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A survey is given on some recent areas of interest in lossy source
coding, that is, source coding relative to a fidelity criterion. In
particular we discuss some recent results in rate-distortion theory,
universal coding, and vector quantization techniques, and we indicate
some current open problems.

1. INTRODUCTION

Lossy source coding (also called source coding with a
fidelity criterion) is customarily considered a branch of
information theory. The theory of lossy source coding was
initiated by Claude Shannon, the founder of the principles
of information theory [41]. In this paper we shall survey
some aspects of lossy source coding which have developed
into a separate field of study since Shannon’s pioneering
paper [42].

The survey will concentrate on theoretical issues rather
than design and implementation problems. Our intention
is to focus on some interesting recent results and open
problems instead of giving an exhaustive survey of the
existing theory and research trends. The topics we discuss
here strongly reflect our own research interests. More
comprehensive material on the practical side of lossy
source coding can be [ound in e.g. [2], [13], and Kieffer
[18].

It is assumed that the reader is familiar with the basic
definitions and results of information theory, such as given
in Cover and Thomas [9], Csiszar and Fritz [10] or Linder
and Lugosi [24] (the last two books are in Hungarian).

Lossy source coding is concerned with the theoretical
problems of signal compression: data is given by a
mathematical model and is to be encoded into strings of
binary digits so that both the encoding rate (the number of
bits per data sample) and the distortion (a given measure
of dissimilarity between the original signal and the signal
reconstructed from its coded form) satisfy some prescribed
constraints. The coding rate and the reconstruction quality
are two conflicting measures of performance, and the
main issue is to find an efficient tradeoff between these
quantities. The abstract “data” can model different real-
life signals such as speech, audio, still images, or video,
and an efficient digital representation can scrve scveral
purposes such as transmission over a digital channel,
storage on digital media, or easing the computational
burden for data encryption. The methods to achieve
the desired compression ratio with only a permissible
degradation in the reproduction quality are rather different
from the methods of lossless (also called noiseless) source
coding, where one wants to reduce the data rate without
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introducing any distortion in the reproduction, as in
the compression of data files for storage on computers.
Nevertheless, there is much interaction between these two
fields, and a [amiliarity with the basics of lossless coding is
an important prerequisite for studying lossy coding.

The paper is organized as follows. In Section 2
we introduce the basic model of an information source,
and the concept of source coding, and then state some
fundamental results of rate-distortion theory. Section 3
addresses the problem of universal source coding, ie.,
source coding with no prior knowledge of the statistical
properties of the source to be encoded. In Section 4 we
examine the theoretical aspects of multidimensional signal
quantizers, and in Section 5 we shall give a brief review
of high-resolution quantization theory, the only method
available to date to obtain analytical expressions for vector
quantizer performance.

2. RATE-DISTORTION THEORY

The term “rate-distortion theory” refers to the branch of
information theory dealing with the rate-distortion tradeoff
in source coding when the encoded blocklength gets large,
i.e., when we effectively assume that the message to be
encoded has infinite length. The mathematical model
of an information source we use consists of a sequence
X, Xy,...,X,,...of random variables taking values in
a set § called the source alphabet. We assume a source
is completely described by its finite dimensional probability
distributions. In this paper we usually take S = IR,
the real line, or sometimes § = IRk, i.e. k-dimensional
Euclidean space. For example, the X; could be obtained
by sampling from a “continuous time" signal X' (1): X; =
X (iT') for some T > 0. Often, however, the signal to be
encoded needs no time-discretization, as with compression
of digital images.

A source code of blocklength n consists of an encoder g
and a decoder . The encoder maps n-dimensional vectors
into a finite set of all binary strings:

g:R" = {s1,...,: sy} C {0,1}7,

where {0,1}* denotes the set of finite length binary
sequences. The decoder is a mapping

W {Sls---s‘sN} - {?Jl»----?}N} C Ip‘na
where the y; are called the reproduction (or code) vectors.
When the binary sequences sq,...,5y have the same
length, we say that (g,w) is a fived rate code. We
assume that given the set of codevectors {y1...., YN}
the encoder of a fixed rate code uses binary strings of the
minimum possible length such that the mapping w(g(-)) :
IR" — IR" is unchanged. The pair (g, ) is called a
variable length code when {s1,...,sxy} is a binary prefix
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code i.e., when no s; is a prefix of any s; fori # 7. In
both cases, for any £ > 1 there is one and only one way
the binary sequence

(‘X.h S ,.Xvﬂ) n/® 'g(X(k—l)ﬂ+1! e Xkﬂ)

obtained by concatenating the blnary strmgs g assigns to
the vectors (X (i—1yn+1,-+-+Xin) ¢ = 1,...,k, can be
decomposed into binary strings from the set { ? TR
That is, the code is uniquely decodable. Thus, if the code
(g,¢) is used k-times to encode the first kn samples of
the source, and the resulting binary sequence is trans-
mitted over an error free channel, then the reproduction
vectors i = @(9(X(i—1ynt1s---3 Xin)) t = 1,...,k
can be recovered without error. However, distortion is
introduced by representing an n-dimensional vector (which
possibly can take infinitely many values) by a finite set of
vectors.

The sample disrortion between two vectors z" =
(z1,...,%5) and y™ = (Y1,...,Yn) is measured by the
squared error per sample

1 n
(R n 2
dH(I Y ) - n Z(mx - ya) *
i=1
We use squared error here for the sake of simplicity —
all the results in this section are valid with more general
measures of distortion. The distortion of the code is given
as the expected value of the sample distortion whenever
‘" = (X4y,...,X,,) is encoded:

A(g,¢) = Eda[ X", @(g(X™))].

The above distortion is of course finite when E|| X "||? <
00, where || - || denotes Euclidean norm. The dependence
of the distortion on the distribution of the source is
suppressed in the notation. The rate R(g) of a fixed rate
code is defined as

R(g,p) =

i.e., the base 2 logarithm of the number of reproduction
vectors normalized by the blocklength. Note that this is
the number of encoding bits per source sample. The rate
of a variable length code is the expected value of the
normalized length of the encoded binary string:

1
;logN,

1

R(g,) = —E(length[g(X™)]).
It is well known (see e.g. [10]) that the encoder always can
be chosen (without changing the mapping ¢(g(-))) so that
the average codelength of a variable length code is within
1/n bits of its lower bound H(¢(g(X™))), the entropy
of the reproduction.

It is intuitively clear that both the rate and the distortion
can not be arbitrarily small at the same time; if one
of them is small then the other quantity will inevitably
increase. In the remainder of this section we consider
only fixed rate codes and present fundamental results on
the distortion rate tradeoff. The main problem is the
characterization of the minimum distortion that fixed rate
codes can achieve while having rate that is less than or
equal to a given rate R. For reasons of practicality,
we assume the code rate is constant, but we note that

analogous results hold when the distortion is fixed and the
question is to find the minimum achievable rate.

Define D,(R) as the minimum distortion which can be
achieved using an n-length fixed rate source code of rate
not exceeding B > 0, ie.,

Dn(R) = A

( ’w)SRA(g,w)- (1)

When Xy, X,,... is a stationary sequence of random
variables, it is not hard to see that
lim Da(R)= inf Da(R)ED(R).  (2)
n—oo n>1
The function D(R) is a lower bound on the distortion
of any fixed rate source code of rate at most R. The
quantity b{R) is often called the operational distortion-
rate function of the source with respect to fixed rate
coding. Also, it follows from the first equality in (2) that
for a given € > 0, if n is large enough there always exists
a code (gn, o) With R(gn, ¢n) < R and A(gn, ¢n) <
D(R)+ e. Define the n'? order distortion-rate function by

Do(R) = inf{Edn(X™,¥") : n" (X", ¥") < R}

where the infimum is taken over all pairs of (X™,Y;)
such that X™ and X™ have the same distribution and the
mutual information [10] between X™ and Y™ is at most
R. By clementary properties of the mutual information
we have

Dn(R) > Du(R)

for all n. The source coding theorem for ergodic sources
states (see Berger [4]) that if X, X5, ... is stationary and
ergodic, then
D(R) = lim Dy(R)='D(R).

The quantity D(R) is the distortion-rate function of the
source. This theorem was first stated by Shannon [42] for
finite alphabet memoryless sources, i.e., when X, Xa,...
is sequence of independent and identically distributed
random variables which can take only finitely many values.
The reason why this result is of fundamental importance is
that it gives a characterization of the otherwise intractable
quantity f)(R) On the other hand, several properties of
D(R) are known as a function of R (see e.g. Berger [4]).

If we relax the ergodic assumption and require only
stationarity, we find that D(R) > D(R) can happen
(see Gray and Davisson [15]). On the other hand, using
variable length codes in the definition of D(R) instead of

fixed rate codes, we have D(R) = D(R) for stationary
nonergodic sources by a result of Leon-Garcia et al. [21].
We note here that several variations of the source coding
theorem exist, proving similar results for more general
source and reproduction alphabets, distortion measures,
and source distributions (sce [18] for more references).
The above discussion illustrates the advantage of using
source codes of large blocklength. In general, however,
block codes of length n introduce a delay of order n, since
unless the code has special structure, the encoder has to
wait until the last sample X, arrives before producing the
binary codeword for X ™. Also, the complexity of encoding
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and decoding critically depend on the blocklength. There-
fore, it is of great interest to estimate what improvement
in distortion we can expect by increasing n. Unfortunately,
an exacl calculation of bn(R), the distortion of the best
code of length n» and rate R seems intractable. Thus we
have to settle for asymptotic results. Pilc [36] showed that
for a finite alphabet memoryless source

Do(R) - D(R) < n(l“ﬁ),

n

where ¢ is a constant depending on the source distribution
and the rate. Wyner [45] proved the same asymptotics for
memoryless Gaussian sources, and later obtained [46] that

~ D(R) < oy T, (3)

for any stationary Gaussian source whose spectral density
satisfies some smoothness conditions. Linder et al. [26]
showed that (3) holds when the source is memoryless
and the X; are bounded but otherwise have arbitrary
distribution (i.e. this includes infinite alphabet sources).
It is presently unknown whether Pilc’s result is sharp,
that is whether there exists a lower bound of the type
n~!log n, or whether his upper bound can be generalized
to memoryless sources with continuous distribution. We
note that far more and stronger results are known for
lossless coding (see e.g. Krichevsky and Trofimov [19]).

3. UNIVERSAL CODING

Results of rate-distortion theory guarantee the existence
of source codes performing near the achievable optimum.
These codes however strongly rely on the knowledge of
the probability distribution of the source. In practice, the
distribution is typically unkown, therefore there is a strong
demand for coding methods that “learn” good codes from
observing data emitted by the source.

The term “universal code” is used to denote a sequence
of lossy codes of increasing blocklength such that they
perform near-optimally on each source from a given
collection of sources. Let A" be a family of stationary real
sources. For any source X = X, Xy,...in A" we define
the operational distortion-rate function D(R, X) and the
distortion-rate function D( R, X) of X as in the previous
section, only here we make explicit the dependence of
these quantities on the particular source. A sequence of
fixed rate codes (g, 9n), » = 1,2,... is said to be
weakly universal at rate R if

R(gn,on) < R

D.(R

and
lim Ed,[X", (g

’ll
n—oo ]

for al X € A. In other words, (g, ) performs op-
timally for all sources in A" when n — o0. Strong uni-
versality means that in the above limit we have uniform
convergence over X', The practical significance of univer-
sal codes is clear: the same code can be used for different
sources without much degradation in performance. Theo-
retically, the proof of existence and/or the construction of
universal codes is often very challenging,

The existence of fixed rate weak universal codes for
the class of stationary sources was first proved by Ziv

[54] for general source and reproduction alphabets and
distortion measures that include real sources and the
mean-squared error criterion considered here. Neuhoff er
al. [33] and Kieffer [16] provided various generalizations,
the latter also dealing with universal variable-length lossy
and lossless coding. Analyzing Ziv's scheme Linder et al.
[26] proved that for any R > 0 there exists a sequence
of fixed rate codes (g, @y) of rate R which are weakly
universal for the family of real stationary sources with
finite second moment, and for any memoryless source X
with a bounded support

B[ X", p(g(X"))] = D(R,X) < |58,
og n

where ¢ depends on the source and on R. In a related
work [25] the same authors investigated fixed rate uni-
versal coding of memoryless sources. They showed that
for the class of memoryless sources over a finite alphabet
there exists a sequence of fixed rate codes ( ¢,, ¢y ) of rate

R such that
. xn logn
Ed,[X", o(g(X™))] — D(R, X) (%) (4)

for some constant e. Il was also shown that the code
construction for proving the above result can be extended
to yield a universal scheme for which

Eda[X™, o(g(X™)] = D(R, X) < ,/1"%

for any hounded real valued memoryless source. Further-
more, the above rate of convergence also holds with prob-
ability one:

dul X", @(g(X™)] - D(R,X) <

logn
<0 (1/ Oin) , with probability one,

where f(n) = O(h(n)) means that |f(n)| < c|h(n)
for some ¢ > 0, if n is large enough. Yu and Speed
[48] obtained a result similar to (4); they demonstrated the
existence of a sequence of variable length codes such that
for all memoryless sources over a finite alphabet,

dﬂ[Xna (,':‘(G(.Xn))] <D

and
logn

R(_qu‘x)_R{D,X)SC n )

where R(g,, X) is the expected codelength (which de-
pends on the source) and R(D, X) is the rate-distortion
function of X, the inverse of D( R, X).

It is of great theoretical as well as practical interest
to find universal codes with reasonable complexity. The
above results, even though proved by code construction,
do not provide viable implementation. A currently “hot”
research topic is to find a lossy counterpart of the lossless
universal Lempel-Ziv codes [55]. This problem is still
unsolved, although progress towards this goal was made
for such a construction by Steinberg and Gutman [43]. A
computationally efficient universal lossy coding algorithm
which sequentially updates the set of codevectors was
given by Zhang and Wei [53].
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4. VECTOR QUANTIZATION

Source coding theorems guarantee the existence of
lossy source codes whose performance approaches the
distortion-rate bound as the blocklength n increases.
While these results provide a beautiful theory, and indi-
cate the best performance one can expect, their practical
usefulness is limited by two facts. On the one hand, in
practice, the complexity of the encoder and the decoder
are limited by the computational resources available, so
codes even with moderately large blocklengths cannot be
realized. On the other hand, source coding theorems pro-
vide no guidance as to what optimal encoders look like.
The theory of vector quantization is concerned with the
design of encoders — i.e., vector quantizers — of fixed
blocklength.

The basic problem may be formulated as follows. A k
dimensional, N level vector quantizer () is a function of
the form Q : R — {y1,...,yn}, where 41,...,yn €
R¥ are the reproduction points or codevectors. A quantizer
is defined by its reproduction points, and quantization
regions B; = {z : Q(z) = y;}, i = 1,...,N. Q(z) is
interpreted as the quantized value of an input vector z €
IR®. Note that a k-length fixed rate source code (g, )
as defined in Section 2 determines a vector quantizer by
Q(z) = ¢(g(z)), and conversely, by encoding the output
of a vector quantizer using fixed length binary sequences,
we obtain a fixed rate source code. If Z € R¥ is a
vector-valued random variable, the average distortion of )
(with respect to Z) is defined as

A@) = ELIZ - Q)1

which is finite provided that E||Z||*> < oco. (We assume
E[|Z||* < oc throughout) We seck vector quantizers
with small distortion. A quantizer ()™ is called oprimal,
if A(QQ") < A(Q) for any quantizer (). Existence of
optimal quantizers is always guaranteed, though they do
not have to be unique (e.g. see Pollard [37] and Abaya
and Wise [1]).

Some thought should convince the reader that any
optimal quantizer satisfies the following properties.

a) NEAREST NEIGHBOR PROPERTY:
if ||z = yill < ||z = 9;l| forall j, then @(2) = ¥i
(ties may be broken arbitrarily).
b) CENTROID PROPERTY:
y,-:E(ZJZEB;‘): VS

Property (a) says that input points should always be
quantized to the nearest reproduction point. By the sec-
ond property, the reproduction points should be placed at
the centroids of the sets of points that are quantized to
the same value. Apart from these properties, very little
is known about optimal quantizers. Even for special dis-
tributions of Z, such as Gaussian or uniform distribution
on the unit cube, no explicit formulas are available for the
form of optimal quantizers. Using the above properties,
various versions of an iterative method for designing quan-
tizers have been introduced. This iterative method is vary-
ingly known as the Lloyd-Max algorithm, Lloyd algorithm

=1y v

[28], Max algorithm [30], generalized Lloyd algorithm, or
the Linde-Buzo-Gray algorithm [22]. The basic algorithm
starts with an arbitrary quantizer, adjusts its regions B;
first to satisfy Property (a), then adjusts its reproduction
points ¥; to satisfy Property (b). Then these two steps are
repeated for the re-adjusted quantizer. It is easy to see
that the distortion of the quantizers obtained in successive
stages of this algorithm cannot increase, therefore, it con-
verges. Unfortunately, in general it does not converge to
the distortion of an optimal quantizer, in other words, the
algorithm may get stuck in local optima. In some lucky
cases, however, the Lloyd-Max algorithm converges to an
optimal quantizer; see Kiefler [17] and Trushkin [44] for
sufficient conditions on the distribution of Z for global
optimality.

A common serious problem for the designer of a vector
quantizer is that the distribution of the source Z is
unknown. The only information available is a fraining
sequence Zy,...,Zy of vectors, where the Z;’s can
often be modeled efficiently as independent, identically
distributed random variables, with the same distribution as
Z. Then the designer generally measures the empirical

distortion
m

>

i=1

1

m

1 Z
=1z - @z

Am(Q) =

of a quantizer (), and tries to find a quantizer minimizing
A (Q). Denote such an empirically optimal quantizer by
Q.. that is,

*
m

Q

The distortion of such an empirically chosen quantizer is
. 1 "
2@ =& (§17 - QA1 Z1s.. 7).

Note that A(Q?,) is a random variable, as it depends on
the (random) training sequence. One expects that if the
training sequence is long enough, then the distortion of an
empirically optimal quantizer gets close to the distortion of
a truly optimal quantizer. Indeed, Pollard [37], [39] proved
that

= argmin A, (Q).
Q

A(Qr) — A(Q™) — 0, with probability one

is true for any distribution of Z with E|| Z||*> < oc. Under
more restrictive conditions on the distribution, Pollard [38]
also proved a central limit theorem, which indicates how
fast the above difference can tend to zero. Along this line,
Linder et al. [26] proved a large-deviation type probability
inequality, which bounds the finite-sample behavior of the
above difference. For example, the inequality in [26]
implies that

log m

AlQr)-AQ")=0 ( . ) with probability one,
which is true for any Z with a bounded support. Appar-
ently, the exact rate of convergence is still an unknown
and challenging problem.

While in principle, empirically optimal quantizers can be
found, the computational complexity of such a general al-
gorithm is often too large for practical realizations. Many

19
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successful techniques have been proposed in the literature
for designing quantizers from empirical data. We refer
the reader to Makhoul et al. [29] Gersho and Gray [12]
for good summaries of such algorithms. One of the most
widely used of these techniques is the empirical version of
the Lloyd-Max algorithm (also known as the Linde-Buzo-
Gray algorithm, see [22]) which is simply the Lloyd-Max
algorithm executed on the empirical distribution. This
method produces good, but not necessarily empirically op-
timal quantizers [rom training sets. Sabin and Gray [40]
demonstrated that if the size of the training sequence in-
creases, this algorithm performs eventually as well as if the
true distribution of the training data were known.

There have been some attempts to tackle the problem
of having iterative descent algorithms get trapped in locally
optimal solutions by introducing random perturbations
or performing “soft competitions” in the iteration steps.
Examples of these techniques are given in Yair et al. [47]
Zeger et al, [52].

It is apparent that the encoding complexity of an un-
structured vector quantizer (such as the typical output of
the Lloyd-Max algorithm) becomes very quickly prohibitive
when the vector dimension increases. There has been
much research activity on finding good vector quantizers
with structural constraints that ensure efficient implemen-
tation. Although there are several competing schemes
such as trellis and tree structured quantizers, and lattice
quantizers (see Gersho and Gray [12] and the references
therein), so far none of these methods have been rigor-
ously shown to achieve the rate-distortion limits. Among
these schemes the theoretically best understood are lattice
quantizers. As the next section will indicate, lattice quan-
tizers can perform near the rate distortion limit and are
conjectured to be optimal in a certain asymptotical sense.

5. HIGH-RATE QUANTIZATION THEORY

In all the previous sections we mainly dealt with D, ( R),
the distortion of the best n-length fixed rate block code at
rate K. We saw that rate-distortion theory characterizes
the limit of this quantity as n gets large, and that the
theory of vector quantizer design helps estimate the error
made when the optimal source coder is designed from em-
pirical data. However, the very important question of what
the valuc of D, (&) is for a given source, dimension, and
distortion measure, remains unanswered. We now describe
some results from the high rate theory of quantization
which comes the closest to solving this problem. Also, in
the framework of this theory it is often possible to deduce
relevant properties of optimal quantizers and source cod-
ing schemes using some structural constraint.

5.1. Resolution-Constrained Quantization

Let us consider a k-dimensional vector quantizer with
N -codevectors as in Section 4. The dimension £ will be
fixed throughout this section. Given the random vector
X*, we denote the mean-squared distortion of the best
such quantizer by D.(N), i.e.

D, (N)= 11}:')11 | X% —Q(x")?,

where the minimum is taken over (Q’s with N codevectors.

As we mentioned before, there are no known methods for
explicitly computing J,.(/V). As is turns out, however,
for N large enough there exist good approximations to
D.(N). For k = 1 Bennett [3] and Panter and Dite [35]
derived a formula for sources with “nice” densities

DA(N) ~ (/)N Y, (5)
where ¢( f) is a constant depending only on the source
density f, and ~ means that the ratio of the two sides
approaches 1 when N — oo. This asymptotic formula
provides a good approximation to D,.(NV) for N large, and
it has been observed (see e.g. Neuhoff [32]) that in many
important cases (5) is quite accurate for N > 8. The first
rigorous proof of (5) as well as its generalization to vector
quantizers was given by Zador [49], [50]. He proved for
any dimension & that for sources with sufficiently smooth
densities

D(N) ~ ae(S)N*E, (6)
where ay is a constant depending only on the dimension
k, and ¢( f) is an easily computable function of the source
density. Bucklew and Wise [5] proved that Zador's for-
mula (6) holds for any source X * having a density and
satisfying E|| X *||**¢ < oo for some ¢ > 0. Cambanis
and Gerr [6] investigated Bennett’s “companding quanti-
zation”, a scheme in which a memoryless mapping and
its inverse is applicd to the source and to the quantizer
output, respectively, to implement scalar quantizers. They
determined a simple sequence of N -level scalar quantizers
which are asymptotically optimal in the sense that their dis-
tortion satisfies (5). The exact performance of compand-
ing quantizers under general conditions was investigated
by Linder [23]. Na and NeuhofT [31] gave a multidimen-
sional Bennett-type formula for certain sequences of quan-
tizers. Recently, high-rate techniques have been applied
to the performance analysis of quantizers with structural
constraints by Neuhoff and Lee ([34] and [20]). Another
application of the high-rate theory is an analysis of a uni-
versal quantization scheme by Zeger et al. [51].

5.2. Entropy-Constrained Quantization

The entropy (Q) of a quantizer with N codevectors
is defined as

N
- Z P{Q(X*) = i} log P{Q(X*) = ).

Let D.(H) be the minimum distortion over all k-
dimensional quantizers with entropy less than or equal to
H:

D.(H)= i E|IX* — Q(X5)|%,
() 15 I QXM

Q:H|
where the minimum is taken over all quantizers with a
finite number of levels. As we mentioned before, for any
() there exists a variable length code (g,() such that

Q(z) = (g(z)) for all z € R¥ and

1 1 =

Since R(g,¢) > LH(Q) always holds when Q(z) =
@(g(z)), the inequality (7) shows that D.(H) is very
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closely related to the distortion of optimal variable length
source codes. On the other hand, D, (1) yields to high-
rate analysis. Gish and Pierce [14] recognized that uniform
scalar quantizers (i.e. quantizers with codepoints equally
spaced along the real line) have good entropy constrained
performance. Let (), be a uniform quantizer with entropy
H(Q,) and distortion A(Q,). Gish and Pierce proved
that under some conditions on the source density, as

H(Qu} — X
(8)

where h(f) = [ f(z)log f(z)dz is the differential en-
tropy of the source density. They also argued that uniform
quantizers are asymptotically optimal in one dimension in
the sense that D.(H(Q,))/A(Qu) — 1as H(Q,) —
oo. Zador [49], [50] showed that for & > 1 the optimal
entropy constrained quantizers have the asymplotics

. 1 _sp 5
A(Qy) ~ ﬁ2-"(.!)2 -H(Qu)’

D (H) ~ 8,220 kg—2H]k

where [y is a constant that depends only on k. Based on
a heuristic argument Gersho [11] conjectured that oy =
3., and also that their value is the minimum normalized
moment of inertia that a polytope capable of tessellating
R* can have. This conjecture is widely believed to
be true, but no proof of it is known to date. Linder
and Zeger [27] made precise and proved under general
conditions Gersho’s lormula for the high-rale asymptotics
of tessellating quantizers.
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