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Concept Learning Using Complexity Regularization 
Gabor Lugosi and Kenneth Zeger 

Abstract-We apply the method of complexity regularization to 
learn concepts from large concept classes. The method is shown to 
automatically find a good balance between the approximation er- 
ror and the estimation error. In particular, the error probability 
of the obtained classifier is shown to decrease as O(dm) 
to the achievable optimum, for large nonparametric classes of 
distributions, as the sample size n grows. We also show that if the 
Bayes error probability is zero and the Bayes rule is in a known 
family of decision rules, the error probability is O(log n/n) for 
many large families, possibly with infinite VC dimension. 

Index Terms- Learning theory, estimation, pattern recogni- 
tion, classification. 

I. INTRODUCTION 

I N pattern recognition-or, as it has recently also been 
called, concept learning-the value of a (0, l}-valued 

random variable Y is to be predicted based upon observing 
an Rd-valued random variable X. A prediction rule (or 
decision) is a function 4 : Rd + (0, l}, whose performance 
is measured by its error probability 

An optimal decision 

g*(x) = 0, ifP{Y=O~X=x}>P{Y=l~X=x} 
1, otherwise 

requires the knowledge of the joint distribution of (X, Y). 
The error probability L* = P{g*(X) # Y} of g* is called 
the Bayes risk. Assume that the distribution of (X, Y) is 
unknown, but a training sequence 

az = ((Xl, Yl),...,(-L Yn)) 

of independent, identically distributed random variables is 
available, where the (Xi, Yi) have the same distribution as 
(X, Y), and D, is independent of (X, Y). A classi$er is a 
function & : Rd x (Rd x (0, 1))” ---f (0, l}, whose error 
probability is the random variable 

L(&) = P{&(X, ax) # Y I a>. 
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In the theory of concept learning (see Valiant [20] and Blumer 
et al. [6]) it is often assumed that L* = 0, and the Bayes 
decision g* is known to be a member of a relatively small 
class C of decision functions, called concepts. The “smallness” 
of a class C may meaningfully be measured by its shatter 
coefficients and VC dimension [6], defined as follows. 

Let C be a class of decisions $: Rd + (0, l}, and 
denote by d the collection of subsets of “Rd of the form 
A = {x: 4(x) = l}, where 4 E C. For 21,. .. , xn E Rd, 
let Nd(Zl,. . . , 2,) be the number of different sets in 

{{a,.. ,z,}nA;A~d} 

and define the nth shatter coeficient of C as 

max s(c, n) = zl,,,,,ZnERd Nd(zl,. ’ ) h). 

The largest integer k 2 1 for which S(C, k) = 2” is denoted 
by V, and it is called the Kzpnik-Chewonenkis dimension (or 
VC dimension) of the class C. If S(C, n) = 2” for all n, then 
by definition, V = 00. 

The method of empirical risk minimization picks a classifier 
from C that minimizes the empirical error probability over 
C. More precisely, define the empirical error probability of a 
decision 4 by 

where I denotes the indicator function. Let &, denote a 
classifier chosen from C by minimizing i,(4), i.e., Ln(&) 5 
L,(4), 4 E C. Recently much attention has been paid to 
analyzing the error probability L(&). If inf4,e L(4) = 0, 
then naturally, L, (&) = 0 almost surely, and for every n 
and E > 0 

w&&L) L 61 5 p 
i 

SUP L(4) 2 6 
&C;i,(4+)=0 1 

5 2S(C, 2n)2-“‘/2 5 2 7 
( 1 

V 
‘ye/2 

(1) 

(see Devroye and Wagner [ 131, Vapnik and Chervonenkis 
[24], Vapnik [21], Blumer et aZ. [6], and Lugosi [16] for 
different versions of the inequality). Clearly, this inequality 
is only useful if V < 00. Unfortunately, as classes with 
finite VC dimension are always very small, the condition 
inf4,eL(4) = 0 is very restrictive. Vapnik and Chervonenkis 
[23], [24] proved distribution-free exponential inequalities for 
empirical error minimization. Following their work, several 
improvements have been proven. For most interesting values 
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of n and E, one of the tightest bounds was given by Devroye 
[lo], who showed that for every n and e > 0, and for all 
distributions of (X, Y), we have 

P 
i 

SUP&(~) - L(f$)J 2 t 5  4esS(C, n2)e-2ne2 (2) 
&C 1 

P 
{ 

L(A) - &LL($) 2  6  
1  

5  4esS(C, n2)eCn’2/2. (3) 

The strength of these inequalities is that they are valid for all 
distributions of (X, Y). One of the implications is that 

EL(&) - ininL($) <‘c y J-- 
where c is a universal constant ( independent of the distribu- 
tion). Thus the error probability of the empirically chosen 
decision is always within O(dm) of that of the best 
in C. Unfortunately, if V < 00, then for some distributions, 
inf+c L(4) may be arbitrarily far from the Bayes risk L*. On 
the other hand, if V = 00, then L(&) - infqEc L(d) will be 
large for some distributions [6], [12], [24]. 

A typical approach for resolving the conflict is the “method 
of sieves.” Here one takes a sequence C(l), C(2), . . . of classes 
of classifiers such that all have finite VC dimension, yet 
they “grow” in the sense that for any distribution, the error 
probability of the best classifier in C(‘“) converges to L* as 
k + cc. Then we may obtain Jn from the k,th class Cc”-) 
by minimizing the ,empirical error probability over C(“-), 
where the integer k, is some prespecified function of the 
sample size n only. The integer ,& basically determines 
the complexity of the class from which the decision rule is 
selected. Typically, k, should grow with n in order to assure 
convergence of the approximation error inf$EC(kn) L(4) - L*, 
but it cannot grow too rapidly, for otherwise the estimation 
error L(&) - inf $EC(k’n) L(4) might fail to converge to zero. 
For the overall error of this rule, we clearly have 

W ($n)} -L* 5 c/T+( &ign) L(4) - L* ) (4) 

for a universal constant c. It can be shown that it is possible to 
choose the sequence of classes C(l), C(2), . . and the sequence 
{k,} such that the error probability of the selected classifier 
converges to L* with probability one for all distributions 
(see, e.g., Vapnik [22], Devroye [ll], Farago and Lugosi 
[14]). Ideally, to get the best performance, the two types of 
error should be about the same order of magnitude. Clearly, 
however, a  prespecified choice of the complexity k, cannot 
balance the two sides of the tradeoff for all distributions. 
Therefore, it is important to find methods such that the 
classifier is selected from a class whose index is automatically 
determined by the data D,. 

A possible solution to this problem may be derived from 
the idea of structural risk minimization (see Vapnik and 
Chervonenkis [24] and Vapnik [21]), also known as complexity 
regulurization (see Barron [2], [3] and Barron and Cover 
[4]). The basic idea is to minimize the sum of the empirical 

error and a term corresponding to the “complexity” of the 
candidate classifier. In our application, this complexity is a 
simple function of the VC dimension of the class from which 
the candidate classifier is taken. 

The idea of minimizing the sum of the empirical error 
and a term penalizing the complexity has been investigated 
in various statistical problems by, e.g., Akaike [I], Schwarz 
[19], Rissanen [17], [18], Barron [2], [3], Barron and Cover 
[4], Vapnik and Chervonenkis [24], and Vapnik [21]. 

In this paper we analyze a method essentially due to Vapnik 
and Chervonenkis [24]. It is shown to produce a classifier 4: 
that finds a nearly optimal balance between the approximation 
and the estimation error in the sense that the expected value 
of its error probability satisfies 

E{L($i)} - L* 5  mf *,,(/T 

where Vk is the VC dimension of C(‘“) (Theorem 1). To see 
what the above inequality means, observe that the essential 
improvement over (4) is the infimum over all k appearing on 
the right-hand side, as opposed to the predetermined Ic, in (4). 
The first term inside the parentheses is essentially the same 
as the best distribution-free upper bound on the estimation 
error when the empirical error is minimized over the lath class 
C(“). The second term is the approximation error in the same 
situation. Since the overall error is bounded from above by 
the infimum of these sums, we can say that the obtained 
distribution-free performance guarantee for 4; is essentially 
the same as the best bound we could get if we had known 
the optimal k beforehand. We  emphasize that the optimal Ic 
depends on the distribution, and the strength of this method lies 
in the fact that the above inequality is true for all distributions 
of (X, Y). 

Now, it is not surprising that the method is strongly univer- 
sally consistent (see our Corollary l), i.e., for any distribution 
of (Xl Y) 

plm L(C&TJ = L* with probability one. 

Another corollary of the inequality above is that if in 
addition it is assumed that the Bayes decision g* is a member 
of a class C* which can be written as a countable union of 
classes each with finite VC dimension, then 

EL(&) - L* 6  c d log 12 
~ 

n  

where the constant c depends on the distribution (Corollary 
2). We  emphasize that the rate O(Vm) is achieved 
for every distribution in a very large nonparametr ic class of 
distributions, as the condition imposed on (X, Y) involves 
merely the form of the optimal decision g*. 

We  also address the case when g* E C* and Lx = 0, i.e., 
Y is a function of X (namely, Y = g*(X)). This is the usual 
setup in Valiant’s learning theory. We  show in Theorem 2 that 
if C* can be written as a countable union of classes with finite 
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VC dimension, then the method of minimizing a complexity 
penalized error estimate yields a classifier $z, with 

Interestingly, in this case we have great freedom in defining 
the complexity penalty. 

II. STRUCTURAL RISK MINIMIZATION 
Let C(l), d2), . . . be a sequence of classifiers, from which 

we wish to select a classifier with the help of the training data 
D,. The method of selecting a classifier that we describe next 
is based on minimizing the sum of the empirical error L, and 
a complexity term over the union of the classes C(l), Cc2), . . . . 

For every n and j, we introduce the complexity penalty 

r(j,n)=/T. 

The penalty r(j, n) is basically an estimate of the magnitude 
of the error caused by overfitting. Its choice is motivated 
by (2), and its usefulness will be apparent from the proof 
of Theorem 1. The algorithm is defined as follows: Let 
&x,1, &x,2,. . be classifiers minimizing the empirical error 
in($) over the classes C(i), Cc2), . . ., respectively. For 4 E 
C(j), define the complexity-penalized error estimate 

Finally, select the classifier $; minimizing the complexity 
penalized error estimate E,($,,j) over j > 1. We will 
refer to 4: as the classification rule based on structural risk 
minimization. 

By a well-known inequality connecting shatter coefficients 
and the VC dimension, S(C, n) < (ne/V)v (e.g., Vapnik and 
Chervonenkis [23]), we see that the size of the complexity term 
r(j, n) is approximately a constant times J(vj log n + j)/n, 
where Vj is the VC dimension of the class C(j). In most typical 
applications the sequence VI, V2, . . is strictly monotone 
increasing, therefore Vj > j, and the complexity is monotone 
increasing in j. The intuition-already suggested by Vapnik 
and Chervonenkis [24]-is that in larger classes the danger of 
overfitting the data is greater, and the complexity penalty is 
intended to compensate for the overfitting error. The main 
properties of the selected classifier are summarized in the 
following result. 

Theorem 1: Let C(l), Cc2), . . . be a sequence of classes of 
classifiers whose VC dimensions VI, V,, . . are finite. Let 4: 
be the classification rule based on structural risk minimization. 
Then for all n and Ic, and all c > 4r(lc, n), we have 

5 e-ne2/2 + 4esS(~(k), n2)e--ne2/s 

and in particular, for all n 

E(L(4:)) - L* < 

+ ( inf L(4) - L* . 
q%C(“) >) 

As explained in the Introduction, the above result indicates 
that our method finds a nearly optimal balance between the 
approximation and estimation errors. 

Remark: Before stating a few corollaries of Theorem 1, let 
us briefly compare it to analogous results obtained by Barron 
and Cover [4] and Barron [3]. For example, a result in [3] 
states the following. For each .n, let I, : Rd --+ (0, l} be a 
countable list of classifiers and assign the complexity penalty 
C(4, n) to each 4 E J?, such that they satisfy the K&-type 
inequality 

If & is chosen from In to minimize the penalized error 

for an appropriate constant c, then 

E{L(&)}-L* = 0 (+ir& (pp+,,) - L*))). 

Barron calls the quantity within the parentheses on the right- 
hand side the index of resolvability. To make the comparison 
transparent, we may rewrite Theorem 1 as 

where 

C’($, n) = log (S(C(j), n)) + j 

for each 4 E C(j). The significant difference between the two 
inequalities is that we can take the infimum over a much larger, 
uncountable set C* of candidates. On the other hand, our result 
is less general, as the penalties are specifically defined in terms 
of the shatter coefficients. It is apparent from the proof that a 
Kraft-type summability is crucial in our case as well. 

Next, we review some of the implications of this result. 
The first corollary states that the obtained classification rule 
is strongly universally consistent. The only conditions are 
that each class in the sequence has finite VC dimension, 
and the classes “approximate” the Bayes rule g* well for all 
distributions. 

Corollary I: Let C(l), Cc2), . . . be a sequence of classes of 
classifiers with finite VC dimensions VI, V2, . . . such that for 
any distribution of (X, Y) 

p$ & L(d)) = L*. 

Then the classification rule 4: based on structural risk min- 
imization satisfies 

lim L(&) = L* with probability one n+cc 

for any distribution of (X, Y). 
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We remark here that the first conditions are satisfied by 
many sequences of classes C(i), such as classes of histogram- 
type classifiers, generalized linear classifiers, neural networks, 
etc. 

Corollary 1 shows that the method of structural risk mini- 
mization is universally consistent under very mild conditions 
on the sequence of classes C(l), Cc2), . . . . This property, how- 
ever, is shared by the minimization of the empirical error over 
the class Cc”-), where k, is a properly chosen function of the 
sample size n. The next special case displays the strength of 
structural risk minimization. 

Corollary 2: Let C(l), Cc2), . . . be a sequence of classes 
of classifiers such that the VC dimensions VI, V2, . . . are all 
finite. Assume further that the Bayes rule is contained in the 
union of these classes, i.e. 

g* E c*g (=J c(j), 
j=l 

Let K be the smallest integer such that g* E CcK). Then for 
every n  and any E > 4~( K, n), the error probability of the 
classification rule based on structural risk minimization 4: 
satisfies 

P{L(qbi) - L* >  c} 5  epnezi2 + 4e8S(CcK), n2)e--nt2/8. 

Furthermore 

EL(&J - L* 2  4  

Corollary 2 shows that the rate of convergence is always of 
the order of Vm, and the constant factor VK depends 
on the distribution. The number VK may be viewed as the 
inherent complexity of the Bayes rule for the distribution. 
The intuition is that the simplest rules are contained in C(l), 
and more complex rules are added to the class as the index 
of the class increases. The bound on the error is about the 
same as if we had known K beforehand and minimized the 
empirical error over CcK). One great advantage of structural 
risk minimization (similarly to minimum description length, 
automatic model selection, and other complexity regularization 
methods [l]-[4], [17]) is that it automatically finds where to 
look for the optimal classifier. 

Corollary 2 may be rephrased as follows. Assume that the 
distribution of (X, Y) is such that the Bayes rule g* is a 
member of a known class C* that can be written as a countable 
union of classes with finite VC dimension. Then there exists a 
classification rule 4: whose error probability converges to the 
Bayes error L* at an 0( Vm) rate. This is a very fast 
rate of convergence for a huge class of distributions of (X, Y). 
The only condition on the joint distribution is that g* E C*. 
This is clearly not very severe, as no assumption is imposed on 
the distribution of X, and C* can be a large class with infinite 
VC dimension. We  emphasize that in order to achieve the 
w-i-T) t f o  n n ra e o convergence, we do not have to assume 
that the distribution is a member of a known finite-dimensional 
parametric family. The condition is imposed solely on the form 
of the Bayes classifier g*. The only requirement is that C* 
should be written as a countable union of classes of finite 

VC dimension. One can appreciate this guaranteed rate of 
convergence by recalling Devroye’s [9] result, which states 
that for any sequence of classification rules there exists a 
distribution of (X, Y) such that the rate of convergence of 
the error probability to L* is arbitrarily slow. 

Remark: The empirical risk L, of the classifier selected by 
empirical error minimization is usually an optimistically biased 
estimate of its error probability. However, from the proof of 
Theorem 1, we see the following by-product: 

P(L(4:) - I,($:) 2  E} 5  e-2ne’. 

This means that the penalized error estimate of the selected 
classification rule cannot be much larger than the actual error 
probability. In other words, the designer can be confident about 
not having much larger error probabilities than the estimated 
one. 

A disadvantage of the method is that it requires thorough 
knowledge of the shatter coefficients (or at least the VC 
dimension) of the classes C(j). For nested sequences, i.e., when 
c(l) c (52) c . . .) Buescher and Kumar [7], [8] proposed a 
general method which does not require any knowledge of the 
shatter coefficients. Their method, “simple empirical cover- 
ing,” has the universal consistency property, as in Corollary 
1. On the other hand, their method seems to have a slower 
rate of convergence than structural risk minimization under 
the conditions of Corollary 2. Interestingly, as we will see in 
Theorem 2, in some situations we have a tremendous freedom 
in defining the complexity penalties. 

III. PROOF OF THEOREM 1 
First we prove the probability inequality. Observe that 

The first term on the right-hand side of the inequality may be 
bounded as follows: 
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5 2  4e8S(di), n2)e-24~/2++4)2 (by (2)) 
j=l 

5 5 4esS(~(j), n2)e--2nr2(j,n)e--ne2/2 
j=l 

0 0  

=e 
-d/2 

c 
e-i 5  e--ne2/2 

j=l 

where we have substituted the defining expression for r(j, n) 
to obtain the last equality. For the second term on the right- 
hand side of (5) we have 

= P L(i,,k> + r(k, n) - h& L(4) >  i} 
I 

5  p  J%&,k) - iI& L(4) 2  ; 
C I 

(since by assumption r(k, n) 5 t/4) 

5 p ,s& lMi% - L($)l 2 ; 
1’ 

5 4e’S(C(“), n2)e-nt2/8 (by (2)) 

which proves the first inequality in Theorem 1. The inequality 
for the expected error probability follows from the previous 
inequality by the following simple argument. Note that 

E{L(&)} - L* =  t=f, 
- ((wm - & L(i)) 

+  
( 

inf L(4) - L* . 
&C(‘C) >) 

To bound the estimation error, fix k and write 

(by Jensen’s inequality) 

ZZ L(4;) - i&L(4) 

<IL+ 
Jm 

,‘y (e--nt/2 +  4e8S(C(“) n2)ewn”/“) dt >  

<US 
s 

(epnt12 + 4e8S(C(“), n2)epnt18) dt 

(by the”probability inequality, for any u 2 16r2(lc, n)) 
<  16Vj log n + S(lc + 11) 
- n  

where we chose u = 16r2(k, n) and used the inequality 
S(C(‘“), n) 5 nh. The theorem is thus proved. 0 

IV. NONPROBABILISTIC CONCEPTS 
In Valiant’s [20] framework of learning theory, it is assumed 

that g* is a member of a known class C of classifiers, and 
moreover, L* = 0 (see also Blumer et al. [6]). In this 
case, we see from (1) that if C has a finite VC dimension 
V, then E{L(&)} < caVlogn/n, where & is a classifier 
minimizing the empirical error i, over C (i.e., in(&) = 0) 
and CO is a universal constant. It is also well known that if 
V = 00, then there exists a universal constant cl such that 
for every n  and every classification rule $,, E{L(&)} >  cl 
for some distribution (see Vapnik and Chervonenkis [24], and 
Haussler, Littlestone, and Warmuth [15]). Benedek and Itai 
[5] demonstrate a selection algorithm with a guaranteed rate 
of convergence of the expected error probability to zero. In 
this section, we demonstrated that the idea of complexity 
regularization can be applied in this setup as well. In particular, 
we show that if the Bayes rule g* is contained in a known 
class that can be written as a union of classes with finite 
VC dimensions, then there is a classification rule 4: such 
that E{L(&)} L 1 g / c o n  n, where the constant c depends’ 
(necessarily) on the distribution. This rate is always faster than 
that offered by the algorithm of Benedek and Itai. The solution 
technique is again complexity regularization, but this time the 
conditions on the penalty term are very mild. 

Assume that L* = 0  and g* E C*, where 
0 0  

c* =  U c(i) 

j=l 

for some classes C(i), C(‘), . . . with finite VC dimensions 
VI, vz,.... W ithout loss of generality we assume that the 
classes are disjoint. Define 

&I = u c(i) 
j=l 

so that the Bci)‘s are nested, i.e., 8(l) c B(2) C +. . . As 
before, we define the classification rule 4: as one minimizing 
a complexity penalized error estimate 

L($) = L(4) + r(j, n) (6) 

over C*, where the penalty r(j, n) is added to each 4 E B(i). 
The following result states that a wide variety of penalties 
provide a very fast convergence rate of the error probability 
of the selected classification rule. 

Theorem 2: Assume that the Bayes risk L* is zero and the 
Bayes decision g* lies in 

cc 
c* = U c(i) 

j=l 

for some sequence of disjoint classes C(l), C(2), . . . with finite 
VC dimensions VI, V2, . . . . Assume that the penalty function 
r(j, n) satisfies the following conditions: 

1) r(j, n) is strictly monotone increasing in j; and 
2) for each j > 1 

ilm (~(j, n) - r(j - 1, n)) = 0. 
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Then the error probability of the classification rule 4: 
defined in (6) satisfies 

E{L(cjg)) =  0  F . 
( 1  

Remark: We note that for Condition 2 to hold it is sufficient 
that lim,,, r(j, n) = 0 for each j 2  1. 

Proojl Let Ic be the smkllest number such that 
infdEB(k) L(4) = 0. Denote 

a3 = &$ L(4). 

Clearly, ak-1 > 0. Assume (using Condition 2) that n is 
sufficiently large such that 

r(k, n) - r(k - 1, n,) < O&1/2. 

Observe that with probability 1, 

inf i,(4) = 0 
qw3(J) 

for all j 2  k. W ith some abuse of notation, we write 4: E C(j), 
if the selected classifier is a member of the jth class C(j). 
First we show that if n  is large enough, then with very high 
probability 4: E Cc’“), and then we use (1) to conclude the 
proof. Thus 

P{& E 23(“-1)) 

(since for 4 E B (k-1)> i&h) 2 L&fl) + T(k - 1, n) 
by Condition 1, and mEC*~~jk&l) -w) 2 r(k n), 

again by Condition 1) 

IP 
i 

4E;~p11 G(4) - L($)I > ak-l/2 

(by the definition of ah-l, and 
since n is large enough) 

5 4e8(ne) ZWk-1 e-na2,-,/2 

by (2), where 

This follows from the fact that since 

@d = (J c(i) 
i=l 

S@?(j), n) <  fJ S(di) 
i=l i=l 

Thus with very large probability 

q5; E fi c(j). 
j=k 

Notice, however, that also $E E Cc’“), since for each j 2  k, 
in&3b) i(4) = 0, and r(k, n) is monotone increasing in k. 
Therefore, for every E > 0 

P{L(qg) > E ) 4; E e-l)} _< P SUP L(4) > E 
q4EC(“):i,($)=O Vk 

2-42 

Summarizing, we have shown that if n  is sufficiently large 
such that r(k, n) - ~(k - 1, n) < a&1/2, then for all t > 0 

P{L(qq > E} 5 P{& E B(‘“-l)} 
+ P{L($fg > t ) 4; E d-l)} 

Vk 
< qe8#ke-n&,/2 + 2 2-“@ . - 

The statement for E{L(dt)} now follows easily: If n is 
sufficiently large such that the above probability inequality 
is satisfied, then for all t E (0, 1) 

Vk 
< t + 4e8n2Wk-~e--na;-,/2 + 2 2--nt/2 

= 4e8n2W~-~e--n&,/2 + (2% + 2) log 71  + (2e)vk 
n  

(choose t = (2r/l, + 2) logn/n) 

which concludes the proof. q  
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