
INFORMATION AND COMPUTATION 89. 180-198 (1990)

Efficient Solution of Some Problems
in Free Partially Commutative Monoids*

HAI-NING LIU

Department of Computer Science, University of California,
San Diego, La Jolla, Calfornia 92093

AND

C. WRATHALL AND KENNETH ZEGER+

Department of Mathematics, University of California,
Santa Barbara, California 93106

Linear-time algorithms are presented for several problems concerning words in a
partially commutative monoid, including whether one word is a factor of another
and whether two words are conjugate in the monoid. tfl 1990 Academic Press. Inc.

1. INTRODUCTION

In theoretical computer science, and, in particular, in automata and
formal language theory, questions arise concerning words and sets of words
in free monoids. Results and techniques from the study of the com-
binatorial algebra of the free monoid have provided an “algebraic” basis for
dealing with many of these questions. In recent years there has been
increasing interest in properties of words and sets of words in free partially
commutative monoids or commutation monoids, that is, monoids in which
some pairs of generating letters commute but no other relations hold. Some
of this interest is due to the use of free partially commutative monoids in
modeling problems of concurrency control in databases and parallel com-
putation, as, for example, by Fle and Roucairol (1985); in a recent survey,
Aalbersberg and Rozenberg (1988) have presented the connections between
free partially commutative monoids and Petri nets. As in the case of free
monoids, problems about words are linked to combinatorial properties,
and the combinatorial algebra of free partially commutative monoids has

* The research reported here was supported in part by the National Science Foundation
under Grants DCR-8314977, CCR-8611980, and CCR-8706976.

+ Current address: Department of Electrical Engineering, University of Hawaii, Honolulu,
Hawaii 96822.

180
0890-5401/90 $3.00
Copyright CI 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROBLEMS IN FPCMs 181

received much attention since arising in the work of Cartier and Foata
(1969) on rearrangements.

Formally, a free partially commutative monoid is presented by a (finite)
alphabet and a binary relation on the alphabet that specifies which letters
are “independent” or commute. The monoid itself is then the quotient of
the free monoid on the given alphabet by a congruence relation on strings
derived from the independence relation on letters. For any such structure,
and especially one to be used as a model, the issue naturally arises of the
algorithmic solution and inherent complexity of questions about the
monoid: such questions as whether two words in the underlying free
monoid represent the same element of the monoid (the Word Problem),
and whether two presentations give rise to isomorphic monoids.

For free partially commutative monoids, dealing with algorithmic
questions is aided by the fact that elements of the monoid (“traces”) can be
translated (faithfully) from representative words to certain tuples of words
(Cori and Perrin, 1985; Perrin, 1986; Duboc, 1986b) or to certain directed
acyclic graphs (Cori and Metivier, 1985). Using one notion of projection to
a tuple of words, for example, Book and Liu (1987) have given a linear-
time (Turing machine) algorithm for the Word Problem for free partially
commutative monoids. The algorithms here also use that notion of projec-
tion, in the form given explicitly by Cori and Perrin (1985); a similar
notion was used by Keller (1973). A different scheme was used by Perrin
(1986) to produce a normal form from a given word, which also gives rise
to a linear-time algorithm for the Word Problem.

Much recent work on free partially commutative monoids has treated
their rational and recognizable subsets (which need not be the same class).
One algorithmic question in this context is whether a given word is con-
gruent to any word in some regular set; Bertoni et al. (1982) have described
a polynomial-time algorithm to answer this question and have shown that
when the input includes specifications of the monoid and regular set as
well, the question is NP-complete.

The Isomorphism Problem-whether two free partially commutative
monoids presented as such are isomorphic-is solvable, but is not known
to be tractable, since it is equivalent to the Isomorphism Problem for
(finite) undirected graphs. At the extreme cases of free abelian monoids and
free monoids, the graphs take the simple forms of complete graphs and
graphs with no edges, respectively, and so the problem is easily solved in
those cases.

In this paper, we present linear-time algorithms for certain problems
concerning either single words or pairs of words in a fixed free partially
commutative monoid. The time bounds for the algorithms are linear
functions of the length of the input words, under the RAM model of
computation (although the Turing machine model will sometimes suffice).

182 LIU, WRATHALL, AND ZEGER

The purpose is to make explicit the existence of efficient solutions for the
problems, and the algorithms rely on the algebraic properties of free
partially commutative monoids developed by others and on algorithms for
words in free monoids (Knuth et al., 1977; Avenhaus and Madlener, 1980).
The principal results concern finding the root of a given word, testing
whether one word is a factor of another, and testing whether two words are
conjugate.

There is a natural extension of the notion of “primitive root” of a word
from free monoids to free partially commutative monoids, and that
“congruential root” can be found in Iinear time (Theorem 4.2). As a
consequence, it can be tested in linear time whether two words have any
common powers (Corollary 4.3).

For a pair of words, it can be asked whether one represents a factor of
the other in the free partially commutative monoid, that is, whether there
is some allowable rearrangement of the letters in the second word for which
the first word appears as a block. This question can be answered, and an
appropriate factorization (if any) found, in linear time (Theorem 5.3). The
solution to this “pattern-matching” problem generalizes the linear-time
solution in free monoids using the Knuth-Morris-Pratt algorithm, and is
based on it.

There are several ways to extend the notion of conjugacy from free
monoids to arbitrary monoids and the two that seem most natural for free
partially commutative monoids are considered here: “conjugacy” and
“cyclic equality.” (The first is an equivalence relation but the second might
not be.) Whether two words stand in either of these relations can be tested
in linear time and, when they do, appropriate witnesses are found
(Theorem 6.3). For these algorithms, the problems are recast as questions
of factorization in the free partially commutative monoid.

Because the size of the aiphabet (or, more precisely, the number of com-
muting pairs of letters) contributes to the “constant” factor in the linear
time bounds, the corresponding uniform problems, in which a specification
of the monoid is part of the input, may not have linear-time solutions but
are solvable in polynomial time. For example, the uniform factorization
problem can be solved in time bounded by the square of the length of the
input.

2. PRELIMINARY DEFINITIONS AND NOTATION

For a set A, [Al denotes the cardinality of A and A denotes the comple-
ment of A (with respect to the appropriate universe).

For an aiphabet (set of letters) Z:, Z* denotes the free monoid generated
by C, with the empty word denoted by e. We are concerned here only with

PROBLEMSIN FPCMs 183

finite alphabets. A development of the basic properties of words in a free
monoid can be found in Chapter 1 of the book of M. Lothaire (1983).

For each letter a E Z and word w E Z*, JwI, denotes the number of
occurrences of a in w. The length of word w, 1~1, is the total number of
occurrences of letters in w, so that IwI = C, 1~1,. The set of letters
occurring in w is denoted by aiph(w).

For words x, y, and z, if x = yz, then y is a prefix of x, and z is a suffix
of x; if x = uyu for some words u and u, then y is a factor of x. The relation
“y is a prefix of x” is also written as “y < x.” If x = MU = u’u with u #e then
u is an overlap of x (that is, a proper prefix and suffix of x).

A nonempty word x is primitiue if there is no word y and integer k > 1
such that x = yk. The root p(x) of xfe is the (unique) primitive word r
such that x = rk for some k 2 1.

Let N denote the natural numbers (0, 1, 2, . ..}. For an alphabet C listed
as {a,, .-, a,}, the corresponding Purikh mapping is the function
!Yz C* + N” such that Y(x) = (Ix~,~, Ixl,,). The Parikh mapping is a
monoid homomorphism: Y’(xy) = Y(x) + Y(y), where addition is extended
componentwise to N”. Also extending the usual order on N, write Y(x) <
Y(y) if and only if, for all a E Z, 1x1, < I yJ,.

Several of the algorithms presented here are based on efficient string-
matching algorithms for free monoids that use the concept of “failure
functions” of words. The failure function of a word a, .*.u,, ui E C, is the
function f: { 1, rr } + { 0, n - 1 > for which f(k) is the largest j < k such
that a, . ..uj is a suffix of a, “.uk. (In other words, f(k) is the length of the
longest overlap of a, . .. &.) The failure function of x can be computed in
time linear in 1x1, and it can be used to find all occurrences of x in another
word y in time linear in Ixyl. Details can be found in the text by Aho,
Hopcroft, and Ullman (1974), as can a description of the RAM and Turing
machine models of computation.

The failure function of a word can also be used to find its root in linear
time, due to the fact expressed in the following proposition. Essentially the
same observation has been made by Avenhaus and Madlener (1980) in
presenting algorithms for root, conjugacy, and other problems in free
groups; however, the proof is presented here for completeness.

PROPOSITION 2.1. Suppose u is the longest ouerlup of a nonempty word x
and x = MU = u’u. Zf v is a prefix of u then v = p(x); otherwise, x is primitive.

Proof Let r = p(x) and suppose x = rm + I, m > 0. Since rm is an overlap
of x and u is the longest overlap of x, lrml < 1uI < Irm+ll.

If u is a prefix of u then (since x = MU = u’u and Iu’] = IV/), u = u’ and
x=uU=Uu=rm+l with r a primitive word; hence u = ri for some j> 0

184 LIU, WRATHALL, AND ZEGER

(Lothaire, 1983, Props. 1.3.1, 1.3.2). Since lrml < lu(< I?+i(, j= 1 and so
v = r.

If ma1 then (since x=rm+l= uv and lrml < 1~1) there is some word s
such that u = r”‘s and r = sv. Hence x = (8~)~ + i = V’U = V’(SU)~S = u’s(us)~,
so, since m is positive, r = sv = us and then u = P's = vsr*-‘s and thus v is
a prefix of U. 1

Pattern-matching problems for free monoids can also be approached
from other directions. Galil and Seiferas (1983) have presented an algo-
rithm that tests whether one word is a factor of another and that uses
linear time on a multihead finite automaton.

3. PROJECTION AND RECONSTRUCTION

This section gives the definition of free partially commutative monoids
and the basic facts concerning their representation by projections. Each
word x over the alphabet generating the free partially commutative monoid
has an associated family of projections, a tuple of words n(x), and two
words give rise to the same family exactly when they represent the same
element of the monoid. For an arbitrary family, it can be asked whether it
arises from some word (i.e., is “reconstructible”); this question can be
answered in linear time and, if the answer is “yes,” any or all such words
can be found (Theorem 3.3).

DEFINITION. A partially commutative alphabet is a pair (Z, 8), where Z
is an alphabet and 8 z Z x 2 is a symmetric and irreflexive relation (that is,
(a, b) E 8 implies (b, a) E 0 and for no aEZ is (a, a) in 0). The pairs of
(distinct) letters that commute are given by 8, and the noncommuting pairs
are given by 8= (CxC)- 8. For aEC, let O(a) = {bEZ: (a, b)E e} and
&a)= {bEC:a#b, (a, b)EB}.

The pair (Z, 0) can be considered as an undirected graph on vertices Z
with an edge between every pair of distinct letters that do not commute.
The set &a) consists of the neighbors (that is, adjacent vertices) of the
letter a in that graph.

A partially commutative alphabet determines a monoid as follows.

DEFINITION. Let c-* be the relation on Z* defined by xaby c-) xbay for
all x, y E .Z* and all (a, 6) E 8, and let = be the reflexive, transitive closure
of c--). The relation = is a congruence relation on Z*, “congruence modulo
0.” The free partially commutative monoid determined by (C, 0) is the
quotient monoid X*/E and is denoted by M(Z, 0).

PROBLEMS IN FPCMs 185

The elements of the monoid M(C, 0) are the congruence classes [u] for
UE‘P, where [u] = {vEZ*: u-u}; the class [e] serves as the identity
element of the monoid and the product is given by [u] . [u] = [MO]. Two
words are congruent exactly when one can be obtained from the other by
a sequence of exchanges of adjacent commuting letters. In particular,
congruent words have the same Parikh mapping.

The projection of a word with respect to a pair of letters is the word
formed by erasing all letters in the word except for the chosen pair. Of
particular interest are projections of words with respect to pairs of
noncommuting letters.

DEFINITION. For a, b E .Z (not necessarily distinct), scab: C* + {a, b}* is
the homomorphism determined by defining ~,Ju)=a, nab(b)= b, and
~t,~(c) = e for c # a, b. Let n(x) denote the family (nab(x): (a, b) E 0).

Since 8 is an irreflexive relation, the projection X,,(X), counting the
number of occurrences of a in X, is included in the family n(x). For a E Z
and bE &a), both (a, b) and (b, a) are included in the index set of Z7(?c)
even though just one would be sufficient (since n,,(x)= nba(x)); the
redundancy is for notational convenience only.

The following characterization of congruence modulo 0 in terms of pro-
jections provides the basis for many of the following results and algorithms.
One easily proved consequence is that M(C, 0) is .a cancellative monoid
(that is, uxu = uyu implies x = y.)

PROPOSITION 3.1. (Cori and Perrin, 1985, Prop. 1.1). For all words u
and u, u = u if and only if ZZ(u) = n(u).

Families of words indexed by 8 arise that are not necessarily formed by
projecting a word. Such a family U = (Uob: (a, b) E 0) is assumed to be sym-
metric (i.e., Uab = U,,) and to have components on the correct alphabets
(i.e., U,, E {a, b} *). Concatenation is extended to families componentwise,
so that, for V= (Vab: (a, b) E @, U. V = (Uub Vab: (a, b) E 0); note that
17(xy) = n(x). n(y). The “length” of the family U is the sum of the lengths
of the components of U.

DEFINITION. A family Y = (Y,,: (a, b) E 8) is reconstructible if there is
some word x such that Y = n(x). The family Y is quasi-reconstructible if for
every UE.Z and every be&a), IYOblo= IY,,l.

Establishing that families are reconstructible is often made easier by use
of the following facts due to Duboc (1986b, Props. 1.6, 1.7) and Cori and
Metivier (1985, Prop. 3.8).

186 LIU, WRATHALL, AND ZEGER

PROPOSITION 3.2. (a) Zf Y ‘Z is reconstructible and Y (or Z) is quasi-
reconstructible then both Y and Z are reconstructible.

(b) If Yk is reconstructible for some k > 1 then Y is reconstructible.

A multitape Turing machine can check a given family for reconstruc-
tibility and, if it is reconstructible, produce a “reconstructed” word; the
time taken need be no greater than linear in the total length of the family.

Reconstruction Procedure. On input Y = (Y,, : (a, b) E 8):

1. Check that Y is quasi-reconstructible (and has the correct form).
2. If all components of Y are empty, halt and accept.
3. Form

If F is empty, halt and reject. Otherwise, let CLE E be any element of F.
Print a, remove the first letter from each entry Yob and Y,, for
b E &a) u {a}, and return to (2).

THEOREM 3.3. On input Y, the Reconstruction Procedure operates in time
linear in the length of Y. Input Y is rejected if Y is not reconstructible; if Y
is reconstructible, the output printed is a word y such that Y = I7(y).

ProoJ: It can be assumed that the family is presented with each compo-
nent on a separate tape. Checking, for all appropriate letters a and b,
whether Y,,~{a,b}*, Yab= Yb,, IYabla=lYaPI, and IYabIb=lYbbl, can be
done by simply reading the tapes. The set F(Y) is apparent from the first
letters of the components, so Step 3 requires constant time (since C and 8
are fixed). The overall linear time bound then follows since the length of at
least one component is reduced each time Step 3 is performed.

In Step 3, the first letter of Y,, and Ybo must be a, since a belongs to F.
Beginning with a quasi-reconstructible family Y,, if x has been printed and
the remaining family is Y,, then Y, = n(x) . Y, and Y, is quasi-reconstruc-
tibie; in particular, Y, is reconstructible if and only if Y, is. Therefore, if
the procedure, on input Y, halts and accepts after printing word y then
Y = Z7(y). On the other hand, if the procedure halts and rejects then the
original input was not reconstructible, since, for a reconstructible family
Z= n(z), F(Z) is the set {u E Z: z = az’ for some z’} and so is non-
empty. I

Suppose the alphabet Z has a total order that is extended lexicographi-
ca!ly to Z*. If the least element of F is always chosen in Step 3, then the
procedure, on input n(x), will print the least word congruent to x. If,
instead, the entire set F is printed as a block (or in order), the procedure

PROBLEMS IN FPCMs 187

will print the Foata Normal Form of x (Lallement, 1979, Chap. 11; Perrin,
1986).

Another variation on this procedure can be used for a multitape Turing
machine that, given n(x), calculates and prints the congruence class of x
in time linear in the length of its output (that is, linear in 1x1 . I[x]l). It is
only necessary to add a stack to hold the remaining possibilities for letters
to be printed at each step; after completing the printing of each element of
[xl, the machine can back up to begin printing the next element. If the
letters are dealt with in a fixed order, the congruence class will be printed
in the corresponding lexicographic order. This process can also be viewed
as producing all possible topological sorts of a certain directed acyclic
graph derived from x (Cori and Metivier, 1985, Prop. 2.1).

The family of sets { {a, b}: (a, b) E > consists of one- and two-element 0
cliques in the graph (Z, 0); families of larger cliques (that cover the graph)
can be used to characterize the congruence relation in a manner similar to
that given in Proposition 3.1 (Duboc, 1986b, Prop. 1.2). The results here
could be stated in that more general framework, although the small cliques
seem most convenient for the pattern-matching algorithm in Section 5.

4. ROOTS AND POWERS

For an element [x], x # e, in a free partially commutative monoid, there
is a unique “primitive” element [r] such that x is congruent to a power of
r; words in [r] are “congruential roots” of x. The notions of “primitive”
and “root” are analogous to those in free monoids. This section presents a
linear-time algorithm to find the congruential root of a given word, the
basis of which is determining the primitive roots (in free monoids) of the
projections of the given word. A related question is whether two words
have any common powers, and it, too, can be solved in linear time.

DEFINITION. A word x # e is imprimitive mod 13 if there exist k > 1 and
y E C* such that x = yk; otherwise x is primitive mod 8. If x E yk and y is
primitive mod 0 then y is a congruential root of x.

Although this definition allows different words to be congruential roots
of the same word, the following proposition shows that any two congruen-
tial roots of a word are themselves congruent. The second part of the
proposition follows immediately from the first part and the definition.

PROPOSITION 4.1. (Duboc, 1986a, Thm. 1.5; 1986b, Cor. 2.2). (a) For
nonempty words x and y, there exist n, m > 1 such that x” = y” if and only
if there exist j, k 2 1 and z E C* such that x s zi and y = zk.

(b) For x # e, if y, and y, are congruential roots of x then y, = y,.

188 LIU,WRATHALL,ANDZEGER

Notation. For XEC*, p@(x) denotes “the” congruential root of x, that
is, any of the words in that congruence class, with p,(e) =e. Recall that
p(x) denotes the root of x in the free monoid alph(x)*.

THEOREM 4.2. For a fixed partially commutative alphabet (Z, d), the
congruential root of a word x E C* can be found from x in time linear in 1x1.

Proof. For convenience, assume that alph(x) = Z; otherwise, letters not
occurring in x can be dropped from C and 8. With this assumption, each
projection rc,Jx) is nonempty.

Given x, form a collection R = (R,, : (a, 6) E 0) as follows.

(1) For each pair (a, b) E 0, find the root and the exponent of rc,Jx)
in the free monoid {a, b}*, that is, the word y,, = p(x,Jx)) and the integer
n(ab) 2 1 such that 7c,Jx) = y$$‘.

(2) Find the greatest common divisor, d, of the integers
(n(ab): (a, b) E e}, and set R,, = y::“‘, where k(ab) = n(ab)/d.

As noted in Section 2, the root of a word w in a free monoid can be
found in time linear in [WI by use of the failure function of w. Once the root
of each projection is known, a multitape Turing machine requires only time
linear in 1x1 to calculate the exponents (in unary), find their greatest
common divisor, and form the entries in R.

As is justified by the following claim, the family R can be reconstructed
into pO(x). Thus, the congruential root of a given word can be found in
linear time.

CLAIM. R = 17(pe(x)).

Proof Since Rd= n(x), from Proposition 3.2(b) there is some v such
that R= n(v) and XE ud. If u is imprimitive mod 8 then there is some
zEz* and some m >, 2 such that YZ Y. This implies that, for all
(a, b) E 0, yip”‘= rt,Ju) = ~,Jz)~, so that, since ynb is primitive in {a, b} *
and nonempty, m divides k(ab). However, by construction the integers
{k(ab): (a, 6) E 0) are relatively prime, contradicting the assumption that
m > 2. Thus, u is primitive mod 0, and R = II(v) = LQJx)). 1

The “Generaized Word Problem” is to determine whether two given
words have a common power. Using Proposition 4.1(a), this problem
reduces to checking whether the given words have the same congruential
root.

COROLLARY 4.3. The Generalized Word Problem “Given x and y, do
there exist positive integers n and m such that x” is congruent to y”?” can
be solved in time linear in Ixy(.

PROBLEMSIN FPCMs 189

5. PATTERN-MATCHING

In a free monoid, pattern-matching problems ask whether a “pattern”
word y occurs in a “text” word x, that is, whether y is a factor of x. For
words on a partially commutative alphabet (C, O), the pattern y might not
appear directly in the text x, but instead in some word congruent to x; the
question thus becomes whether [y] is a factor of [x] in the monoid
M(E, 0). This question can be answered, and a factorization x = uyu (if
any) found, in linear time, by making use of linear-time algorithms for
pattern-matching in free monoids. The restricted question of whether the
pattern is an “initial” factor of the text also has a linear-time solution.

DEFINITION. If there is some ZEL’* such that xz = y, then x is a
congruential prefix of y, written x < By. If y = uxv for some u, v, then x is
a congruential factor of y.

As a consequence of the first part of the following proposition, it can be
easily tested whether one word is a congruential prefix of another. The
relation “prefix-of” in free monoids (denoted by <) is extended com-
ponentwise to families of projections. Recall that the Parikh mapping Y
counts the number of occurrences of each letter in a word.

PROPOSITION 5.1. For all words x, y:

(a) y<,x ifand only ifIT(y)<fl(x);
(b) if Y(y) < Y(x) and yw - xz for some words w, z then y < @x.

Proof (a) If yz=x for some z, then n(y).Z7(z)=Z7(yz)=n(x), so
every component of Z7(y) is a prefix of the corresponding component of
n(x), and thus n(y) < n(x). If, on the other hand, 17(y) < 17(x) then for
all (a, b) E 8, there is some word z,~ such that nob(y) zOb = r~,~(x). For the
family Z= (z,~: (a, b) E O), we have Z7(y) Z= n(x), so, from Proposi-
tion 3.2(a), there is some z such that Z= n(z) and hence 17(yz) = U(x)
and yz = x.

(b) From part (a), it is sufficient to show that ZZ(y) < n(x). For
any (a, b) E 6 ~4~1 G(W) = T&) adz) and IG(Y)I = Ivl, + lylb d
lx/,+ lxlb= In,,(x)l, so n,,(y) is a prefix of ~t,Jx), as desired. 1

COROLLARY 5.2. Given words x and y, a multitape Turing machine can
test whether x is a congruential prefix of y in time linear in Ixyl.

To determine whether a word y is a congruential factor of a word x, it
is not sufficient to examine their projections independently, not even their

190 LIU, WRATHALL, AND ZEGER

projections on maximal cliques in (Z, 8). For example, when C = {a, b, c)
and 0 = {(a, c), (c, a)}, y = abc is not a congruential factor of .x = ubbc, but
for each S E {au, ub, bb, bc, cc >, ns(y) is a factor of rrns(x). However, by
combining information about projections appropriately, whether one word
is congruent to a factor of another can be tested in linear time.

THEOREM 5.3. For a fixed partially commutative alphabet (Z, O), given
words x, FEZ*, it can be tested in time linear in jxyl whether y is a
congruentiul factor of x, and, tf so, the shortest word z such that zv < gx will
be found.

Use of the term “the shortest word z” is justified by the proof, in which
it is shown that all such shortest words are congruent.

Proof If, for some a E Z, 1x1, < 1 yl (1, the input is rejected. We may
assume that there is no letter that commutes with all other letters: if there
is such a letter b, it can be removed from x and y, after checking that
lxlb > 1 yl,. Also assume, for convenience, that alph(x) = C.

For each letter a, let d(a) = 1x1,- 1 yl,, and let d = 1x1 - lyl.
For distinct letters a and b that do not commute, let

P(R b)= {(Id,, Irlh): rzc,J y) is a prefix of n,,(x)}.

Thus, P(u, b) records the positions at which the projection rc,& y) of y on
{a, b} occurs in the corresponding projection of x, with each position being
given by the letter-count of the string preceding the occurrence of n,,(y) in
%b(X).

Call a function f: C + N a locution function (for y in x) if for all a EC
and all bEB(u), the pair (f(u), f(b)) is in P(a, 6).

CLAIM 1. There exists a locution function for y in x if and only if y is
a congruentiul factor of x.

Proof: More specifically, location functions give the Parikh mappings
of prefixes of x that come before occurrences of y. If XE uyv then
f(u) = (ul,, a EC, specifies a location function: for every pair (a, 6) E 8,
rr,Juy) is a prefix of rt,Jx) and Jnob(~)IU= 1~1,. On the other hand, iffis
a location function for y in x, then there exist u and u such that x z uyv
and f(a) = 1~1 a for all a E C. To see this, first set, for each a E Z:,

= @“’ and s =ad(U)bf(a). (Since no letter commutes with all other
;iJters, e(u) is znempty for each a E Z, so that (f(a), f(a’)) E P(u, a’)
for some a’ and therefore f(u) < d(u).) For a pair (a, b) E B such that
a # b, (f(a),f(b)) is in P(u, b), so there are words rab and s,~ such that
rabGb(Y) sab = %b(X), Irabia=f(a), and koblb =f(b); note that rub must

be equal to rho. The families R = (rub: (a, b) E 8) and S= (s,b: (a, 6) E 0) are

PROBLEMSIN FPCMs 191

quasi-reconstructible, and R . n(y) . S = n(x), so, applying Proposition
3.2(a) twice, there exist words u and u such that R = n(u), S= n(v), and
llyu = x. 1

The question of whether y is congruent to a factor of x can thus be
settled by finding a location function. The algorithm here is described in
terms of a graph, with edges based on the sets P(a, b); in effect, it moves
left-to-right through the projections of x and y, searching for a quasi-
reconstructible family of prefixes of the projections of x that precede
occurrences of the projections of y. However, only local information at the
vertices is needed at each step.

For each a EC, let

V,(a) = {k: for some b E B(a) and some j, (k, j) E P(a, b)};

and let
V. = {(a, k): k E V,,(a), a EC},

and Go be the undirected graph (V,, E,).
If f is a location function, the vertices {(a, f(a)): a EL’} and the edges

among them form a subgraph of G, that is isomorphic to the graph (C, 0)
under the correspondence a + (a, f(a)). The structure of the graph Go is
restricted by the fact that the edges cannot “cross”: if (ji, k,) and (j2, k2)
belong to P(u, b) withj, <j, then k, <k,. (That is, if ri and r2 are prefixes
of rcab(x) and Irlla< lr21a then Irllb< Ir21b.) It is possible that j, = j, and
k, < k,, but in that case I y(, = 0, since if rl q&) s, = nab(x) = r,n,,(y) s2
with Irlla= Ir210 and Ir,l,< frZlb then r,=r,b’ for some i>l and
nab(y) si = b%,Jy) s2, so that n,,(y) can contain only b’s.

The following Procedure begins with the graph G = (V, E) equal to G,.
During its operation, vertices (and their incident edges) are deleted from G
until either y is “found” in x, or it is determined that y is not congruent to
any factor of x. In the description, V(u) denotes the set of integers
{j: (a, j)E V} for th e current set of vertices V, and a vertex (a, j) is
saturated if for all b E &a), (a, j) is currently adjacent to (b, k) for some k.

Procedure

1. Is there some a such that V(u) is empty? If so, halt and reject.
2. Is there some a such that, for m, = min V(u), the vertex (a, m,) is

not saturated? If so, delete (a, m,) and go to (1); otherwise, halt and
accept.

CLAIM 2. Zf y is a congruentiul factor of x, then the Procedure halts and

192 LIU, WRATHALL, AND ZEGER

accepts. When the Procedure halts and accepts, the location function for the
first occurrence of y in x is given by f(a) = min V(a), a E Z‘.

Proof If .X = uvv for some u and u, then (1) for all a E ,Z and all b E 61(a),
(a, 1~1,) and (b, 1~1~) are adjacent in G,; (2) no vertex (a, 1~1~) is ever
deleted; and hence (3) for all a EC, (a, 1~1~) is always saturated. The
Procedure will therefore eventually halt and accept in this case, and at that
point, min V(a) < I uI a for all a E C.

Suppose, on the other hand, that the Procedure halts and accepts, and
let f: Z -+ N be the function f(a) = min V(a) (based on the final sets V(a)).
Because the Procedure accepted the input, for every a, the vertex (a, f(a))
is saturated, so for every b E B(a), there is some i such that (a, f(a)) is
adjacent to (b, j). The vertex (b, f(b)) is also saturated, so there is some k
such that (6, f(b)) is adjacent to (a, k). Since f(a) =min V(a) and
kE V(a), f(a) d k; similarly, f(b) <j. Iff(a) = k then (a, f(a)) is adjacent to
(b,f(b)) and (f(a),f(b))EP(a, b); iff(a)<k then (f(a),j) and (kf(b))
are in P(a, b) so j< f(b)<j, and again (f(a), f(b))E P(a, b). This shows
that f is a location function, so there exist a0 and vO such that x = uO yv,
and, for all a, f(a) = IuOlrr. The word uO can be constructed by taking from
x’ the first f(a) occurrences of each letter a (while preserving the relative
order of the letters).

To see that uO y is the first occurrence of y in x, suppose x = uyv and
Iul < IueI. As above, when the Procedure halted, no (a, IuI .) had been
deleted and lu& ~ = f (a) d IuI, for all a E Z (so that the Parikh mapping
satisfies Y(u,) < Y(U)). Summing over all the letters, luOl < 1~1, so luOl = 1~1.
Moreover, x = uO yv, = uyv with ‘Y(u,) < Y(U), so (from Proposition
5.1(b)) uO <e u; combining this with the length condition, we have uO = U.
Thus, uO is a shortest word u such that uy Ge x, and all shortest such words
are congruent. 1

CLAIM 3. The Procedure can be performed in time linear in Ixyl.

Proof We first derive bounds on the size of the graph G, = (V,, E,).
For each a EC, I Vo(a)l 6 A(a) + 1, so I V,I 6 A + ICI. (Equality is possible,
for example, when x = y.) For every pair of letters a and 6, IP(a, b)l <
A(a) + A(b) + 1, where equality can be achied if nab(y) = e or rcJy) =
nab(x). (If, however, every letters occurs in y then IP(a, b)l <
1 + min{A(a), A(b)} an d vertex (a, k) has degree at most lO(a) The size
of the edge set E, is less than lOI/ + ICI . A, and this bound on lEoI can
be derived as follows. Note first that I&a)1 < ICI - 1. (When not specified,
the sums below are over all letters in Z.)

1 lQa)l= 14 - ICI
a

(1)

PROBLEMSIN FPCMs 193

C44l~(~)l <(I4 - 1).~44=(ICl- 1j.d (2)

c Ma) + J(b) + 1) = aa)lo(a)l + 1 d(b) + IO(a)1 (3)
b E B(a) be l?(o)

Therefore,

2 l&l =c c teat b)l
u be&o)

GC .y Cd(a)+4b)+lJ
(I bed(a)

=S.[dbW&91+bE; j4N+l&a)l] (by(3));
u

and the first two terms expand to the same expression, so

2 I& d 2 ~4#44l +c IQa)l

&+I81 ;by (1) and (2)).

Since d = 1x1 - lyl and (01 d IC12, it follows that l&l < 121 .1x(+ ILJ’.
The graph G, can be set up, in adjacency-list form, by using a version

of the pattern-matching algorithm in the free monoid, one that, given
words u and v, finds all words r such that TU is a prefix .of o and lists them
in increasing order by length; the time required is linear in IuvI. The edges
in EO incident on a vertex (a, k) can be grouped by the letter b E &a), and,
within each group, listed in increasing order in the second coordinate.
Although the pattern-matching in the free monoids must be done for each
pair of distinct letters in 0, the total time is linear in IxyJ when (ZI is fixed.
The subsequent individual costs to find m,, test if (a, m,) is saturated, and,
if necessary, delete (a, m,) are constant relative to the length of the input,
so the time taken in the Procedure is linear in the number of edges deleted.
Since, for a fixed alphabet, lEOI is bounded above by a linear function of
1x1, the total time taken is linear in the length of the input. [

In the uniform case, in which the input includes the partially com-
mutative alphabet (Z; 0) as well as the strings x and y, the time taken is
at most a constant multiple of 181 + (ZI .1x((and it can be assumed that
every letter of C occurs in x). 1

6. CONJUGACY AND CYCLIC EQUALITY

This section presents algorithms for testing, in free partially commutative
monoids, two generalizations of conjugacy in free monoids. In a free

194 LIU, WRATHALL, AND ZEGER

monoid, words x and y are “conjugate” if xz = zy for some word Z, or,
equivalently, if .Y = uu and y = uu for some words u and u (see Lallement,
1979, Cor. 11.5.2; or Lothaire, 1983, Prop. 1.3.4). Conjugacy is an
equivalence relation on words, and corresponds to the usual group-
theoretic conjugacy relation. The first of these notions of conjugacy can be
generalized in a free partially commutative monoid to give rise to an
equivalence relation, which is called here “conjugacy.” The generalization
of the second notion is called here “cyclic equality”; the two relations need
not be the same.

Whether words over a partially commutative alphabet (C, 0) are con-
jugate or are cyclically equal can be tested in linear time (Theorem 6.3):
both questions are first reduced to pattern-matching problems in M(C, 0)
and the linear-time algorithm of Section 5 is then applied. Duboc (1986~)
has described a process for testing words for conjugacy that deals directly
with their projections. The Conjugacy Problem for free partially com-
mutative groups can be reduced to that for free partially commutative
monoids and can also be solved in linear time; the reduction generalizes
that holding between free groups and free monoids (Wrathall, 1989).

DEFINITION. For words x and y:

(i) x is cyclically equal to y (mod 0) if there are words s and t such
that x E st and y = ts.

(ii) x is conjugate to y (mod 8) if there is a word z such that xz = zy;
such a word z is a conjugator of x and y.

The relation of cyclic equality has also been called transposition.
For monoids in general, conjugacy is a reflexive and transitive relation

but need not be symmetric, and cyclic equality is reflexive and symmetric
but need not be transitive; also, cyclically equal elements are conjugate.
Otto (1984) has considered these and other possible definitions of con-
jugacy in arbitrary monoids. In abelian monoids as well as free monoids,
the two relations coincide, but they do not coincide in general for free
partially commutative monoids. Consider, for example, Z = (a, 6, c} and
8 = {(a, c), (c, a) >, so that h commutes with neither a nor c, and let x = abc
and y = cba. Then x . aba = ababa s ababa = aba . y, showing that x and y
are conjugate, but, since the congruence class of x is {x}, the only words
cyclically equal to x are abc, cab, acb, bca, and bat. Note also that,
although x and y are not cyclically equal, their projections on each two-
letter alphabet are cyclically equal in the free monoids.

In the case of free partially commutative monoids, Duboc has established
the following connection between the two relations. It follows from this
characterization that conjugacy mod 6 is a symmetric relation and is the
transitive closure of cyclic equality mod 8.

PROBLEMSIN FPCMs 195

Notation. Let CE denote the binary relation of cyclic equality mod 8,
and CEk the composition of CE with itself k times. That is, CEO is the
identity relation and, for k>O, CEk+’ = {(x, y): there is some w such that
x is cyclically equal to w (mod 0) and (w, y) E CEk}.

PROPOSITION 6.1. (Duboc, 1986b). For any words x and y, x is conjugate
to y (mod 8) if and only if there is some k < JL’I such that (x, y) E CEk.

The bound on the number of compositions of CE is, more precisely, the
maximum diameter of the connected components of the undirected graph
(C, 0); that maximum must be less than the number of vertices in the graph
and the bound 121 is sufficient for the purpose here.

The following proposition reduces questions of cyclic equality and con-
jugacy to the checking of letter-counts and questions of pattern-matching.

PROPOSITION 6.2. For any words x and y:

(a) x is cyclically equal to y (mod 0) if and only if Y(x) = !P(y) and
y is congruent to a factor of x2;

(b) x is conjugate to y (mod 13) if and only if Y(x) = ul(y) and for
some n 6 1x1, y is congruent to a factor of x”.

In a free monoid, the condition that the Parikh mappings are the same
can be weakened to requiring that the two words have the same length.
The bound of ICI in the second part is achievable: continuing the example
above (with x = abc and y = cba), x3 is congruent to aba . y. cbc, but no
word congruent to x or x2 has y as a factor.

Proof The proof of each part uses the following facts.

CLAIM 1. Zf (x, y) E CEk, k 2 0, then y is congruent to a factor of xk+‘.

Proof The statement is clearly true for k = 0. Continuing by induction,
suppose k 3 1 and (x, y) eCEk, so that there are w, s, and t such that
x = st, w z ts, and (w, y) E CEk- ‘. Then wk E uyu for some u and u, so
Xk+l,(st)k+‘= s(ts)k t = swkt E (su) y(tv), and hence y is congruent to a
factor of xk+ ‘. 1

CLAIM 2. Zf V(x)=!Z’(y) and x”=uyu, n>l, then xnpl=m and
xu = uy.

Proof If n = 1 then (since Y(x) = Y(y)) x = y and u = u = e, so the con-
clusion holds. If n > 1 then x” = xn-’ .x=(u)(yu) with Y(u)< Y(W)=
Y(x”- ‘), so, from Proposition 51(b), there is some r such that x”-l E ur
and rx=yv. From xn=x.Y-‘= (uy)(u), it follows similarly that

196 LIU, WRATHALL, AND ZEGER

X np ’ G su for some s, with xs = uy. Combining these, xn- ’ = ur = su, where
Y(U) = Y(u(uy) - Y(y) = Y(xs) - Y(x) = Y(s), so u = s and r 3 u; hence
x ‘pl=ur-uv and xu=xs=uy. 1

If Y(x) = Y(y) and y is congruent to a factor of xn then (from Claim 2)
there are u and u such that xn-’ = uu and xu = uy, so x and y are
conjugate; when n = 2, x = uu and uuu z uy, so in addition y F vu and x is
cyclically equal to y. Conversely, if x and y are cyclically equal or
conjugate then clearly Y(x) = Y(y). If x is cyclically equal to y then (from
Claim 1, with k = 1) y is congruent to a factor of x2. If x is conjugate
to y, then, from the previous proposition, (x, y) E CEk for some k < ICI,
so (again from Claim 1) y is congruent to a factor of xk + ’ with k + 1 <
lJ-7. I

THEOREM 6.3. For a fixed partially commutative alphabet (C, 19) there
are linear-time algorithms for the following problems.

(1) Given words x and y, test tf they are cyclically equal and, of so,
produce a pair of words (s, t) such that x E st and y z ts.

(2) Given words x and y, test tf they are conjugate, and, tf so, produce
a shortest conjugator.

Proof From Proposition 6.2, each of these problems reduces to testing,
first, whether the two words have the same Parikh mapping, and, second,
whether one of the words is congruent to a factor of a certain power of the
other. Testing whether Y(x) = Y(y) can clearly be done in time linear in
IXJJ~ (even on a Turing machine); from Theorem 5.3, testing whether y is
congruent to a factor of x4 and, if so, finding the “first” location of y in x4
can be done in time linear in IJ~x~I = IyI + 91x1 and so is linear in lxyl when
q is fixed. In case (l), that is, cyclic equality, if y is congruent to a factor
of x2 then a shortest word u such that uy GO x2 will be returned. A word
v such that x = uu can be easily found and then, as in Claim 2 of Proposi-
tion 6.2, (u, v) is a pair such that x = uu and y = uu.

In the case of conjugacy, if y is congruent to a factor of xL for L = IZI,
then a shortest word u such that uyg, xL will be returned; in fact, that
word u must be a shortest conjugator of x and y. As in the proof of
Proposition 6.2, xu z uy, so that u is a conjugator; also, xLp ’ = UV, where
v is such that xL = uyu.

Suppose u’ is any conjugator of x and y: xu’ = u’y. Note first that there
is some n such that u’ <s x”: for each pair (a, b) E 0, rr,Ju’) is a conjugator
of rt,Jx) and nab(y) in the free monoid {a, b}*, so there exist an integer
k(ab)>O and a prefix w,~ of r~,~(x) such that rr,Ju’) = (?r,,(~))~@~ w,~
(Lallement, 1979, Lemma 11.5.1; Lothaire, 1983, Prop. 1.3.4). Taking n to
be large than any of the integers { k(ab): (a, b) E e}, each projection of u’ is

PROBLEMS IN FPCMs 197

a prefix of the corresponding projection of xn, and the assertion follows
from Proposition 5.1(a). (If no proper suffix of u’ is also a conjugator, then
n need be no larger than],Z[- 1 (Duboc, 1986b).)

Let u’ be a word such that x” z z/v’. If n < L - 1 then u’y (EXU’) is a
congruential prefix of xL, so since u is a shortest word such that
uy~~x~, lu’l 2 1~1. If nkL then u’u’Ex~Eu(ux~-~+~), so there exist
words r, s, and t such that U’ = TS, U= rt, and alph(s) x alph(t)c 8 (Cori
and Perrin, 1985, Prop. 1.3). From xu E uy an XU’ E u’y, we can conclude
that rtys = xrts E xrst = rsyt, so tys = syt. Since alph(s) x alph(t) c 8, it
follows from Proposition 3.1 that ty = yt: for any (a, b) E 8, if Itju = / tl b = 0
then nob(ty) = nab(y) = 7t,J yt); and if either 1 tl a or ItI b is positive then
neither a nor b can be in alph(s), so z,Js) = e and 7c,Jty) =
7t,J tys) = ~,~(syl) = n,,(yt). Therefore, xL = uyu = rtyu = rytu, so, since u is
a shortest prefix of xL with this property, r = U, t = e, U’ E US, and again
lu’l 2 14. I
RECEIVED February 4, 1988; FINAL MANUSCRIPT RECEIVED July 26. 1989

REFERENCES

AALBERSBERG. IJ.. AND ROZENBERG, G. (1988), Theory of traces, Theoret. Compuf. Sci. 60,
l-82.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974). “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA.

AVENHAUS, J., AND MADLENER, K. (1980), String matching and algorithmic problems in free
groups, Rev. Colombiana Mar. 14, l-16.

BERTONI, A., MAURI, G., AND SABADINI, N. (1982), Equivalence and membership problems
for regular trace languages, in “Lecture Notes in Computer Science,” Vol. 140, pp. 61-71,
Springer-Verlag, Berlin/New York.

BOOK, R. V., AND LIIJ, H.-N. (1987), Word problems and rewriting in a free partially
commutative monoid, Inform. Process. Lett. 26, 29-32.

CARTIER, P., AND FOATA, D. (1969), Problemes combinatoires de commutation et
rearrangements, in “Lecture Notes in Mathematics,” Vol. 85, Springer-Verlag, Berlin/
New York.

CORI, R., AND METIVIER, Y. (1985), Recognizable subsets of some partially abelian monoids,
Theoret. Compuf. Sci. 35, 179-189.

CORI, R., AND F%RRIN, D. (1985), Automates et commutations partielles, RAIRO Inform.
Thtor. 19, 21-32.

DUBCK!, C. (1986a), Some properties of commutations in free partially commutative monoids,
Inform. Process. Left. 20, 14.

DUBOC, C. (1986b), On some equations in free partially commutative monoids, Theoret.
Comput. Sci. 46, 159-174.

DUBOC, C. (1986c), “Commutations dans les monoides libres,” Thesis, Univ. Rouen.
FL&, M., AND ROUCAIROL, G. (1985), Maximal serializability of iterated transactions, Theoref.

Comput. Sci. 38, l-16.
GALIL, Z., AND SEIFEXAS, J. (1983), Time-space optimal string matching, .I. Compur. System

Sci. 26, 280-294.

643;89/2-8

198 LIU, WRATHALL, AND ZEGER

KELLER, R. (1973), Parallel program schemata and maximal parallelism, J. Assoc. Compur.
Mach. 20, 514-537.

KNUTH, D. E., MORRIS, J. H., AND PRATT, V. R. (1977), Fast pattern-matching in strings,
SIAM J. Comput. 6, 323-350.

LALLEMENT, G. (1979), “Semigroups and Combinatorial Applications,” Wiley, New York.
LBTHAIRE, M. (1983), “Combinatorics on Words,” Addison-Wesley, Reading, MA.
OTTO, F. (1984), Conjugacy in monoids with a special Church-Rosser presentation is

decidable, Semigroup Forum 29, 223-240.
F’ERRIN, D. (1966), Words over a partially commutative alphabet, in “Combinatorial

Algorithms on Words” (A. Apostolico and Z. Galil, Eds.), NATO AS1 Ser., Vol. F12,
pp. 329-340, Springer-Verlag, Berlin/New York.

WRATHALL. C. (1989), Free partially commutative groups. in “Combinatorics, Computing
and Complexity” (D.-Z. Du and G. Hu, Eds.), pp. 195-216, Kluwer Academic/Science
Press, Norwell, MA.

