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Source and Channel Rate Allocation for Channel
Codes Satisfying the Gilbert–Varshamov or

Tsfasman–Vl̆aduţ–Zink Bounds
András Méhes and Kenneth Zeger, Fellow, IEEE

Abstract—We derive bounds for optimal rate allocation between
source and channel coding for linear channel codes that meet the
Gilbert–Varshamov or Tsfasman–Vl̆aduţ–Zink bounds. Formulas
giving the high resolution vector quantizer distortion of these sys-
tems are also derived. In addition, we give bounds on how far below
channel capacity the transmission rate should be for a given delay
constraint. The bounds obtained depend on the relationship be-
tween channel code rate and relative minimum distance guaran-
teed by the Gilbert–Varshamov bound, and do not require sophisti-
cated decoding beyond the error correction limit. We demonstrate
that the end-to-end mean-squared error decays exponentially fast
as a function of the overall transmission rate, which need not be
the case for certain well-known structured codes such as Hamming
codes.

Index Terms—Error-correcting codes, source and channel cod-
ing, vector quantization.

I. INTRODUCTION

ONE commonly used approach to transmit source informa-
tion across a noisy channel is to cascade a vector quantizer

designed for a noiseless channel, and a block channel coder de-
signed independently of the source coder. A fundamental ques-
tion for this traditional “separation” technique is to determine
the optimal allocation of available transmission rate between
source coding and channel coding. Upper [1] and lower [2]
distortion bounds on the optimal tradeoff between source and
channel coding were previously derived for a binary symmetric
channel. They exploit the fact that optimal source coding and
optimal channel coding each contribute an exponentially de-
caying amount to the total distortion (averaged over all index
assignments), as a function of the overall transmission rate of
the system.

In practice, there is usually a constraint on the overall delay
and complexity of such a system. This constraint limits the
lengths of source blocks and of channel codewords. As a
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result, the classical approach of Shannon, to transmit channel
information at a rate close to the channel’s capacity and to
encode the source with the corresponding amount of available
information, cannot be used in practice. Instead, one must often
transmit data at a rate substantially below capacity. The amount
below capacity was determined in [2] for binary symmetric
channels and in [3] for Gaussian channels. However, the
results in both [2] and [3] exploit the existence of codes which
have exponentially decaying error probabilities achieving the
expurgated error exponent. Although such codes are known to
exist, no efficiently decodable ones have yet been discovered.
Various suboptimal algorithms do exist for vector quantizer
design for noisy channels, but their implementation and design
complexities generally grow exponentially fast as a function of
the transmission rate of the system.

In the present paper we determine bounds on the optimal
tradeoff between source and channel coding for classes of
channel codes that attain the Gilbert–Varshamov bound. It is
known that, asymptotically, a random linear code achieves the
Gilbert–Varshamov bound with probability one [4], [5] al-
though most known structured classes of codes fall short of the
bound. The existence of certain Goppa codes, alternant codes,
self-dual codes, and double-circulant or quasi-cyclic codes,
that meet the Gilbert–Varshamov bound has been discussed
in [6, p. 557]. A significant breakthrough was achieved by
Tsfasman, Vl̆aduţ, and Zink [7], where sequences of algebraic
geometry codes over GF (with and prime) were
constructed from reductions of modular curves. These codes
exceed the Gilbert–Varshamov bound (in an interval of rates) if

. Katsman, Tsfasman, and Vlăduţ[8] showed that there
is an infinite polynomially constructible family of codes better
than the Gilbert–Varshamov bound, although the best presently
known (polynomial) algorithms are not yet practical. Another
explicit construction of codes above the Gilbert–Varshamov
curve was given recently in [9], but a detailed analysis of the
algorithmic complexity of the construction is presently lacking.
No binary constructions of codes with parameters exceeding
the Gilbert–Varshamov bound are known. In fact, it is widely
believed that the Gilbert–Varshamov bound is the tightest pos-
sible for . The best known binary codes are obtained from
good -ary codes by concatenation. Corresponding bounds are
also available, but are generally weaker than the binary version
of the Gilbert–Varshamov bound. There are several other
bounds for the parameters of both linear and nonlinear, and
both binary and nonbinary codes based on algebraic geometry
codes. A summary of these bounds is found in [10] and a
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standard reference on algebraic-geometry codes is [11]. In [12],
variable inner codes and an algebraic-geometry outer code are
concatenated to obtain an exponentially decaying probability
of error.

To obtain results for families of channel codes attaining the
Gilbert–Varshamov or Tsfasman–Vlăduţ–Zink bounds, we only
use the property that a positive monotone decreasing function
(in Proposition 2) exists describing the relationship between the
channel code rate and the relative minimum distance. Thus the
same method of derivation could potentially be used to obtain
similar bounds for other classes of asymptotically good channel
codes, some of which (e.g. Justesen codes, Blokh–Zyablov
codes) are practical. However, it is often difficult to exhibit the
function in an analytically tractable form.

Since our derivation relies only on a standard bound on the
probability of error which is valid even when bounded distance
decoding is used, we in fact demonstrate that the class of known
channel codes for which quantizer distortions decay to zero ex-
ponentially fast with increasing transmission rate includes cer-
tain suboptimal coding schemes. Note that families of channel
codes which are not asymptotically good need not have expo-
nentially decaying distortion as a function of the overall trans-
mission rate. Indeed, repetition codes and other classes of codes
with asymptotically vanishing channel code rates can have dis-
tortions decreasing to zero but not exponentially fast [13]. As
suggested in [2], the distortion decay ratesare fasterwhen more
sophisticated decoding algorithms are used.

The main results of this paper are as follows. In Theorem 1,
upper and lower bounds are given for the optimal tradeoff be-
tween source and channel coding for channel codes satisfying
the Gilbert–Varshamov or Tsfasman–Vlăduţ–Zink inequalities.
Theorem 2 extends a result of [2] for the optimal source–channel
coding tradeoff over an unrestricted class of channel codes. The-
orems 1 and 2 enable a comparison of channel codes that achieve
the reliability function of the channel (and in this sense are op-
timal for the given channel) and certain asymptotically good
channel codes that are independent of the underlying channel.
Fig. 4 presents an example of the loss in channel code rate due
to suboptimality. Note that the bounds compared need not be
the tightest possible in all cases. Theorem 3 gives the large-di-
mension performance of the optimal tradeoff determined in The-
orem 1. In [2], the upper and lower bounds on the optimal rate
allocation for “optimal” channel codes were shown to coincide
for large enough dimensions (dependent on the bit-error proba-
bility). Thus we do not derive the large-dimension performance
corresponding to Theorem 2, but in the example shown in Fig.
7 we include bounds for both optimal and suboptimal channel
codes for comparison.

Throughout this paper we assume a randomized index as-
signment (i.e., a uniformly random mapping of vector quantizer
codevectors to channel codewords). While this assumption is
certainly suboptimal from an implementation standpoint, it pro-
vides a powerful mathematical tool for obtaining tight perfor-
mance bounds, analogous in spirit to the classical randomization
techniques used to prove Shannon’s channel coding theorem.
The same index assignment randomization method was used in
[1], [2], and [3] as well. Furthermore, it is not presently known

if randomization of index assignments is in general asymptoti-
cally suboptimal.

We note that at present, implementation of channel codes
achieving the Gilbert–Varshamov or Tsfasman–Vlăduţ–Zink
bounds is not computationally practical, but we conjecture
that future research will yield more efficient codes. Even
without such implementations, the present work serves as an
improvement in the theoretical understanding of joint source
and channel coding.

Section II gives necessary notations, definitions, and lemmas
and Section III presents the source and channel coding tradeoff
problem. Section IV gives basic results on bounds and error ex-
ponents. The main results of the paper are given in Section V
and one technically complicated proof is left to the Appendix.

II. PRELIMINARIES

The following notations will be useful in our asymptotic anal-
ysis.

Notation: Let and be real-valued sequences.
Then, we write

• , if there is a positive real number, and a positive
integer such that , whenever ;

• , if has only a finite number of zeros, and
as ;

• , if there are positive real numbers and ,
and a positive integer , such that

, for all .

We obtain bounds on the optimal rate allocation for the cas-
caded system depicted in Fig. 1. In this model, the source coder
is a vector quantizer.

Definition 1: A -dimensional, -point vector quantizeris
a mapping from -dimensional Euclidean space to a set of
codevectors . Associated with each code-
vector is anencoder region , the set of all points in

that are mapped by the quantizer to. The set of encoder
regions forms a partition of . The rate (or resolution) of a
vector quantizer is defined as .

A vector quantizer is commonly decomposed into a quantizer
encoderand a quantizerdecoder. For each input vector, the en-
coder produces the index of the encoder region

containing the input vector. For each index, the decoder
outputs the codevector .

The th-power distortionof a vector quantizer is

(1)

where is the usual Euclidean norm, andis the probability
distribution of a -dimensional source vector. The subscriptis
used to distinguish the distortion on an error-free channel from
the distortion due to a noisy channel (to be discussed later). The
high-resolution (i.e., large ) behavior of can be described
by Zador’s formula.

Lemma 1 (Zador [14]): The minimum th-power distortion
of a rate vector quantizer is asymptotically given by
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Fig. 1. Cascaded vector quantizer and channel coder system.

This is often referred to as the “6 dB/bit/component rule” for
, since

In addition to the minimum distortion achieved by optimal
quantizers, the asymptotic distortions of several other classes of
vector quantizers, including uniform quantizers and other lat-
tice-based quantizers, have the same high-resolution decay rate.

Definition 2: We call a vector quantizer that achieves the
asymptotic distortion of Lemma 1 agood vector quantizer.

Motivated by the (nonbinary) alphabet size requirements
of algebraic-geometry codes, we consider channel codes over
GF and use a -ary symmetric channel in our system
model shown in Fig. 1. The following two definitions formally
introduce -ary symmetric channels and-ary linear block
channel codes.

Definition 3: A discrete memoryless channelis a proba-
bilistic mapping from an input alphabet to an output alphabet

characterized bychannel transition probabilities ,
i.e., the probability that the channel maps an input symbol

to the output symbol . A -ary symmetric channel
with symbol error probability is a discrete
memoryless channel having and
channel transition probabilities

(2)
where denotes the indicator function.

Definition 4: An block channel codeis a set of length
strings of -ary symbols, calledcodewords. A linear -ary

block channel codeis a linear subspace ofGF ,
containing codewords, each (except the all-zero code-
word) with at least nonzero components. The number

is thechannel code rate.
Associated with a channel code is achannel encoderand a

channel decoder. The channel encoder is a one-to-one map-
ping of messages (e.g., quantizer indices) to channel codewords
for transmission. The channel decoder, on the other hand, is a

many-to-one mapping. It maps received sequences of channel
symbols (not necessarily codewords) to messages. Denoting the
channel codeword corresponding toby , and the set of
length sequences decoded intoby , the transition proba-
bilities of the coded channel are

where are the th symbols of and
, respectively. Theaverage probability of decoding error

(for a uniform source) is

(3)

Although we never assume a uniform source, this definition of
is notationally convenient in what follows. The following

two lemmas state classical asymptotic upper and lower bounds
on .

Lemma 2 [15, pp. 140, 153]:For every , there exist
sequences of channel codes such that

where denotes the capacity of the channel, and

is the maximum of the “random coding” and the “expurgated”
error exponents.1

Lemma 2 characterizes the class of channel codes considered
in [2]. For easier reference, we introduce the following termi-
nology.

Definition 5: We call a block channel code that achieves
the asymptotic error exponent in Lemma 2 anefficient channel
code.

Lemma 3 [15, p. 157]:Any sequence of channel
codes on a discrete memoryless channel must satisfy

where is the “sphere packing” error exponent.

1The notationE is used instead of the usualE to avoid confusing the
subscript and the rater.
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While Lemma 2 is an existence result, Lemma 3 holds for
all channel codes. The error exponent functions depend on the
channel statistics. Definitions of , , and in terms of
the transition probabilities of a discrete memoryless channel,
and a derivation of closed-form expressions for-ary symmetric
channels are given in the Appendix. All three of these error ex-
ponent functions are known to be positive and convex in the
range .

Another element of our system model shown in Fig. 1 is an
index assignment.

Definition 6: An index assignment is a permutation of the
index set .

The purpose of an index assignment is to match a vector quan-
tizer and a channel coder in a cascaded system in order to min-
imize the end-to-end distortion. Distance properties of channel
codewords and quantizer codevectors should be aligned, so that
on average a likely channel error (small Hamming distance) re-
sults in a tolerable quantization error (small Euclidean distance).

III. PROBLEM FORMULATION

Consider a -dimensional vector quantizer cascaded with a
channel coder operating over a-ary symmetric channel with
a fixed overall transmission rate measured in bits per vector
component, as shown in Fig. 1. For each-dimensional input
vector, a channel codeword consisting of -ary symbols is
transmitted across the channel to the receiver. The transmission
rate is . Let denote the rate of a-ary

linear block channel code, whereis the minimum
distance of the code (in-ary symbols). The source coding rate
and the overall transmission rate are related by . Let
denote the number of quantizer codevectors (equivalently, the
number of channel codewords). Then,
For each input vector , the quantizer encoder produces
an integer index , which in turn is mapped to
another index by an index assignment. The channel en-
coder transmits the th-channel codeword through a-ary
symmetric channel ( -ary symbols corresponding to bits).
At the receiver, the channel decoder reconstructs an index
from the (possibly corrupted) -ary symbols received from
the channel. Then the inverse index assignment is performed
and the quantizer codevector corresponding to the re-
sulting index is presented at the output.

For a given index assignment, the averageth-power dis-
tortion can be expressed as

(4)

There are no known general techniques for analytically deter-
mining . As an alternative, we randomize the choice
of index assignment. This technique serves as a tool in obtaining
an existence theorem, and also models the choice of index as-
signment in systems where index design is ignored. Hence, we
examine the following distortion:

(5)

where the sums over are taken over all permutations of
the integers . The averaging effectively replaces the
original -ary symmetric channel by a “new” -ary symmetric
channel whose symbol error probability equals the average
probability of channel decoding error of the underlying
channel. We have

(6)

Substituting (6) into (5) yields

(7)

The sum in the first term of (7) is the distortion for a noiseless
channel. We assume that the source has compact support, in
which case

where is the diameter of the support region. Unless
the source is deterministic, a nonzero lower bound on the same
double sum can be obtained using theth-moment type quantity
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Namely,

Note that both the upper and lower bounds above depend solely
on the source and not on the channel. Thus returning to (7) we
have

(8)

We assume a good vector quantizer and an efficient channel
code. Then, using Lemma 1 to bound, and Lemmas 3 and 2
to bound , the averageth-power distortion of a cascaded
source coder and ratechannel coder, with transmission rate,
can asymptotically (as ) be bounded as

(9)

where the error exponents have been scaled by a factor of
as compared to Lemmas 2 and 3, in order to change the unit
of block length from symbols to bits. The minimum value of
the right side of (9) over all is an asymptotically
achievable (as ) distortion , and the minimum value
of the left side of (9) is a lower bound on for any choice of
. Let and , respectively, denote the values ofwhich

minimize (asymptotically) the right and left sides of (9). Then
, where is the optimal rate allocation. It can

be seen that to minimize the bounds in (9), the exponents of the
two decaying exponentials in each bound have to be balanced,
so that

(10)

where formally and as . The
distortion achieved with a channel code ratein this case is

The values of and were determined in [2] for effi-
cient binary channel codes. We investigate the problem of op-
timal rate allocation for channel codes that attain the Gilbert-
Varshamov bound and/or the Tsfasman–Vlăduţ–Zink bound (or
“basic algebraic-geometry bound”). Such codes are in general
weaker than those in [2], but are potentially less algorithmically
complex. Our results also generalize those in [2] to-ary chan-
nels.

IV. ERROREXPONENTS

In this section, we present the classical channel coding error
exponents , , and specialized to a-ary symmetric
channel, and derive two new-ary error exponents and

for channel codes that satisfy the Gilbert–Varshamov
and Tsfasman–Vlăduţ–Zink inequalities, respectively. All
five of these error exponents can be concisely written using
-ary versions of the entropy, the relative entropy, and Rényi’s

entropy of order . We start with the general definitions of
these information measures.

Definition 7: Let and be probability distributions on a
finite set.

Theentropyof is

(11)

The relative entropybetween and is

(12)

TheRényi entropy of order of is

(13)

for , . Jensen’s inequality implies
for , and for . Details of
Rényi’s information measures are given in [16].

Next, we introduce the various-ary entropy functions de-
fined for one-parameter distributions related to the transition
probabilities of a -ary symmetric channel.

Definition 8: Let , and let and be
probability distributions on with respective prob-
abilities , and .

The -ary entropy functionis defined as

(14)

For this gives thebinary entropy function

The derivative of with respect to is

(15)

and the second derivative is

(16)

Thus is concave, strictly increasing on ,
and achieves its maximum and its min-
imum . The notation denotes the inverse of

. Clearly, is convex, from (16).
The capacityof a -ary symmetric channel with symbol error
probability expressed in-ary symbols is

(17)

The ( -ary) relative entropy (information divergence) func-
tion is defined as

(18)
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which can also be expressed in terms of the-ary entropy func-
tion as

(19)

For small, a Taylor series approximation of around
gives

(20)

We restrict attention to Rényi’s entropy of order , and the
corresponding channel capacity of order for a -ary sym-
metric channel. The-ary entropy function of order is de-
fined as

(21)

The capacity of order of a -ary symmetric channel with
symbol error probability expressed in -ary
symbols is

(22)

which Csiszár [16] showed to equal the “cutoff rate” of the
channel.

The error exponents of Lemmas 2 and 3 can be specialized to
a -ary symmetric channel as follows (the proof of Proposition 1
is given in the Appendix).

Proposition 1:

(23)

(24)

(25)

where

and

Also, since , and for ,
we have

(26)

The lower bound on given in Lemma 3 holds for an arbi-
trary code. The upper bound of Lemma 2, however, is an exis-
tence result. Analogous upper bounds, and corresponding error
exponents can be obtained for “asymptotically good” families
of codes.

For a sequence of codes to be asymptotically good,
both the rate and the relative minimum distance must be

bounded away from zero as the block lengthincreases. Usu-
ally, bounds are given in the form or ,
for some monotonic decreasing function. In this paper we
consider two of the best known such bounds, the Gilbert–Var-
shamov bound and the Tsfasman–Vlăduţ–Zink bound (see [11,
p. 609] for a summary of these and several related bounds).

Definition 9: An code is said to satisfy the

• Gilbert–Varshamov bound, if

• Tsfasman–Vl̆aduţ–Zink bound, if

The following lemma provides a bound on the tail of a binomial
distribution.

Lemma 4 [15, p. 531]:For

Proposition 2: If an linear block channel code has
minimum distance for some positive monotone de-
creasing function , then the average probability of decoding
error on a -ary symmetric channel with symbol error proba-
bility satisfies

Proof: Since a code with minimum distancecan correct
at least errors

(27)

(28)

(29)

where inequality (28) follows from

and inequality (29) from Lemma 4.

The bound on in (27) used to obtain Proposition 2 holds
even when bounded distance decoding is used in the channel de-
coder. While tighter bounds on would also improve the rate
allocation bounds derived later in the paper, we opted for the
“standard” bound (inequality (27)) for two main reasons. First,
rate allocation bounds are already available for efficient channel
codes assuming optimal decoding [2]. Our goal is to show that
certain suboptimal coding schemes also achieve a high-resolu-
tion distortion which decays to zero exponentially fast with in-
creasing transmission rate. Note that this need not be the case in
general [13]. Second, (27) depends only on the minimum dis-
tance, which enables us to directly apply the functionrelating
the rate and the relative minimum distance, without any further
assumptions on the structure of the channel codes. The upper
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bound on given in Proposition 2 only depends on the code
parameters and , the symbol error probability, and the func-
tion . The following two corollaries follow immediately from
Proposition 2 and will also be useful in what follows.

Corollary 1: Consider the cascade of a good-dimensional
vector quantizer, a-ary linear block channel coder that achieves
the Gilbert–Varshamov bound, and a-ary symmetric channel
with symbol error probability and overall transmission rate.
For every , the average probability of
channel decoding error satisfies

where

(30)

is the Gilbert–Varshamov error exponent.

Corollary 2: Consider the cascade of a good-dimension-
al vector quantizer, a -ary linear block channel coder that
achieves the Tsfasman–Vlăduţ–Zink bound, and a-ary sym-
metric channel with symbol error probability and overall
transmission rate . For every , the
average probability of channel decoding error satisfies

where

(31)

is the Tsfasman–Vlăduţ–Zink error exponent.

Analogously to , we define

For , . For

where are roots of . (In
[7] this equation is shown to have two distinct roots for .)

V. OPTIMAL RATE ALLOCATION

The bounds we obtain on the optimal rate allocation in a cas-
caded vector quantizer and channel coder system are functions
of the vector dimension, the channel symbol error probability
, and the parameterin the distortion criterion. These bounds

do not depend, however, on the source statistics. We obtain an-
alytic bounds on the optimal rate allocation for two important
cases of interest: a large vector dimension, and a small symbol
error probability . In each case, the remaining parameters are
assumed fixed but arbitrary. To obtain these bounds, we analyze
the error exponents , , and .

First, we note that on the interval , the function
is linear. Let be a solution of (10)

(for ) such that , whenever such a
solution exists. Then

or, equivalently,

If is fixed, and approaches zero, then
and . Hence, for sufficiently small. Thus
for sufficiently small, and it, therefore, suffices to
restrict attention to instead of (see Fig. 2(a)).

If is fixed and increases, then . Hence,
for sufficiently large. Thus for sufficiently large,
and thus it suffices to restrict attention to instead

of (see Fig. 2(b)). Also note that for all
. Thus the upper and lower bounds coincide asin-

creases, and hence, it suffices to consider.
Next, we examine . For , for all

. For , note that is independent of both and and
depends only on. Thus for fixed, and decreasing, (the
right-hand side of (10)) is constant, whereas

(the left-hand side of (10)) increases without bound. Hence, for
small enough

(32)

Since is a monotone increasing function of, and
is monotone decreasing in, (32) implies that if

then (see Fig. 3(a)). For fixed and increasing,
(the right-hand side of (10)) is decreasing, while

(the left-hand side of (10)) is constant. Hence, forlarge
enough, (32) holds, and by the same monotonicity argument
used above, (see Fig. 3(b)). Consequently, it suffices
to work with instead of . Thus we henceforth omit

from our analysis.
We note that a slightly more complicated differentiable

bound relating and is also known. This bound, called
“Vl ăduts bound” [sic] in [17], effectively “smoothes the
edges” of the maximum of the Gilbert–Varshamov and
Tsfasman–Vl̆aduţ–Zink bounds. Applying Proposition 2, a
“Vl ăduţerror exponent” could also be obtained, but there exists
a rate, analogous to (independent from and ), beyond
which the Vl̆aduţand Gilbert–Varshamov error exponents co-
incide. Hence, by the same argument given above, it suffices to
restrict attention to instead of the Vl̆aduţerror exponent.

A. Small Bit-Error Probability

In this section, we determine the behavior of the solution to
(10) for small , and fixed and . First, we set
and rewrite the error exponents as

(33)

(34)
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(a)

(b)

Fig. 2. A graphical solution to (10) forE (p = 2, q = 64). The solid curves showE (r) for different values of�, and the dashed lines have slopep=k.
The two dots on each error exponent curve correspond tor andr . (a) Small bit-error probability. (b) Large vector dimension.

(35)

Next we find a real number that satisfies

(36)

where formally

(37)

and . Then, we obtain the solution to (10) by setting

(38)

where the term vanishes as .
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(a)

(b)

Fig. 3. A graphical solution to (10) forE (p = 2, q = 64). The solid curves showE (r) for different values of�, and the dashed lines have slopep=k.
The two dots on each error exponent curve correspond tor andr . (a) Small bit-error probability. (b) Large vector dimension.

Observe that the sphere packing and Gilbert–Varshamov ex-
ponents can both be written as

(39)

where when , and when . Using
(72) and (70), the expurgated exponent can be rewritten as

(40)
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Since is bounded, the dominant term on the left-hand side of
(36) (as given in (39) and (40)) equals in all three
cases, while the right-hand side is bounded betweenand , in-
dependent of. Hence, as approaches zero, for equality to hold
in (36), has to approach zero at least as fast as .
On the other hand, the right-hand side of (36) approaches the
finite constant if . Thus cannot converge to zero faster
than for the left-hand side to stay bounded away
from zero. We therefore conclude that the solution to (36) must
be of the form

(41)

where as , and when , and
when . To characterize more precisely,
has to be determined. In what follows, all terms go to zero
as .

Substituting (41) in (39), and applying power series expan-
sions yields

(42)

where for , and for .
The same steps applied to (40) result in

(43)

To obtain the right-hand side of (36) as a function of, we
write

(44)

Next, we proceed to solve (36) for . Comparing (36),
(42)–(44), we conclude that

Based on this observation, the terms in (42)
and (44) can be further expanded to obtain

(45)

and
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(46)

1) Sphere Packing and Gilbert-Varshamov Exponents:Sub-
stituting (45) and (46) into (36) and rearranging terms yields

Thus

Substituting this in (46), gives

Now, using (38) the bounds on the optimal rate are summarized
in the following two lemmas.

Lemma 5: For any and , and sufficiently small

where the term goes to zero as for any , and

the term goes to zero as .

Lemma 6: For any and , and sufficiently small

where the term goes to zero as for any , and

the term goes to zero as .

Combining Lemmas 5 and 6 gives the desired bounds for op-
timal rate allocation for codes attaining the Gilbert–Varshamov
bound, as summarized in the following theorem.

Theorem 1: Consider the cascade of a good-dimensional
vector quantizer, a-ary linear block channel coder that meets
the Gilbert–Varshamov bound or the Tsfasman–Vlăduţ–Zink
bound, and a-ary symmetric channel with symbol error proba-
bility . The channel code rate that minimizes the th-power
distortion (averaged over all index assignments) satisfies

where the term goes to zero as for any trans-

mission rate , and the term goes to zero as .

A crude comparison of the upper and lower bounds in
Theorem 1 shows a factor ofdifference in the asymptotically
dominant -dependent term for channel codes that attain the
Gilbert–Varshamov bound. The same phenomenon was ob-
served in [2] for efficient binary channel codes. Next, we derive
more precise bounds for efficient-ary channel codes based
on the expurgated error exponent, and we present an example
comparing the optimal rate-allocation bounds for channel codes
that achieve the reliability function of the channel and channel
codes that attain the Gilbert–Varshamov bound.

2) Expurgated Exponent:Substituting (43) and (46) into
(36) and rearranging terms yields

Thus
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which when substituted into (46), gives

Now, using (38), the bound on the optimal rate is summarized
in the following lemma.

Lemma 7: For any and , and sufficiently small

where the term goes to zero as for any , and

the term goes to zero as .

Combining Lemmas 5 and 7 establishes bounds for the op-
timal rate allocation based on “random coding.” These extend
the results of [2] to -ary channels.

Theorem 2: Consider the cascade of a good-dimensional
vector quantizer, an efficient-ary linear block channel coder,
and a -ary symmetric channel with symbol error probability.
The channel code rate that minimizes the th-power distor-
tion (averaged over all index assignments) satisfies

where the term goes to zero as for any trans-

mission rate , and the term goes to zero as .

The dominant -dependent terms in the upper and lower
bounds of Theorem 2 differ only by a factor of. This was
derived in [2] for efficient binary channel codes and observed
in Theorem 1 for general -ary channel codes that meet
the Gilbert–Varshamov bound. The upper bounds of Theo-
rems 1 and 2 are identical, since they both derive from the

sphere-packing error exponent. The lower bounds, however,
are identical only to the precision afforded in [2]. The main
rationale for our more complex formulas is to pinpoint the dif-
ference between the two categories of channel codes (i.e., those
that achieve the reliability function of the channel and those
that attain the Gilbert–Varshamov bound). Fig. 4 compares
the rate-allocation bounds of Theorems 1 and 2 for .
The choice of alphabet size is motivated by the requirement
on algebraic-geometry codes needed in order to lie above the
Gilbert–Varshamov bound, but the bounds for other values of

display similar behavior. The solid curves correspond to,
the upper bound in both Theorems 1 and 2. The dotted curves
represent , the lower bound in Theorem 2. The dashed
curves show , the lower bound in Theorem 1. Thus the
dark shaded regions represent the uncertainty of the bounds of
Theorem 2 and the corresponding light shaded regions show
the discrepancy between the bounds of Theorems 1 and 2. The
curves plotted do not omit any terms.

Note that by substituting

directly into (41), simpler expressions for can be obtained
at the expense of precision. Figs. 5 and 6 provide additional
motivation for the more intricate analysis. The curves obtained
numerically without omitting any terms are denoted by .
The approximations (omitting the terms) given in [2] are
denoted by , and those given in Lemmas 5 and 7 by .
The expressions we used for (see [2, Theorem 1]) are

and

The illustrations in Figs. 5 and 6 are for , , and
. We note that the curve for is closely approximated

by Lemma 5. The situation is similar for (not plotted here).

B. Large Source Vector Dimension

In this section, we analyze the optimal rate allocation for large
source vector dimensions. As noted earlier, it suffices to ex-
amine the sphere packing and Gilbert–Varshamov exponents for

sufficiently large. Solutions of (10) based on these two expo-
nents provide upper and lower bounds for the optimal-rate al-
location for systems using asymptotically good codes that meet
the Gilbert–Varshamov bound. The upper and lower bounds on
the optimal rate coincide for efficient channel codes, since
and are identical for large. Hence, an exact asymptotic so-
lution of the rate allocation problem is possible, if the channel
codes used obey Lemma 2. Thus in what follows we concentrate
on the Gilbert–Varshamov case.

We combine (23) and (30) to obtain

(47)
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Fig. 4. A comparison of the upper and lower bounds on the optimal channel code rate as given in Theorems 1 and 2 forp = 2, q = 64. Fork = 1; 4; 16;64, the
solid curves showr , the dotted curvesr , and the dashed curvesr , respectively. Fork =1, r = r = C (�) andr = C (2�) are displayed.
The corresponding triplets of bounds are indicated by shading. The lightly shaded regions illustrate the rate loss due to suboptimality.

where , and when , and
when . First, the value of satisfying

(48)

is found, and then a solution to (10) is obtained by setting

(49)

where as .
The error exponents are decreasing functions of the rate and

vanish for rates above . As increases, the right-hand
side of (48) decreases, so as . Thus for
large , can be approximated by its Taylor series
around as

(50)

where is the first derivative of the -ary entropy function,
given in (15).

Let (note that depends on via (48)).
Then , and as . Thus using

we can rewrite (50) as

which approaches, as . Applying (20), gives

(51)

where is the second derivative of the-ary entropy function,
given in (16). Let

Substituting (51) and in (48), yields

(52)

The nonnegative root of the quadratic in (52) is
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Fig. 5. Approximations tor given in [2, Theorem 1] (dashed curver ), and by our Lemma 5 (dotted curver ). The solid curver was obtained by
numerical solution of (10) forq = 2, p = 2, andk = 8.

Then, by (49) we have

and we can state the following theorem.

Theorem 3: Consider the cascade of a good-dimensional
vector quantizer, a-ary linear block channel code that attains
the Gilbert–Varshamov bound or the Tsfasman–Vlăduţ–Zink
bound, and a-ary symmetric channel with symbol error proba-
bility . The channel code rate that minimizes the th-power
distortion (averaged over all index assignments) satisfies

where the terms approach zero as for any trans-
mission rate , the terms approach zero as , is
the -ary entropy function, and is the capacity of a-ary
symmetric channel with symbol error probability.

Fig. 7 illustrates the upper and lower bounds of Theorem 3.
As before, the solid curves represent the upper bound, and
the dashed curves show the lower bound . For the sake of
comparison we also plotted the corresponding lower bounds for
efficient channel codes using dotted curves. As shown in [2]
for the binary case, the dotted and solid curves converge for
sufficiently large. The light shading illustrates how the bounds
for codes attaining the Gilbert–Varshamov bound compare to
the bounds obtained for efficient codes. The curves plotted do
not omit any terms.

VI. CONCLUSION

To determine the optimal tradeoff between source and
channel coding for certain structured linear block channel
codes, we have derived upper and lower bounds on the channel
code rate that minimizes theth-power distortion of a -dimen-
sional vector quantizer cascaded with a linear block channel
coder on a -ary symmetric channel. We have presented bounds
based on the Gilbert–Varshamov and Tsfasman–Vlăduţ–Zink
bounds as well as random coding arguments for-ary alpha-
bets. Comparisons of the two types of results were also given.
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Fig. 6. Approximations tor given in [2, Theorem 1] (dashed curver ), and by our Lemma 7 (dotted curver ). The solid curver was obtained by
numerical solution of (10) forq = 2, p = 2, andk = 8.

APPENDIX

PROOF OF PROPOSITION1

We use definitions and notation from [15], but we scale
the error exponents by a factor of . (Note: There have
been recent improvements in error exponent bounds [18]
but these are not needed in our analysis). We denote by

the input distribution, and
by , the transition probabilities
of a -ary channel.

Random Coding and Sphere Packing Exponents

Let us slightly reformulate some definitions from [15, pp.
144, 157]

(53)

(54)

(55)

(56)

(57)

Since the expressions for and differ only in the range
of , much of our forthcoming derivation is common to both.
Clearly,

For a -ary symmetric channel (see (2))

Thus the Jacobian is a diagonal matrix
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Fig. 7. Upper and lower bounds on the optimal channel code rate as given in Theorem 3 forp = 2, q = 64 are shown by solid (upper bound,r ) and dashed
(lower bound,r ) curves for� = 10 ; 10 ; 10 ; 10 . For comparison, lower bounds (r ) corresponding to efficient channel codes are plotted by dotted
curves. The matching triplets of bounds for the same value of� are indicated by shading. The lightly shaded regions illustrate the rate loss due to suboptimality.

which is positive-definite for . Hence, setting

yields a minimum. By symmetry, the minimizing distribution is
uniform (this is also easily verified using [15, Theorem 5.6.5].
Then

(58)

and thus

(59)

where

(60)

Then, since
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we obtain

for all values of corresponding to . Thus the stationary
point , found by setting , is a maximum. Instead
of solving explicitly for , we obtain a parametric expression
for the error exponents in terms of . From (59), we
have

(61)

which when substituted into (58) gives

(62)

(63)

where (62) follows by (60), and (61) was used in the last
equality. Since

and

(63) gives the sphere-packing exponent for , and the
random coding exponent for , where

(64)

As shown in [15], maximizes for rates less than
. Hence, for

which completes the proof of (23) and (24).

Expurgated Exponent

Let us define (see [15, p. 153])

(65)

(66)

(67)

(68)

Again

For a -ary symmetric channel (see (2))

(69)

Let us define

(70)

Alternatively, can be expressed in terms of . Using

(71)

we obtain

(72)

Using , (65) can be rewritten as

Thus the Jacobian is a diagonal matrix (in fact, it is the identity
matrix scaled)

which is positive-definite for , since (72) implies
that , unless . Hence, setting

yields a minimum. By symmetry, the minimizing distribution is
uniform. Thus

(73)
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which implies

(74)

(75)

where

(76)

Now, since

we obtain

for all values of corresponding to . Thus the stationary
point , found by setting , is a maximum. Instead
of solving explicitly for , we obtain a parametric expression
for the error exponent in terms of . From (75), we
have

(77)

which when substituted into (73) gives

(78)

(79)

where (78) follows by (76), and (79) follows by (77) and (71).
Since

and , (79) gives the expurgated exponent for
, where

(80)

For , is a decreasing function of, since
in this case (see (75)). Hence, for

(81)

Combining (79) and (81), we obtain (25).

Maximum of the Random Coding and Expurgated Exponents

It is easy to argue that both

and (82)

for all rates , since for every , the value corre-
sponding to is in the range of maximization in both
(56) and (68). Hence, provided that
holds, (26) is obtained. Consulting (80), the properties of the
entropy function imply that . To see that , we
rewrite (80) as

and (64) as

Then is equivalent to

Next, we show . By the concavity of , for any

Substituting this with in (64), we can upper-

bound as

which is what we wanted to prove. The remaining inequality
can be equivalently stated as ,

which follows by Jensen’s inequality.
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