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Fixed-Rate Universal Lossy Source Coding and 
Rates of Convergence for Memoryless Sources 

Tam& Linder, GSbor Lugosi, and Kenneth Zeger, Senior Member, IEEE 

Abstract- A fixed-rate universal lossy coding scheme is intro- 
duced for independent and identically distributed (i.i.d.) sources. 
It is shown for finite alphabet sources and arbitrary single letter 
distortion measures that as the sample size r~ grows the expected 
distortion obtained using this universal scheme converges to 
Shannon’s distortion rate function D(R) at a rate 0 (lognln). 
The scheme can he extended to universal quantization of real 
i.i.d sources subject to a squared error criterion. It is shown in 
this case that the per-letter distortion converges to D(R) at a 
rate 0( z/w) both in expectation and almost surely for any 
real-valued bounded i.i.d. source. 

Index Terms-Universal source coding, convergence rates, vec- 
tor quantization. 

I. INTRODUCTION 

A UNIVERSAL lossy source code (or universal source 
code subject to a fidelity criterion) is a code whose 

performance for any source in a given family approaches the 
performance of the optimal code for that particular source 
as the length n of the encoded source sequence increases. 
Different types of universality for lossy coding are defined 
in [15] following similar concepts for noiseless coding given 
by Davisson [7]. The type of universality to be dealt with in 
this paper is weak minimax universality, where the universal 
code is assumed to perform in an asymptotically (i.e., for large 
block length) optimal manner for each source in a given class, 
however not necessarily uniformly over the class for a finite 
block length n. 

The first result demonstrating the existence of a weakly 
minimax fixed-rate universal lossy source code for the class 
of stationary sources was given by Ziv [26] under certain 
assumptions on the source and reproduction alphabets and 
on the distortion measure. The conditions of Ziv’s result are 
satisfied, for example, for the mean-squared distortion and 
the class of real-valued stationary sources whose marginals 
have finite second moment. An extension of this result and 
various new results dealing with different types of universality 
in fixed-rate coding of stationary sources are proved in [ 151. 
Both necessary and sufficient conditions are given by Kieffer 
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[9] for the existence of weak minimax universal variable rate 
noiseless and fixed-rate lossy codes for the class of stationary 
and ergodic sources. 

The above results deal with the general problem of univer- 
sal coding of stationary, or stationary and ergodic sources, 
and thus inherently do not provide convergence rates for 
the average distortion (fixed-rate case) or the average rate 
(variable-rate case) to the optimum value as the block length 
increases. Indeed, it was proved by Shields [ 181 that there 
does not exist any universal rate of convergence for the rate 
redundancy in universal noiseless coding of ergodic sources. 
However, for certain smaller classes of sources, very sharp 
results are known for universal noiseless coding. For example, 
for discrete memoryless sources with alphabet size L it is 
known that the minimax lower bound to the per letter average 
redundancy is [(L - 1)/2]n-’ logn, asymptotically for large 
n, and this convergence rate is achievable ,pointwise (see 
Krichevsky and Trofimov [lo] and the references therein). 
Rissanen [17] provides a (d/2)nP1 log 71 lower bound for 
classes of “smoothly” parametrized sources, where d is the 
dimension of the parameter space. This result includes in 
particular the class of memoryless sources and the class of 
Markov sources of any given order. 

Far fewer and less general results are available for uni- 
versal lossy coding. For discrete memoryless sources Yu and 
Speed [22] have demonstrated the existence of a variable- 
length universal scheme where the average code length of 
the code approaches the rate distortion function R(D) at 
a rate O(n-’ logn), while the per-letter distortion is point- 
wise upper-bounded by D. Their result applies to classes of 
independent and identically distributed (i.i.d.) sources over 
a finite alphabet such that, at a given rate, the second- 
order partial derivatives of the rate distortion function with 
respect to the source, probabilities are bounded uniformly 
for each source. Unfortunately, they do not give an easier 
characterization of these source classes. Linder, Lugosi, and 
Zeger [ 1 I] analyzed Ziv’s [26] fixed-rate universal scheme and 
established a 0 ( log log n/log n) rate of convergence of the 
mean-square error on the class of real-valued bounded i.i.d. 
sources. The slower convergence rate apparently results from 
the fact that this scheme is universal over the larger class of 
all stationary and ergodic sources. 

Ziv’s [26] scheme was also analyzed in [24] and [2] by 
assuming both high resolution (i.e., high rate) and a fixed 
vector dimension. However, no rigorous rates of convergence 
have been derived from [24] and [2] for universal lossy 
coding. What is missing to make that connection is a rigorous 
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theory of high-resolution quantization as the vector dimension 
increases. This problem was circumvented in [3], where a 
variety of two-stage coding schemes (including Ziv’s method) 
were rigorously analized. 

The present paper introduces a fixed-rate universal lossy 
coding scheme for memoryless sources. We show in Section 
II, Theorem 1 that for all finite alphabet memoryless sources 
the distortion of the scheme approaches the distortion rate 
function at least as fast as en-l log n with an increasing 
block length n, where the constant c is explicitly identified. 
The idea behind the construction is an extension of the 
“enumerative” (Lynch [ 121, Davisson [6], and Cover [4]) 
or “combinatorial” (Shtarkov and Babkin [19]) method of 
universal noiseless coding. First, the type (i.e., empirical 
distribution or composition) of the source sequence of length 
n is encoded, then the sequence itself is encoded using a fixed- 
rate source code which is optimal with respect to the uniform 
distribution on the type class (the set of sequences of length 
n with the same empirical distribution). A key tool used in 
our proof of the convergence rate is a result of Pile [16], 
who established a O(n-llog n) convergence rate in Shannon’s 
source coding theorem for discrete memoryless sources on 
finite alphabets. Our scheme can also be extended to universal 
lossy coding of Markov sources, giving an O(n-l log n) 
rate redundancy as the “price of universality.” The code 
constructions given may not be practical, but are used to 
demonstrate the existence of universal codes with the claimed 
properties. 

In Section III our construction in Section II for finite 
alphabets is extended to infinite alphabets where we obtain 
convergence rates for universal coding of real memoryless 
sources subject to a squared error criterion. We show in 
Theorem 2 that the per-letter mean-square distortion of the 
resulting universal quantization scheme converges to the dis- 
tortion rate function at a rate 0( &?iG@) in expectation 
for all bounded memoryless sources. A more involved analysis 
reveals (Theorem 3) that the same convergence rate also holds 
for the per-letter sample distortion almost surely. We also 
demonstrate that a slight modification of the scheme results in 
a code weakly minimax universal over the class of memoryless 
sources with finite second moment. Then we investigate the 
“price of universality” (the rate and distortion redundancy of 
the scheme when compared with the nth-order operational 
distortion rate function of each source evaluated at rate R) 
for this modified scheme for unbounded memoryless sources. 
We show that the price of universality is on the order of 
(n-l logn)l/‘-‘, where c can be made arbitrarily small by 
assuming that the source has a finite kth moment for Ic large 
enough. 

In Section IV we compare our result for finite alphabets 
with the result of Yu and Speed, which is the only other 
presently known result of this type. The two results provide 
the same speed of convergence, though Yu and Speed’s code 
provides O(n-l logn) convergence of the expected code 
length, with the sample distortion almost surely upper-bounded 
by a constant, while our code has constant transmission rate 
and a O(n-’ log n) convergence of the expected distortion. 
A recent work by Zhang et al. [25] reports n-l logn type 

lower bounds on the distortion (resp., rate) redundancy of the 
best n-length fixed-rate (resp., variable-rate) lossy source code 
designed for a memolyless source. This means that both Yu 
and Speed’s and our convergence rate is optimal, although 
the best constants are currently unknown. As seen in Section 
III, our scheme is easily modified for real sources, while there 
seem to exist technical difficulties to extending Yu and Speed’s 
universal code. We know of no universal quantization results 
comparable to our Theorems 2 and 3. 

II. THE FINITE ALPHABET CASE 

Let A and B be two finite sets called the source and 
reproduction alphabets, respectively, and let {Xn}r=i be 
a sequence of independent identically distributed random 
variables taking values in A. Suppose we are given a single 
letter distortion measure d : A x a ---t [0, cc) with 

for all J: E A. Let E denote the expectation operator. The 
(average) distortion between xn = (zi, ... ,x,) E A” and 
Yyn = (Yl,... , yn) E B” is given as 

The distortion rate function D(R) (see Berger [ 11) of {Xn> 
is defined for any R 2 0 as 

D(R) = min E$(X, Y), 
I(X;Y)<R 

where the minimum is taken over all pairs of random variables 
(X, Y) taking values in A x f3 such that X has the common 
distribution P of the X,, and the mutual information of X 
and Y is less than or equal to R. 

An n-length block code is a mapping g : A” + 13n. Let 
191 = ]g(d”)l denote the cardinality of the range of g. The 
rate of g is defined as R = n-l log 191. Here and throughout 
this paper we use base-2 logarithm. The (expected) distortion 
A(g) of the code g is given by 

A(g) = E&(Xn, dXn)> 

where X” = (Xl,... , Xn). Let D,(R) denote the minimum 
distortion which can be achieved by encoding {Xn} with an 
n-length block code of rate not exceeding R, i.e. 

D,(R) = 
g:d$&R ‘(‘) 

where the minimum is taken over al1 g : dn -+ Z3n satisfying 
the rate constraint. Shannon’s source coding theorem states 
that D,(R) 2 D(R) for all n, and D,(R) --f D(R) as 
n -+ cc. The folIowing upper bound on the rate of this 
convergence is given by Pile: 



LINDER et al.: FIXED-RATE UNIVERSAL SOURCE CODING 661 

Propostion I (Pile [16]): If R > 0 and D(R) > 0, then the 
minimum expected distortion in fixed-rate coding an n-block 
from a finite alphabet memoryless source is upper-bounded as 

D,(R) - D(R) I 

where D’(R) is the derivative of D(.) at R. 
We  remark that a careful inspection of the proof of Pile’s 

result reveals that the o(1) term above converges to zero 
uniformly as n + co in a small enough neighborhood of 
R. Pile’s result asserts that for a particular given discrete 
memoryless source there exists a sequence of such fixed-rate 
codes which produce distortion only O(n-l log n) higher than 
the ultimate lower bound D(R). This sequence of codes may 
be different for each different source. We  next demonstrate 
the existence of a fixed sequence of codes .9n : A” + B”, 
n = 1,2,... of rate not exceeding R that achieves this 
O(n-l log n)convergence rate universaZly for any memoryless 
source over A whose distortion rate function evaluated at R 
is positive. 

Theorem 1: For all R > 0 there exists a sequence of fixed- 
rate codes {gn}r=i with rate n-i log lgnl 6  R, such that for 
any i.i.d source {X,} on a finite alphabet A with D(R) > 0 
the difference between the expected squared error of the length 
n code gn and the distortion rate function is bounded as 

A(.4 - D(R) F  ID'(R)I(Idl + l/2 + o(l)) F  
( > 

The construction of the code will be an extension of a 
method of noiseless universal coding [19]. The general idea 
is most clearly explained in [7, Theorem 61. In our case, 
the procedure consists of partitioning A” into k(n) sets 
Al;. . . , A++ where each A; has the property that X” is 
uniformly distributed over A; given X” E Ai. If X” E Ai, 
the index i is encoded using at most log s(n) + 1 bits. Then a 
source code with minimum expected distortion with respect to 
the uniform distribution on A; is designed, and X” is encoded 
using this code. The receiver can decode this code since the 
index i was transmitted. In our case, the Ai’s will be the 
n-length sequences with the same empirical distribution. 

In the spirit of Ziv’s pioneering paper in universal lossy 
coding [26] and Wyner’s results in the analysis of convergence 
rates for quantization schemes [20], [21], we have chosen the 
parameters determining the overall rate of the universal code 
so that the rate redundancy is zero, i.e., r~-l log 1~~1 5 R. 

Proof The type P,- of a  sequence xn E A” is its 
empirical distribution, defined as 

P,~(o)=~l{l:x~=u,l~~~r~}l, aEd. 

For a given probability distribution p on A let Ts = {x” E 
A” : P,- = P} be the set of all xn having the same empirical 
distribution as @ , a possibly empty set. T$ is called the type 

n 
class of xn, if P = P,-. Note that the number of different 
types (hence the number of type classes) is upper-bounded 
by (n + l)lAl. The terminology above is that of Csiszar and 
Kiimer [5], although we will not need to fully exploit their 
powerful “method of types.” 

For each probability distribution Q on A”, let gQ,R denote 
an n-length source code of rate R which is optimal with respect 
to Q, i.e., IgQ,RI 5  pnR, and for any other n-length source 
code g with 191 < 2nR 

EQ[&(X”,9Q,R(Xn))] <  EQ[dn(X”,9(X”))l (1) 

where we used the notation 

E~[f(x”)] =  C Q(x”)f(~“) (2) 
X"EA" 

for the expectation with respect to Q of a real-valued function 
f on A”. 

Our code is described as follows. For a given source 
sequence xn with type @  = Pzn let Q denote the uniform 
distribution concentrated on the type class Tz of xn. Set 

R, = R - ([dl/n) log (n + 1) (3) 

which is a positive number for n large enough. Now we define 
our code gn by 

9n(x”) = gQ,Rn cx:“) 

that is, gn maps xn to the codeword that the code of rate R,, 
which is optimal with respect to Q, assigns to xn. Since there 
can be more than one optimal code gQ,Rn, the encoding rule 
is made unique by specifying a rule for choosing gQ,&, from 
among the possible candidates. Now lgQ& I 5  2nRn for each 
Q, and the number of different Q’s is the same as the number 
of different type classes, which is upper-bounded by (n+l)lAl. 
Thus we conclude that lgnl < (n + 1)1A12”R- = 2nR, that is, 
gn satisfies the rate constraint R. 

We  will demonstrate the simple but crucial observation that 
for any i.i.d. source {Xn}, the code gn does as well as the 
optimal code of rate R, matched to the source. Let P be 
the common distribution of the Xi’s, and with some abuse of 
notation denote the distribution of the sequence X” also by P. 
Then since the conditional distribution of X” given the type 
? is uniform over T$, we have 

Wn(Xn,gn(Xn))lPx~ =-~)]=EQ[~&%IQ,R,(X~))] 
LE~[d,(x",gP,R,(x~))l 

=  E[dn(Xn, gp,R, (x")) Ipx- =  p] 

(41 

where the inequality follows from the defining optimality (I) 
of gQ,R,. Taking expectations we obtain 

A(9n) =  Edn(Xn,gn(Xn)) 5  E&(Xn,gp,R,(Xn)) 
=  D,(h). (5) 

Therefore 

A(gn> - D(R) I D,(k) - D(R) 
= D,(h) -D(L) (6) 

+ D(R,) - D(R). (7) 
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We can upper bound (6) by using Pile’s result (Proposition 1) 
as follows. As n + 00 we have 

Dn(R,) - D(R,) 5  

(8) 

since R, < R, R, -+ R as n -+ co, and by the continuity 
of D’(R) in R. The continuity of D’(R) at any R > 0 for 
which D(R) > 0 follows from the existence of D’(R) for 
such R and from the convexity of D(R) in R (see e.g., [l]). 
An upper bound on (7) is given by using a first-order Taylor 
expansion of D(.) at R, 

D(h) - D(R) 5 ID’(R)I(R - &)(I + o(l)) 

= (/D’(R)1 . JdJ + o(l))log(;+ ‘). 

(9) 

From (8) and (9) we conclude that 

A(s) - D(R) I ID’(R)(((d( + l/2 + o(l))(F) 

and the proof of the theorem is complete. n 
Remark: One may be interested in distortion criteria other 

than the expected distortion. We  can consider, for example, the 
probability that the average sample distortion exceeds a certain 
distortion level D. Mar-ton [13] investigated the asymptotic 
behavior of the sequence 

-k$n{logPr{&(X”,g,,(X”)) > D(R)}} 
n 

where the minimum is taken over all codes gn with 
n-i log lgnJ 5 R’ for a given R’ > R. She identified the 
positive liminf and limsup of the above sequence as n  + cc), 
thus establishing the error exponent in fixed-rate lossy source 
coding. In fact, the exponential upper bound on the minimum 
of Pr {d,(Xn, gn(Xn)) > D(R)} taken over all codes with 
n -’ log )gn 1 5 R’ is given by a code construction independent 
of the source, and is thus universally achievable. 

Markov Sources 

The construction of Theorem 1 easily extends to Markov 
sources just as in the case of combinatorial codes [19], [7], 
without affecting the O(n-’ log n) rate of convergence. For 
Markov sources, however, we do not have a counterpart of 
Pile’s theorem, and therefore we are forced to compare the 
scheme’s distortion to D,(R) instead of D(R). Thus the code 
will operate at a distortion not exceeding D,(R), and at a 
rate T, > R, and we will investigate the price of universality, 
T, - R. Note that in the previous theorem, by changing R, to 
R, we have A(g,) I D,(R), and the rate redundancy (in this 
case the price of universality) becomes n-l IAl log (n + 1). In 
this case the distortion redundancy A(g,) - D(R) is caused 
only by the “price of finite block length,” Dn( R) - D(R), 
which can be upper-bounded using Pile’s theorem. 

To obtain a scheme for finite-alphabet /&-order stationary 
Markov sources first encode X” = (Xi, . . . , X,), 5  < n, 

using a fixed-rate code with at most k: log L + 1 bits (L is the 
alphabet size (dl). Then the number of occurrences of each 
xk+i E d”+l is counted on X” 

n(xkfl)= I{i:(Xi,.‘.,Xi+k)=xk’l,l<i<n-k}(. 
(10) 

The n(xk+l)‘s, th e so-called ( !C + l)-grams, can be noiselessly 
encoded in at most L li+i logn + 1 bits. By the Icth-order 
Markov property the conditional distribution of X” given 
the first k letters and the (k + 1)-grams is uniform over the 
set of al1 xn E A” having the given X” prefix and the 
given (k + l)-grams. For this uniform distribution, the optimal 
(minimum-distortion) source code of rate R is designed and 
X” is encoded using this code. By the same argument as in 
(4) and (5) (only R, is replaced by R), we obtain 

A(g,) 5  Dn(R). 

The overall rate T, of gn is 

rn <R+ ~(~logL+L”+ilogn+2). 
n  

Thus the price of universality is stiI1 O(n-l log n), as in the 
memoryless case. 

III. THE F&AL ALPHABET CASE 

Let the source and reproduction alphabets be the real line 
(i.e., A = B = ‘R), and let the distortion between sequences 
xn, yn E R” (n-dimensional Euclidean space) be measured 
by the average squared error 

dn(xn, y”) = ;ljxn -ynl)2=~$,xi-y~~2. 
z=l 

A memoryless stationary source is a sequence of real-valued 
i.i.d. random variables {Xn},“,i. For notational simplicity 
we introduce an auxiliary random variable X which has the 
common distribution of the Xi’s. As in the finite-alphabet case, 
its distortion rate function D(R) with respect to the mean 
squared error is defined for R 2 0 as 

D(R) = ,(,;tnyf,,EIX - Y12 
and the infimum is taken over al1 pairs of real random variables 
(X, Y) such that X has the common distribution of the Xi’s, 
and the mutual information between X and Y is at most R. 
The definition of I(X; Y) for this general case is given, e.g., 
in [ 1, ch. 71. An n-length block code is a mapping of ‘R” 
into a finite subset of R”. If the block code g : R” -+ 
{T/1,-.* , ye} c R” is onto, then we write 191 = N, and the 
rate of g is defined as n-l log (g(. Given the source {Xn}rZi, 
the expected distortion of g is 

A (9) = E&(Xn,g(Xn)) = $Xn - dx”)l12. 
As before, let Dn(R) denote the minimum distortion which 
can be achieved using an n-length block code of rate not 
exceeding R, i.e. 

k(R) = 
g:n-$gl<R A(g’e 
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By Shannon’s source coding theorem (see, e.g., [I]) D,(R) > 
o(R) for all n, and when E]X12 < oe, we have 
lim, Dn(R) = o(R), just as in the finite-alphabet case. 

’ Unfortunately, there are no known results for wide classes of 
real sources as strong as Pile’s finite-alphabet convergence 
rates. One exception is that Wyner [20] proved for memoryless 
Gaussian sources, that D,(R) - D(R) = O(n-‘logn), 
and he later showed in [21] that the weaker bound 
D,(R) - D(R) = O(d?I-&&) holds for any stationary 
Gaussian source with a spectral density having a Lipschitz- 
continuous derivative. Zamir and Feder [23] have shown 
in a recent work that an O(n-l log n) rate redundancy is 
achievable for stationary Gaussian sources with nice spectral 
densities by means of a variable-rate scheme using subtractive 
dither. There are presently no known results providing a 
O(n-l logT1) rate of convergence for non-Gaussian real i.i.d. 
sources. For our purposes, however, an earlier result of the 
present authors will suffice. 

Propostion 2 (Linder, Lugosi, Zeger [Ill): Let {X,} be 
an i.i.d. real source of bounded support, i.e., Pr { IX1 1 < a} = 
1 for some B > 0. Then for all R > 0 such that D(R) > 0 
there exists a constant c(R) such that 

D,(R) - D(R) 5 (c(R) + o(1)) 

c (R) is continuous in R, and the term o( 1) converges to zero 
uniformly in a small enough neighborhood of R. 

The following result states that there exists aJixed sequence 
of block codes of length n and of rate not larger than R that 
achieves this 0( ds) rate of convergence universally 
over the class of i.i.d. sources of bounded support. 

Theorem 2: For any R > 0 there exists a sequence of 
fixed-rate codes {gn}r!i with rate 6’ log lgn] < R, such 
that for any i.i.d. real source {X,} of bounded support with 
D(R) > 0, the difference between the expected squared error 
of the length n code gn and the distortion rate function is 
bounded as 

I F------l 

a(gn)- D(R) = 0 /F . 
t ) 

Given a sequence of real random variables Yl , Y2, . . . and a 
sequence of real numbers al, ~2,. ., we say that Y, = O(a,) 
almost surely (a.s.), if 

limsup,,, (K/G) < +m 

with probability 1. The following theorem says that an 
0( ds) rate of convergence also holds for the sample 
distortion with probability 1. The theorem is proved in 
Appendix I. 

Theorem 3: For any R > 0 there exists a sequence of 
fixed-rate codes {gn}rT1 with rate n-l log /grill < R, such 
that for any Cd. real source {Xn} of bounded support with 
D(R) > 0, the difference between the squared error of the 
length n code gn and the distortion rate function satisfies (with 
X” = (X1;..,Xn)) 

$/Xn - gn(Xn)l12 - D(R) = 0 a.s. 

Proof of Theorem 2: The construction is a generalization of 
the finite alphabet case. 

Definitions for the code construction: Since the source 
has bounded support, there exists a positive integer M  such 
that Pr {IX] < M} = 1. For each 9 = (51,. . , nr,) E R” 
define the integer A&,, by 

(11) 

Then we have n/r, < M  a.s. For each positive integer L, 
let G,L denote the L-level uniform scalar quantizer on the 
interval [- Mn, Mn], i.e., for j = 0, . . . , L  - 1  

whenever 
2jM, -Mn+- < x < -j& + 2c’ +;jMn 

L - 

and also Un,~ (Mn) = Mn(L - 1)/L. Note that both the 
domain [- Mn, Mn] and the range 

-M n + (‘j + ‘jMn . ,j = (1 
L ) 

. . ..L-1 (12) 

of Un,~ depend on the maximum of the absolute values of the 
Xi’s, for i = l,...,n. 

Let i), denote the empirical distribution of X” = 
(Xl,... ,X,), i.e., for each measurable set A C ‘I?. 

where IB is the indicator of the event B. Define pn,~ as the 
empirical distribution of the quantized vector 

G,L(Xn) =  (Un,L(Xl),..., Un,L(&)). (13) 

Let T; be the set of all :C E R’” having “type” li,, and 
let T$ n 
T;?, L n”L 

be the set of n-vectors, having type ij,,~ (note that 
1s in the range of Un,~). Finally, let Qn and Qn,~ be 

the uniform distributions on T; and Tzn L, respectively. 
For any probability measure > on R” with a finite second 

moment, define gCL,R as an n-length nearest neighbor code of 
rate R, which is optimal with respect to p, i.e. 

% llxn - g ,,dxnI12 I E,Jxn - gVI12 
for any code g of rate less than or equal to R. Such optimal 
codes do exist for distributions with finite second moments, 
although they are not necessarily unique. Note that we are 
always able to choose an optimal code gp,R that uses the 
nearest neighbor encoding rule, i.e., if the range of gp,n is 
{yl,...,y~}, then V’z E R” 

g&x) = :yi if lb - vi11 I 11~ - gill, v..i #  i 
where “ties” are broken according to some rule. Also note 
that if p( [-c, cl”) = 1 for some c > 0, then gfiL,R can have 
no codevector outside [-c, ~1’~. 



670 IEEE TRANSACTIONS O N  INFORMATION THEORY, VOL. 41, NO.  3, MAY 1995 

Construction of the code: The main idea behind the 
construction of our code is as follows. First, we observe 
n data points xi, x2, . . . , 2,. We transmit the smallest 
integer M, which is greater than the largest (in magnitude) 
data point among x1,52,...,2,. We use 2[logMn] + 2 
bits for this. Then we uniformly quantize (with L levels) 
the points xi, 22,. . ,x, to obtain the quantized points 
Un,~(zl), U+(x2), . . . , U%,J(Z,). The type of this quantized 
n-vector is then transmitted using [Llog (n + l)] bits. Then, 
an optimal quantizer is designed by both the encoder and 
decoder for a training set consisting of all n-vectors with 
the same type as (U,,L(~:~),~,,L(X~),...,~~,L(Z,)). This 
quantizer is then used to quantize the vector ~1, x2, . . . , zn 
itself, and the remaining bits are transmitted to the decoder to 
specify the index of the codevector closest to ~1~33, . . . , x,. 
The decoder receives this index and produces the appropriate 
code vector as an approximation to the input sequence 
51,X2,“‘,%. By choosing the quantity L to increase with 
n at a rate proportional to ds, we get the desired rate 
of convergence of the distortion to D(R). 

over T; . Let ?I 

R, = R- ;([Llog(n+l)j +2[logM] +2). 

Then R, 5 8, a.s., and R, depends only on n whereas 
R, is also a function of the input z?. If P denotes the 
distribution of X”, then gP,R, is the optimal source code 
of rate R, for X”. Note that by the previous definitions 
n-1E[(IX”-gP,R,(Xn)1(2] = D,(R,). We use the following 
decomposition: 

%,)-D(R) =E(Al)+E(A2)+A3 (15) 

where 

Formally, we define our code gn as 

hcxn> = gQ+dxn) 

where 

Al = ;E[llXn - gn(X”)I121k] 
- +[llXn - sn(X”)il”lk] 

A2 = +[[lXn -sn(X”)ll”lk] 

- fE[llXn - gP,R,(Xn)(121k] 

A3 = D,(R,) -D(R). 

R,=R-;([Llog(n+l)j+2[logMJ+2). (14) 

We present a chain of inequalities to give a uniform almost 
sure upper bound on Al. 

When R, 5 0, set gn(x”) = 0, the all-zero vector. Thus 
first the optimal code of rate R, for the uniform distribution 
over Tn p, L is determined (a function of x”), and then we set 
gn(xn) as the codevector this code assigns to xn. Since the 
distribution Qn,~ is supported by a finite set, there are only 
a finite number of possible optimal quantizers from which to 
choose gQn .,R, according to some rule ensuring uniqueness. 
Since Mn i M a.s., it can be seen that R, > 0 for n large 
enough, if L does not grow too fast with n. Note that gn does 
not necessarily use nearest neighbor encoding. 

nA1 = E,m lbn - gQ+, [ ii, (zn)l12] 
- EQn [ llxn - gQ,,ii,(xn)l12] 

5 EQn llxn - gQn,L, [ ii, cu,,d~n,,l12] 
- EQn [IIxc” - gQ,,ii,(xn)l12] (16) 

To see that the rate of gn is at most R, we use the simple 
fact, that n-l log Jgn ) < R if there exists a one-to-one mapping 
of the range of g into (0, 1) rnR], i.e., the output of gn 
can be encoded losslessly using binary sequences of fixed 
length [nRl. Th e integer Mn can always be transmitted in 
2 [log Mnl + 2 bits by repeating twice in a row each bit in 
the binary representation of M, and then sending the string 
“01” to terminate the transmission. It is possible to reduce this 
number to [log Mnl + 2 [log [log Mm11 + 2 bits using Elias’ 
prefix code [8] for the positive integers, though our slightly 
less efficient scheme will suffice here. The type P+ can be 
described using IL log (n + l)] bits, and given Mn and the 
type ?%,L, the output of g4 L,ii, requires nR, bits. These 
add up to nR bits altogether: 

5 EQn IIUdxn) - gQ+, 
[ 

R,(Un,L(Zn))l12] 

- EQn [bn - gQ,,&(xn)l12] + + (I71 

= EQ,,~ Ilxn - gQn,L, [ R&)l12] 

- EQn [/Ix:” - gQ,,ii, (xn)l12] + y (18) 
5 EQn,~ [Ilx” - gQ,,ii,(xn)l12] 

- EQn [[Ix:” - gQ,,ii,(xn)l12] + y (19) 

= EQ~ [IIun,~(x~) .- gQ,,ii,(Udxn))l12] 

- EQn [Ilxn - gQ,,ii,(xn)l12] + F cm 

5 EQn [llUdxn) - gQ,,&(xn)l12] 

[Ilxn - gQ,,i?,(xn)l12] + F (21) - EQn 

The difference A (gn) - D(R) can be upper-bounded as 
follows. Let us introduce the code gn defined as 

< 8nMz 
- L 
< 8nM2 
- L 

a.s. (22) 
%(xc”> = gQn,fl.n(xn) 

that is, if the input C? has empirical distribution i),, then gn is 
the optimal source code of rate R, for the uniform distribution 

Thus Al 5 8M2/L with probability 1. Inequalities (16) and 
(21) follow from the fact that our optimal source codes use 
nearest neighbor encoding. Inequalities (17) and (22) follow 
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from the observation that for any xn, yin E [- Mn, Mnln, we Remark: It is not hard to see that Theorem 2 can be 
have extended by considering more general distortion measures. For 

~ll~n-~/nl12-II~~,~(~n)-~nl12~ 5  41L1,e lxj-Gz,~(q)l 

example, we could use distortion measures in the form 

j=l 

< 4nMz 
- L . (23) 

Equations (18) and (20) follow from the fact that 

EQn [f(U~,dxn))l = EQn,~ [f(x”)l 

for any function f since 

TZ,.L = {Un,L(u;.“) : xn E Tz7,}. 

Inequality (19) follows since gQTz,L ,Rn is optimal with respect 
to the probability measure Q%,L. 

Next we show that A2 5 0 almost surely. This follows 
since X” is uniformly distributed over T; when conditioned n 
on p,, so that 

E[iiX”. - ~~(xn)l12/~~] = EQ~ [11X” - gQ,Jdxn)l12] 

5 EQn [llx” -gP,R,(xn)l12] a.% 

= E[IX" - gP,R,(Xn)l121k] as. (24) 

where the inequality holds because R, 5 R, a.s., and gQ,,R, 

is matched to the distribution Qn. 
Finally, A3 is upper-bounded using Proposition 2 and a 

first-order Taylor expansion of D(.) around R. 

where f : R + [0, oo) is a nonnegative, nondecreasing, and 
continuous function. In this case the rate, of convergence is 
controlled by the rate at which f(x + a) -+ f(u) as z ./, 0. 

Universality of code for unbounded sources: In what 
follows we show that a slightly modified version of our scheme 
is weakly minimax universal over the class of memoryless 
sources with finite second moment, i.e., for each such source 
A(g,) - D(R) 4 0 as n -+ 00. Then we will consider the 
price of universality for memoryless sources having finite 
higher moments. 

Sources with finite second moment: Let fn : R + R be 
the limiter function 

where {a,} is a sequence of positive numbers to be specified 
later. The modified scheme simply encodes (using the scheme 
of Theorem 2) Xn = (fn(X,), ... , fn(Xn)) instead of X”. 
The only change is that we set n/r, = a,, instead of using (11). 
Since I.L(Xi>I L a, a.s., by putting R, = R, we obtain as 
in (15)-(21) and (24) 

A3 = [h(G) - D(Rn)] + [D(h) - D(R)] 

5 (c(R,) + o(l)) 

+ ID’(R)I(R - &)(I + s(l)) 

= (c(R,) + o(l)) 

+ID’(R)l(l+o(l))~(~Llog(n+1)1 
+2[log Ml + 2) 

= (c(R) + o(l))e 

+ lD’(R)l(l + o (1))L 

;Ellg&n) - Xnl12 - D),(R,) 5 7 (27) 

(25) 
where B(R) is the distortion of the optimal quantizer of rate 
R designed for Xn. Now by the triangle inequality and the 
definition of Xn we have 

Ellgn(~n) - X”l12 

s(J~~GF-GF+J~)~ 

= (JGLFSF+ JnE[IX1121(~xl~>a,)] )2. 
(26) (28) 

where we assumed in (25) that nplL log (n + 1) + 0 as Thus when EIXi12 < cc and a, + co as n + co, it follows 
n  + 00, so that R, + R. In (26) we used the fact that from (28) that the distortion A(g,) = nelEllgn(Xz-“) - Xnl12 
c (R,) = c (R) + o (n), by the continuity of c (.). Combining is upper-bounded as 
the bounds in (22), (24) and (26), we obtain 

4,) - D(R) i F  + (c(R) + o(l)) 
/-- 

F  
A(g,) < AEllgn(Xl’) - Xn112 + o(l), as n -+ 00. (29) 

+ lD’(R)l(l + o (l))L F  . 
( 1  

By an argument very similar to (16)-(21) (shown more gen- 
erally in (35)-(38) ) we have that 

We  can now choose L - dz as a function of n, which D,(R,) 5 Dn(&) + o(l), as n --+ 00. (30) 
gives 

A(g,) - D(R) 5 (8M2 + c(R) + ID’(R)1 + o (1)) 
\i 

+. 
Choosing L so that R, + R as n ---t oc we obtain D,(&) -+ 
D(R). If u, -+ 00 is chosen so that a, = o (a), then (27), 
(29), and (30) imply that A(g,) - D(R) ---) 0  as n -+ co and 

This completes the proof of the theorem. n the code is shown to be weakly minimax universal. 
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Sources with jnite higher order moments: We  will as- 
sume that E(Xr 1’ < 00 for some k > 8, and investigate the 
price of universality A(g,) - D,(R) for the previous scheme. 
We  will not force the rate redundancy to be zero, instead we 
choose the overall rate of gn to be 

r -R+ +ogn1. n- (31) 

Thus the only change is that we replace R, by the constant 
rate R. Since the sequence {a,} is deterministic, the rate 
redundancy r, - R is:aused only by the fixed-rate encoding 
of the quantized type F’Q. We  are going to show that for any 
t > 2/( k - 4) the sequence {a,} can be chosen such that 

A&J - D,(R) = 0  ((F) ‘-‘-‘) (32) 

and 

(33) 

To prove these we only have to examine (29) and (30) more 
carefully. Defining h(a) = E[jXr]21ilxl,al] we obtain from 
(29) that 

A (gn> 5 ;Ellsn(~n) - xnl12 + 0 (Jho). (34) 

Let p denote the distribution of Xn, and let gpLR and gP,R 
be two R-rate quantizers which are optimal for X” and X”, 
respectively. Then 

where (38) follows because Qp,R is a nearest neighbor quan- 
tizer. Combining this with (27) and (34) implies 

Ah) -D,(R) = 0  (39) 

Now by the Schwarz and Chebyshev inequalities for all a  > 0 
we have 

E[IX112~,xl,>a] I ~iqxp~p{Ixl~ > a} 

giving h(a) = 0 (u-“/~) as a -+ co. To achieve (33) we 
choose L - (n/logn) . ‘12+’ Since k > 4 + Z/E we can choose 
p > 0 such that p < E and k > 4 + 2/p. Putting a, = np, 
these two conditions for p ensure that (39) implies (32). 

IV. DISCUSSION 

One can ask whether the O(n-l log n) convergence rate for 
the finite-alphabet case (Theorem 1) is optimal. To be more 
precise, the question is whether there exists a fixed-rate scheme 
{gn} of rate R with distortion 

A&) = D(R) + o F  
( > 

for all i.i.d. sources on alphabet A with D(R) > 0. One could 
use a result of Pile [ 161, which asserts that the following lower 
bound holds: 

D,(R) - D(R) L ID’(R)l(l+ o(l))% 

for any finite alphabet i.i.d. source. This, of course, contra- 
dicts (40), thus proving the optimality of the 0 (n-l log n) 
convergence rate in fixed-rate universal lossy coding of finite 
alphabet i.i.d. sources. However, as has been pointed out by 
several researchers recently, it appears that Pile’s proof of the 
above lower bound is flawed. Specifically, in [16, eq. (14)] 
an unsubstantiated approximation is used. Recently, however, 
Zhang et al. [2.5] have reported a rederivation of Pile’s lower 
bound. This would imply that (40) cannot hold, and in this 
sense, our convergence rate would be optimal, although the 
optimal constant has yet to be determined. 

The optimality of the 0 ( &FTGgG) covergence rate in 
the real alphabet case (Theorem 2) is an open problem. Here 
it might be possible to obtain an improved result by tightening 
some upper bounds in the analysis of our scheme. Indeed, 
any simultaneous improvement of Proposition 2 and the upper 
bound in (22) would result in an improved upper bound in 
Theorem 2. 

The only available result analogous to the flavor of our The- 
orem 1 seems to be Yu and Speed’s variable-length universal 
code [22] for finite alphabet memoryless sources. They proved 
the existence of a sequence of codes {gn} such that 

d,(xn,gn(xn)) i D, Vx” E An (41) 

and 

+[l(Sn(Xn))l I R(P, D) + (IdI . IBI + IAl + 4) 

+ 0(n-1). (42) 

where I(.) denotes the code length of a binary prefix code for 
encoding the range of gn, and R(P, D) is the rate distortion 
function of the i.i.d. source {Xn} with generic distribution P. 
Thus the distortion of this code is pointwise upper bounded 
by D, while its expected average code length is R(D, P) + 
0 (n-llogn). 

There is an apparent duality between the above result and 
our code in Theorem 1. We  proved the existence of a sequence 
of fixed-rate codes {gn} such that 

x(]dJ+1/2+o(l)) (43) 
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and 

; log lgnl 5  R (44) 

for all i.i.d. sources {X,} over d with generic distribution 
P such that D(P, R) > 0. We  imposed no other condition 
on P. The bound (42) proved to hold only for sources with 
distribution P such that R(P, D) has bounded second-order 
partial derivatives with respect to the source letter probabilities 
in the neighborhood of P. This condition is satisfied, for 
example, for binary sources with the Hamming distortion when 
R(P, D) > 0. A result in [25] also implies that the rate 
n -’ log n in (42) can not be improved, although the constant 
(IdI . IBI + IAl + 4) may not be optimal. 

We  know of no result on universal quantization of bounded 
real sources comparable to our Theorem 2. One way to 
obtain a similar result for variable-length quantization (or 
“entropy coded quantization”) might be an extension of the 
Yu and Speed result using a similar fine uniform quantization 
argument as in the proof of Theorem 2. However, source and 
reproduction alphabets of size L give a constant IAl . II? = L2 
in (42). Thus to achieve a 0 ($?&$) convergence rate 
of the expected code lengt to the rate distortion function of the 
source one has to set L N (n/log TZ)~/~, and then upper-bound 
the difference between the rate distortion function of the true 
source and that of the uniformly quantized source by 0 ( Lm2). 
It is not clear that this can be done, although an 0 (L-l) upper 
bound for this difference is easy to obtain. Assuming all this is 
done, one still has to show that the differentiability conditions 
on R(P, D) are satisfied for the squared distortion. 

It is interesting to note the difference between the two 
stage codes used for stationary sources [26], [ll], [3] and our 
method. In the former case, the entire codebook is transmitted 
as overhead resulting in an 0 ( log log n/log n) redundancy, 
while in our case (for i.i.d. and Markov sources) it is more 
efficient to transmit the approximate empirical statistics to 
obtain the much faster 0 (ds) convergence rate. 

Finally, one might ask whether the 0 (n-l log n) conver- 
gence rate in Theorem 1 for the expected distortion redundancy 
with finite alphabets also holds for almost sure type conver- 
gence. The best almost sure convergence rate that we have so 
far been able to obtain for the finite alphabet case is the much 
weaker 0 (ds), which can be derived using the same 
technique as in the real alphabet case. 

APPENDIX I 

Proof of Theorem 3: We  will prove that the code con- 
structed in the proof of Theorem 2 satisfies the claim. Using 
the notations introduced there we can write the difference 

;iiXn - sn(Xn)l12 - D(R) = ;llXn - gn(X”)l12 

- +[llXn - sn(X”)II”Ik] (45) 

+A1 +Az+As 

+ +[W - % “,R,(XR)l121k] 

- ;EIIlxn - gP,dXn)l12] (46) 

where Al, AZ, and A3 are defined in (15). We  have 
already shown in the previous proof that Al 5 8M2/L = 
0 (ds) as., A2 5 0 a.s., and A3 = 0 (ds). 
Therefore, it suffices to show that (45) and (46) are 
0 (&FG@i) as. 

First we show that 

l’iix- - gP,R,(Xn)li2 - ;E[llXn - gP.n,(X”)1)2] 1  n  

=o log n 

V-J 
- as. (47) 

n 

and 

=o 

from which it follows that (46) is 0 (&?lo&) as. To 
prove (47) we will use the following probability inequality 
by McDiarmid [14] for functions of independent random 
variables. 

Lemma 1 (McDiarmid [14/): Let Xl, . . . : X, be indepen- 
dent random variables taking values in a measurable space 
(X,S), and let h, : X’” + R be a bounded, measurable 
function such that 

z~,zl,,..,z,EA Ih(xl,. . >xn) SUP 

4(x1,..., ~i-l,~~,xi+l,.‘.,zn)I I ci 

for 1 5 i 5  n. That is, changing the ith variable, the value of 
h can change at most by c;. Then for every n and every t > 0 

Pr{lh(Xl,..., Xn) - Eh(X1,. . . , &)I 
> t} 5  2e -2t”j c:“=, CT 

Now, since gp,R, is a nearest neighbor encoder and its code- 
vectors are contained in [-M,M]“, if xn,zn E [-M>M]” 
such that they differ only in their ith coordinate, then 

j=l 

4M 
= ylXi - Zil 

< 8M2 
-. - n 

Thus using Lemma 1 with X = [-M, M], 

(49) 

h(z”) = n -w - .w,n,,(~n)l12 
and ci = 8M2/n, gives 

< 2e-nt”/(32M”) 
- 
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Choosing 

t = q/n-‘logn 

with the constant c > 4M2m, the right-hand side is 
summable in n, and (47) results by the Borel-Cantelli lemma. 

The proof of (48) requires more effort. We  will upper-bound 
the conditional probability 

Pr 
(i 

; 11x’ - gP,R,(Xn)(12 

-$$lXn - g~,R,,(X~)lJ~lk] j >  

and then take expectations to obtain an upper bound 
unconditioned probability of the same event. Note 

on the 
that if 

P, = P,-, then the conditional distribution of X” given 
i), is the same as the distribution of the random vector 
(XZ1>XZZ,~~~, xz,), where (Zl,. . . , Zn) is a random permu- 
tation of { 1, . . . , n}. Thus we need a large deviation inequality 
similar to Lemma 1 for functions of random permutations. The 
following lemma is proved in Appendix II. 

Lemma 2: Let h : (1,. . . , n)” -+ R be a function such that 

max 
a:,~l,...,r,E{l,...,n} 

Ih(zl, . . . , z,) 

-h(zl, . . . I 
,~i-l,~~,~i+l,“‘, &)I 5 ci (50) 

for i = 1, . . . , n. If (21, . . , Zn) is a random permutation of 
(1,. . . , n}, then for all t > 0 

Pr{lh(Z;) - Eh(Z;)I 2  t} 2  2e-t2’2~~=1c5. 

For a given ICY E [-M, Mjn let h  : (1,. . . , n}n -+ R be 
defined by 

h(il;..,i,) = $z;/. 
n  > xi,) - gP,R, (%I, . ’ ’ >  xi-) II2 

for (il, . . . , in) E { 1, . . . , n}“. Then, since gp,R, has the 
nearest neighbor property, by (49) h can change at most by 
8M2/n if only one of its coordinates is changed. Furthermore, 
the distribution of nel((Xn - gP,R,(Xlz)(12 conditioned on 
i), = P,- is the same as the distribution of h(Z1, . . . , &). 
Thus we can use Lemma 2 with c; = 8M2/n to obtain (see 
first equation at bottom of this page) Taking the expectation 
of both sides we get (see the second equation at bottom of this 
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page) from which (48) follows by the Borel-Cantelli principle. 
Thus we have shown that (46) is O(dq) a.s. 

We  only have left to show that (45) is 0 (Js) 
a.s. But this requires no extra proof because gn is a nearest 
neighbor encoder for a given $n =. Pzn (namely, gn (x”) = 
g&,,R, (x:“)), thus we can define h as in the previous argument 
(with g&,,R, in place of gP,R,), obtaining 

Pr 
{I 

~llX”-/,(X-)112-~E[llX~-g~(~~)l121hl/ +} 

=Pr{Ih(Z1,...,Z,)-Eh(Z1,...,Z,)I>t} 
< 2e--nt2/(32M4) 

This, of course, implies that (45) is 0 (ds) a.s., which 
completes the proof that 

nelIIXn - gn(Xn)l12 - D(R) = 0 (ds). n  

APPENDIX II 

The next result is used to establish Lemma 2. 
Lemma 3 (McDiarmid [14]): Let Zp = 21, . . . (2, be ran- 

dom variables with 2; taking values in a set Ai. Let f : 
Al x ... x A, -+ R be an appropriately measurable function. 
Suppose that there are constants bl, . . . , b, such that for each 
l<i<n 

IE[f(Zy)l& = z~,...,&-~ = z;el,Zi = z;] 

-E[f(Z;)I& = ZI,..., &A1 = zivl,Zi = z;]I 5  b; 

(51) 

for each zj E Aj, j = l,.-.,i - 1, and z;,zi E A;. Then 
for any t > 0 

Pr (If(Zm) - Ef(Zy)l 2  t} 5  2e-2t2’~~==l bq. 

Proof of Lemma 2: We  will show that h and 21,. . . , 2, 
satisfy condition (51) of Lemma 3 with 

eb; <4-&z. 
i=l i=l 

Fix 1 _< i _< n and let zl,...,za-l,zi and zl,...,zi-1,~: 
be two i-tuples of distinct positive integers not exceeding 
n, and put C = (1, .. . ,n}, B = (~1,. .. , zi-1, zi}, and 

Pr II $\xn - gP,R,(Xn)j\: - ;E[llXn - gp,R,(Xn)1/2[k] ( >  +n} 

=Pr{lh(Z1,...,Z,)-Eh(Z1,...,Z,)I >t} 
< 2e--ntZ/(128M4) 
- 

Pr $ixn - gP,Rn(Xn)l12 - +‘[lIX” - gP,R,(Xn)//2jf&] 1  >  t} 

<  2e--nt2/(128M4) 
- 
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B’ = {q;.. ,zi-1, zi}. Note that B - B’ = {zi} and 
B’ - B = {zi}. Furthermore, for any finite ordered set S, 
let II (S) denote the set of all permutations of S, and for any 
rr E II (S) let n(i) denote its ith coordinate. Then for each 
i<n 

]E[h(Z;)]Zi = zl,. . , Zi-i = z~-~: Zi = z;] 
-E[h(Z;)]Zi = zl, . . .,Z;-i = z;pl,Zi = z;]] 

= & C h(zl,...,z;-l,zi;~(l)!...,~(n-i)) 
‘?GrI(C-B) 

-& c h(zl,...;Zi-l,Z,~(l),...,~(n-i)) 
‘?TEII(C-B’) 

where the inequality holds by (SO) since terms in the two 
summations can be paired so that the arguments of /L differ 
exactly in the ith and the (i+j)th positions. Thus the constants 
b; in Lemma 3 are given as 

bi = & Cj”=i+l(ci + q), if i < n 
G, if i=n. 

By the convexity of x + x2 we have for each i < n 

This gives 

where we changed the order of summation in the second term 
on the right-hand side of the inequality, and 

Note that 

j-1 

c 

1 
aj= - 

i=l 
n-i’ 

aj=n-1 
j=2 

and 0 < a2 < . . < a,. For any fixed rr E II( 1, . . . , n) the 
random variables h,(Zi, . . . , Z,) = h(Z,(,), . . . , Z,,,,) and 
h(Z1,. . ) Zn) have the same distribution. Thus the probability 
Pr { ]h - Eh] > t} does not change if we replace h with h,. 
In particular, we can choose r so that cl > . . . > c,, which 
minimizes the sum 

Thus we get 

Combining this with (52) we obtain 

cb,2 5 4&z;. 
i=l i=l 

This completes the proof of the lemma. n 
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