes and Kenneth Zeger, Fellow, IEEE

Abstract—Achievable distortion bounds are derived for the cas-
cade of structured families of binary linear channel codes and bi-
nary lattice vector quantizers. It is known that for the cascade of
asymptotically good channel codes and asymptotically good vector
quantizers the end-to-end distortion decays to zero exponentially
fast as a function of the overall transmission rate, and is achieved
by choosing a channel code rate that is independent of the overall
transmission rate. We show that for certain families of practical
channel codes and binary lattice vector quantizers, the overall dis-
tortion can be made to decay to zero exponentially fast as a func-
tion of the square root of transmission rate. This is achieved by
carefully choosing a channel code rate that decays to zero as the
transmission rate grows. Explicit channel code rate schedules are
obtained for several well-known families of channel codes.

Index Terms—Data compression, lattice vector quantization,
linear error-correcting codes, source and channel coding.

I. INTRODUCTION

L OSSY source coding, or quantization, plays an important
role in many practical data compression systems such as

voice and image transmission devices. The primary mathemat-
ical tool for obtaining an analytical understanding of the proper-
ties of optimal quantizers has been the asymptotic theory. Two
important types of asymptotic theories exist: 1) fixed transmis-
sion rate and growing block length; 2) fixed block length and
growing transmission rate. The first type of asymptotic theory
was studied by Shannon [1] and is known as rate-distortion
theory. The second type is the study of high resolution quan-
tization theory [2], [3]. The high resolution theory indirectly as-
sumes delay and complexity constraints and thus is typically
more closely related to practical considerations. The high reso-
lution results in [2], [3] specifically assume a noiseless channel.
In our present paper, we will exploit results from the high reso-
lution theory to obtain new quantization results for noisy chan-
nels.

High resolution quantization theory for noisy channels gives
analytic descriptions of the minimum achievable average dis-
tortion, as a function of the transmission rate, the source den-
sity, and the vector dimension. For distortion functions which
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are powers of Euclidean distances and with no channel noise,
the minimum average distortion is known to decay to zero expo-
nentially fast as the transmission rate increases [3]. It was shown
in [4], [5] that when the source information is transmitted across
a noisy channel, the minimum average distortion again decays
to zero exponentially fast as the transmission rate increases, al-
though the exponential decay constant is reduced by an amount
dependent on how poor the channel is. In fact, the rate of decay
of distortion in the noisy channel case is closely related to the
optimal allocation of transmission rate between source coding
and channel coding (via the channel code rate).

The results in [5] provide mathematical guarantees for a po-
tentially achievable minimum quantizer distortion in the pres-
ence of channel noise. However, those results assume the ex-
istence of optimal channel codes, namely, those described in
Shannon’s channel coding theorem using random coding argu-
ments. Similar techniques were used to generalize the results
of [5] to Gaussian channels [6] and to certain algebraic-geom-
etry codes [7]. Hence, the results in [5]–[7] are existence con-
structions and do not necessarily correspond to achievable per-
formance based on the best presently known implementable
channel codes. There is thus motivation to find a high resolution
theory for quantization with a noisy channel, using families of
structured algebraic channel codes.

However, finding such a high resolution theory appears to be
a difficult task for general unstructured source coders, even if
the channel coders are structured. In this paper, we approach
the problem by examining systems with structure in both the
source coder and channel coder. Such systems are practical to
implement and also give insight (via distortion bounds) into the
unstructured source coder case.

To illustrate the problem at hand by way of an example, sup-
pose a random variable uniformly distributed on is uni-
form scalar quantized, and transmitted across a binary sym-
metric channel using a repetition code. For a fixed number of
available bits per transmission, how many times should each
information bit be repeated in the repetition code to minimize
the end-to-end mean-squared error? In other words, what is the
optimal rate allocation between source and channel coding? If
the channel code rate is decreased, fewer uncorrected bit errors
occur but at the expense of coarser quantization, andvice versa
if the channel code rate is increased.

A key assumption in [5], [7] is that by keeping the channel
code rate fixed (below capacity) while increasing the overall
transmission rate , the probability of decoding error can
decay to zero exponentially fast as a function of. This assump-
tion is valid for “Shannon-optimal” codes and more generally
for asymptotically good codes, but most known structured fam-
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ilies of channel codes (e.g., Hamming, Bose–Chaudhuri–Hoc-
quenghem (BCH), Reed–Muller) do not have this property. In
the repetition code example, keeping the channel code rate fixed
is equivalent to keeping the number of repetitions constant. This
in turn implies that the probability of incorrectly decoding an in-
formation bit does not change. Therefore,is bounded away
from zero, since the probability of decoding error (i.e., an incor-
rect block) is at least as large as the probability of a single bit
error. In this paper, we investigate the rate allocation problem
for structured families of source coders which are asymptoti-
cally good and for structured families of channel coders which
are not asymptotically good, but which can be used in practice.

A common method for lossy transmission of source data
across a noisy channel uses independently designed source
coders and channel coders. This follows Shannon’s basic
“separation principle” in source and channel coding, which is
known to be optimal for asymptotically large block lengths. An
important design parameter is the allocation of the available
transmission rate between source and channel coding. Tight
upper and lower bounds on the optimal tradeoff between source
and channel coding are known for certain codes and channels
and th-power distortion measures [5]–[7], [4]. These results
exploit the fact that the distortion contributions of optimal
source coding and optimal channel coding decay exponentially
fast as functions of the overall transmission rate. The source
coder is taken to be a “good” vector quantizer (one that obeys
Zador’s decay rate) in [5]–[7], [4], and index assignment
randomization is used. In both [5] and [6], the channel codes
are assumed to have exponentially decaying error probabilities
achieving the expurgated error exponent for the given channel (a
binary symmetric channel in [5] and an additive white Gaussian
noise channel in [6]). Although such codes are known to exist,
no efficiently decodable ones have yet been discovered. In [7],
the results of [5] are extended to-ary symmetric channels, and
a class of asymptotically good channel codes (namely, those
attaining the Gilbert–Varshamov and Tsfasman–Vlăduţ–Zink
bounds) is examined. Constructions of channel codes better
than the Gilbert–Varshamov bound are known [8], [9], but the
best known algorithms are not currently practical.

The channel codes considered in [5]–[7] all have the prop-
erty that their channel code rates are bounded away from zero
for increasing block lengths. In the present paper we investigate
the tradeoff between source and channel coding for structured
classes of codes whose channel code rates approach zero in the
limit as the block length grows. Hence, we seek a decay schedule
of the channel code rate as a function of the overall transmission
rate which minimizes the overall distortion. The channel codes
we examine are classical binary linear block codes including
repetition codes, Reed–Muller codes, and BCH codes. We call
(as in [10]) the structured source coders in this paper binary
lattice vector quantizers (BLVQs). Vector quantizers with es-
sentially identical structure have been extensively studied under
various different names in [10]–[15].

The main results of this paper are collected into Theorem 1
in Section IV, which gives achievable bounds on the asymptotic
mean-squared error performance of binary lattice vector quan-
tizers and several useful families of binary linear block channel
codes on a binary symmetric channel. The bounds in Theorem 1

show that the minimum distortion with certain structured codes
decays to zero as , where as . The

distortion bounds are obtained by choosing for

repetition codes and for Reed–Muller

codes and duals of BCH codes. The constants inside thede-
pend on the channel noise level. In contrast, for optimal unstruc-
tured vector quantizers and no channel noise, for all

, and for optimal unstructured vector quantizers and optimal
channel codes on a noisy channel, (depending on the
channel noise level) and is bounded away from zero. Since
structured source coders are assumed in this paper, the distor-
tion bounds given are also upper bounds on the distortion using
optimal unstructured vector quantizer (VQ) with the same struc-
tured channel codes. In addition, the derivations of the bounds
in Theorem 1 may be useful tools for future research (e.g., see
[16]), since they are not specific to the codes used. Section II in-
troduces necessary notations, definitions, and lemmas. Section
III gives the framework for the source/channel coding problem
and Section IV gives the results of the paper.

II. PRELIMINARIES

For real-valued sequences and , we write

• , if there is a positive real number, and a positive
integer such that , whenever ;

• , if has only a finite number of zeros, and
as .

For any positive integer , let denote the field of -bit
binary words. Arithmetic in is performed modulo. Binary

-tuples will be written as row vectors

where denotes the coefficient of in the binary
representation of the corresponding integer, i.e.,

We denote by the binary row vector with its only nonzero
entry in the th position, thus . The inner product of two
binary vectors is denoted by

The Hamming weight (the number of nonzero bits) of a binary
vector is denoted by .

Euclidean vectors will be written as column vectors
. The inner product of two Euclidean vec-

tors is denoted by

Also, denotes the usual Euclidean norm of the
vector . The symbols , , and are used to
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denote indicator functions, probabilities, and expectations, re-
spectively.

A. Entropy and Relative Entropy

Definition 1: Let and be probability distributions on a
finite set.

Theentropyof (in bits) is

(1)

Therelative entropybetween and (in bits) is

(2)

Definition 2: Let , and let and be prob-
ability distributions on with and

.

Thebinary entropy functionis

(3)

and thebinary relative entropy function(information diver-
gence) is

(4)

The following lemma provides a bound on the tail of a bino-
mial distribution.

Lemma 1 ([17, p. 531]):For

B. The Hadamard Transform

Definition 3: For each let and let
. TheHadamard transform of the

mapping is defined by

and the inverse transform is given by

We refer to the numbers as Hadamard coefficients.
The Hadamard transform is an orthogonal transform equipped
with the same convolution and inner product properties (e.g.,
Parseval’s identity) as other Fourier transforms. The following
useful identities also hold for :

(5)

The bits of any binary word are related to the Hadamard
coefficients by

(6)

C. Source Coding—Vector Quantization

Definition 4: A -dimensional, -point vector quantizer
(VQ) with index set , and codebook

, is a functional composition
, where is aquantizer encoderand
is aquantizer decoder. (The subscript denotes

association with a noiseless channel.) The elements of the
codebook are calledcodevectors. Associated with each
codevector is itsencoder region .
The set of encoder regions forms a partition of. The source
coding rate (or resolution) of a vector quantizer is defined as

.
The mean-squared error(or source distortion) of a VQ

for a source random variable is

(7)

where is the probability distribution of the input .
Necessary conditions for the optimality of a vector quantizer

using the mean-squared distortion are (see [18], for example)
theCentroid Condition

(8)

and theNearest Neighbor Condition:

(9)

Locally optimal vector quantizers satisfying both necessary
conditions (8) and (9) can be obtained using the Generalized
Lloyd Algorithm [18].

The high resolution (i.e., large ) behavior of for op-
timal quantization of a bounded source is described by Zador’s
formula, which is stated below in a convenient form.

Lemma 2 (Zador [3]): The minimum mean-squared error of
a rate vector quantizer is asymptotically (as ) given
by

(10)

This is often referred to as the “6 dB per bit” rule, since

6 dB

We say that a sequence of quantizers isasymptotically good
if

(11)

We say that a sequence of quantizers isbounded, if the code-
points of the quantizers are bounded, that is,

(12)

where denotes the index set and the denote the code-
points of the -bit quantizer in the sequence. Lemma 2 shows
that optimal quantizers are asymptotically good. In fact, a large
class of quantizers including uniform quantizers and other lat-
tice-based vector quantizers are also asymptotically good, al-
though the limit in (11) may be larger than for optimal quan-
tizers. Unrestricted optimal quantizers for a bounded source are
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also bounded, as are large classes of other useful quantizers in-
cluding truncated lattice VQs, for example.

1) Binary Lattice VQ:
Definition 5: For positive integers and , a -dimensional,
-point binary-lattice vector quantizeris a vector quantizer

with index set , whose codevectors are of the form

(13)

where is anoffset vectorand is the set of
generator vectors, ordered by .

In this paper, we focus on BLVQs. There are several equiv-
alent formulations of BLVQ as, for example, truncated lattice
VQ, direct sum (or residual) VQ, and VQ by a Linear Mapping
of a (nonredundant) Block Code. BLVQs can save in memory
requirements and encoding complexity. They can also be used
for progressive transmission and possess a certain natural ro-
bustness to channel noise (see [10] for details).

BLVQs encompass a broad class of useful structured quan-
tizers. For example, a -level uniform scalar quantizer on the
interval is a special case of a binary-lattice quantizer, ob-
tained by setting and , where

denotes the quantizer stepsize. As a consequence,
sequences of asymptotically good BLVQs exist. In fact, for any
bounded source, a sequence of increasingly finer (properly trun-
cated and rotated) cubic lattices containing the support of the
source is both bounded and asymptotically good. Thus in what
follows, we restrict attention to asymptotically good bounded
sequences of binary lattice vector quantizers.

D. Channel Coding—Linear Codes on a Binary Symmetric
Channel

Definition 6: A linear binary block channel
codeis a linear subspace of containing binary -tuples
calledcodewords. Each of the nonzero codewords has at
least nonzero components. Thechannel code rateis given
by , and therelative minimum distanceby .

Associated with a channel code is achannel encoder and a
channel decoder . The channel encoder is a one-to-one map-
ping of messages (e.g., quantizer indexes) to channel codewords
for transmission. The channel decoder, on the other hand, is a
many-to-one mapping. It maps received-bit blocks (not neces-
sarily codewords) to messages. Let denote the channel
codeword corresponding to messageand the set of

-bit blocks decoded into message. Then on a binary sym-
metric channel with crossover probability, the transition prob-
abilities of the coded channel are

If the code is linear then and can be chosen to ensure
(e.g., any linear encoder and coset decoder will

do). In what follows, let denote the probability that the
information error pattern occurs when an linear
block code is used to transmit over a binary symmetric channel.

Let denote the probability that theth bit of the de-
coded block is in error and let denote the probability that the

decoded block is in error (i.e., at least one of its bits is incorrect).
Then

and . Let denote the maximum of the error
probabilities for decoded bits. Then

Since a code with minimum distance can correct all pos-
sible -bit errors and since

, Lemma 1 can be used to bound as follows.

Lemma 3: For any linear block channel code
and for any , the probability of a block error with
a linear encoder and a symmetric maximum-likelihood (ML)
decoder on a binary symmetric channel with bit-error proba-
bility satisfies

To obtain asymptotic results we consider families of
linear channel codes indexed by the block length

. All families of channel codes fall into exactly one of the
following three categories (assuming the limits of and

exist as ):

•
For codes of this type, the upper bound on the proba-
bility of decoding error in Lemma 3 becomes trivial as
the block length increases. The best known families of
block channel codes in this category have as

. Examples include Hamming codes, families of
-error-correcting binary BCH codes for any fixed, and
th-order Reed–Muller codes ifis an increasing function

of the block length. From a source–channel tradeoff per-
spective, the best codes in these families are those with
small block lengths. Hence, these codes are not relevant
to our asymptotic investigations, although their duals are.

• and
Families of codes with both their rate and relative
minimum distance bounded away from are called
asymptotically good[19]. Examples include Justesen
codes ([19, p. 306 ff]) and codes satisfying the Zyablov
bound ([19, p. 315]), the Gilbert–Varshamov bound
([19, p. 557]), or the Tsfasman–Vlăduţ–Zink bound [20].
Bounds on the asymptotically optimal source/channel rate
allocation were derived in [7] for some of these codes.

• and
Codes that fall into this category include repetition codes,
th-order Reed–Muller codes for any fixed order-error-

correcting binary BCH codes with and duals
of -error-correcting binary BCH families for any fixed.
Lemma 3 guarantees that the probability of decoding error
decays to zero exponentially fast for families of this type.
Since , relatively less information is transmitted
as the block length increases, but more reliably.
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Fig. 1. Cascaded vector quantizer and channel coder system.

In this paper, we focus attention on the third category. One seeks
an optimal “schedule” of the rate converging to as a func-
tion of the block length .

E. The Cascaded System

The following definition corresponds to Fig. 1.

Definition 7: A -dimensional, -point noisy channel
vector quantizerwith index set , codebook , and with an

linear channel code operating on a binary channel, is
a functional composition

where is a quantizer encoder,
is a quantizer decoder, is a channel encoder,

is a channel decoder, and is a
random mapping representing a noisy channel.

The mean-squared distortion of a noisy channel vector quan-
tizer for a source random variable is

(14)

where is the probability distribution of the input , and for
the are the transition

probabilities of the coded channel.

III. RATE ALLOCATION TRADEOFF

Analogous to the source distortion in (7) (i.e., the distortion
incurred on a noiseless channel due to quantization only), we
define thechannel distortionof a noisy channel vector quantizer
as

(15)

(the component of the distortion influenced by channel errors).
If the quantizer satisfies the Centroid Condition then

(16)

As a function of the overall transmission rate, both and
decay to zero exponentially fast for optimal quantization

of a bounded source and with optimal channel coding. The
exact rate of decay is determined by the channel code rate.
An asymptotically optimal channel code rate implies that both
terms in (16) must decay at the same exponential rate [5].

Structured vector quantizers, however, are often suboptimal.
In most cases, the structure dictates the placement of code-
vectors and the encoding regions are chosen to satisfy the
Nearest Neighbor Condition (i.e., the Centroid Condition need
not hold). When the codevectors are not the centroids of their
respective encoding regions, the Minkowski inequality can be
used to bound the distortion as

(17)

For asymptotically good sequences of BLVQs, the source dis-
tortion decays to zero exponentially fast as the source coding
rate . In what follows, we find the asymptotic be-
havior of the channel distortion for the cascade of binary lattice
vector quantizers and practical families of channel codes (which
are not asymptotically good), and obtain the channel code rate
which asymptotically (in ) minimizes the bound in (17) for this
system. This is done by equating the exponents ofand .
In contrast to [5]–[7], however, for this system the minimizing
channel code rate is a (decreasing) function of the overall trans-
mission rate .

A. Rate Allocation for BLVQ

Consider a -dimensional -point binary-lattice vector
quantizer cascaded with an binary linear channel
code on a binary symmetric channel with an overall transmis-
sion rate . The source coding rate is related to the overall
transmission rate and the channel code rateby .
Each -dimensional input vector is quantized to bits
and channel-coded with bits, as shown in Fig. 1.
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For a fixed transmission rate, increasing the channel code
rate results in higher quantizer resolution and a decrease in the
BLVQ source distortion , but leaves less redundancy to pro-
tect against channel errors, which results in an increase in the
channel distortion . There is thus a tradeoff between source
and channel coding governed by the choice of the channel code
rate. In order to minimize the right-hand side of (17), we seek an
exponentially decaying (in ) expression for the channel distor-
tion of the cascade of a binary lattice vector quantizer with
certain practical channel codes (i.e., with as ),
and we wish to find the dependence of on the channel code
rate .

Lemma 4 gives a formula for the channel distortion of a bi-
nary-lattice quantizer cascaded with the identity index assign-
ment and a linear channel code on a binary symmetric channel.
In this paper, we do not use an explicit (i.e., nonidentity) index
assignment. Instead, the original ordering of the BLVQ code-
vectors is preserved (the BLVQ basis vectors are ordered by
their Euclidean norms). Not using an explicit index assignment
is equivalent to specializing the result from [10] to the case of
the Natural Binary Code (identity index assignment).

Lemma 4 ([10]): Let be a source random variable
quantized by a -point binary-lattice vector quantizer with
generating set and transmitted on a binary symmetric
channel using the Natural Binary index assignment and an

binary linear channel code. Let
denote the source distribution on the codevectors, and let

denote the transition
probabilities of the coded channel. Then, the channel distortion
is given by

(18)

where the hats denote Hadamard transforms, andis the binary
row vector with its only nonzero entry in theth position.

Equation (18) can be viewed as containing a source-depen-
dent component and a channel-dependent component. We show
that the source component is positive and bounded for all trans-
mission rates and the channel component can be made to ap-
proach zero exponentially fast as , and thus the desired
bound on is obtained.

We first examine the channel-dependent component of (18).
Using the Hadamard transform definition and its identities gives

th and th bits both in error

(19)

Next, we examine the remaining portion of the sum in (18),
the source-dependent component. Again using the Hadamard
transform definition and its identities, we obtain

(20)

(21)

(22)

where is the one’s complement of the binary index(i.e.,
), and is the radius of some sphere containing every

codevector of every quantizer in a sequence of bounded quan-
tizers (independent of the source coding rate) as guaranteed by
(12).

Combining (19) and (22), the channel distortion in (18) can
be upper-bounded as

(23)

It remains to show that , the largest of the error probabil-
ities for a decoded bit, can be made to go to zero exponentially
fast as a function of the overall transmission rate.

We consider a family of channel codes satisfying
and , where

is the crossover probability of the underlying binary symmetric
channel. We further assume thatis a monotone nondecreasing
function of , which implies a one-to-one relationship between
the channel code rateand the block length (e.g., this holds
for repetition and Hamming codes). We divide the bits per
source vector into blocks of shorter channel codes from the same
family of codes, and assume that each has the same
block length (a divisor of ). Thus the length channel
code is the -ary Cartesian product of identical length
codes. This maintains the overall transmission ratebits per
vector component, and allows a variety of channel code rates.

This channel coding scheme is not in general optimal, but it
provides a conceptually simple means of obtainingachievable
bounds. Within each-bit block, the decoding error probability
of any given bit is upper-bounded by the decoding error prob-
ability of that block. Since the-bit blocks have identical code
parameters, the same bound applies to the decoding error prob-
ability of any bit in the overall length code. Then for each

(and, consequently, for each corresponding channel code rate
), Lemma 3 can be used to upper-bound the largest bit-error

probability of decoding in the length code using the block
error probabilities of the length constituent codes, namely,

(24)
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Thus can be made to decay to zero exponentially fast in
by choosing the constituent block lengthto satisfy

as .
Substituting (24) in (23) yields

(25)

Combining this with the formula for the source distortion of
asymptotically good quantizers in (11) and using (17), the total
distortion is bounded as

(26)

The value of the right side of (26) for anythat divides
represents an achievable distortion, since there exist binary lat-
tice vector quantizers and families of channel codes that satisfy
such a bound (it can easily be shown that ). We seek

as a function of to minimize the right side of (26) asymp-
totically in . As argued in [5], since one of the exponents is
increasing in while the other is decreasing, in the asymptotic
sense the minimum is achieved when the two exponents are
asymptotically equal, for then both terms on the right side of
(26) decay at the same rate. (A recent application of the same
idea is found in [16].) Let denote a value of obtained by
equating the exponents. Asymptotically (in), must
hold, for otherwise the second term in (26) would be bounded
away from zero. Since as and the families
of codes considered satisfy by assump-
tion, the limit of the information divergence in the exponent of
the second term in (26) is a finite nonzero constant which we
denote by

Thus the asymptotically minimizing satisfies

(27)

Let denote the channel code rate corresponding to the
which solves (27). Then by (26), the overall distortion vanishes
at least as fast as . The next section presents the
rate allocations obtained from solutions to (27) for various
code families.

IV. A SYMPTOTIC DISTORTION DECAY RATES

First, two lemmas are given that solve (27) for different de-
pendencies of on . Then, the main theorem describing the
behavior of several families of codes cascaded with BLVQ fol-
lows.

Lemma 5: If for some and some ,
then

solves (27) (asymptotically in ), and the corresponding
channel code rate is

Proof: Lemma 5 follows by direct substitution, since

and

Note that corresponds to asymptotically good codes
(where the optimal rate is asymptotically constant as shown in
[7]) and corresponds to repetition codes. For , the
channel code rate decays as , in contrast to the
case in [5] for Shannon optimal codes where is a positive
constant. The distortion decays at least as fast as , in
contrast to the Zador rate. Many structured families
of codes that satisfy as , however, have a
logarithmic dependence betweenand .

Lemma 6: If as for some finite
and some , then

satisfies (27), and the corresponding asymptotic channel code
rate is

Proof: Lemma 6 follows by direct substitution

and

The case corresponds to repetition codes, while
larger values of correspond to more powerful codes
( th-order Reed–Muller codes, for example). For simplex codes

, the channel code rate decays as .



MÉHES AND ZEGER: PERFORMANCE OF QUANTIZERS ON NOISY CHANNELS USING STRUCTURED FAMILIES OF CODES 2475

Reed–Muller codes (often punctured) cover a large range of
code families. Zeroth-order Reed–Muller codes are themselves
repetition codes. Simplex codes (the duals of Hamming
codes) are shortened first-order Reed–Muller codes. Punctured
Reed–Muller codes are cyclic and as such are related to BCH
codes. See [19, p. 384] for the nesting properties of BCH and
Reed–Muller codes.

Theorem 1: Let be a bounded random variable
which is transmitted at a rate bits per component across
a binary symmetric channel with crossover probability.
Suppose the source coder is chosen from a sequence of
asymptotically good bounded binary lattice vector quantizers,
and the channel coder is chosen from a family of
linear block channel codes satisfying
and . Then, the overall minimum
mean-squared error decays (asymptotically in) at least as
fast as

(28)

which is achieved by a channel code rate, for various channel
code families as follows:

i) for a family of repetition codes

(29)

ii) for a family of th-order Reed–
Muller codes

(30)

iii) and for a family of duals of extremal-error-correcting
BCH codes

(31)

Proof: The inequality in (28) is a direct consequence of
(26) and the ensuing discussion. The various expressions for
are obtained from the solutions of (27) as given by Lemma 6
(alternatively, Lemma 5 for repetition codes) withsubstituted
using the actual code parameters.

i) Since for repetition codes,

Substituting this in Lemma 5 with and (or
in Lemma 6 with and ), the result follows.

Fig. 2. An illustration of Theorem 1 for uniform scalar quantization of
a uniform source on(0; 1) using repetition codes to transmit on a binary
symmetric channel with� = 10 . The distortion minimizing channel code
rater is plotted against the overall transmission rateR. The dashed curve is
obtained directly from (29), the solid-line step function is the closest channel
code rate for an odd-length repetition code, and the individual dots represent
the rates of the best repetition codes found by exhaustive search.

ii) An th-order length Reed–Muller code has

information symbols as . Hence, Lemma 6 can be
applied with . Substituting in
yields the desired expression for.

iii) Often, only bounds are available on the parameters of
BCH codes. For simplicity, we assume a family of “ex-
tremal” BCH codes at our disposal, which meet these
bounds with equality. A -error-correcting binary BCH
code of length has at least infor-
mation bits. Thus its dual has

(which we treat as an equality). This corresponds to
Lemma 6 with and . By the Carlitz–Uchiyama
bound ([19, p. 280]), . The result then
follows by substitution.

Fig. 2 provides an illustration of Theorem 1 for the special
case of using a uniform scalar quantizer for a uniform source on

and a family of repetition codes on a binary symmetric
channel with . For each the
repetition code with the smallest distortion was found by ex-
haustive search and the resulting rate was plotted (discrete dots).
Since deleting a bit of an even-length repetition code results
in an odd-length repetition code with the same bit-error prob-
ability, using the extra bit for source coding always results in a
smaller overall distortion. Hence, in addition to the analytic ex-
pression for from (29) (dashed curve), we also plotted the
channel code rate corresponding to the closest odd block length
(step function).

As with Zador’s lemma, Theorem 1 also gives a rule of thumb
for the expected gain in system performance per bit increase in
the overall transmission rate. Unlike on an error-free channel
or on a noisy channel using asymptotically good codes (as in
[5]–[7]), however, there is no fixed increase in the signal-to-
noise ratio per “bit investment.” Instead, the number of “deci-
bels per bit” of performance gain in the bound (28) diminishes
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as the rate grows. For example, increasing the total transmis-
sion rate by 1 bit per component for a cascaded system using
repetition codes yields a signal-to-noise ratio increase of

SNR SNR

[dB]

However, the bounds presented might be improved in the future.

V. CONCLUSION

The paper presented bounds on the performance of imple-
mentable communication systems as a function of the overall
transmission rate . The systems employ a binary-lattice vector
quantizer for source-coding a bounded random input, and a bi-
nary linear channel code for transmission over a binary sym-
metric channel. The channel code is obtained as a Cartesian
product of short codes from channel code families with van-
ishing rate. Many well-studied linear channel codes have

proportional to some power of . We showed that for
such codes, using a rate allocation between source and channel

coding of as , one gets an asymptotic

distortion decay of . Since the exponent is sub-
linear in , we see diminishing returns in the per-bit perfor-
mance increase instead of the usual 6 dB/bit for error-free trans-
mission (or some other constant return for optimal or asymptot-
ically good codes).
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codes with a polynomial construction,”IEEE Trans. Inform. Theory, vol.
IT-30, pp. 353–355, Mar. 1984.

[9] C. Voss and T. Høholdt, “An explicit construction of a sequence of codes
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