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1. INTRODUCTION 

In theoretical computer science, and, in particular, in automata and 
formal language theory, questions arise concerning words and sets of words 
in free monoids. Results and techniques from the study of the com- 
binatorial algebra of the free monoid have provided an “algebraic” basis for 
dealing with many of these questions. In recent years there has been 
increasing interest in properties of words and sets of words in free partially 
commutative monoids or commutation monoids, that is, monoids in which 
some pairs of generating letters commute but no other relations hold. Some 
of this interest is due to the use of free partially commutative monoids in 
modeling problems of concurrency control in databases and parallel com- 
putation, as, for example, by Fle and Roucairol (1985); in a recent survey, 
Aalbersberg and Rozenberg (1988) have presented the connections between 
free partially commutative monoids and Petri nets. As in the case of free 
monoids, problems about words are linked to combinatorial properties, 
and the combinatorial algebra of free partially commutative monoids has 
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received much attention since arising in the work of Cartier and Foata 
(1969) on rearrangements. 

Formally, a free partially commutative monoid is presented by a (finite) 
alphabet and a binary relation on the alphabet that specifies which letters 
are “independent” or commute. The monoid itself is then the quotient of 
the free monoid on the given alphabet by a congruence relation on strings 
derived from the independence relation on letters. For any such structure, 
and especially one to be used as a model, the issue naturally arises of the 
algorithmic solution and inherent complexity of questions about the 
monoid: such questions as whether two words in the underlying free 
monoid represent the same element of the monoid (the Word Problem), 
and whether two presentations give rise to isomorphic monoids. 

For free partially commutative monoids, dealing with algorithmic 
questions is aided by the fact that elements of the monoid (“traces”) can be 
translated (faithfully) from representative words to certain tuples of words 
(Cori and Perrin, 1985; Perrin, 1986; Duboc, 1986b) or to certain directed 
acyclic graphs (Cori and Metivier, 1985). Using one notion of projection to 
a tuple of words, for example, Book and Liu (1987) have given a linear- 
time (Turing machine) algorithm for the Word Problem for free partially 
commutative monoids. The algorithms here also use that notion of projec- 
tion, in the form given explicitly by Cori and Perrin (1985); a similar 
notion was used by Keller (1973). A different scheme was used by Perrin 
(1986) to produce a normal form from a given word, which also gives rise 
to a linear-time algorithm for the Word Problem. 

Much recent work on free partially commutative monoids has treated 
their rational and recognizable subsets (which need not be the same class). 
One algorithmic question in this context is whether a given word is con- 
gruent to any word in some regular set; Bertoni et al. (1982) have described 
a polynomial-time algorithm to answer this question and have shown that 
when the input includes specifications of the monoid and regular set as 
well, the question is NP-complete. 

The Isomorphism Problem-whether two free partially commutative 
monoids presented as such are isomorphic-is solvable, but is not known 
to be tractable, since it is equivalent to the Isomorphism Problem for 
(finite) undirected graphs. At the extreme cases of free abelian monoids and 
free monoids, the graphs take the simple forms of complete graphs and 
graphs with no edges, respectively, and so the problem is easily solved in 
those cases. 

In this paper, we present linear-time algorithms for certain problems 
concerning either single words or pairs of words in a fixed free partially 
commutative monoid. The time bounds for the algorithms are linear 
functions of the length of the input words, under the RAM model of 
computation (although the Turing machine model will sometimes suffice). 
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The purpose is to make explicit the existence of efficient solutions for the 
problems, and the algorithms rely on the algebraic properties of free 
partially commutative monoids developed by others and on algorithms for 
words in free monoids (Knuth et al., 1977; Avenhaus and Madlener, 1980). 
The principal results concern finding the root of a given word, testing 
whether one word is a factor of another, and testing whether two words are 
conjugate. 

There is a natural extension of the notion of “primitive root” of a word 
from free monoids to free partially commutative monoids, and that 
“congruential root” can be found in Iinear time (Theorem 4.2). As a 
consequence, it can be tested in linear time whether two words have any 
common powers (Corollary 4.3 ). 

For a pair of words, it can be asked whether one represents a factor of 
the other in the free partially commutative monoid, that is, whether there 
is some allowable rearrangement of the letters in the second word for which 
the first word appears as a block. This question can be answered, and an 
appropriate factorization (if any) found, in linear time (Theorem 5.3). The 
solution to this “pattern-matching” problem generalizes the linear-time 
solution in free monoids using the Knuth-Morris-Pratt algorithm, and is 
based on it. 

There are several ways to extend the notion of conjugacy from free 
monoids to arbitrary monoids and the two that seem most natural for free 
partially commutative monoids are considered here: “conjugacy” and 
“cyclic equality.” (The first is an equivalence relation but the second might 
not be.) Whether two words stand in either of these relations can be tested 
in linear time and, when they do, appropriate witnesses are found 
(Theorem 6.3). For these algorithms, the problems are recast as questions 
of factorization in the free partially commutative monoid. 

Because the size of the aiphabet (or, more precisely, the number of com- 
muting pairs of letters) contributes to the “constant” factor in the linear 
time bounds, the corresponding uniform problems, in which a specification 
of the monoid is part of the input, may not have linear-time solutions but 
are solvable in polynomial time. For example, the uniform factorization 
problem can be solved in time bounded by the square of the length of the 
input. 

2. PRELIMINARY DEFINITIONS AND NOTATION 

For a set A, [Al denotes the cardinality of A and A denotes the comple- 
ment of A (with respect to the appropriate universe). 

For an aiphabet (set of letters) Z:, Z* denotes the free monoid generated 
by C, with the empty word denoted by e. We are concerned here only with 
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finite alphabets. A development of the basic properties of words in a free 
monoid can be found in Chapter 1 of the book of M. Lothaire (1983). 

For each letter a E Z and word w  E Z*, JwI, denotes the number of 
occurrences of a in w. The length of word w, 1~1, is the total number of 
occurrences of letters in w, so that IwI = C, 1~1,. The set of letters 
occurring in w  is denoted by aiph(w). 

For words x, y, and z, if x = yz, then y is a prefix of x, and z is a suffix 
of x; if x = uyu for some words u and u, then y is a factor of x. The relation 
“y is a prefix of x” is also written as “y < x.” If x = MU = u’u with u #e then 
u is an overlap of x (that is, a proper prefix and suffix of x). 

A nonempty word x is primitiue if there is no word y and integer k > 1 
such that x = yk. The root p(x) of xfe is the (unique) primitive word r 
such that x = rk for some k 2 1. 

Let N denote the natural numbers (0, 1, 2, . ..}. For an alphabet C listed 
as {a,, .-, a,}, the corresponding Purikh mapping is the function 
!Yz C* + N” such that Y(x) = (Ix~,~, . . . . Ixl,,). The Parikh mapping is a 
monoid homomorphism: Y’(xy) = Y(x) + Y(y), where addition is extended 
componentwise to N”. Also extending the usual order on N, write Y(x) < 
Y(y) if and only if, for all a E Z, 1x1, < I yJ,. 

Several of the algorithms presented here are based on efficient string- 
matching algorithms for free monoids that use the concept of “failure 
functions” of words. The failure function of a word a, .*.u,, ui E C, is the 
function f: { 1, . . . . rr } + { 0, . . . . n - 1 > for which f(k) is the largest j < k such 
that a, . ..uj is a suffix of a, “.uk. (In other words, f(k) is the length of the 
longest overlap of a, . .. &.) The failure function of x can be computed in 
time linear in 1x1, and it can be used to find all occurrences of x in another 
word y in time linear in Ixyl. Details can be found in the text by Aho, 
Hopcroft, and Ullman (1974), as can a description of the RAM and Turing 
machine models of computation. 

The failure function of a word can also be used to find its root in linear 
time, due to the fact expressed in the following proposition. Essentially the 
same observation has been made by Avenhaus and Madlener (1980) in 
presenting algorithms for root, conjugacy, and other problems in free 
groups; however, the proof is presented here for completeness. 

PROPOSITION 2.1. Suppose u is the longest ouerlup of a nonempty word x 
and x = MU = u’u. Zf v is a prefix of u then v = p(x); otherwise, x is primitive. 

Proof Let r = p(x) and suppose x = rm + I, m > 0. Since rm is an overlap 
of x and u is the longest overlap of x, lrml < 1uI < Irm+ll. 

If u is a prefix of u then (since x = MU = u’u and Iu’] = IV/), u = u’ and 
x=uU=Uu=rm+l with r a primitive word; hence u = ri for some j> 0 
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(Lothaire, 1983, Props. 1.3.1, 1.3.2). Since lrml < lu( < I?+i(, j= 1 and so 
v = r. 

If ma1 then (since x=rm+l= uv and lrml < 1~1) there is some word s 
such that u = r”‘s and r = sv. Hence x = (8~)~ + i = V’U = V’(SU)~S = u’s(us)~, 
so, since m is positive, r = sv = us and then u = P's = vsr*-‘s and thus v is 
a prefix of U. 1 

Pattern-matching problems for free monoids can also be approached 
from other directions. Galil and Seiferas (1983) have presented an algo- 
rithm that tests whether one word is a factor of another and that uses 
linear time on a multihead finite automaton. 

3. PROJECTION AND RECONSTRUCTION 

This section gives the definition of free partially commutative monoids 
and the basic facts concerning their representation by projections. Each 
word x over the alphabet generating the free partially commutative monoid 
has an associated family of projections, a tuple of words n(x), and two 
words give rise to the same family exactly when they represent the same 
element of the monoid. For an arbitrary family, it can be asked whether it 
arises from some word (i.e., is “reconstructible”); this question can be 
answered in linear time and, if the answer is “yes,” any or all such words 
can be found (Theorem 3.3). 

DEFINITION. A partially commutative alphabet is a pair (Z, 8), where Z 
is an alphabet and 8 z Z x 2 is a symmetric and irreflexive relation (that is, 
(a, b) E 8 implies (b, a) E 0 and for no aEZ is (a, a) in 0). The pairs of 
(distinct) letters that commute are given by 8, and the noncommuting pairs 
are given by 8= (CxC)- 8. For aEC, let O(a) = {bEZ: (a, b)E e} and 
&a)= {bEC:a#b, (a, b)EB}. 

The pair (Z, 0) can be considered as an undirected graph on vertices Z 
with an edge between every pair of distinct letters that do not commute. 
The set &a) consists of the neighbors (that is, adjacent vertices) of the 
letter a in that graph. 

A partially commutative alphabet determines a monoid as follows. 

DEFINITION. Let c-* be the relation on Z* defined by xaby c-) xbay for 
all x, y E .Z* and all (a, 6) E 8, and let = be the reflexive, transitive closure 
of c--). The relation = is a congruence relation on Z*, “congruence modulo 
0.” The free partially commutative monoid determined by (C, 0) is the 
quotient monoid X*/E and is denoted by M(Z, 0). 
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The elements of the monoid M(C, 0) are the congruence classes [u] for 
UE‘P, where [u] = {vEZ*: u-u}; the class [e] serves as the identity 
element of the monoid and the product is given by [u] . [u] = [MO]. Two 
words are congruent exactly when one can be obtained from the other by 
a sequence of exchanges of adjacent commuting letters. In particular, 
congruent words have the same Parikh mapping. 

The projection of a word with respect to a pair of letters is the word 
formed by erasing all letters in the word except for the chosen pair. Of 
particular interest are projections of words with respect to pairs of 
noncommuting letters. 

DEFINITION. For a, b E .Z (not necessarily distinct), scab: C* + {a, b}* is 
the homomorphism determined by defining ~,Ju)=a, nab(b)= b, and 
~t,~(c) = e for c # a, b. Let n(x) denote the family (nab(x): (a, b) E 0). 

Since 8 is an irreflexive relation, the projection X,,(X), counting the 
number of occurrences of a in X, is included in the family n(x). For a E Z 
and bE &a), both (a, b) and (b, a) are included in the index set of Z7(?c) 
even though just one would be sufficient (since n,,(x)= nba(x)); the 
redundancy is for notational convenience only. 

The following characterization of congruence modulo 0 in terms of pro- 
jections provides the basis for many of the following results and algorithms. 
One easily proved consequence is that M(C, 0) is .a cancellative monoid 
(that is, uxu = uyu implies x = y.) 

PROPOSITION 3.1. (Cori and Perrin, 1985, Prop. 1.1). For all words u 
and u, u = u if and only if ZZ(u) = n(u). 

Families of words indexed by 8 arise that are not necessarily formed by 
projecting a word. Such a family U = ( Uob: (a, b) E 0) is assumed to be sym- 
metric (i.e., Uab = U,,) and to have components on the correct alphabets 
(i.e., U,, E {a, b} *). Concatenation is extended to families componentwise, 
so that, for V= ( Vab: (a, b) E @, U. V = ( Uub Vab: (a, b) E 0); note that 
17(xy) = n(x). n(y). The “length” of the family U is the sum of the lengths 
of the components of U. 

DEFINITION. A family Y = (Y,,: (a, b) E 8) is reconstructible if there is 
some word x such that Y = n(x). The family Y is quasi-reconstructible if for 
every UE.Z and every be&a), IYOblo= IY,,l. 

Establishing that families are reconstructible is often made easier by use 
of the following facts due to Duboc (1986b, Props. 1.6, 1.7) and Cori and 
Metivier (1985, Prop. 3.8). 
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PROPOSITION 3.2. (a) Zf Y ‘Z is reconstructible and Y (or Z) is quasi- 
reconstructible then both Y and Z are reconstructible. 

(b) If Yk is reconstructible for some k > 1 then Y is reconstructible. 

A multitape Turing machine can check a given family for reconstruc- 
tibility and, if it is reconstructible, produce a “reconstructed” word; the 
time taken need be no greater than linear in the total length of the family. 

Reconstruction Procedure. On input Y = ( Y,, : (a, b) E 8): 

1. Check that Y is quasi-reconstructible (and has the correct form). 
2. If all components of Y are empty, halt and accept. 
3. Form 

If F is empty, halt and reject. Otherwise, let CLE E be any element of F. 
Print a, remove the first letter from each entry Yob and Y,, for 
b E &a) u {a}, and return to (2). 

THEOREM 3.3. On input Y, the Reconstruction Procedure operates in time 
linear in the length of Y. Input Y is rejected if Y is not reconstructible; if Y 
is reconstructible, the output printed is a word y such that Y = I7( y). 

ProoJ: It can be assumed that the family is presented with each compo- 
nent on a separate tape. Checking, for all appropriate letters a and b, 
whether Y,,~{a,b}*, Yab= Yb,, IYabla=lYaPI, and IYabIb=lYbbl, can be 
done by simply reading the tapes. The set F(Y) is apparent from the first 
letters of the components, so Step 3 requires constant time (since C and 8 
are fixed). The overall linear time bound then follows since the length of at 
least one component is reduced each time Step 3 is performed. 

In Step 3, the first letter of Y,, and Ybo must be a, since a belongs to F. 
Beginning with a quasi-reconstructible family Y,, if x has been printed and 
the remaining family is Y,, then Y, = n(x) . Y, and Y, is quasi-reconstruc- 
tibie; in particular, Y, is reconstructible if and only if Y, is. Therefore, if 
the procedure, on input Y, halts and accepts after printing word y then 
Y = Z7( y). On the other hand, if the procedure halts and rejects then the 
original input was not reconstructible, since, for a reconstructible family 
Z= n(z), F(Z) is the set {u E Z: z = az’ for some z’} and so is non- 
empty. I 

Suppose the alphabet Z has a total order that is extended lexicographi- 
ca!ly to Z*. If the least element of F is always chosen in Step 3, then the 
procedure, on input n(x), will print the least word congruent to x. If, 
instead, the entire set F is printed as a block (or in order), the procedure 
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will print the Foata Normal Form of x (Lallement, 1979, Chap. 11; Perrin, 
1986). 

Another variation on this procedure can be used for a multitape Turing 
machine that, given n(x), calculates and prints the congruence class of x 
in time linear in the length of its output (that is, linear in 1x1 . I[x]l). It is 
only necessary to add a stack to hold the remaining possibilities for letters 
to be printed at each step; after completing the printing of each element of 
[xl, the machine can back up to begin printing the next element. If the 
letters are dealt with in a fixed order, the congruence class will be printed 
in the corresponding lexicographic order. This process can also be viewed 
as producing all possible topological sorts of a certain directed acyclic 
graph derived from x (Cori and Metivier, 1985, Prop. 2.1). 

The family of sets { {a, b}: (a, b) E > consists of one- and two-element 0 
cliques in the graph (Z, 0); families of larger cliques (that cover the graph) 
can be used to characterize the congruence relation in a manner similar to 
that given in Proposition 3.1 (Duboc, 1986b, Prop. 1.2). The results here 
could be stated in that more general framework, although the small cliques 
seem most convenient for the pattern-matching algorithm in Section 5. 

4. ROOTS AND POWERS 

For an element [x], x # e, in a free partially commutative monoid, there 
is a unique “primitive” element [r] such that x is congruent to a power of 
r; words in [r] are “congruential roots” of x. The notions of “primitive” 
and “root” are analogous to those in free monoids. This section presents a 
linear-time algorithm to find the congruential root of a given word, the 
basis of which is determining the primitive roots (in free monoids) of the 
projections of the given word. A related question is whether two words 
have any common powers, and it, too, can be solved in linear time. 

DEFINITION. A word x # e is imprimitive mod 13 if there exist k > 1 and 
y E C* such that x = yk; otherwise x is primitive mod 8. If x E yk and y is 
primitive mod 0 then y is a congruential root of x. 

Although this definition allows different words to be congruential roots 
of the same word, the following proposition shows that any two congruen- 
tial roots of a word are themselves congruent. The second part of the 
proposition follows immediately from the first part and the definition. 

PROPOSITION 4.1. (Duboc, 1986a, Thm. 1.5; 1986b, Cor. 2.2). (a) For 
nonempty words x and y, there exist n, m > 1 such that x” = y” if and only 
if there exist j, k 2 1 and z E C* such that x s zi and y = zk. 

(b) For x # e, if y, and y, are congruential roots of x then y, = y,. 
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Notation. For XEC*, p@(x) denotes “the” congruential root of x, that 
is, any of the words in that congruence class, with p,(e) =e. Recall that 
p(x) denotes the root of x in the free monoid alph(x)*. 

THEOREM 4.2. For a fixed partially commutative alphabet (Z, d), the 
congruential root of a word x E C* can be found from x in time linear in 1x1. 

Proof. For convenience, assume that alph(x) = Z; otherwise, letters not 
occurring in x can be dropped from C and 8. With this assumption, each 
projection rc,Jx) is nonempty. 

Given x, form a collection R = (R,, : (a, 6) E 0) as follows. 

(1) For each pair (a, b) E 0, find the root and the exponent of rc,Jx) 
in the free monoid {a, b}*, that is, the word y,, = p(x,Jx)) and the integer 
n(ab) 2 1 such that 7c,Jx) = y$$‘. 

(2) Find the greatest common divisor, d, of the integers 
(n(ab): (a, b) E e}, and set R,, = y::“‘, where k(ab) = n(ab)/d. 

As noted in Section 2, the root of a word w  in a free monoid can be 
found in time linear in [WI by use of the failure function of w. Once the root 
of each projection is known, a multitape Turing machine requires only time 
linear in 1x1 to calculate the exponents (in unary), find their greatest 
common divisor, and form the entries in R. 

As is justified by the following claim, the family R can be reconstructed 
into pO(x). Thus, the congruential root of a given word can be found in 
linear time. 

CLAIM. R = 17(pe(x)). 

Proof Since Rd= n(x), from Proposition 3.2(b) there is some v such 
that R= n(v) and XE ud. If u is imprimitive mod 8 then there is some 
zEz* and some m >, 2 such that YZ Y. This implies that, for all 
(a, b) E 0, yip”‘= rt,Ju) = ~,Jz)~, so that, since ynb is primitive in {a, b} * 
and nonempty, m divides k(ab). However, by construction the integers 
{k(ab): (a, 6) E 0) are relatively prime, contradicting the assumption that 
m > 2. Thus, u is primitive mod 0, and R = II(v) = LQJx)). 1 

The “Generaized Word Problem” is to determine whether two given 
words have a common power. Using Proposition 4.1(a), this problem 
reduces to checking whether the given words have the same congruential 
root. 

COROLLARY 4.3. The Generalized Word Problem “Given x and y, do 
there exist positive integers n and m such that x” is congruent to y”?” can 
be solved in time linear in Ixy(. 
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5. PATTERN-MATCHING 

In a free monoid, pattern-matching problems ask whether a “pattern” 
word y occurs in a “text” word x, that is, whether y is a factor of x. For 
words on a partially commutative alphabet (C, O), the pattern y might not 
appear directly in the text x, but instead in some word congruent to x; the 
question thus becomes whether [y] is a factor of [x] in the monoid 
M(E, 0). This question can be answered, and a factorization x = uyu (if 
any) found, in linear time, by making use of linear-time algorithms for 
pattern-matching in free monoids. The restricted question of whether the 
pattern is an “initial” factor of the text also has a linear-time solution. 

DEFINITION. If there is some ZEL’* such that xz = y, then x is a 
congruential prefix of y, written x < By. If y = uxv for some u, v, then x is 
a congruential factor of y. 

As a consequence of the first part of the following proposition, it can be 
easily tested whether one word is a congruential prefix of another. The 
relation “prefix-of” in free monoids (denoted by <) is extended com- 
ponentwise to families of projections. Recall that the Parikh mapping Y 
counts the number of occurrences of each letter in a word. 

PROPOSITION 5.1. For all words x, y: 

(a) y<,x ifand only ifIT(y)<fl(x); 
(b) if Y(y) < Y(x) and yw - xz for some words w, z then y < @x. 

Proof (a) If yz=x for some z, then n(y).Z7(z)=Z7(yz)=n(x), so 
every component of Z7(y) is a prefix of the corresponding component of 
n(x), and thus n(y) < n(x). If, on the other hand, 17(y) < 17(x) then for 
all (a, b) E 8, there is some word z,~ such that nob(y) zOb = r~,~(x). For the 
family Z= (z,~: (a, b) E O), we have Z7( y) Z= n(x), so, from Proposi- 
tion 3.2(a), there is some z such that Z= n(z) and hence 17(yz) = U(x) 
and yz = x. 

(b) From part (a), it is sufficient to show that ZZ(y) < n(x). For 
any (a, b) E 6 ~4~1 G(W) = T&) adz) and IG(Y)I = Ivl, + lylb d 
lx/,+ lxlb= In,,(x)l, so n,,(y) is a prefix of ~t,Jx), as desired. 1 

COROLLARY 5.2. Given words x and y, a multitape Turing machine can 
test whether x is a congruential prefix of y in time linear in Ixyl. 

To determine whether a word y is a congruential factor of a word x, it 
is not sufficient to examine their projections independently, not even their 
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projections on maximal cliques in (Z, 8). For example, when C = {a, b, c ) 
and 0 = {(a, c), (c, a)}, y = abc is not a congruential factor of .x = ubbc, but 
for each S E {au, ub, bb, bc, cc >, ns(y) is a factor of rrns(x). However, by 
combining information about projections appropriately, whether one word 
is congruent to a factor of another can be tested in linear time. 

THEOREM 5.3. For a fixed partially commutative alphabet (Z, O), given 
words x, FEZ*, it can be tested in time linear in jxyl whether y is a 
congruentiul factor of x, and, tf so, the shortest word z such that zv < gx will 
be found. 

Use of the term “the shortest word z” is justified by the proof, in which 
it is shown that all such shortest words are congruent. 

Proof If, for some a E Z, 1x1, < 1 yl (1, the input is rejected. We may 
assume that there is no letter that commutes with all other letters: if there 
is such a letter b, it can be removed from x and y, after checking that 
lxlb > 1 yl,. Also assume, for convenience, that alph(x) = C. 

For each letter a, let d(a) = 1x1,- 1 yl,, and let d = 1x1 - lyl. 
For distinct letters a and b that do not commute, let 

P(R b)= {(Id,, Irlh): rzc,J y) is a prefix of n,,(x)}. 

Thus, P(u, b) records the positions at which the projection rc,& y) of y on 
{a, b} occurs in the corresponding projection of x, with each position being 
given by the letter-count of the string preceding the occurrence of n,,(y) in 
%b(X). 

Call a function f: C + N a locution function (for y in x) if for all a EC 
and all bEB(u), the pair (f(u), f(b)) is in P(a, 6). 

CLAIM 1. There exists a locution function for y in x if and only if y is 
a congruentiul factor of x. 

Proof: More specifically, location functions give the Parikh mappings 
of prefixes of x that come before occurrences of y. If XE uyv then 
f(u) = (ul,, a EC, specifies a location function: for every pair (a, 6) E 8, 
rr,Juy) is a prefix of rt,Jx) and Jnob(~)IU= 1~1,. On the other hand, iffis 
a location function for y in x, then there exist u and u such that x z uyv 
and f(a) = 1~1 a for all a E C. To see this, first set, for each a E Z:, 

= @“’ and s =ad(U)bf(a). (Since no letter commutes with all other 
;iJters, e(u) is znempty for each a E Z, so that (f(a), f(a’)) E P(u, a’) 
for some a’ and therefore f(u) < d(u).) For a pair (a, b) E B such that 
a # b, (f(a),f(b)) is in P(u, b), so there are words rab and s,~ such that 
rabGb(Y) sab = %b(X), Irabia=f(a), and koblb =f(b); note that rub must 

be equal to rho. The families R = (rub: (a, b) E 8) and S= (s,b: (a, 6) E 0) are 
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quasi-reconstructible, and R . n( y ) . S = n(x), so, applying Proposition 
3.2(a) twice, there exist words u and u such that R = n(u), S= n(v), and 
llyu = x. 1 

The question of whether y is congruent to a factor of x can thus be 
settled by finding a location function. The algorithm here is described in 
terms of a graph, with edges based on the sets P(a, b); in effect, it moves 
left-to-right through the projections of x and y, searching for a quasi- 
reconstructible family of prefixes of the projections of x that precede 
occurrences of the projections of y. However, only local information at the 
vertices is needed at each step. 

For each a EC, let 

V,(a) = {k: for some b E B(a) and some j, (k, j) E P(a, b)}; 

and let 
V. = {(a, k): k E V,,(a), a EC}, 

and Go be the undirected graph (V,, E,). 
If f is a location function, the vertices {(a, f(a)): a EL’} and the edges 

among them form a subgraph of G, that is isomorphic to the graph (C, 0) 
under the correspondence a + (a, f(a)). The structure of the graph Go is 
restricted by the fact that the edges cannot “cross”: if (ji, k,) and (j2, k2) 
belong to P(u, b) withj, <j, then k, <k,. (That is, if ri and r2 are prefixes 
of rcab(x) and Irlla< lr21a then Irllb< Ir21b.) It is possible that j, = j, and 
k, < k,, but in that case I y(, = 0, since if rl q&) s, = nab(x) = r,n,,(y) s2 
with Irlla= Ir210 and Ir,l,< frZlb then r,=r,b’ for some i>l and 
nab(y) si = b%,Jy) s2, so that n,,(y) can contain only b’s. 

The following Procedure begins with the graph G = (V, E) equal to G,. 
During its operation, vertices (and their incident edges) are deleted from G 
until either y is “found” in x, or it is determined that y is not congruent to 
any factor of x. In the description, V(u) denotes the set of integers 
{j: (a, j)E V} for th e current set of vertices V, and a vertex (a, j) is 
saturated if for all b E &a), (a, j) is currently adjacent to (b, k) for some k. 

Procedure 

1. Is there some a such that V(u) is empty? If so, halt and reject. 
2. Is there some a such that, for m, = min V(u), the vertex (a, m,) is 

not saturated? If so, delete (a, m,) and go to (1); otherwise, halt and 
accept. 

CLAIM 2. Zf y is a congruentiul factor of x, then the Procedure halts and 
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accepts. When the Procedure halts and accepts, the location function for the 
first occurrence of y in x is given by f(a) = min V(a), a E Z‘. 

Proof If .X = uvv for some u and u, then ( 1) for all a E ,Z and all b E 61(a), 
(a, 1~1,) and (b, 1~1~) are adjacent in G,; (2) no vertex (a, 1~1~) is ever 
deleted; and hence (3) for all a EC, (a, 1~1~) is always saturated. The 
Procedure will therefore eventually halt and accept in this case, and at that 
point, min V(a) < I uI a for all a E C. 

Suppose, on the other hand, that the Procedure halts and accepts, and 
let f: Z -+ N be the function f(a) = min V(a) (based on the final sets V(a)). 
Because the Procedure accepted the input, for every a, the vertex (a, f(a)) 
is saturated, so for every b E B(a), there is some i such that (a, f(a)) is 
adjacent to (b, j). The vertex (b, f(b)) is also saturated, so there is some k 
such that (6, f(b)) is adjacent to (a, k). Since f(a) =min V(a) and 
kE V(a), f(a) d k; similarly, f(b) <j. Iff(a) = k then (a, f(a)) is adjacent to 
(b,f(b)) and (f(a),f(b))EP(a, b); iff(a)<k then (f(a),j) and (kf(b)) 
are in P(a, b) so j< f(b)<j, and again (f(a), f(b))E P(a, b). This shows 
that f is a location function, so there exist a0 and vO such that x = uO yv, 
and, for all a, f(a) = IuOlrr. The word uO can be constructed by taking from 
x’ the first f(a) occurrences of each letter a (while preserving the relative 
order of the letters). 

To see that uO y is the first occurrence of y in x, suppose x = uyv and 
Iul < IueI. As above, when the Procedure halted, no (a, IuI .) had been 
deleted and lu& ~ = f (a) d IuI, for all a E Z (so that the Parikh mapping 
satisfies Y(u,) < Y(U)). Summing over all the letters, luOl < 1~1, so luOl = 1~1. 
Moreover, x = uO yv, = uyv with ‘Y(u,) < Y(U), so (from Proposition 
5.1(b)) uO <e u; combining this with the length condition, we have uO = U. 
Thus, uO is a shortest word u such that uy Ge x, and all shortest such words 
are congruent. 1 

CLAIM 3. The Procedure can be performed in time linear in Ixyl. 

Proof We first derive bounds on the size of the graph G, = (V,, E,). 
For each a EC, I Vo(a)l 6 A(a) + 1, so I V,I 6 A + ICI. (Equality is possible, 
for example, when x = y.) For every pair of letters a and 6, IP(a, b)l < 
A(a) + A(b) + 1, where equality can be achied if nab(y) = e or rcJy) = 
nab(x). (If, however, every letters occurs in y then IP(a, b)l < 
1 + min{A(a), A(b)} an d vertex (a, k) has degree at most lO(a) The size 
of the edge set E, is less than lOI/ + ICI . A, and this bound on lEoI can 
be derived as follows. Note first that I&a)1 < ICI - 1. (When not specified, 
the sums below are over all letters in Z.) 

1 lQa)l= 14 - ICI 
a 

(1) 
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C44l~(~)l <(I4 - 1).~44=(ICl- 1j.d (2) 

c Ma) + J(b) + 1) = aa)lo(a)l + 1 d(b) + IO(a)1 (3) 
b E B(a) be l?(o) 

Therefore, 

2 l&l =c c teat b)l 
u be&o) 

GC .y Cd(a)+4b)+lJ 
(I bed(a) 

=S.[dbW&91+bE; j4N+l&a)l] (by(3)); 
u 

and the first two terms expand to the same expression, so 

2 I& d 2 ~4#44l +c IQa)l 

&+I81 ;by (1) and (2)). 

Since d = 1x1 - lyl and (01 d IC12, it follows that l&l < 121 .1x( + ILJ’. 
The graph G, can be set up, in adjacency-list form, by using a version 

of the pattern-matching algorithm in the free monoid, one that, given 
words u and v, finds all words r such that TU is a prefix .of o and lists them 
in increasing order by length; the time required is linear in IuvI. The edges 
in EO incident on a vertex (a, k) can be grouped by the letter b E &a), and, 
within each group, listed in increasing order in the second coordinate. 
Although the pattern-matching in the free monoids must be done for each 
pair of distinct letters in 0, the total time is linear in IxyJ when (ZI is fixed. 
The subsequent individual costs to find m,, test if (a, m,) is saturated, and, 
if necessary, delete (a, m,) are constant relative to the length of the input, 
so the time taken in the Procedure is linear in the number of edges deleted. 
Since, for a fixed alphabet, lEOI is bounded above by a linear function of 
1x1, the total time taken is linear in the length of the input. [ 

In the uniform case, in which the input includes the partially com- 
mutative alphabet (Z; 0) as well as the strings x and y, the time taken is 
at most a constant multiple of 181 + (ZI .1x( (and it can be assumed that 
every letter of C occurs in x). 1 

6. CONJUGACY AND CYCLIC EQUALITY 

This section presents algorithms for testing, in free partially commutative 
monoids, two generalizations of conjugacy in free monoids. In a free 
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monoid, words x and y are “conjugate” if xz = zy for some word Z, or, 
equivalently, if .Y = uu and y = uu for some words u and u (see Lallement, 
1979, Cor. 11.5.2; or Lothaire, 1983, Prop. 1.3.4). Conjugacy is an 
equivalence relation on words, and corresponds to the usual group- 
theoretic conjugacy relation. The first of these notions of conjugacy can be 
generalized in a free partially commutative monoid to give rise to an 
equivalence relation, which is called here “conjugacy.” The generalization 
of the second notion is called here “cyclic equality”; the two relations need 
not be the same. 

Whether words over a partially commutative alphabet (C, 0) are con- 
jugate or are cyclically equal can be tested in linear time (Theorem 6.3): 
both questions are first reduced to pattern-matching problems in M(C, 0) 
and the linear-time algorithm of Section 5 is then applied. Duboc (1986~) 
has described a process for testing words for conjugacy that deals directly 
with their projections. The Conjugacy Problem for free partially com- 
mutative groups can be reduced to that for free partially commutative 
monoids and can also be solved in linear time; the reduction generalizes 
that holding between free groups and free monoids (Wrathall, 1989). 

DEFINITION. For words x and y: 

(i) x is cyclically equal to y (mod 0) if there are words s and t such 
that x E st and y = ts. 

(ii) x is conjugate to y (mod 8) if there is a word z such that xz = zy; 
such a word z is a conjugator of x and y. 

The relation of cyclic equality has also been called transposition. 
For monoids in general, conjugacy is a reflexive and transitive relation 

but need not be symmetric, and cyclic equality is reflexive and symmetric 
but need not be transitive; also, cyclically equal elements are conjugate. 
Otto (1984) has considered these and other possible definitions of con- 
jugacy in arbitrary monoids. In abelian monoids as well as free monoids, 
the two relations coincide, but they do not coincide in general for free 
partially commutative monoids. Consider, for example, Z = (a, 6, c} and 
8 = {(a, c), (c, a) >, so that h commutes with neither a nor c, and let x = abc 
and y = cba. Then x . aba = ababa s ababa = aba . y, showing that x and y 
are conjugate, but, since the congruence class of x is {x}, the only words 
cyclically equal to x are abc, cab, acb, bca, and bat. Note also that, 
although x and y are not cyclically equal, their projections on each two- 
letter alphabet are cyclically equal in the free monoids. 

In the case of free partially commutative monoids, Duboc has established 
the following connection between the two relations. It follows from this 
characterization that conjugacy mod 6 is a symmetric relation and is the 
transitive closure of cyclic equality mod 8. 
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Notation. Let CE denote the binary relation of cyclic equality mod 8, 
and CEk the composition of CE with itself k times. That is, CEO is the 
identity relation and, for k>O, CEk+’ = {(x, y): there is some w  such that 
x is cyclically equal to w  (mod 0) and (w, y) E CEk}. 

PROPOSITION 6.1. (Duboc, 1986b). For any words x and y, x is conjugate 
to y (mod 8) if and only if there is some k < JL’I such that (x, y) E CEk. 

The bound on the number of compositions of CE is, more precisely, the 
maximum diameter of the connected components of the undirected graph 
(C, 0); that maximum must be less than the number of vertices in the graph 
and the bound 121 is sufficient for the purpose here. 

The following proposition reduces questions of cyclic equality and con- 
jugacy to the checking of letter-counts and questions of pattern-matching. 

PROPOSITION 6.2. For any words x and y: 

(a) x is cyclically equal to y (mod 0) if and only if Y(x) = !P( y) and 
y is congruent to a factor of x2; 

(b) x is conjugate to y (mod 13) if and only if Y(x) = ul(y) and for 
some n 6 1x1, y is congruent to a factor of x”. 

In a free monoid, the condition that the Parikh mappings are the same 
can be weakened to requiring that the two words have the same length. 
The bound of ICI in the second part is achievable: continuing the example 
above (with x = abc and y = cba), x3 is congruent to aba . y. cbc, but no 
word congruent to x or x2 has y as a factor. 

Proof The proof of each part uses the following facts. 

CLAIM 1. Zf (x, y) E CEk, k 2 0, then y is congruent to a factor of xk+‘. 

Proof The statement is clearly true for k = 0. Continuing by induction, 
suppose k 3 1 and (x, y) eCEk, so that there are w, s, and t such that 
x = st, w  z ts, and (w, y) E CEk- ‘. Then wk E uyu for some u and u, so 
Xk+l,(st)k+‘= s(ts)k t = swkt E (su) y(tv), and hence y is congruent to a 
factor of xk+ ‘. 1 

CLAIM 2. Zf V(x)=!Z’(y) and x”=uyu, n>l, then xnpl=m and 
xu = uy. 

Proof If n = 1 then (since Y(x) = Y(y)) x = y and u = u = e, so the con- 
clusion holds. If n > 1 then x” = xn-’ .x=(u)(yu) with Y(u)< Y(W)= 
Y(x”- ‘), so, from Proposition 51(b), there is some r such that x”-l E ur 
and rx=yv. From xn=x.Y-‘= (uy)(u), it follows similarly that 
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X np ’ G su for some s, with xs = uy. Combining these, xn- ’ = ur = su, where 
Y(U) = Y(u(uy) - Y(y) = Y(xs) - Y(x) = Y(s), so u = s and r 3 u; hence 
x ‘pl=ur-uv and xu=xs=uy. 1 

If Y(x) = Y(y) and y is congruent to a factor of xn then (from Claim 2) 
there are u and u such that xn-’ = uu and xu = uy, so x and y are 
conjugate; when n = 2, x = uu and uuu z uy, so in addition y F vu and x is 
cyclically equal to y. Conversely, if x and y are cyclically equal or 
conjugate then clearly Y(x) = Y(y). If x is cyclically equal to y then (from 
Claim 1, with k = 1) y is congruent to a factor of x2. If x is conjugate 
to y, then, from the previous proposition, (x, y) E CEk for some k < ICI, 
so (again from Claim 1) y is congruent to a factor of xk + ’ with k + 1 < 
lJ-7. I 

THEOREM 6.3. For a fixed partially commutative alphabet (C, 19) there 
are linear-time algorithms for the following problems. 

(1) Given words x and y, test tf they are cyclically equal and, of so, 
produce a pair of words (s, t) such that x E st and y z ts. 

(2) Given words x and y, test tf they are conjugate, and, tf so, produce 
a shortest conjugator. 

Proof From Proposition 6.2, each of these problems reduces to testing, 
first, whether the two words have the same Parikh mapping, and, second, 
whether one of the words is congruent to a factor of a certain power of the 
other. Testing whether Y(x) = Y(y) can clearly be done in time linear in 
IXJJ~ (even on a Turing machine); from Theorem 5.3, testing whether y is 
congruent to a factor of x4 and, if so, finding the “first” location of y in x4 
can be done in time linear in IJ~x~I = IyI + 91x1 and so is linear in lxyl when 
q is fixed. In case (l), that is, cyclic equality, if y is congruent to a factor 
of x2 then a shortest word u such that uy GO x2 will be returned. A word 
v such that x = uu can be easily found and then, as in Claim 2 of Proposi- 
tion 6.2, (u, v) is a pair such that x = uu and y = uu. 

In the case of conjugacy, if y is congruent to a factor of xL for L = IZI, 
then a shortest word u such that uyg, xL will be returned; in fact, that 
word u must be a shortest conjugator of x and y. As in the proof of 
Proposition 6.2, xu z uy, so that u is a conjugator; also, xLp ’ = UV, where 
v is such that xL = uyu. 

Suppose u’ is any conjugator of x and y: xu’ = u’y. Note first that there 
is some n such that u’ <s x”: for each pair (a, b) E 0, rr,Ju’) is a conjugator 
of rt,Jx) and nab(y) in the free monoid {a, b}*, so there exist an integer 
k(ab)>O and a prefix w,~ of r~,~(x) such that rr,Ju’) = (?r,,(~))~@~ w,~ 
(Lallement, 1979, Lemma 11.5.1; Lothaire, 1983, Prop. 1.3.4). Taking n to 
be large than any of the integers { k(ab): (a, b) E e}, each projection of u’ is 
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a prefix of the corresponding projection of xn, and the assertion follows 
from Proposition 5.1(a). (If no proper suffix of u’ is also a conjugator, then 
n need be no larger than ],Z[- 1 (Duboc, 1986b).) 

Let u’ be a word such that x” z z/v’. If n < L - 1 then u’y ( EXU’) is a 
congruential prefix of xL, so since u is a shortest word such that 
uy~~x~, lu’l 2 1~1. If nkL then u’u’Ex~Eu(ux~-~+~), so there exist 
words r, s, and t such that U’ = TS, U= rt, and alph(s) x alph(t)c 8 (Cori 
and Perrin, 1985, Prop. 1.3). From xu E uy an XU’ E u’y, we can conclude 
that rtys = xrts E xrst = rsyt, so tys = syt. Since alph(s) x alph( t) c 8, it 
follows from Proposition 3.1 that ty = yt: for any (a, b) E 8, if Itju = / tl b = 0 
then nob( ty) = nab(y) = 7t,J yt); and if either 1 tl a or ItI b is positive then 
neither a nor b can be in alph(s), so z,Js) = e and 7c,Jty) = 
7t,J tys) = ~,~(syl) = n,,(yt). Therefore, xL = uyu = rtyu = rytu, so, since u is 
a shortest prefix of xL with this property, r = U, t = e, U’ E US, and again 
lu’l 2 14. I 
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