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Source and Channel Rate Allocation for Channel
Codes Satisfying the Gilbert—Varshamov or
Tsfasman—\adut-Zink Bounds

Andras Méhes and Kenneth ZegEellow, IEEE

Abstract—We derive bounds for optimal rate allocation between result, the classical approach of Shannon, to transmit channel
source and channel coding for linear channel codes that meet the jnformation at a rate close to the channel’s capacity and to
Gilbert-Varshamov or Tsfasman-VEadut-Zink bounds. Formulas  gycqde the source with the corresponding amount of available
giving the high resolution vector quantizer distortion of these sys- . f fi th di i Instead t oft
tems are also derived. In addition, we give bounds on how far below In orma_ Ion, cannot be used In prac Ice. Instea ’.One must often
channel capacity the transmission rate should be for a given delay transmit data at a rate substantially below capacity. The amount
constraint. The bounds obtained depend on the relationship be- below capacity was determined in [2] for binary symmetric
tween channel code rate and relative minimum distance guaran- channels and in [3] for Gaussian channels. However, the
teed by the Gilbert—Varshamov bound, and do not require sophisti- results in both [2] and [3] exploit the existence of codes which

cated decoding beyond the error correction limit. We demonstrate h tiallv d - babiliti hieving th
that the end-to-end mean-squared error decays exponentially fast ave exponentally decaying error probabiliies achieving the

as a function of the overall transmission rate, which need not be expurgated error exponent. Although such codes are known to
the case for certain well-known structured codes such as Hamming exist, no efficiently decodable ones have yet been discovered.

codes. Various suboptimal algorithms do exist for vector quantizer
Index Terms—Error-correcting codes, source and channel cod- design for noisy channels, but their implementation and design
ing, vector quantization. complexities generally grow exponentially fast as a function of

the transmission rate of the system.

In the present paper we determine bounds on the optimal
|. INTRODUCTION tradeoff between source and channel coding for classes of
channel codes that attain the Gilbert—Varshamov bound. It is
Rnown that, asymptotically, a random linear code achieves the

desianed f el h | and a block ch | cod &tbert—Varshamov bound with probability one [4], [5] al-
esigned for a noiseless channel, and a block channel codery Shgh most known structured classes of codes fall short of the

signed independently of the source coder. A fundamental UEBund. The existence of certain Goppa codes, alternant codes
tion for this traditional “separation” technique is to determing,c 4,2 codes and double-circulant or qua'si-cyclic codes '

the optimal_allocation of availabl_e transmission rate betwegl, oot the Gilbert—Varshamov bound has been discussed
source coding and channel coding. Upper [1] and lower [ [6, p. 557]. A significant breakthrough was achieved by

distortion bounds on the optimal tradeoff between source a?gfasman VAdut and Zink [7], where sequences of algebraic
channel coding were previously derived for a binary symmetr ometry ,codes over Gf) (wit,h g = p®™ andp prime) were

channel. They exploit the fact that optimal source coding a nstructed from reductions of modular curves. These codes

optimal channel coding each contribute an exponentially d@)?ceed the Gilbert—Varshamov bound (in an interval of rates) if

caying amount to the total distortion (averaged over all mdeqx> 49. Katsman, Tsfasman, and3dut[8] showed that there

assignments), as a function of the gverall transmission rateié)fgm infinite polynomially constructible family of codes better
the SVStem' . . than the Gilbert—Varshamov bound, although the best presently
n practlce,' there is usually a constrqmt on theiove.ralil del?i}ﬁown (polynomial) algorithms are not yet practical. Another
and complexity of such a system. This constraint limits th plicit construction of codes above the Gilbert—Varshamov
lengths of source blocks and of channel codewords. AScarve was given recently in [9], but a detailed analysis of the
algorithmic complexity of the construction is presently lacking.
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standard reference on algebraic-geometry codes is [11]. In [12}andomization of index assignments is in general asymptoti-
variable inner codes and an algebraic-geometry outer code eadly suboptimal.

concatenated to obtain an exponentially decaying probabilityWe note that at present, implementation of channel codes
of error. achieving the Gilbert—-Varshamov or Tsfasmarad(itZink

To obtain results for families of channel codes attaining tfPunds is not computationally practical, but we conjecture
Gilbert-Varshamov or Tsfasman-adyt-Zink bounds, we only that future research will yield more efficient codes. Even
use the property that a positive monotone decreasing fungtiolithout such implementations, the present work serves as an
(in Proposition 2) exists describing the relationship between tifBProvement in the theoretical understanding of joint source
channel code rate and the relative minimum distance. Thus @ channel coding. _ o
same method of derivation could potentially be used to obtainS€ction Il gives necessary notations, definitions, and lemmas
similar bounds for other classes of asymptotically good chanréld Section lil presents the source and channel coding tradeoff
codes, some of which (e.g. Justesen codes BIokh—ZyabRﬁ?blem- Section IV gives basic results on bounds and error ex-

codes) are practical. However, it is often difficult to exhibit th@°nents. The main results of the paper are given in Section V
function g in an analytically tractable form. and one technically complicated proof is left to the Appendix.

Since our derivation relies only on a standard bound on the
probability of error which is valid even when bounded distance
decoding is used, we in fact demonstrate that the class of knowr he following notations will be useful in our asymptotic anal-
channel codes for which quantizer distortions decay to zero &%iS.
ponentially fast with increasing transmission rate includes cer-Notation: Let f(n) and g(n) be real-valued sequences.
tain suboptimal coding schemes. Note that families of channiten, we write
codes which are not asymptotically good need not have expo-, ¢_ () ifthere is a positive real numberand a positive
ne_nt|_ally decaying dlstortlo_n_ as a function of the overall trans- integerng such thal £(n)| < c|g(n)|, whenevemn > nq;
mission rate. Indeed, repetition codes and other classes of codes . .
with asymptotically vanishing channel code rates can have dis-* /. = o(g), if g has only a finite number of zeros, and
tortions decreasing to zero but not exponentially fast [13]. As f(n)/g(n) — 0asn — oo;
suggested in [2], the distortion decay rages fastewhenmore  * f = O(g), if there are positive real numbets and ca,
sophisticated decoding algorithms are used. and a positive integeto, such that: [g(n)| < |f(n)] <

The main results of this paper are as follows. In Theorem 1, calg(n)], for all n > no.
upper and lower bounds are given for the optimal tradeoff be-We obtain bounds on the optimal rate allocation for the cas-
tween source and channel coding for channel codes satisfyuzgled system depicted in Fig. 1. In this model, the source coder
the Gilbert—Varshamov or Tsfasman-adut-Zink inequalities. is a vector quantizer.
Theorem 2 extends a result of [2] for the optimal source—channelD finition 1: A J-di ional M-pointvect tizei
coding tradeoff over an unrestricted class of channel codes. The- etinition . -dimensiona M_pom vec orkquan 12€I15
orems 1 and 2 enable a comparison of channel codes that achfeVPPing fromk:-dimensional E“C"dea.“ spa& to a set of
the reliability function of the channel (and in this sense are o ° evect_orgyl, o Yn < ™. Asskpmated with each coc_ie-
timal for the given channel) and certain asymptotically go I::toryi Is anencoder regiorR; C IR , the set of all points in
channel codes that are independent of the underlying chan I..that are mapped.py the %uantlzem,o The set of encoder
Fig. 4 presents an example of the loss in channel code rate jons form_s a partition ai". The rate (or resolution) of a
to suboptimality. Note that the bounds compared need not \éeector quantizer is defined a8, = (log, M)/k.
the tightest possible in all cases. Theorem 3 gives the large-diA vector quantizer is commonly decomposed into a quantizer
mension performance of the optimal tradeoff determined in Theacoderand a quantizedecoder For each input vector, the en-
orem 1. In [2], the upper and lower bounds on the optimal rat@der produces the indéxc {1, ..., M} of the encoder region
allocation for “optimal” channel codes were shown to coincid®; containing the input vector. For each indgxhe decoder
for large enough dimensions (dependent on the bit-error proleastputs the codevectay;.
bility). Thus we do not derive the large-dimension performance The pth-power distortiorof a vector quantizer is
corresponding to Theorem 2, but in the example shown in Fig. M
7 we include bounds for both optimal and suboptimal channel Dy = Z/ lz —w:|” dp(z) (1)
codes for comparison. i=1 7R

Il. PRELIMINARIES

h h hi , , where||- || is the usual Euclidean norm, apds the probability
Throughout this paper we assume a randomized index &gsip tion of ak-dimensional source vector. The subscéijis

S|g;ment (ie.a uhmforn?ly rzndon;mapp;?lg OL\_/ector quan_nzg!’sed to distinguish the distortion on an error-free channel from
codevectors to channel codewords). While this assumptionyls, qisortion due to a noisy channel (to be discussed later). The

certainly suboptimal from an implementation standpoint, it p“?ﬂgh-resolution (i.e., larg&.) behavior ofD, can be described
vides a powerful mathematical tool for obtaining tight perforb

L . . Zador’s formula.
mance bounds, analogous in spirit to the classical random|zat|3/n
techniques used to prove Shannon’s channel coding theoreml.emma 1 (Zador [14]): The minimumpth-power distortion
The same index assignment randomization method was use@fi@ rateZ, vector quantizer is asymptotically given by
[1], [2], and [3] as well. Furthermore, it is not presently known Do = 27PR+OM)
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Fig. 1. Cascaded vector quantizer and channel coder system.

This is often referred to as the “6 dB/bit/component rule” fomany-to-one mapping. It maps received sequences of channel
p = 2, since symbols (not necessarily codewords) to messages. Denoting the
1010g10(2—PRs/2—P(Rs+1)) ~ 3p. channel codeword correspondingrtoby (™, and the set of

- o ) ] ) ~lengthn sequences decoded intdy S;, the transition proba-
In addition to the minimum distortion achieved by optimay,jjities of the coded channel are

quantizers, the asymptotic distortions of several other classes of n
. : . . . _ (m)
vector quantizers, including uniform quantizers and other lat- Bijm = E HP(M% )
tice-based quantizers, have the same high-resolution decay rate. - u€ S, i=1
m .
Definition 2: We call a vector quantizer that achieves th@lhereui’ G €{0,...,q — 1} are theith symbols o and

¢ respectively. Theverage pobability of decoding error
(for a uniform source) is

Motivated by the (nonbinary) alphabet size requirements 1 M
of algebraic-geometry codes, we consider channel codes over P = i Z (1= Buyo)- 3)
GF(g¢) and use ag-ary symmetric channel in our system =1 . o
model shown in Fig. 1. The following two definitions forma”yAlthough we never assume a uniform source, this definition of

introduce g-ary symmetric channels angtary linear block P, is notationally convenient in what follows. The following
channel codes. two lemmas state classical asymptotic upper and lower bounds

onP..
Definition 3: A discrete memoryless channisl a proba-

bilistic mapping from an input alphabet to an output alphabet L€mma 2 [15, pp. 140, 153]For everyr < C, there exist
B characterized bychannel transition probabilities?(b|a), Seduences dfn,rn) channel codes such that

i.e., the probability that the channel maps an input symbol P, < ¢ Emax(r)toln)

a € A to the output symbob € B. A g-ary symmetric channel whereC denotes the capacity of the channel, and

with symbol error probabilite € [0,1 — ¢~!] is a discrete Erax(r) = max (Ero(r), Eex(r))

memoryless channel having = B = {0,...,¢ — 1} and
channel transition probabilities

€
Plalb) = It (1 — €) + Iigy ——, . .
(alt) o=ty (1= Lfarty g—1 Lemma 2 characterizes the class of channel codes considered
a,be {0,...,g—1} (2) in[2]. For easier reference, we introduce the following termi-
where! denotes the indicator function. nology.

asymptotic distortion of Lemma 1good vector quantizer

is the maximum of the “random coding” and the “expurgated”
error exponents.

Definition 4: An (n, k) block channel codis a set of length ~ Definition 5: We call a block channel code that achieves
n strings ofg-ary symbols, calledtodewordsA linear g-ary the asymptotic error exponent in Lemma 2edficient channel
[n, k, d], block channel codés a linear subspace ¢6&F(q)]*, code
containingM = ¢* codewords, each (except the all-zero code-
word) with at least! nonzero components. The number=
k€ (0, 1] is thechannel code rate

Associated with a channel code ihannel encodeand a ] .
channel decoderThe channel encoder is a one-to-one mapthereEs,(r) is the “sphere packing” error exponent.

ping of messages (e.g., quantizer indices) to channel COdeW(_)rd%e notationE,.. is used instead of the usul. to avoid confusing the
for transmission. The channel decoder, on the other hand, isubscript and the rate

Lemma 3 [15, p. 157]:Any sequence ofn,rn) channel
codes on a discrete memoryless channel must satisfy
P. > ¢ B (r)to(n)
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While Lemma 2 is an existence result, Lemma 3 holds for / 2 -y, |17 dulz) (5)
all channel codes. The error exponent functions depend on the ; /

channel statistics. Definitions &.., E.x, and £y, in terms of
the transition probabilities of a discrete memoryless chann€él,™ , :
and a derivation of closed-form expressionsgary symmetric the [ntegers{l, M }_' The averagmg“effec,:tlvely replaces_ the
channels are given in the Appendix. All three of these error eS%!'g'”a' g-ary symmetric channel by a “new! -ary symmetric

ponent functions are known to be positive and convex in tfg@nnel whose symbol error probability equals the average
range0 < r < C. probability of channel decoding errd?. of the underlying

Another element of our system model shown in Fig. 1 is aqpannel. We have
index assignment.

1

here the sums over are taken over alll{! permutations of

1
Definition 6: An index assignment is a permutation of the  Ag! Z Br(i)lnti)
index set{1,...,M}. N

M M
1
The purpose of an index assignment is to match a vector quan- = Z Z Z Bl {m(iy=t,x(j)=m}
tizer and a channel coder in a cascaded system in order to min- 7 I=lm=1
imize the end-to-end distortion. Distance properties of channel M 1
codewords and quantizer codevectors should be aligned, so that = Lii=j) Z ﬁlllM Z Lim(i=1y
on average a likely channel error (small Hamming distance) re- ’=1M " g
sults in atolerable quantization error (small Euclidean distance). 1
+ Lz Z Z /%uM Zl[w(i)zl,ﬂ'(j)zrn}
=1 m=1 T or
I1l. PROBLEM FORMULATION = m#£l
. . . . . M
Consider ak-dimensional vector quantizer cascaded with a . ZB (M —1)!
channel coder operating overgaary symmetric channel with Il ~ T
a fixed overall transmission rat® measured in bits per vector Y
component, as shown in Fig. 1. For edeldimensional input + T Z(l ) (M —2)!
vector, a channel codeword consistingrofy-ary symbols is 7 M!

=1
transmitted across the channel to the receiver. The transmission

rateisk = (nlog, ¢)/k. Letr € [0, 1] denote the rate of@ary = Ti=y (1 = Po) + Ty % (6)
[n, rn, d]4 linear block channel code, whetigs the minimum

distance of the code (irary symbols). The source coding rat%ubstituting (6) into (5) yields

and the overall transmission rate are relatedkby= Rr. Let M

denote the number of quantizer codevectors (equivalently, the M

number of channel codewords). Thed,= 2% =2k =g™. 5 _ (1-P) / & — 9,||P dy(z)

For each input vectar € IR¥, the quantizer encoder produces ‘ = IR, ’

an integer index € {1,..., M}, which in turn is mapped to M M

another indexr(i) by an index assignment. The channel en- + Fe Z Z / |z — . ||” duz). (7)
coder transmits the (¢)th-channel codeword throughgary M-1 = IR ’

symmetric channel( g-ary symbols corresponding kaz bits). J#

At the receiver, the channel decoder reconstructs an in¢gx

from the (possibly corrupted) g-ary symbols received from The sum in the first term of (7) is the distortion for a noiseless
the channel. Then the inverse index assignment is perfornfdtannel. We assume that the source has compact support, in
and the quantizer codevectpy € IR* corresponding to the re- which case

sulting index; is presented at the output.
M M

For a given index assignment the averageth-power dis- 1 »
tortion can be expressed as EZZ/R lle—y;[|? du(z)
M M =t ’J;} '
D) =33 atieoy [ o~ yilP duta). @) L
== R, <MD e eyl [ dutz)
) ) M—1¢4 TR, jH#i IR
There are no known general techniques for analytically deter- ] =1 !
miningmin, D(x). As an alternative, we randomize the choice <diam (1)

of index assignment. This technique serves as a tool in obtaining

an existence theorem, and also models the choice of index akerediam (1) is the diameter of the support region. Unless
signment in systems where index design is ignored. Hence, the source is deterministic, a nonzero lower bound on the same
examine the following distortion: double sum can be obtained using tiile-moment type quantity

1 M M 1
D=3p 2 D=3 2 [M Z%W] ) =min [ iz = gl duo).
v v y ]R]"

i=1 j=1
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Namely, E1vz for channel codes that satisfy the Gilbert—Varshamov
1 M M and Tsfasman—\Vdut-Zink inequalities, respectively. All
U1 Z Z / ||z — y; || du(z) five of the_se error exponents can be. concisely written }Jsipg
i=1 j=1 "7 g-ary versions of the entropy, the relative entropy, and Rényi’'s
Gl entropy of orderl /2. We start with the general definitions of
1 M M these information measures.
= z—y||P du(e .
M-1 ; ; /7? I yjlI* dulz) Definition 7: Let P and P be probability distributions on a
M finite set.
Th fPi
- [ e —yinf’du(x)> eentopyot 718
i=1 R H(P)=-)" P(z)log, P(). (11)
Muvp(p) = Do
z M1 = vp(m). ‘
Note that both the upper and lower bounds above depend sol1(_ali1ye relative entropybetweenr” and I is
on the source and not on the channel. Thus returning to (7) we D(P||P) =" P(z)log,y(P(x)/P(x)). (12)
have ©
D= (1= P.)Dy+ P.O(1). ®) The Rényi entropy of ordes of P is
1 @
We assume a good vector quantizer and an efficient channel Ha(P) = 1—a log, Z[P(x)] (3)

code. Then, using Lemma 1 to bouhg, and Lemmas 3 and 2

to boundP., the averaggth-power distortionD of a cascaded for « > 0, a # 1. Jensen’s inequality implie§ () > H(P)
source coder and ratechannel coder, with transmission rate  for a € (0, 1), andH,(P) < H(P) for a > 1. Details of
can asymptotically (a& — oc) be bounded as Rényi's information measures are given in [16].

2 PRr+OQ) 4 o= kREy(r)+o(R) Next, we introduce the variougary entropy functions de-
< D < 27PRHOQ) | 9—kREnx(r)+o(R) (g) fined for one-parameter distributions related to the transition

probabilities of ag-ary symmetric channel.
where the error exponents have been scaled by a factarqof

as compared to Lemmas 2 and 3, in order to change the uniPefinition 8: Let¢,§ € [0,1 — ¢~*], and letP, andP; be
of block length from symbols to bits. The minimum value oprobability distributions 040, .. ., g—1} with respective prob-

the right side of (9) over alt € [0,1] is an asymptotically abilities(1 —e <., <), and(1 -6 2., 25).
achievable (agt — o) distortion D, and the minimum value ~ Theg-ary entropy functions defined as

of the left side of (9) is a lower bound ab for any choice of A - )

7. Let rmax andrg,, respectively, denote the valuesrofvhich Hy(e) = H(Pe)/logy g = clog,(q — 1)

minimize (asymptotically) the right and left sides of (9). Then —elog, e — (1 —¢)log, (1 —¢). (14)

Tmax < 7 < 755, Wherer™ is the optimal rate allocation. It can For g = 2 this gives thebinary entropy function
be seen that to minimize the bounds in (9), the exponents of the

two decaying exponentials in each bound have to be balanced, h(c) = —elogy e — (1 — ¢)log,(1 — ¢).

so that The derivative oft, with respect ta is

Ex(rx) = 1—;7’;( +o(1) (10) H(€) =log,(q—1) —log, e +log,(1—¢)  (15)

where formallyX € {sp, max} ando(1) — 0 asR — oo. The and the second derivative is
distortion achieved with a channel code raten this case is (e = log, e
D = gPRr+O), 9=y

The values Ofr,., andr., were determined in [2] for effi- Thus ,(¢) is concave, strictly increasing o, 1 — ¢~'],
cient binary channel codes. We investigate the problem of op?d achieves its maximurfi(,(1 — ¢~*) = 1 and its min-
timal rate allocation for channel codes that attain the Gilbeftaum #,(0) = 0. The notation}{,* denotes the inverse of
Varshamov bound and/or the Tsfasmar&dt-Zink bound (or Hq:[0,1 — ¢ '] — [0, 1]. Clearly, H, ! is convex, from (16).
“basic algebraic-geometry bound”). Such codes are in geneféle capacityof a g-ary symmetric channel with symbol error
weaker than those in [2], but are potentially less algorithmicalfgrobabilitye € [0,1 — ¢~'] expressed ig-ary symbols is

. (16)

complex. Our results also generalize those in [2]-&ry chan- C, =1 —H,() 17)
nels. 1 ar
The (g-ary) relative entropy (information divergence) func-
IV. ERROREXPONENTS tion is defined as
In this section, we present the classical channel coding error D,(6|le) = D(Ps||P.)/ logs ¢
exponentd,., Eex, and E;;, specialized to g-ary symmetric § 1—-6

channel, and derive two newary error exponent®cy and =blog, P (1—é)log, 1_ ¢ (18)
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which can also be expressed in terms ofgkary entropy func- bounded away from zero as the block lengtincreases. Usu-
tion as ally, bounds are given in the forth> ng(r) orr > g~ 1(d/n),
_ y for some monotonic decreasing functign In this paper we
Dq(élle) =Hqle) + (6 = O () = Ho®)- - (19 onider two of the best known such bounds, the Gilbert—Var-
For|6— €| small, a Taylor series approximation®f,(6) around shamov bound and the Tsfasmanatjt-Zink bound (see [11,
e gives p. 609] for a summary of these and several related bounds).

D,y (8]e) = _%(5 — O?HI(e) +O(|6 — ¢*).  (20) Definition 9: An [n, nr, d], code is said to satisfy the
* Gilbert—Varshamov bound, if
We restrict attention to Rényi's entropy of ordef2, and the
corresponding channel capacity of ord¢® for a ¢g-ary sym- r 2 1="Hy(d/n);
metric channel. The-ary entropy function of ordet/2 is de- « Tsfasman-\Adut-Zink bound, if

fined as 1
r>1—d/n— -1

Hfll/?)(e) %( )/10g2q_210gq(\/1—6+\/e (g—1). - / (V4 )
(21) The following lemma provides a bound on the tail of a binomial

. . _distribution.
The capacity of ordet /2 of a g-ary symmetric channel with

symbol error probability € [0,1 — ¢~1] expressed ig-ary ~ Lemma4[15, p. 531]:Foré > ¢ >0
symbols is n <

2.

051/2) —1_ H,(II/Q)(C) (22) i=né

ﬂ) 61(1 _ 6)n—i < 2—nD2(6||e)'

2

which Csiszar [16] showed to equal the “cutoff rate” of the Proposition 2: If an [n, rn, d], linear block channel code has
channel. minimum distancel > ng(r) for some positive monotone de-

The error exponents of Lemmas 2 and 3 can be specializegteasing functiory, then the average probability of decoding
ag-ary symmetric channel as follows (the proof of Propositiondrror on ag-ary symmetric channel with symbol error proba-

is given in the Appendix). bility e satisfies
Proposition 1: P, < 27 P2(z90ll0) € (0,9 1(26)).
Eop(r) =Dy(H7 (1 = 1)lle) r€(0,Cy) (23) Proof: Since a code with minimum distandean correct
1/2) _ i at least| 45 | errors
Elr) = Cy - T r € (0,r9] (24) 2 ‘
Dy(Hy (1 =7)le) 7 € [r2,Cy) n n e Y
B v rs Y (De-va-om(L5) @
Eex(r) = { </(> mrom St e 71]( 2 e
Cy V2 _ r € [r1,Cy 1/2 = ny ; i
[r1 (2)5) < Z <i>ef(1—e)' ’ (28)
i=ngg(r)
where < 9—nDa(5g(rle) (29)
D=1 _ P R
q me=1-H,(1-q ) where inequality (28) follows from
an
d—1
1 (g=1)e {—J+1>d2>n r)/2
=t (A, |+ 1z 2z ey
Also, sincer, < 0(51/2) < €, andr < rofore <1—q), and inequality (29) from Lemma 4. O
we have The bound onP. in (27) used to obtain Proposition 2 holds
HH(1 — 7)log, —a r e (0,7] even when bounded distance decoding is used in the channel de-
¢ ¢ © coder. While tighter bounds aR. would also improve the rate
Ernax(r) = O(gl/ 2 _ r € [r1,r2] allocation bounds derived later in the paper, we opted for the
Dq(Hq_l(l —)le) r € [r2, Cy). “standard” bound (inequality (27)) for two main reasons. First,

(26) rate allocation bounds are already available for efficient channel
codes assuming optimal decoding [2]. Our goal is to show that

The lower bound o, given in Lemma 3 holds for an arbi- certain suboptimal coding schemes also achieve a high-resolu-
trary code. The upper bound of Lemma 2, however, is an ext#n distortion which decays to zero exponentially fast with in-
tence result. Analogous upper bounds, and corresponding emaasing transmission rate. Note that this need not be the case in
exponents can be obtained for “asymptotically good” familiegeneral [13]. Second, (27) depends only on the minimum dis-
of codes. tance, which enables us to directly apply the funcgaelating

For a sequence @f., nr, d) codes to be asymptotically good,the rate and the relative minimum distance, without any further
both the rate- and the relative minimum distandgn must be assumptions on the structure of the channel codes. The upper
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bound onP. given in Proposition 2 only depends on the coder, equivalently,
parameters andr, the symbol error probability, and the func- o/ I
tion g. The following two corollaries follow immediately from Min = G377/ (14 (p/R)).

Proposition 2 and will also be useful in what follows. If & is fixed, ande approaches zero, thep,, — (1 + (p/k))~*
andr; — 1. Hence,ry, < 1 for e sufficiently small. Thus
for e sufficiently small,r,..x < 71 and it, therefore, suffices to
restrlct attention tdv. instead ofF,,.,. (see Fig. 2(a)).

If ¢ is fixed andk increases, them;, — 0(1/2). Hence,
rin > 12 for k sufficiently large. Thus fok suﬁiciently large,
Tmax > 72 and thus it suffices to restrict attention ). instead
of Enax (See Fig. 2(b)). Also note thd,.(r) = E.,(r) for all
r€[re, C,). Thus the upper and lower bounds coincidé: &s-

Corollary 1: Consider the cascade of a gokdiimensional
vector quantizer, g-ary linear block channel coder that achieves
the Gilbert—Varshamov bound, and;ary symmetric channel
with symbol error probability and overall transmission rafe
Foreveryr < 1 —H,(2¢) = C,(2¢), the average probability of
channel decoding error satisfies

P.< 2—kREGV(1’)

where creases, and hence, it suffices to consiélgy.
1 Next, we examinds!, .. Forq < 49, E/ . = Egv for all
Egv(r) =D, <§H;1(1 — 7‘)||6> (30) r. Forg > 49, note that, is independent of both ande and
depends only og. Thus fork fixed, ande decreasing?r; (the
is the Gilbert—Varshamov error exponent. right-hand side of (10)) is constant, whereas
Corollary 2: Consider the cascade of a gobdlimension- Dy(H; (1 = 715)/2]le)

al vector quantizer, g-ary linear block channel coder that

achieves the Tsfasman-adytZink bound, and g-ary sym-

metric channel with symbol error probability and overall

transmission raté. For everyr < 1 — (/g — 1)™! — 2¢, the Dy(H, (1 —7%)/2]|¢) > _72 (32)

average probability of channel decoding error satisfies
P, < 27 FEFrvz ()

(the left-hand side of (10)) increases without bound. Hence, for
¢ small enough

SinceZr is a monotone increasing function ofand £y, ()
is monotone decreasing in (32) implies that if

where p
/ / /
1 -1 Emax( max) - max
ETvz(T) = Dq <§(1 -7 — (\/a — 1) ) 6) (31) k
) ) thenr] .. > 5 (see Fig. 3(a)). For fixed andk increasing £ %
is the Tsfasman—\dut-Zink error exponent. (the right-hand side of (10)) is decreasing, while
Analogousl/y tOF ax(7) = max(Eye (1), Eex(r)), we define Dq(r}_[;l(l —)/2le)
Erax(r) = max(Egy (r), Erva(r)). (the left-hand side of (10)) is constant. Hence, folarge
Forg <49, E,.x(r) = Eav(r). Forg > 49 enough, (32) holds, and by the same monotonicity argument
Dq(%(l —r— (/72— D YYle), used abover! .. >4 (see Fig. 3(b)). Consequently, it suffices
P B r € [r],15] to work with E¢y instead ofE/ .. Thus we henceforth omit
max(7) = D (AHTH(1 = 7)[|e), Ervy from our analysis.
r € (0,71] U [r5, Cy(2¢)) We note that a slightly more complicated differentiable

bound relatingd/» andr is also known. This bound, called
“Vladuts bound” [sic] in [17], effectively “smoothes the
edges” of the maximum of the Gilbert—Varshamov and
Tsfasman-\Adyt-Zink bounds. Applying Proposition 2, a
“VI aduterror exponent” could also be obtained, but there exists
The bounds we obtain on the optimal rate allocation in a cag-rate, analogous te, (independent from and &), beyond

caded vector quantizer and channel coder system are functigpsch the VEdytand Gilbert-Varshamov error exponents co-
of the vector dimensioh, the channel symbol error probabilityincide. Hence, by the same argument given above, it suffices to

¢, and the parameterin the distortion criterion. These boundsrestrict attention tdy instead of the VAdyterror exponent.
do not depend, however, on the source statistics. We obtain an-
alytic bounds on the optimal rate allocation for two important
cases of interest: a large vector dimensioand a small symbol A. Small Bit-Error Probability
error probabilitye. In each case, the remaining parameters areé, s section, we determine the behavior of the solution to
assumed fixed but arbitrary. To obtain these bounds, we analy&g) for smalle, and fixedk andp. First, we set = H(1—r)
the error exponentsy,, Emax, and ey, _and rewrite the error exponents as
First, we note that on the intervdty,r»], the function
Eoax(r) = C&? — 1 is linear. Letry, be a solution of (10)  Esp(6) =Dy(é]le), s§€(e,1—q) (33)
(for X = max) such thatry, € [r1,72], whenever such a E(8) = 8lo q—
solution exists. Then ex(8) =0log, HYP () _

K ——

wherer] < r4areroots ot (1—r) = 1—r+(,/g—1)~".(In
[7] this equation is shown to have two distinct rootsdas 49.)

V. OPTIMAL RATE ALLOCATION

p
7 lin sell— q_H(qw)(F), 1—-¢7") (34)
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0.4 0.6
Channel Code Rate

@

0.4 0.6
Channel Code Rate

(b)

Fig. 2. A graphical solution to (10) faE...x (p = 2, ¢ = 64). The solid curves sho,,,.x(r) for different values ot, and the dashed lines have slgpé:.
The two dots on each error exponent curve correspomg emdr-. (@) Small bit-error probability. (b) Large vector dimension.

Eav(8) =D, (6/2|l6), §€ (26,1 —q ). (35) where formallyX € {sp, ex, GV}
7(6) =1 —=Hy(6) (37)
Next we find a real numbefy that satisfies andc = p/k. Then, we obtain the solution to (10) by setting
T = 7(0x) + o(1) (38)

Ex(6x) = cr(bx) (36) where theo(1) term vanishes a8 — cc.
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Fig. 3. A graphical solution to (10) faE’ .. (p = 2, ¢ = 64). The solid curves sho&’___(r) for different values of, and the dashed lines have slqpé.

max max\

The two dots on each error exponent curve correspom¢ smdr. (&) Small bit-error probability. (b) Large vector dimension.

Observe that the sphere packing and Gilbert—Varshamov &herei = 1 whenX = sp, andi = 2 whenX = GV. Using
ponents can both be written as (72) and (70), the expurgated exponent can be rewritten as

Ex(6) =Dy (6/ile) Eux(8) =—6log, (2,/(1 ——— + (4 - 2)——
et

6 _
- (1 - 5) log;, (1 - ) (39) ! (40)

[y
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Sinceé is bounded, the dominant term on the left-hand side of To obtain the right-hand side of (36) as a functiorgf, we
(36) (as given in (39) and (40)) equaly/<) log, 1/cin all three write
cases, while the right-hand side is bounded betvéesamdc, in- et ;
. X 1c+ax
dependent of. Hence, as approaches zero, for equality to holdrx (cx) =1— los <10gq(q— 1)—log, 7)
. 1 og,1/e log, 1/¢
in (36), 6 has to approach zero at least as fasflag, 1/¢)~". £ ‘ 1
On the other hand, the right-hand side of (36) approaches the + <1_ wetax ) log <1_ et ax )
finite constant if § — 0. Thusé cannot converge to zero faster log, 1/¢ ¢ log, 1/¢
than (log, 1/¢)~* for the left-hand side to stay bounded away 4 fctoax
from zero. We therefore conclude that the solution to (36) must o log, 1/¢

(log,(g—1)

be of the form —log, (ict+ax)+log, log, 1/¢)
ic+ ax . .
§x = (41) <1 'Lc—l—ax) ict+ax log ¢ 1
. — — +O -
log, 1/¢ log,1/¢ /) log,1/¢ Ba log? 1/e
whereay — 0ase — 0, and: = 1 whenX = sp, andi = 2 ictax oz log log
whenX ¢ {GV, ex}. To characterizéx more preciselygx =T log, 1/6( og, log, 1/¢+log,(¢—1)
has to be determined. In what follows, &l(-) terms go to zero .
ase — 0. _ . . —log,(ictax)+log, e)+O | —5—— | .  (44)
Substituting (41) in (39), and applying power series expan- log; 1/e
sions yields . . Next, we proceed to solve (36) fary. Comparing (36),
Ex(ax) = .LC + ax [Og .LC+ fa% +log 1/6} (42)—(44), we conclude that
ilog, 1/¢ “ilog, 1/¢ 4
it o log, log, 1/¢
L (1 fetax =0 Tog, 17 )
ilog, 1/¢ 8q
log ic+ ax log Based on this observation, they, (c + (ax /7)) terms in (42)
“logg {1 - ilog, 1/e +log,(1—¢) and (44) can be further expanded to obtain
=c+(am/i)—w Ex(ax)=c+(ax/i)
ilog, 1/e ict+ax oo Low 1 /e —lon ax log, e
- [log, log, 1/¢ —log (c+ (s /1))] - W og, log, 1/e—log, c— —
<1 ic+ ax ) 1
-\ dlog, 1/ +O0(a%)+log, c| +O| —5—
ilog, 1/ (o) +log, C} <10g3 1/6)
; 1 ,
LN oy et O —— | +0(0) =c+(ax /i)
ilog, 1/ log; 1/ ¢ [log, log, 1/e—log, c+log, €]
———|log, log,1/e—log, c o e
=c+(ax/i) log, 1/e 87984 &q &q
ic+ ax
— =2 7 Nog log. 1 ax ) ) ) 1
ilog, 1/6[0gq 0z, 1/¢ - Wﬂogq log, 1/e—log, ]+0O <m>
21/
1 c
108q(c + (ax /4)) + log, ]+ O <10g§ 1/6> ¢ log, 1/6[ 08, 1084 /€ og, ¢+log, ]
(42) oy /i) <1_ log, log, 1/¢~log, c)
wheres = 1 for X = sp, ands = 2 for X = GV. log, 1/¢
The same steps applied to (40) result in < 1 )
2c+ «, 1 2 (45)
Eex ex =—= —log, 1 IOglé
(crex) log, 1/¢ {2 08, 1/ o1/
and
[1—e¢ Ve
—log <2 — +(g—2) )} ;
e g—1 q—1 rx(ax)=1- LCTFQX <10gqlogq 1/e — log,(ic)
et (e f2) — 2o Qe 108 /¢
= ex - ﬁ ax 10g &
. Sq / — Tq + O(ch() +log, e(q — 1))
. [5 log, (¢ —1) —logq2+0(\/g)} < .
2c+« 2
= o /2) — T Tex log 1/6)
¢+ (ex/2) 21qu1/6 icq
1 =1- m(logq log, 1/¢ — log,(ic)
flog,(g—1) —log, 4|+ O | —5— | . (43) q
log; 1/¢ +log, e(q — 1))
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X

__“ (log, log, 1/c +log, (g — 1) Theorem 1: Consider the cascade of a gobdlimensional
log, 1/¢ vector quantizer, g-ary linear block channel coder that meets
) 1 the Gilbert—-Varshamov bound or the Tsfasmaraejt-Zink
—log,(ic)) + O <m> : (46)  bound, and a-ary symmetric channel with symbol error proba-
q

bility e. The channel code raté that minimizes theith-power
1) Sphere Packing and Gilbert-Varshamov Exponer8sb- distortion (averaged over all index assignments) satisfies
stituting (45) and (46) into (36) and rearranging terms yields

p p
~{ log log, 1/e —log, = + log -1
0 =i(Ex(ax) — crx(aX)) [k( 0z log, 1/¢ pog’q R T losgela ))]J
— ax[L — (1 - ic)(log, log, 1/c ~ log, 0 [1og, 1/¢ - (1 = 2)(tog, log, 1/ ~ log, )
— ic(log,(q — 1) — log, 9))(log, 1/¢) 7] P g ( 1)}_1 O< ) "
ic . + = og,\q — + o +o
- 1()8(1—1/([(1 —ic)(log, log, 1/¢ —log, c +log, ) k ) log; 1/¢
<l-7"<
, , 1 2p 2p
— ic(log, (q — 1) — log, i)] + O . P (10, 10g, 1/ — log, £ +1log, e(q — 1
te(log,(q — 1) — log, 4)] + <10g§ 1/6> [k ( og, log, 1/e pogq ;T loggelg )2}
Thus . logql/c—(1—2%)(10gq10gq1/c—10gq%

ax = [ic(1 —ic)(log, log, 1/¢ —log, c+log, e) 2p -1 1
) ) +ZLlog (g—1)—log, 2)| +0[——]+01
— (i0)*(log,(q — 1) ~ log, 1] i ola = 1) < log,2) o1 ) T

llog, 1/ = (1 —ic)(log, log, 1/¢ — log, ) where theO (1. ) term goes to zero as— 0 for any trans-

1 issi 3
+ic(log,(q — 1) — log, i) + O <1 > ) . mission rateR, and then(1) term goes to zero a8 — oo.
o o _ 0g, 1/ A crude comparison of the upper and lower bounds in
Substituting this in (46), gives Theorem 1 shows a factor efdifference in the asymptotically

rx =1 - [ic(log, log, 1/¢ — log, ic +log, e(q — 1))] dqminante-dependent term for channel codes that attain the

[log, 1/¢ — (1 — ic)(log, log, 1/ — log, ¢) Gilbert—Varshamov bound. The same phenomenon was ob-

4 777 4 served in [2] for efficient binary channel codes. Next, we derive
, ) -1 1 more precise bounds for efficiegtary channel codes based
+ic(log (g — 1) —log, )] + O <1Og(21 1/€> : on the expurgated error exponent, and we present an example
Now, using (38) the bounds on the optimal rate are summariz,%’dﬂparing the °p“”."a' _r_ate—alloc_:ation bounds for channel codes
in the following two lemmas. at achieve thg rellab|I_|ty function of the channel and channel
codes that attain the Gilbert—Varshamov bound.
2) Expurgated ExponentSubstituting (43) and (46) into

(36) and rearranging terms yields

0= 2(Eex(aex) - Crex(aex))

1
= ex <1 — 108(1—1/6 [logq (q— 1) —logq 4

Lemma 5; For anyp andk, and sufficiently smalk > 0
* p p
rh,=1- [Z (1ogq log, 1/¢ —log, % +log, e(q — 1))}

p p
. [logq 1/e —(1 - E)(logq log, 1/e— log, E)

p -t 1
“log, (¢ —1 O ———— 1
+ k 0g,(q )} + <10g§ 1/€> +o(1) — 2¢(log, log, 1/e+log, (¢—1)—log, 2—log, c)])
where theD(—1—-) term goes to zero as— 0 for any R, and 2
(iogz 17e) term g Y - [log (g—1)—log, 4
theo(1) term goes to zero aB — oo. log, 1/¢ 1 1
o —2c(log, log, 1/e+log,(g—1)—log, 2
Lemma 6: For anyp andk, and sufficiently smalt > 0 1
2p 2p —log, c+log }+O — .
rev=1— [?(logq log, 1/e~log, ?—i—logq e(q—l))} 8g ctlogg ¢) log? 1/e
2p p
. [logq 1/6—(1—?)(10,5_{(1 log, 1/e~log, E) Thus

2p _ 1 Qex = 2¢ - [log, (¢ — 1) —log, 4
+- (log,(¢—1)—log, 2)} +0 g2 1e +o(1) — 2¢(log, log, 1/¢ +log,(q — 1)
—log_ 2 —log log,
where theO( 17 ) term goes to zero as— 0 for any R, and logq Olgq ‘c + log, 6)]1 ‘
the o(1) term goes to zero a8 — oc. [log, 1/ —log (g — 1) +log, 4

o _ ) + 2¢(log, log, 1/¢ +log, (¢ — 1) — log, 2 — log, ¢)]~*
Combining Lemmas 5 and 6 gives the desired bounds for op- (log, log, 1/ ol ) ! «)

timal rate allocation for codes attaining the Gilbert—Varshamov 1
bound, as summarized in the following theorem. logg 1/e
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which when substituted into (46), gives sphere-packing error exponent. The lower bounds, however,
are identical only to the precision afforded in [2]. The main
rex = 1 = 2¢[(log, log, 1/¢ — log, 2¢c + log, e(q — 1))] rationale for our more complex formulas is to pinpoint the dif-

- [log, 1/€ + 2¢(log, log, 1/¢ —log, 2c+log, (¢ — 1))  ference between the two categories of channel codes (i.e., those
1 that achieve the reliability function of the channel and those
—log, (g — 1) + log, 47t +0 <2—> . that attain the Gilbert—-Varshamov bound). Fig. 4 compares
log; 1/ the rate-allocation bounds of Theorems 1 and 2¢foe 64.

Now, using (38), the bound on the optimal rate is summarizadi€ choice of alphabet size is motivated by the requirement

in the following lemma. on algebraic-geometry codes needed in order to lie above the
Gilbert—Varshamov bound, but the bounds for other values of
Lemma 7: For anyp andk, and sufficiently smale > 0 q display similar behavior. The solid curves correspond.fo
2% 2% the upper bound in both Theorems 1 and 2. The dotted curves
Tex=1— [?(108}1 log, 1/e—log, ?Jrlogq C(q—l))} represent .y, the lower bound in Theorem 2. The dashed
2p 2p curves showr! .., the lower bound in Theorem 1. Thus the
| [logq 1/6+?(10gq log, 1/e—log, 7 dark shaded regions represent the uncertainty of the bounds of
-1 Theorem 2 and the corresponding light shaded regions show
+log,(g—1)) ~log,(g—1)+log, 4} the discrepancy between the bounds of Theorems 1 and 2. The
1 curves plotted do not omit an(-) terms.
5 (1) Note that by substituting
<10gq 1/6)
L log, log, 1/¢
where theO(W) term goes to zero as— 0 for any R, and ax =0 <17>
a og, 1/¢

theo(1) term goes to zero aB — oc.

Combining Lemmas 5 and 7 establishes bounds for the dgfitectly into (41), simpler expressions fox can be obtained
timal rate allocation based on “random coding.” These exteAdl the expense of precision. Figs. 5 and 6 provide additional
the results of [2] taj-ary channels. motivation for the more intricate analysis. The curves obtained

) ) . numerically without omitting ang(-) terms are denoted by .

Theorem 2: ConS|der_ t_he casche of a gobdlimensional The approximations (omitting th@(-) terms) given in [2] are
vector quantizer, an efficientary linear block channel coder, denoted by(HZ), and those given in Lemmas 5 and méS/Z)_
and ag-ary symmetric channel with symbol error probability The expres;(ions we used fté{{Z) (see [2, Theorem 1]) are
The channel code rate' that minimizes thesth-power distor- '
tion (averaged over all index assignments) satisfies

AHZ) p log, log, 1/

p p P ko logy1/e

[E (logq log, 1/¢ —log, Z +log, e(q — 1))} and ogy /¢

. [1ogq 1/e—(1— %)(logq log, 1/e PHZ) _q _ 2p log, log, 1/6'
o ko logy1/e

P, P -1
—log, =)+ = log, (¢g—1
! k) k ol )} The illustrations in Figs. 5 and 6 are for= 2, p = 2, and

0(2;) + o(1) k = 8. We note that the curve fot,, is closely approximated
log; 1/€ by Lemma 5. The situation is similar fogy (not plotted here).
<1-7"<
[%P (bgq log, 1/¢ - log, %P +log, e(q — 1))} B. Large SOL-JI’CG Vector Dimension. |
P In this section, we analyze the optimal rate allocation for large
: [bgq 1/e+ QE(Iqu log, 1/e source vector dimensions. As noted earlier, it suffices to ex-
p -1 amine the sphere packing and Gilbert—Varshamov exponents for
—log, 27 +log, (¢~ 1)) ~log,(¢ — 1) +log, 4} k sufficiently large. Solutions of (10) based on these two expo-
1 nents provide upper and lower bounds for the optimal-rate al-
O(m) +o(1) location for systems using asymptotically good codes that meet

the Gilbert—Varshamov bound. The upper and lower bounds on
where theo(m) term goes to zero as— 0 for any trans- the optimallrate poincide for efficient channel codes, siEge
mission rateR, and theo(1) term goes to zero ak — oc. andF,. are identical folk large. Hence, an exact asymptotic so-

lution of the rate allocation problem is possible, if the channel

The dominante-dependent terms in the upper and lowegodes used obey Lemma 2. Thus in what follows we concentrate
bounds of Theorem 2 differ only by a factor ®f This was gn the Gilbert=Varshamov case.

derived in [2] for efficient binary channel codes and observed we combine (23) and (30) to obtain

in Theorem 1 for generak-ary channel codes that meet

the Gilbert-Varshamov bound. The upper bounds of Theo-, . 1, ] i .

rems 1 and 2 are identical, since they both derive from th x(r) =Dy <{H(1 A=nlle),  7€(0,C() (47)
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Optimal Channel Code Rate 1’

1 1 1 1 1 1

1077 107° 107° 1074 1073 1072 107!
Bit Error Probability €

Fig. 4. A comparison of the upper and lower bounds on the optimal channel code rate as given in Theorems 1jasd2 fpe= 64. Fork = 1,4, 16,64, the
solid curves show.,,, the dotted curves,,.., and the dashed curve§, ,, respectively. Fok = oo, ro, = Tmax = C,y(€) andr! = C,(2¢) are displayed.
The corresponding triplets of bounds are indicated by shading. The lightly shaded regions illustrate the rate loss due to suboptimality.

whereC, (i) = 1—H,(i¢),andi = 1whenX =sp,andi =2 we can rewrite (50) as
whenX = GV. First, the value of x satisfying

1 i)k
—.Hq_l(l—TX) =€+ (i)

7 TH! (t€)

P q
€)==>rx (48) . . .
k which approaches ask — oo. Applying (20), gives

+O0((@i)3)
Dq <%H(I_l(1 — 7’X)

is found, and then a solution to (10) is obtained by setting D, <l7—[q1(1 —rx) 6)
1
2
7’} =rx + 0(1) (49) _ _Hg(t) (-T7)k N2 N3
whereo(1l) — 0 asR — oc. HY () ()2 s
The error exponents are decreasing functions of the rate and = —m + O((z:)y) (51)
q

vanish for rates abov€,(i¢). As k increases, the right-hand

side of (48) decreases, s@ — C,(ic) ask — oo. Thus for where? is the second derivative of tlyeary entropy function,

largek, H; ' (1 — rx ) can be approximated by its Taylor seriegiven in (16). Let

aroundl — C,(i€) as . w
1 — ) = HN1 = C,(ie Cylie) —rx ' —Hi(€)
H (1 —rx) =H (1= Cylie)) + H!(Hq (1 — Cy(i)))  Substituting (51) andx = C,(ic) — (x;)y in (48), yields
ic) —rx)? : ‘ \
+O((Cq( ) X) ) (50) (.'ly)i = %(Cq(lc) — ({L’7)k) + O(($7)k) (52)

vv.here.HﬁI is the first derivative of thg-ary entropy function, The nonnegative root of the quadratic in (52) is

given in (15).
A . . 2

Let (x;)x = Cy(ie)—rx (note that x depends ok via (48)). N, — \/ Vi Yiev i O((:)3) — &

Then(z;)z > 0, and(z;); — 0 ask — oo. Thus using (@i 4k2 + k a(ie) + O((zi)3) 2%k

Hy (1 = Cylic)) = Hy 't (Hy(ic)) = dc :\/@4—0(%).
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Fig. 5. Approximations to., given in [2, Theorem 1] (dashed curvgﬁ”)), and by our Lemma 5 (dotted curvg)”>). The solid curve-,,, was obtained by
numerical solution of (10) fog = 2, p = 2, andk = 8.

Then, by (49) we have Fig. 7 illustrates the upper and lower bounds of Theorem 3.
. As before, the solid curves represent the upper boypndand
ooy — Halie) <2qu(iﬁ) ) ’ <1> the dashed curves show the lower boufid, . For the sake of
ry = Cylie) — +0 () +o(1) _ e
Vk —HY(e) k comparison we also plotted the corresponding lower bounds for
efficient channel codes using dotted curves. As shown in [2]
for the binary case, the dotted and solid curves convergg for
Theorem 3: Consider the cascade of a gobkdlimensional sufficiently large. The light shading illustrates how the bounds
vector quantizer, g-ary linear block channel code that attaingor codes attaining the Gilbert—Varshamov bound compare to
the Gilbert-Varshamov bound or the Tsfasmaradit-Zink the bounds obtained for efficient codes. The curves plotted do
bound, and g-ary symmetric channel with symbol error probanot omit anyO(-) terms.
bility €. The channel code raté that minimizes theith-power
distortion (averaged over all index assignments) satisfies

and we can state the following theorem.

VI. CONCLUSION

1 3
Cy(2¢) — 2H, (26) <2p0q//(26)> +0 <1> +o(1) To determine the optimal tradeoff between source and
vk —Hy(e) k channel coding for certain structured linear block channel
. Hg(c) 2pC,(e) B 1 codes, we have derived upper and lower bounds on the channel
<7 s Cyle) = JE <_’H//(6)> O <Z> +0(1)  code rate that minimizes theh-power distortion of &-dimen-

! sional vector quantizer cascaded with a linear block channel
where theO(%) terms approach zero @s— oo for any trans- coder on aj-ary symmetric channel. We have presented bounds
mission rateR, theo(1) terms approach zero & — oo, H, is based on the Gilbert-Varshamov and Tsfasmaae\i-Zink
theg-ary entropy function, and’, () is the capacity of g-ary bounds as well as random coding argumentsgfary alpha-
symmetric channel with symbol error probability bets. Comparisons of the two types of results were also given.
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Fig. 6. Approximations ta., given in [2, Theorem 1] (dashed curvg?Z?), and by our Lemma 7 (dotted curvg}’#’). The solid curve-,, was obtained by
numerical solution of (10) fogy = 2,p = 2, andk = 8.

APPENDIX Ey(r) 2 sup Eo(p). (57)
PROOF OF PROPOSITION. p>0

We use definitions and notation from [15], but we scal8ince the expressions fd, and £, differ only in the range
the error exponents by a factor &ig. (Note: There have of p, much of our forthcoming derivation is common to both.
been recent improvements in error exponent bounds [18learly,
but these are not needed in our analysis). We denote by
Q = (Q(0),Q(1),...,Q(q — 1)) the input distribution, and argmaxg Eo(p, Q) = argming Fy(p. Q).
by P(i|j), 4,7 € {0,1,...,q — 1} the transition probabilities

of ag-ary channel. For ag-ary symmetric channel (see (2))

g—1
Random Coding and Sphere Packing Exponents Folp,Q) = Z [Q(i)(l _ 6)1/(1+p)
Let us slightly reformulate some definitions from [15, pp. i=0
144, 157] ¢\ V@]t
+(1-Q0) | — .
A NPl N\ (+p)
Fo(p, Q) = z; ZO Q)P (i)~ (53) " Thus the Jacobian is a diagonal matrix
= J=
E A log o2
O(pvQ) - —Iqu FO(pvQ) (54) WFo(p,Q)
Eo(p) & —pr +1max Eolp, Q) (55)
; . — diag i _ /e
Er(r) 2 Jmax Eo(p) (56) diag ¢ p(1+p) |Q())(1 —€)
P>



2148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

08

0.7

0.6

0.5

0.4

Optimal Channel Code Rate r”

0.3

0.1

10
Source Vector Dimension k

Fig. 7. Upper and lower bounds on the optimal channel code rate as given in Theorep3 for¢g = 64 are shown by solid (upper bound,,) and dashed
(lower boundy’__ ) curvesfore = 10—1,10—2,10~%, 10—%. For comparison, lower bounds(, ) corresponding to efficient channel codes are plotted by dotted

max

curves. The matching triplets of bounds for the same valueaoé indicated by shading. The lightly shaded regions illustrate the rate loss due to suboptimality.

1/(14p)] 7 YA+ Jog (1 — )/ A+
) € +((1-¢ log, (1 —¢€)
+a-a) () [ q
q— Fg— 1)( € )1/(1-1—/7) log ( € )1/(1-1—/7)}
/(1+p) ¢\ Va0 ? q—1 "\g—1
1 _ 1/(14p _ —1
" <( K <q - 1) ) @ =90 1 (g = e/ (g - 1)+
. y . . =1—7r—"H,(6) (59)
which is positive-definite for € (0,1 — ¢~1). Hence, setting
a—1 where
g )
m(Fo(m Q) -\ ; Qi) =0 . (q - D))/ O+ ©0)
. - i (L= 9T (g = D) (e/(g — D)V
yields a minimum. By symmetry, the minimizing distribution is
uniform (this is also easily verified using [15, Theorem 5.6.5]Then, since
Then aé 1 € L/@+e) €
. = wi@-Dl— In
Eo(p) =—pr—1 log, q dp (1+p) g—1 g—1
2= Y 4 (g - 1)(e/ (g — 1)V O+
[A=QM O 4 (= 1)(e/ (g= D)+ L\t
q -(¢—-1) <ﬁ> l(l—t)l/(“”’) In(1-¢)
=p(1-r)—(1+p) 1/ (140)
Tog, [(1-e// 44 (g = 1)(e/ (g = 1)/ +7)] + -1 _) In ( ‘ )
(58) q—1 q—1
X [(1= Y0 + (g = 1)(e/(g — )/ O]
and thus 5(1 - 6)
. = (log (¢g—1) —log, 6 +log (1 —6))Ing
iEo(P) =1—7r—log, [(1 —¢)l/ ) 1+p 71 ! !
dp 8(1 —6)

(g — )(e/(g — 1))/ 0+0)] =g, fa®ng
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we obtain Expurgated Exponent
a2 . a6 Let us define (see [15, p. 153])
4 5(1 R 1ot 1 e
-y, () ng fwméZmem@¢mwm
<0 =0 ;=0 =0 (65)
for all values of corresponding te > 0. Thus the stationary g, (p, Q) 2 —plog, Fr(p, Q) (66)
point p*, found by settmgiEO/dp = 0, is a maximum. Instead . A
of solving explicitly for p*, we obtain a parametric expression E.(p) = —pr+ e E.(p,Q) (67)
for the error exponents in terms &f = 6|,—,-. From (59), we A .
have ex(r) = sup Ey(p). (68)
p=l
r=1="THy(6") (61) Again

which when substituted into (58) gives

Eo(p")=p"Hq(8") = (14p")
log, [(1— )M +7) 4 (g—1)(e/(g—1))/ M H77)]

argmaxg Eo(p, Q) = argming Fo(p, Q).

For ag-ary symmetric channel (see (2))

H

q—

— M, () +(1+0") oy
-{6"log,(q—1)—6"log, 6" —(1-6")log,(1-6") 15 PUIPAd)
—log [(1—6)1/(1""’*)—|—(q—1)(6/(q—1))1/(1+”*)]} { 1, i=j
q . — R _ E L, (69)
=—Hy(6")—6" log, <% [(1—6)1/(14-/7*) 2\/ (A= + e =25 LF .

Let us define

+«¢4xq@—nf““”ﬂ)Hﬁ

A €
. w=2/(1-¢) +(-2)— (70)
(18" log, (18" [(1-e/ -+ 7-1 71
+(q_1)(6/(q_1))1/(1+p*):| )1+”* Alternatively,«, can be expressed in terms 1/2)(6). Using
5 14 (g—Dw=142y/(1—¢c)e(g—1) + (g — 2)¢
=6 logq — +(1—(5 )logq(l—é ) I(\/1—6+\/(q—1)6)2
(1/2)
— 6 log, %1 —(1—-8")log,(1—e) (62) =gt (71)
=D, (6% ||¢) ! we obtain
- g
=D, (H (1—7)]||e 63 M ()
(0, (1=n)) (63) P 72
where (62) follows by (60), and (61) was used in the last 4
equality. Since Usingw, (65) can be rewritten as
q—1 q—1
lg—1) -1 - 2 e [q_ N2
8 pm0 = €,68| =1 = ands| .o = 1—q Fu(p,@) = QU +w (1= Q).
r ! VIi—e+ \/e(g—1) ! i=0 i=0

Thus the Jacobian is a diagonal matrix (in fact, it is the identity

(63) gives the sphere-packing exponentfea (0, C,), and the matrix scaled)

random coding exponent fere [r2, C,), where )

87 — —_Wwlr
WILJ%< @D )_ . auaany e @) =20 -t

VI—e+/elg—1) which is positive-definite foe € (0,1—¢~1), since (72) implies

. S thatw < 1, unlesst = 1 — ¢~*. Hence, setting
As shown in [15],p = 1 maximizesEy(p) for rates less than

r2. Hence, forr € (0,72] 0 )‘ZQ

. 9Q(j )
E..(r) = Ey(1) ) L
yields a minimum. By symmetry, the minimizing distribution is
=—r+1-2log,[V1—e+/e(g—1)] uniform. Thus

/) . _ _
Ca ! Eo(p) =—pr — plog,lg™" + w7 (1 - ¢ ")

which completes the proof of (23) and (24). O =p(1 —7—log,[1+(g— 1w/ 7)) (73)
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which implies and§|,—... =1 — g7, (79) gives the expurgated exponent for
d . " r € (0,r1], where
—E.(p)=1—7r—log,[1+(g— Dw™/’ s
dp ( ) (11[ ( ) ] 1 P = 1_ Hq(l _ (]_Hg / )(E)). (80)
+ Pm(q - 1)wl/”? log,w] (74) Forr > ri, E.(p) is a decreasing function of, since
d . 1 dE,/dp < 0 in this case (see (75)). Hence, for>
—FE(=1-r+—" "~ log [——— .
dp (p) T 1+ (g— Dwt/r 984 <1+(q_ 1)w1/ﬂ> Eex(r) =E.(1) =1—7—log,[1 + (¢ — 1)uv]
L (o= 1)w1/’1’/ s < Wil . ) =1—r—HY ()= CMP —r. (81)
1+ (g = Dwt/r 1+(g=Dwi/e Combining (79) and (81), we obtain (25). 0
=1—7r—"Hy(6) (75)
where Maximum of the Random Coding and Expurgated Exponents
(g = Dwt/r It is easy to argue that both
el s oy (78)  E(r)>CWP —r and En(r)>CED —p  (82)
Now. since for all ratesr € 50, 1), since for every, the valuep = 1 corre-
o5 . sponding taC{’? — 7 is in the range of maximization in both
A <_2> [((q — 1)w*In w) [1 + (g — D] (56) and (68). Hence, provided thiat r, <, < CV? <,
9p P holds, (26) is obtained. Consulting (80), the properties of the
—(g—1)tr [(q - 1)w1/”1nw” entropy function imply that < 7. To see that; < r,, we
s rewrite (80) as
. [1 + (¢ — l)wl/”}
1=1—-H, |1 1
1- r=1- -
:uw) Ing ‘ (VI—c+Jela- D)2
P
we obtain and (64) as
& . a6 V1—c¢
—E, — _H (&)= ro=1—H,|1-— .
dp? (p) Hy( )8p q( VI—e+ /e(g—1)
_ _ 6(1-9) (H! (6))2 In g Thenr; < r, is equivalent to
P q
<0 1<VI—e(v/1—e++/e(qg—1))
for all values ofs corresponding tp > 1. Thus the stationary =l-ctVell=9(-1
point p*, found by settinglE, /dp = 0, is a maximum. Instead e<(I-¢)(g—1)
of solving explicitly for p*, we obtain a parametric expression e<1—¢ N

for the error exponent in terms 6f = 6|,—,-. From (75), we

have

which when substituted into (73) gives

Ey(p") = p*(Hy(8") —log,[1+ (g — Dw/"'])

where (78) follows by (76), and (79) follows by (77) and (71).

Since

Next, we showr, < 051/2). By the concavity olog, for any
§ € [0, 1]
r=1-—H, (6 77 6

(%" (77) H,(6) =—610g,1q_—1 —(1—6)log, (1~ 0)

. 1 2 2
=p*(¢"log,(g— 1) — &* log, &

Substituting this witlh = —~——— Vet (64), we can upper-
— (1= 6)log,(1 — %) —log[1 + (g — Lw'/*])

V1—e+4/e(qg—1)
boundr, as

*

— 5" log, (qé_ [+ (- 1>w1/f"1)
— (1= 6 log, (1 - %)[1 + (g — D7)

(78) + L=< )
=—6"log, w (VI—e+e(g— 1))

— —H, (1 —r)log, w (79) =1-2log,(V1—ec+e(g—1))
— o2

1 c(g—1)
-1 (VI-e+elg—1))?

ro <1+ logq <

which is what we wanted to prove. The remaining inequality
1 0 c{t'® < ¢, can be equivalently stated 2&8"/% (¢) > H,(c),

Blp=1 =1~ 1+(g—- 1w 1= which follows by Jensen’s inequality. O
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