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Empirical Quantizer Design in the Presence
of Source Noise or Channel Noise

Tamas Linder,Member, IEEE Gabor Lugosi, and Kenneth ZegeSenior Member, IEEE

Abstract—The problem of vector quantizer empirical design a quantizer design algorithm needs to perform nearly optimally
for noisy channels or for noisy sources is studied. It is shown for all sources.

that the average squared distortion of a vector quantizer designed ) oqq js known about the more general situation when the
optimally from observing clean independent and identically dis- . . . .
tributed (i.i.d.) training vectors converges in expectation, as the q_uf"mt'zed source is to be transmltted through a noisy Channel
training set size grows, to the minimum possible mean-squared (joint source and channel coding), or when the source is
error obtainable for quantizing the clean source and transmitting  corrupted by noise prior to quantization (quantization of a
across a discrete memoryless noisy channel. Similarly, itis shown nojsy source). In the noisy channel case, theoretical research
that if the source is corrupted by additive noise, then the average h fl trated th fi f optimal rate-
squared distortion of a vector quantizer designed optimally from fas mos y concen rag on. .e questions ot op |ma. rate
observing i.i.d. noisy training vectors converges in expectation, distortion performance in the limit of large block length either
as the training set size grows, to the minimum possible mean- for separate [13], or joint [14] source and channel coding, as
squared error obtainable for quantizing the noisy source and well as for high-resolution source-channel coding [15], [16].
transmitting across a noiseless channel. Rates of convergence args 4 ctical algorithms have also been proposed to iteratively

also provided. . - )
design (locally) optimal source and channel coding schemes
Index Terms—Empirical vector quantizer design, lossy source [17], [18].

coding, training sets, convergence rates, channel noise. For the noisy source quantization problem, the optimal

rate-distortion performance was analyzed by Dobrushin and
I. INTRODUCTION Tsybakov [19] and Berger [20]. The structure of the optimal

HE design of quantizers has been studied over the |;§E}i5¥ source quan.tizer for squared distortioq was studied

four decades from various perspectives. On the practi@¥ Finé [21], Sakrison [22], and Wolf and Ziv [23]. The
side, the Lloyd—Max [1], [2] algorithm provides an efﬁciemfra_mework of these wo_rks also |r_1cluded_ transmission thr_ough a
iterative method of designing locally optimal quantizers froi0iSY channel. Properties of optimal noisy source quantizers as
known source statistics or from training samples. The gener$€ll as a treatment of Gaussian sources corrupted by additive
ized Lloyd algorithm [3], [4] similarly is useful for designingindependent Gaussian noise were given by Ayanoglu [24]
vector quantizers. A theoretical problem motivated by practiée LIoyd-Max-type iterative design algorithm was given by
is the question of consistency: if the observed training set siz@hraim and Gray [25] for the design of vector quantizers
is large enough, can one expect a performance nearly as gijdnoisy sources. A design approach based on deterministic
as in the case of known source statistics? The consister@jnealing was reported by Ra al. [26]. No consistency
of design based on global minimization of the empiricdesults have yet been proved for empirical design of noisy
distortion was established with various levels of generali§hannel or noisy source vector quantizers.
by Pollard [5], Abaya and Wise [6], and Sabin [7]. The finite In empirical design of standard vector quantizers one can
sample performance was also analyzed by Pollard [8], Lind@serve a finite number of independent samples of the source
Lugosi, and Zeger [9], and Chou [10]. The consistency of tiwector. The procedure chooses the quantizer which minimizes
generalized Lloyd algorithm was also established by Sabin [tfle average distortion over this data. One is interested in the
and Sabin and Gray [11]. An interesting interpretation of thexpected distortion of the designed quantizer when it is used
guantizer design problem was given by Merhav and Ziv [12§n a source which is independent of the training data. An
who obtained lower bounds on the amount of side informati@mpirical design procedure is callednsistenif the expected
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for noisy channels and noisy sources. In both cases, tfig ---, NV}, a random variable whose conditional distribution
notion of empirical (sample) distortion is not as simple agiven [ is

in standard vector quantizer design. For noisy channels, the ) ) -
channel transition probabilities are assumed to be known, P(J = jlL =) = p(lo),

and the empirical distortion is defined as the expected valy@ere thep(j|i) are the channel transition probabilities. The
of the distortion between a source symbol and its randoghannel is assumed to be discrete withinput andN' output
reproduction, where the expectation is taken with respect dompols, with known transition probabilities, and the channel

the channel. For sources corrupted by noise, the density of fe@ssumed to work independently of the soukceThe output

noise is assumed to be known and the estimation-quantizatignihe quantizer is

structure (see, e.g., [23]) of the optimal quantizer is used. Here

the sample distortion has no unique counterpart. Although Y=Qp(J)=ys

a modified distortion measure can be mtrodqced [25] WhICahnd the joint distribution of(X, Y") is determined by the

converts the problem into a standard quantization problem S . oo
. - ) : ..~sdurce distribution and the conditional distribution

this modified measure cannot directly be used since it is"a

function of the unknown source statistics. The main difficulty P(Y = y;|X =) = p(j|Qc(x)).

lies in the fact that, in general, the encoding regions of a

noisy source vector quantizer need not be either convex e Will use the notationy” = Q(X) as for an ordinary

connected. Thus the set of quantizers to be considered in Y§§Or quantizer, but nowy is not a deterministic mapping.

minimization procedure is more complex than in the clea€ performance of) will be measured by the mean-squared

source or noisy channel case. distortion E[||Q(X) — X||?], where||z|| denotes the Euclidean
In this paper, Section Il gives the necessary definitiof®rm of the vector. The quantizer distortion can be written as

for noisy channel and noisy source quantization problems. E[Q(X) = X|]

In Section Ill, consistency of the empirical design for noisy 9

channel quantization is established. In particular, Theorem = E[E]|Q(X) - X7 1, J]]

1 proves that the expected squared error distortion of the al .

guantizer minimizing the appropriately defined empirical dis- - Z P(I =)

tortion over m training vectors is withinO(y/log m/m) =

of the distortion of the quantizer which is optimal for the N ) . .

given source and channel. This is the same rate as that ’ ZE[”Q(X)_X” |I:'Lv J =4lp(l)

obtained in [9] for the standard vector quantizer problem. In =1

Section IV, empirical design for sources corrupted by additive N N

noise is considered. A method is presented which combines = Z / Z lly; — z|I*p(ilé) | Px(dz) Q)

nonparametric estimation with empirical error minimization. i=1 7R\ j=1

Theorem 2 proves that if the conditional mean of the clea . . ,

. : . . wrhere the encoding region®; = {z: Qc(x) = i}, for

source given the noisy source can be consistently estimated,” ~ "~ letelvy determine the encod It is

then the method is consistent. Based on this result, Corollérg_. 1, .-, N comple ey ! Qo. It

1 establishes the consistency of empirical design for additivoe,v.Ious from (1) that given the decod€p, the encoder

; : . ; régions

independent noise. We conjecture that the noisy source desig

problem is likely to be more difficult than the noisy channel N

quantizer design problem, when only noisy source samples R; = z: > _ |ly; — z]*p(jli)

are available. In Theorem 3 it is shown that consistency and j=1

convergence rates can be obtained under much more general N

conditions on the noise, if training samples from the clean < Z Iy —a:||2p(j|l), I=1,.--,N

source are also available.

1<4,7<N

J=1
determine an encoder (with ties broken arbitrarily) which mini-
Il. PRELIMINARIES mizes the distortion over all encoders. The above encoding rule
is sometimes called theeighted nearest neighbor condition
A. Vector Quantizers for Noisy Channels (see, e.g., [14], [17], [27], [28]). Note that some of tli&

An N-level noisy-channel vector quantizes defined via May be empty in an optimal noisy channel vector quantizer
two mappings. ThencoderQc mapsR” into the finite set (I contrast to the nms;aless channel case).
{1,.--, N}, and thedecoder@p maps {1, ---, N} onto _ Assuming thatE[|| X ||*] < oo, there always exists arv-
the set of codewordsy:, y2, ---, yn} C R¥ by the rule level quantizer minimizing the distortion over alV-level
Qp(j) =y, for j = 1, ---, N. The rate of the quantizer isduantizers. This is easily seen by adapting an argument for
(1/k)log N bits per source symbol. The quantizer takes dipterministic quantizers by Pollard [5]. Let us denote the
IR*-valued random vectoX as its input, and produces thedistortion of such an optimal quantiz€fy by
index I = Qc(X). The index[ is then transmitted through  px — E[|Q%(X) = X|I’l = min E[|QX) - X|)?]
a noisy channel, and the decoder receives the indlex Qc,Qp
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where the minimum is taken over alN¢level) encoders and lll. EMPIRICAL DESIGN FORNOISY CHANNELS

decoders operating on the fixed channel and soirc@hus In most applications one does not know the actual
Dy, depends onV, the source statistics, and on the channgl, rce statistics, but instead can observe a sequence of
transition probabilities, which we will assume to be fixed a”fﬁdependent and identically distributed (i.i.d.) copigs, =

known throughout this paper. (X1, Xo, -+, X,;,) Of X. Thesem “training samples” induce
the empirical distribution?,,, which assigns probability to
B. Vector Quantizers for Noisy Sources every measurabl& c IR* according to the rule
Assume that” is the noisy version of the source. Y can L
be viewed as the output of a channel whose inpukisThe P.(G)=— Z Ixcen
noisy sourcey” is to be quantized by afv-level quantizer) ma

such that the mean-squared distortion wherel is the indicator function of the event of its argument.

E[||X - Q)| When the source statistics are not known, one cannot directly
search for an optimal quantiz€p*. Instead, one generally
is as small as possible. In this problem, &rlevel quantizer attempts to minimize the empirical distortion, which is a func-
() is characterized by its codevectofg;, ---, yn} C IR¥  tional of P, rather than of the true source distribution. The
and the measurable se; = {x € R*: Q(z) = v}, empirical distortionDy,, is the expected value (expectation
1=1---, N, calledencoding regionsAs was noted in several taken over the channel use) of the average distortion of the
papers dealing with this problem (see, e.g., [19], [21]-[23]yuantizer whenZ,,, is quantized
the structure of the optimav-level quan’Eizer car}l be obtained N N
via a useful decomposition. Let/: R* — IR* denote a D = Z (Z s —a:||2p(j|i)> Po(dz).  (5)
j=1

version of the conditional expectatidd[ X |Y = y]. Then ~ Jr,

E[| X -QM)|I"] = E|X - M©)|*]+E[|M(Y)-(Y)|*]

. The empirical distortion can be rewritten in the simple form
+2E[(X-M(Y))"(M(Y)-Q(Y))]

m

1
= E[| X -M@)|P|+E[|M(Y)- Q)] Dy,m==—Y_ do(X))
) m Q

(2) =1
where the cross term disappears after taking iterated expdfiere do: R* — R* is a function which depends on the
tations, first conditioned of”. Thus to minimizeE[|| X — quantizer@ as
Q(Y)||*], the quantizer has to minimiz8[|| M (Y) - Q(Y)]|?]. N N
If the codevectordy,, ---, yn} are given, then the encoding do(z) = I _ 2ol | 6
regions minimizing the distortion must satisfy o) ; frefi} ; i IPpGl) ©

1M (y) — vill < 1M (y) = 5l Note that the empirical distortion is a random variable, a
forj=1,.--,N ifye R;. (3) function of the training dataz,,. We remark here that by
using the functiond, the expected distortion @ in (1) can

This means that for ang) be rewritten as
E[|M(Y) - QW)|*] 2 E[|M(Y) - QMY ))|I"] E[|Q(X) - X || = Eldo(X)].
where( is an ordinarynearest neighboguantizer which has ~ Assume we design a quantizer based on the training data
the same codevectors 5 Thus by (2) we have by minimizing the empirical distortioover all possible quan-
& def . ) tizers. This minimization can be carried out in principle, since
Dy = %fE[HX - QY)|I7] given Z,, and the channel transition probabilities, we can

calculate Dy, for any quantizer using weighted nearest

=E[|X - MY)|’] + ing[llM(Y) - QLY )] neighbor encoding.

Let Q% (:|Z) be the quantizer minimizind v, ,,
where the second irinmum is taken over Alllevel nearest .
neighbor quantizers). Since E[||M(Y)|]?] < E[||X]?, it ./ o1
follows from, e.g., Pollard [5] that an optimal quantizer @ C1Zm) _argémn m Z do(Xy)

O* exists. Therefore, the quantiz€r* minimizing E[||X - =t

Q(Y)||?] is obtained by first transforminy” by M and then and let
uantizingM (YY) by a nearest neighbor quantiz@t, that is, * *
quantizing/ () by ghbor quantizg DY, = E[|Q% (X|Z0) - X|P]
Q"(Y) = Q" (M(Y)). where X is independent ofZ,,,. Then D}*\,j — 1S the average
Furthermore distortion of the empirically optimal quantizer when it is
X used on data independent of the training set. A fundamental
DY =E[||I X =MW+ E[MY)=Q*(M(Y)|I*]. (4) question is how close this distortion gets to the optiry}
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as the size of the training data increases, and therefore asThen
source statistics are more and more revealed by the empirical
distribution. El|QN(X|Zm) = X|1*| Zn] - E[|Q&(X) — X|]
One goal in this paper is to investigate how fast the — p[1Q% (X|Zn) — X|12 | Zm] — A Q% (| Zm))
difference between the expected distortion of the empirically + A Q% (| Zm)) — E[|Q%(X) — X2
optimal quantizer and the optimal distortion mA N Em N
<2+ E[||Q>Jk\>’k(X|Zm) - X||2 | Zm] - Am( X’k('|Zm))

E[|Q3(X|Z) — X|] - D + Q%) - EIIQ3(X) - X7l as.

decreases as the training set sizéncreases. An upper bound
on this difference, converging to zero as — oo, is given Wwhere in the inequality we used (7) and the fact that{(Q)
which indicates how large the training set size should be bminimized by the empirically optimal quantizer. Thus we
that the designed quantizer has a distortion near the optimurave that

In what follows we assume that the source is bound % 2 % 2
almost surely (a.s.), so thd®(]|X||? < B) = 1 for some FNQK (X12) = X | Z0] = B{IQ4(0) - X
B > 0. With this assumption we have the following theorem. = 2¢+ sup - 2|An(Q) - E[A,(Q)]] as. (8)

.. do€F.U{dy~
Theorem 1: Assume that a sourc& € R* is bounded Q&7 Ulday
as P(||X]|?> < B) = 1 for someB > 0, and letZ,, = The right-hand side of the above inequality is a random
X1, -, Xm), where theX; are i.i.d. copies ofX. Sup- variable whose expectation gives an upper bound on

pose aniV-level noisy channel vector quantizéry, (:|Z,,) is  E[||Q%(X|Z,.)—X||*]-D%. To upper-bound this expectation
designed by using empirical distortion minimization over there will use Hoeffding’s [30] probability inequality which says

training setZ,,,. Then the average distortion of this quantizethat if &1, -- -, &,, are i.i.d. real-valued random variables such
is bounded above as that P{{; € [a, a + A]} = 1 for somea and A > 0, then
log m
E[|Qn(X|Zm) - X|!] < Dy + ¢/ —— + O(m ™2 1 &
QK (X|Z0) = X|2) S D + ¢ =2 4 O(m~/?) P (S VS R D
where D7}, is the distortion of the/V-level quantizer that is moa

optimal for the source and the channel, and 8Bv/kN + 1. . L . .
Proof: The proof of the theorem is based on a technique Bounding the Cardinality of a MinimalCovering: In order

often used in the statistical and learning theory literature (ség,u?’e Fhe facts_ gbove, we.derive an upper bound on the
e.g. [29]). First we note that the conditiohX|? < B cardinality ofamlmmak-covermg of the cl_as§: {dg: Q €

a.s. implies that both%, (the globally optimal quantizer) QN}’_Where_QN IS Fhe set of aIIN-Iev_eI noisy channel vector
and Q% (| Z.) (the empirically optimal quantizer) must havdluantizers with weighted nearest neighbor encoders and whose

codevectors lying inside the sphere of radid® centered at codevectors have norm at mogtB. Since the.X; all lie in

the origin, since projecting any codevector outside this sphénee sphereS(v/B), the set of functionsF has a constant

back to the surface of the sphere clearly reduces the distortiSH.VQIOpe Of4B. Let us assume now that we are given the

) ; ;
Let @ be a quantizer for the noisy channel and introduce t antizersy, Q' € Q having codevectorgy,, ---, y } and

notation Y1, -+, Y 1 respectively, such that for sorpe> 0, we have
Lo ly; —wjll < pforallj=1,.--, N. For a givenz € S(v/B),
A, - = do(X assume without loss of generality thdh(z) < do(x).
@ m ; (X Setting
N

where dg is defined in (6). Let” be the class of all func- . . 9 .
tions dg, where@ ranges through allV-level noisy channel ¢ Tagmn Z ly; = =[P
quantizers) whose codepoints lie inside the sphéi@/B) = - =

{z € R*: ||z]] < V/B}. These quantizers can be assumed g
use the weighted nearest neighbor encoding rule since both
Qn () andQy (-|Zy) use such encoders. For a fixed arbitrary

¢ > 0, let 7. be ane-covering of 7, i.e., let . be a set ] )
of functionsd,, such that for eachl, € F, there exists an W€ have by the weighted nearest neighbor property that

N-level noisy channel quantizép with d, € F. satisfying N . N
< e () —dey (@) = Y Il —=I1Pp(ili) =D ly;—=)*p(ili)
sup |do(z) — dg(z)| < e i=1 i=1

N

7 = arg min i — z||*p(i|l
v i ; Iy = =l"p(10)

l=ll<vB N N
Let Q% be an arbitrary fixed optimal quantizer (i.€)5 hasN < Z Il — | p(ilé) —Z ly; —z|*p(j]3)
codevectors and distortiall}, ), and let()r denote a quantizer i=1 i=1

such thatdQ*V* € F. satisfies N

< > p()4VBlly; -yl
sup |dgy () — doy (#) < e 7 i=1

llzll<vB <4pVB. (10)
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If we consider a rectangular grid of widthin S(v/B), then estimateM (y) = E[X|Y = y] from the first half of
for any y € S(VB) there is a pointy’ on this grid such the samplesZ,(,%) and theknownconditional distribution
that ||y — +/|| < 6v/k. Thus lettingQ’, be the set of all noisy Py|x. The estimatelM,,(-) = M,(,, Zr(ﬁl)) is required

channel quantizers which have all their codepoints on this grid  to be 7., consistent:
and which use weighted nearest neighbor encoding, we obtain

from (10) that for any@ € Qx there exists &’ € Q) such E[||M,,,Y)=MM)|* =am —0 as m — oo.
that (12)
. 5
sup  |do(e) — do ()| < 45VEB. Since thi upper bound on || X||* is known we also
+eS(VE) require that
This implies thatF. = {dq: Q' € Q’y} is ane-covering of sup ||M,.()|]* < B. (13)
F for ¢ = 46VkB. Letting V denote the volume 08(v/B) yeR

we thus obtain . . - :
if) Using the second half of the training data define a new

| Fe| < <6Kk>]\ set of m/2 training vectors
= VN(4V Bk‘)kNG_kN. Mm(Ym/Q—I—l)a T Mm(Ym)

With this we obtain from (8), the union bound, and Hoeffding’s
inequality that for anyt such thatd < ¢ < ¢/2

PLEN|QN(X]Zm) = X|I*| Zi] = E[lQ3(X) = X|1P] > £}

and consider a nearest neighbor quant'@gr minimiz-
ing the empirical distortion

m

A 1
1 & t Qr, = argmin —— | M5 (Y3) — Q(Mm(yz))n2

SP{ sup — Z dQ(Xl)—E[dQ(X)] > 5 —6} Q m/2 i:rg/:Q-i—l

QeQy Uiy} ™ 1 a4
< (IFl+1)

1 & t Here the minimization is over alV-level nearest neigh-

' QEJ’HUP{Q* }P{ m z_; de(X0) - Bldo(X)]) > 5 = 6} bor quantizers. The quantizer for the noisy source de-

N ] N ] l_r s signed from the noisy samples is then obtained from
< Q(VA (4@)k1\ RN 4 1) e~ Ut/2=€)7 /8B (12) Q;kn and M,, as

This inequality holds for alle < #/2. Choosee = t/4. O :Q* oM,
The difference inside the probability on the left-hand side is e

a.s. upper-bounded byB. Using the simple bounds(Z) < The following theorem gives an estimate for the difference

t+4BP(Z > t), valid for anyt > 0 and random variabl& peqween the distortion of)*, and the minimum achievable
such thatP(Z > 4B) = 0, we obtain distortion D%,

E[|Q%(X|Zw) — X|I*] — E[||Q%(X) - X||] Theorem 2: Assume that a sourc& € IR* is bounded as
<+ 1 8BV 16V BRI kN 4 1) —mt? /12852 P(||X|* < B) = 1 for someB > 0 and let(Yy, -+, ¥;n)
St ( ( )t + )‘3 * be i.i.d. samples of the noisy sour¥e Suppose, furthermore,

) ) ) that the conditional distribution df given X, and the constant
Finally, if we chooset = cy/log m/m with constantc = p 5 known, and that the estimatdd,,(y) of M(y) =

8B+/(kN + 1), then the second term on the right-hand Sidg[x|Y = 4| has L, error
of the above inequality is on the ordermaf-!/2, and the proof

of the theorem is complete. O E[||M,,,(Y) = M(Y)|]?] = am

IV. EMPIRICAL DESIGN FORNOISY SOURCE and is bounded as

In the noisy source quantizer design problem we are given
the samplesz,,, = (Y1, -- -, Y;,,) drawn independently from
the distribution ofY. We also assume that the conditional
distribution of the noisy sourck’ given X' is known (i.e., the Then the N-level Q* quantizer designed in steps i) and ii)
channel betweenX andY is known), and thatP(]| X||?> < apove satisfies
B) = 1 for someknown constantB. In this situation the
method of empirical distortion minimization cannot be applied . 5 .
directly, since we only have the indirect (noisy) observations EllX - QnMTT <Dy +c¢ m
Yy, .-+, Y, about X. However, the decomposition (4) sug-
gests the following method for noisy source quantizer design: + 8y Bam + am

sup [|Mon(w)1? < B.
yeR¥

log m n O(m_l/Q)

i) Split the dataZ,, into two parts Z5 = (Y, -+, Y, /2) where D%, is the distortion of the optimaN-level quantizer
and z$2 = (Yo/241, -+ Ym) (@ssumen is even) and for the noisy source problem, and= 8B+/2(kN + 1).
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Additive Independent NoiseBefore proving the theoremis a probability density inz, with support contained in the
we show how it can be applied to the special (but veryonvex setS(v/B), and thusM,,(y) € S(v/B). We also have
important) case whert’ = X + v, where the noise’ is

independent of. Theorem 2 implies that if there exists an l/ fm(z)h(y — ) dx — / f(z —z)dr
consistent estimate df/, then the quantizer design procedur
using this estimate will be consistent, i.e., < ||h||oo/ |fim(2) = f(@)|dz — 0 a.s. (15)
im (E[|X - Q' ()|?] - Dy) =
o (B = @I = Div) =0 where|[l|ee = sup,ey h(z) < co. Thus
Such consistent estimatai$,, exist, for example, wheX has
a densityf, v has aboundeddensityh, and the characteristic lim gn(y) = lim / Im(z)h(y — ) dz
function of v is nonzero almost everywhere. To see this, we e e
use the following lemma (proved in the Appendix). = / flo)h(y — z) dz
Lemma l:Let Y = X + v be a random vector ilR",
where X andy are independent absolutely continuous random =g9(y) as. (16)
variables. Assume that the densftyof v is known, and its

. ) > that is, g,, is pointwise strongly consistent. Letting —
characteristic functior((¢t) = E[e¢"*”] is nonzero for almost (1, ---, ) we have by (15) and (16) that for all
all t ¢ R*. Assume thaty i.i.d. copiesYi, ---, Y, of Y )

1, ..., k and everyy,
are observed. Then for every densjtyof X there exists an =~~~ . yy .
estimator f,, () of f such that /a:ifm(a:)h(y— 2) dz /a:if(a:)h(y— 2) dz
. lim = a.s.
lim / |f(a z)|dz=0 as. Mmoo /fm _ %) da /f(a:)h(y _
Taken = m/2 in Lemma 1. The estimatof,, in the lemma
integrates to one, but it may take negative values. Also, evﬁ'ﬂce bothf and f,, vanish outsides(vB). It follows that
though f has a poundepl supporf,, can haye an unboundeq lm  ||[M(y) — M(y)||2 =0 as.
support since it is obtained by deconvolving a kernel density m—o0

estimate of the densityof Y. Let A = {z: f,,(z) > 0}. Then for almost everyy. Fubini’s theorem and the dominated

convergence theorem then imply that
F(z) = Im(@) L ansB)) J Py

. -
/ Fm(y) dy Jim  E[|[M(Y) — M (Y)|7] = 0.
ANS(VB)

The consistency of the design procedure now follows from
is a probability density with support contained §(v/B). Theorem 2. Thus we have proved the following.

Moreover, by [31, pp. 12-13] we have Corollary 1: Assume the conditions of Theorem 2 and
X supposeY = X + v, wherer is independent ofX and
/ |[fin(z) = fz)|dx < / | fin(x) = f(x)| dz has a bounded density whose characteristic function is almost

everywhere nonzero. Then there exists a bounded estimator

so thatf,, is also stronglyZ; consistent, and we can actuallym Of M such that

use the notatiory,,, instead offm. Since lim E[|M(Y) - M, (Y)HQ] -0
9(y) = / h(y — ) f(x) dx and the noisy source design procedure is consistent, i.e.,
we have im  Ef[[X - Q" = Dy
M(y) = (g(y))—l </ zh(y — x) f(x) da:) Proof of Theorem 2:Usmg the same decomposition as in
(2), the distortion of)*, = QF, o M, can be written
for all ¥ such thatyg(y) > 0. We define our estimaté/,,, as E[|X = Q5 (W)|A] = E[|X = M|
/x Foh(y — ) da +E[IMY) - Q5 (M2 (17)
M (y) = : Then, by the Cauchy-Schwarz inequality, one obtains
/fm(a:)h(y —z)dx N )
E[|MY) = Q. (MY )I']
It is immediate thai|M,,,(y)||> < B since = E[||M,.(Y) = M(Y)||]
Fon(@)h(y = @) + B[ Mn(Y) = Q5 (M)
, +2B[(M(Y) = My (Y))' (M (Y) = Qr(M(Y)))]
fm h )d.’]j * 5
< E[[|Mn(Y) = QL(MY)*] + am + 4/ Bay, (18)
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where a,, = E[||M,,,(Y) - MY )||2] Recall now thatM,,, —|G* (M) — M) | 2]
depends only on the sampl%, (Y1, -++, Ypp2) butis < 4\/§E[||Mm(Y) — M) |Z,(,P].
independent A (Y2415 -+ Yon)- With this in mind,
we introduce an auxiliary -level quantizei),,, (used only in
the analysis) which minimizes the conditional distortion

E[||[ My (Y) - Qm(Mm(Y))IIQ | Z5).

Note thatQm (") = Qm(- Z Uy depends onz'Y. By defi-
nition, Q%, is an N-level quant|zer minimizing the empirical

In the last inequality the uniform boundednessiéfand M,,,
and the triangle inequality were used. It follows that

E[]|Qm (Mm(Y)) - an(}/)llz’]
< EQ*(M(Y)) - MY)|’] + 4v/ Ban.
Combining this with (18) and (20) gives

distortion over the sampled/,,,(Yrn/241), -+ » Mm(Y5,) for E[|MY) = Ot (M)
a givenZ,(,P. This fact and the independencekifZ,(&), and Ak 9 logm
Zr(f) imply that forZ,(,P = z the conditional probability < EllQT(M(Y)) - MY)|T]+ ¢ m

PLE[|Q5, (M (Y)) = M (Y)|[*| 22 +O(m™%) + 8/Bay, + a
—E[|Qm(Mpn(Y)) = My (V)))?] > €| 2 = 2} and sincad*(Y) = Q*(M(Y)), one finally gets from (17) that

can be upper-bounded using the same technique as in the ¥ 9 e 9 {logm
proof of Theorem 1. In fact, if the channel is made noiseless E|lX m(MIFT < EIX = Q" W)+ ¢ m

by substituting the transition probabilitiegj|i) = 6; ; i + O(m™Y?) + 8/ Bam + am
Theorem 1, then the quantizers there become ordlnary nearest
neighbor quantizers. SinceM,,(Y)||2 < B, for a fixed », and the proof is complete. .
the inequality (11) implies, after replacing by m/2, that
for a.e. z, V. EMPIRICAL DESIGN FROM CLEAN SOURCE SAMPLES
Ak So far we have assumed that the training data consisted of
PE|Q5, (Mn(Y) = M (VI | 272) samples from the noisy source. In practice git is often the case
W _ P . y - np '
— E[[|Qn(Mn(Y)) = Min(Y)IP] > | Z33) = 2} that there might be samples available from the clean source. In

< Q(VN(16,/B/€)th—W + 1)e—mt2/25632_ (19) what follows this situation is explored and the consistency of
empirical design is proved. Moreover, it will be shown that, as

Since the upper bound is independent:pft follows that opposed to the case of empirical design from noisy samples,
- in this case the convergence rate @f+/log n/n) is easil
PUE] Q3 (Mon(Y)) = My (V)] Z) in inis cas 0 (Viog nfn) s easily
— E[[|Qun(Mn(Y)) = My, (V)P > £} Assume that we are given as training data the i.i.d. samples
< 2(VN(16\/B]§)’“Nt_kN + 1)(3—"”2/25632 Xy, --+, X, drawn from the distribution of the clean source

o ] X, and that the conditional distribution df given X is

E[|O% (M (Y)) = My(Y)||?] a cpnditional plens?tW(y|a:).given X = z. Then M(y) is
< E[|Qu(My(Y)) = M (V)| estimated again using the first half of the samples/angdl).
= myTm m The empirical design of Theorem 2 can be used with the
oy flogm O(m=1/2) (20) Mmodification that now(* is defined as
m e . 1 m
wherec = 8B\/2(kN +1). Qm = st 2 >,
Now recall thatQ* is an optimal nearest neighbor quantizer i=m/2Hl
for M(Y') and thatQ,, is an optimal nearest neighbor quan- / | M (y) — QMo () |1h(y| Xs) dy  (21)
tizer for the conditional distribution of\Z,,,(Y") given Z,(,P. R¥
Thus where the minimization is over alN-level nearest neighbor
21 (1) vector quantizers) whose codepoints lie insidg(v/B). The
El|Qm(Mn(Y)) = Min(Y)|7 23] following result states that the procedure is consistent in
E[||Q* (M (Y)) = My ()7 | 2] general, and if(y|z) satisfies some additional conditions, then
E[|Q*(M(Y)) = M ()| | 2] we can obtain the convergence r&#é,/log m/m).

Theorem 3: Assume that sourc& is bounded as
where the first inequality holds becaugg, is optimal for the 5
distribution of A,,,(Y") given Z,(,%), and the second inequality P(lX|" < B) =1
follows becaus&)* is a nearest neighbor quantizer. Thereforand let(Xy, ---, X,») be i.i.d. copies ofX. Suppose thaB3
21 (1 and the conditional density(y|z) of Y, given X, are known.
E(l|@m (M (Y)) = Mo (V) |22) Then the quantize®*, = ;En |o )Mm is consistent, i.e.,
— E[|Q"(M(Y)) = M(Y)|1?]

< E[|Q*(M(Y)) — My, (Y)|2 lim E[|X - Q)P = Dy
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where the estimator is This is seen by noticing that according to (21), the empirically
m)2 optimal (* has to minimize the functional
— =1 d("l) Xz
Mm(y) m/2 m/2 ; Q ( )
Z h(y|X:)
=t where d$;" (z) is defined as
and
: d 450w = [ M) = QUL W)IPh(ule) do
Q, = arg min 1 > @ R
Q@ m/2 _
i=m/2+41

Let @ and Q' be N-level nearest neighbor vector quantizers

/ | M, () — QM (w)|IPR(y| X:) dy. whose codevectorgy, -- -, yn} and{yy, - -, vy } lie inside
Rt S(v/B) and satisfy|ly; — v/|| < p for all 1 < j < N. Since

If, additionally, h(y|z) is uniformly bounded and|Y|| is [[Mx()|l < VB, the nearest neighbor property implies that

almost surely bounded, then ) y y
| ||Mrn(y) - Q (Mrn(y)H - ||Mrn(y) - Q(Mrn(y))n |

B{IX = QuV)IP) < Dy + e/ <2 + O(m/2) <4VB
m
and therefore,
wherec = 8B/2(kN + 1).
Proof: To prove the consistency apy,, we first show ., (m) , 5
that M,,, is consistent. Introduce the notation |dg " () —dg ()] < /Rk ‘ ([ M (y) = Q" (Mo ()|
1 m/2 - ||Mm(y)_Q(Mm(y))”2 h(ylx) dy
Ni(y) = )2 Z Xih(y| X:)
i=1 < / 4pVB h(y|z) dy
1 m/2 R*
m = —Qa h Xz =4 \/E
Im(y) m/2; (1 X2) p
N(y) = E[Nn(y)] Thus for fixedZ'Y, the family of functionsdg") (z) parame-
and terized by has the same-covering asig(z) between (10)

() = Elgm(y)] and (11). It follows from Theorem 1 th&}* of (21) satisfies
9 Im\Y (23). The rest of the proof is identical to that of Theorem 2,

(note thatg is the density ofY). Then by the strong law of &nd we obtain that
large numbers, for every we havelim,,, N,,,(y) = N(y) and

lim, g(y) = g(y) as. Thus for ally such thatg(y) > 0,  E[|X - QWP <D + e/ 2™ 1 o@m=1/?)
we obtain m
Now () W) + 8vBa, + an (24)
lim M, (y) = lim —— ¥ ¥ _ M(y) as.
m—oo m=oo gm(y)  9(y) wherea,, = E[||M(Y) = My, (Y)||?]. Sincelim,, an, =0 by

(22), the consistency part of the theorem is proved.

Since||X;||? < B a.s., it follows thai|M,,,(v)||? < B a.s. for o obtain th e it suffices t that
all y. Then the dominated convergence theorem implies that 0 obtain the convergence rate it sufhices 1o prove tha

M, (y) is Ly consistent, i.e., C
Ef[Mn(Y) - MY)[] £ —= (25)
lim E[[|M(Y) - Mnu(Y)|*] = 0. (22) v

m—o

. . for some constant’, since the boundedness &f implies that
To finish the consistency part of the theorem, we copy tgg\/’m(y)ﬂ < VB and thus

proof of Theorem 2 after redefining the training data
(1 _ (2 _
Zrn = (X17 Tty Xrn/?) and Zrn = (Xrn/2+17 A Xrn)- am :E[HMnl(Y) — M(Y)||2]

Clearly, one need only check that tig, defined in (21) _
satisfies (19), i.e., <2VBE[|Mn(Y) = M(Y)|]]

P{E[||Q*,(Mn(Y)) — Mp (V)12 | 2] The term 8y/Ba,, in (24) comes from the upper bound

B B 2 W _ VE[[Mn(Y) - MY)P] on E[Mn(Y) - M(Y)|]
El|Qum(Mm(Y)) = M (V)] > t] 257 = 2} in the proof of Theorem 3, and can be replaced by

< 2<VN (16,/—B,€)Wt—w+1>e—mt2/25632_ (23) SVBE[||M,,(Y) — M(Y)||]. Substituting this and (25) in-
to (24) gives the stated convergence rate.
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Finally, the estimate (25) is proved. For all such that problem from a statistical viewpoint. Consistency of an em-

g(y) > 0 we have pirical design method for sources corrupted by noise was also
Noly) N(y) proved under some regularity conditions. Determining a good

|| Mo (y) Y|l = H "’( y) (y H convergence rate is an open problem for the case when only
Im\Y g\y

) noisy training samples are available. The estimation problem
Nm(y) Nm(y H H Nu(y)  N(y) H involved in the design indicates that, in general, this problem
9(y) g(y) || is significantly harder than ordinary vector quantizer design.
=A1(y)+A2(y). When training samples from the clean source are available, we
can obtain the same convergence rate as for the standard vector
quantizer design problem or for the noisy channel problem

The expectation of the first term can be upper—bounded as

N (y gm - under mild conditions on the noise distribution.
ElA(y)] [H Im (Y m The method of empirical distortion minimization (searching
VB for a quantizer globally optimal over the training samples)
< ——E[lgm(y) — 9(v)|] is computationally prohibitive in practice. It is therefore of
9(y) practical significance to carry out analyses similar to what we
< @\/ l9m () — 9] presented here for suboptimal, but computationally feasible
~ g(y) " methods of design. Such an analysis of consistency was given
V2B for the generalized Lloyd—Max algorithm in ordinary vector
ON Var [ (y|X)] quantizer design by Sabin and Gray [L1]. An interesting area
) of future research would be to provide convergence rates for
<— suboptimal algorithms for ordinary, as well as noisy channel
9(y)vm or noisy source vector quantizer design.
for a constantC;, where the first inequality follows from
the fact that the|X;|| < VB a.s., and last inequality holds APPENDIX
becausen(y|x) is uniformly bounded. For the second term, PROOF OF LEMMA 1

we similarly have The estimate with the required property ig-aimensional

E[As()] :L E[||Nm(y) = N)|] extension of the estimator proposed by Devroye [33]. The

9(y) proof is based on [33], where convergence in expectation was
L VEINu@) = NI proved. First some notation is introducetit) = E[¢**] and
m 4 #(t)¢(t) = E[ec'*Y] are the characteristic functions a&f and
Y, respectively, and the empirical characteristic function of
o \/7\/E [ XAy X) = N@)|] the data is denoted by
Cy 1 -
= glo)vm n E ¢

for some constan€’,. By the assumption on the distribution ) ) X ]
of Y, g(y) = 0 outside some compact st so that The estimator uses &ernel functionkK: R* — IR with

o K(z)dx = 1, such that its Fourier transformp(t) =

E[||M,,(Y) = M(Y S/ A () + A dy < —— [ ¢ K(z)dz satisfiessup,cgs [1()] < oo andy(t) = 0
U4 () Wl s( W)+ A)sly) dy vm o if ¢ ¢ S(c) for some constant < oo, where S(r) denotes
the k-dimensional ball of radiug centered at the origin. We
also define asmoothing parameteh > 0, a tail parameter
T > 0, and anoise-control parameter > 0. All of these

parameters may change with the sample sizéntroduce the
We have investigated the problem of empirical vector quaget 4, — {t: |¢(¢)| < 7}, and letR{z} denote the real part of

tizer design for noisy channels or noisy sources. The notion @k complex numbeg. Our estimate is defined as follows:
empirical distortion minimization was suitably defined for both

O

for a constantC, which proves (25).

VI. CONCLUSION

cases, and proofs of consistency of the methods were given. 0, ) if ||l = T
For the noisy channel problem it was shown that the average —= {/ e~ itz

squared distortion of an optimal vector quantizer designed falz) =4 (27) RF—A

from observingm clean i.i.d. training vectors converges, in AL B pu () dt b, i ||2]| < T

expectation, as the training set size grows, to the minimum
possible mean-squared error obtainable for quantizing tWe
clean source and transmitting across a discrete memoryl
noisy channel. The convergence rétg,/log m/m) was also

obtained. The comparison of this rate with that obtained in lim =0 (26)
[9] for empirical design for ordinary vector quantizers shows e

i ) . lim h=0 27
that noisy channel vector quantizer design is not a harder ey 27)

claim that this estimate satisfies the required consistency
Property if the parameters vary with as follows:
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lim T*\A, N S(c/h)) =0 (28)

n—oc
y T% log n
im —— 2
n=oo  nh2ky2

where A denotes the Lebesgue measure.

To see why the estimate is consistent, we introduce the

notation K7,(z) = (1/h*)K(x/h) and

(f = Kn)(x) = (2m) " / eI (ER)H(E) dit.

Next define the auxiliary function

ﬁm{ /R - e‘““”z/;(ht)d)(t)dt}

and write the decomposition

n - < n = Un n - *KL
Az f|_/”x”§T|f q'*/”w'q fe Kl
* Kj, —
LR
S V Vka\//l (fn - Qn)Q

ll=|l<T
+ ViT™ sup |gn (2) — (f % K3)(@)]

- If*Kh—fIJr/”w”ZTf

=I+II+1II+1V

qn(x) =

=0 (29)

m{ / e ah(th)CTH(E)e™ dt
RF —A,

- / e~ p(th)CTH () Bl dt}) ]
RF—A,

K
:VkT / Var | R %/
N Sz<T @m* Jre_a,

e Ep(th)¢ T (t) e dtH

k
<Alpl [ K2,1<x>] da
=l <T

n
/ |Ln,1<x>|2] d
[lz||<T

Vi T / [y (th)|? s .
< . dt (by Parseval's identity)
(2mk Jre_a, ICEOP

E

k
T
n

E

3

k
nhkr2

which converges to zero by (29). Summarizing, we have
proved that for every density

s

To prove convergence with probability one, recall a powerful
inequality of McDiarmid [35] (see also Devroye [36]). Accord-

< constant

x)| dz| = 0.

ing to this inequality, ifg: R™ — IR is an arbitrary function

. k .
whereV;, denotes the volume of the unit ball IR”. It is now satisfying the boundedness condition

shown that each of the four terms tends to zermas oo,

almost surely. sup lg(@y, =y Tj1, Ty Tjg1, *o s Tn)
Clearly IV — 0 by (26). Sincef K = 1 andh — 0 @t on,wj€RE
by (27), we have by the well-known “approximation of the —g(x1, oy Ty, Ty Ty, e, Tn)| S
identity” property of the family{K};h > 0} that[/] — 0 _ i
(see, e.g., [34, Theorem 9.6]). Also, then for any independent random variablgs - - -, Y,
1< B o6 it P{lg(Y1, -+, Ya) = E[g(Y1, -+, V)l > ¢}
O ()
ViCT* =% -
k
S o (2m)k A4y 01.5(c/h)) We apply this inequality to thé.;-error
which converges to zero by (28). To show tiigt/] — 0, we g(Y, -, Y,) = / |fn = f|.
introduce the random variables
1 (V=) 1 It suffices to obtain a good upper bound on the variability of
Ln, j(2) = . I TE(th) (TR () dt the L,-error if we replaceY; by an arbitraryY’. Denote the
(271') R—A J

modified estimate byf/,(z). Then (see (30) at the top of the
following page). Therefore, McDiarmid's inequality implies
Then that

’ B I —constantfznhkrz/Tk
(BL))? vm< \//| B ) P{‘/m - [ 15, f|‘>e}§2e |

The upper bound is summable for every- 0 if
k
/ E[(f. - Qn) ]
llzll<T

T*logn
1 n
T"‘/ E
Nzl <T [(”(%)k Z

Ky, j(z) =RLy, ().

I/\

nhkrz o(1)
which is satisfied by (29). Thus by the Borel-Cantelli lemma,
j=1 J |fa = f| — 0 with probability one. To complete the proof
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—itz r(/}(th’)

1 ) .

_ = I - RANGAPAFIRS SRR & d d
n /”x||<T @2r)F {/RA (o e t} ’
il — dt| d.

=% /ux—lel<T (2m)* /R’“—Are @ "

- dt| d
T /”m_y;na BT e, 4

2

1 ' ' . (th)
< | Vi TH / / e~ite T2 gt dx
n(2m)k \/ le—Y;|<T |JRF—a, ¢(t)
1 () )P
+ o1 | VW T* / / e~itr T gl dg;
”(27r)k le—y/lI<T [JR¥—A, ()
(by the Cauchy—Schwarz inequality)
2 p(th) 2
< Tk —itx I -
~ n(27r)k \/VkT /I{k /I{k c C(t) {tER]‘ —A} dt| dx
2 P(th) |
= Tk ] .
w2 \/ it [ | | fueroan
(by Parseval’s identity)
2 Vi Tk 9
< —— = th)|“ dt
- n(27r)k\/ 72 /]Rk [ ()]
Tk/2
< constant — - (30)
of the lemma, it suffices to demonstrate the existence of the REFERENCES

parameters of the estimate satisfying the conditions (26)—(29[)1.
For each positive integdt seth = 1/! and ]

(2]
(3]

r = sup {u: A(A, N S(c/h)) < 1/1}.

To see that such an exists, note that sincé(t) £ 0 almost
everywhere, the continuity of the Lebesgue measure implieé!
that for any fixedv > 0, A(4, N S(v)) — 0asu — 0. Let 5
ni = [(I/(R*r?))1+4] for 6 > 0. For all n € [ng, nit1),
defineh andr to be the same as their values for Then as 6]
[ — o0, ng — oo, andh — 0, and therefore (27) is satisfied.
Also, A(A,. N S(¢/h)) — 0, and if 3 = §/(1 + §), then
nt=Ph%*r2 — 0. Define

[&]

(7]

(8]
T = min (| n*~Ph?*2,
[

o SE)
A, NS(e/h) )

ThenT — oo (so (26) is satisfied) anBi* \(A,.NS(c/h)) — 0,
so that (28) is satisfied. Finalg* /(nt=#h¥r?) — 0, which
implies (29). O
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