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Rates of Convergence in the Source Coding 
Theorem, in Empirical Quantizer Design, 

and in Universal Lossy Source Coding 
Tam& Linder, GAbor Lugosi, and Kenneth Zeger, Member, IEEE 

Abstruct-Rate of convergence results are established for vec- 
tor quantization. Convergence rates are given for an increasing 
vector dimension and/or an increasing training set size. In 
particular, the following results are shown for memoryless real- 
valued sources with bounded support at transmission rate R: 
(1) If a vector quantizer with fixed dimension k is designed to 
minimize the empirical mean-square error (MSE) with respect 
to m training vectors, then its MSE for the true source con- 
verges in expectation and almost surely to the minimum possible 
MSE as O(\llogm/nl; (2) The MSE of an optimal k-dimen- 
sional vector quantizer for the true source converges, as the 
dimension grows, to the distortion-rate function D(R) as 
O(J/~); (3) There exists a fixed-rate universal lossy source 
coding scheme whose per-letter MSE on n real-valued source 
samples converges in expectation and almost surely to the 
distortion-rate function D(R) as O(\llog log n / log n ); (4) 
Consider a training set of II real-valued source samples blocked 
into vectors of dimension k, and a k-dimension vector quantizer 
designed to minimize the empirical MSE with respect to the 
m = [n /k] training ve.ctors. Then the per-letter MSE of this 
quantizer for the true source converges in expectation and 
almost surely to the distortion-rate function D(R) as 
O(Jloglog n /log n 1, if one chooses k = [(l / R)(l - e)log n] 
for any E E (O,l). 

Index Terms-Universal lossy source coding, empirical vector 
quantizer design, convergence rates, large deviation theory. 

I. INTR~DU~~N 

C ONSIDER an independent and identically dis- 
tributed (i.i.d.) sequence of real-valued random vari- 

ables X1, X,, 0-a that we wish to quantize and transmit. 
While many techniques exist for designing good quantiz- 
ers from either a mathematical description of the source 
distribution or from training data, little is known theoreti- 
cally about how quickly these algorithms converge for 
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arbitrary sources. Similarly, there are no known results for 
real alphabet sources that indicate how quickly the distor- 
tion of fixed-rate universal lossy source coders converges 
to Shannon’s distortion-rate function as the input size 
grows. In addition, many of the existing proofs of quan- 
tizer distortion convergence do not give almost sure con- 
vergence, but rather ‘convergence in expectation or in 
probability. In this paper we provide rate of convergence 
results to answer a number of these open questions. 

In particular, we establish convergence rates for four 
important source coding quantities. These include conver- 
gence of the mean-square distortion of: (1) empirically 
designed quantizers of a fixed vector dimension to the 
best quantizer of the same dimension for the true source, 
as the training set size grows; (2) optimal vector quantiz- 
ers for the true source to the distortion-rate function, as 
the vector dimension grows; (3) fixed-rate universal lossy 
source coding (where the encoding rate is measured by 
the logarithm of the number of codewords normalized by 
the encoded block-length) to the distortion-rate function, 
as the number of input samples grows; (4) empirically 
designed quantizers to the distortion-rate function, as the 
number of input samples grows. All of the probabilistic 
convergences are given in expectation and almost surely. 
The four main results stated above are given respectively 
in our Corollary 1 and Theorems 2, 3, and 4. 

Our  first result (Theorem 1 and more specifically Corol- 
lary 1) concerns designing quantizers from training data, 
one of the central problems of data compression. The 
problem of vector quantization is the following: We are to 
design a vector quantizer of a given dimension with a 
given number of code vectors for a source (modeled by a 
sequence of real random variables). The information about 
the source to carry out this design is’given in the form of a 
training sequence, a sequence of samples drawn according 
to the source distribution. The performance of the de- 
signed quantizer is measured by its sample distortion over 
a sequence that is independent of the training sequence 
and is distributed as the source, called the test sequence. 
The basic assumption is that the test sequence is much 
longer than the training sequence, therefore this sample 
distortion (assuming some ergodic properties on the 
source) is very close to the expected distortion of the 
quantizer. In fact we assume, as is customary, that the test 
sequence is long enough to measure the performance of 
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the designed quantizer by the expected distortion (see, 
e.g., [l]-[4]). Th e expectation can be taken with respect to 
both the test and the training sequences, or only with 
respect to the test sequence, in which case the distortion 
is a function of the training sequence. In both cases, the 
main parameter affecting the distortion is the size of the 
training sequence, which can be viewed as the number of 
examples the vector quantizer must be trained on. 

A natural strategy to obtain a good quantizer for a 
given source is to try to minimize the empirical distortion, 
i.e., the performance of the quantizer measured on the 
training data. Many successful techniques have been pro- 
posed in the literature for minimizing the empirical dis- 
tortion, and we refer the reader to [2] for a good summary 
of such algorithms. One of the most widely used of these 
techniques is the generalized Lloyd-Max algorithm (also 
known as the Linde-Buzo-Gray algorithm), which pro- 
duces good, but not necessarily empirically optimal, quan- 
tizers from training sets. Sabin and Gray [41 demonstrated 
that this algorithm performs eventually as well as if the 
true distribution of the training data were known. In [5], 
the behavior of the distortion of empirically designed 
quantizers as the training set size increases was investi- 
gated. The asymptotics of this distortion of the form 
A + rnma were experimentally verified, where A is a 
constant, m is the number of training vectors, and (Y > 0. 
An experimental approach for image coding is given in [6], 
where the decay rate (in terms of training set size) for a 
special Hamming-type distortion was obtained from a 
Vapnik-Chervonenkis argument and then experimentally 
fit to match the data. 

We focus on the performance of globally optimal quan- 
tizers. The first step in this direction was a result proved 
by Pollard [71, [31 ( see also [ll and [8]), who showed that if 
the training data consist of independent copies of the 
random variable to be quantized, then as the size of the 
training data grows, the distortion of the empirically de- 
signed quantizer converges almost surely to the distortion 
of the optimal quantizer, for any distribution with finite 
second moment. In Section II, we derive an upper bound 
on the finite sample performance, i.e., the rate at which 
this distortion converges to the optimal one as the size of 
the training sequence grows. 

Another related topic is universal lossy source coding. 
Loosely speaking, a sequence of quantizers at a fixed 
transmission rate and of increasing vector dimension is 
said to be a universal lossy source code over a particular 
class of sources if, for any source in the specified class, as 
the dimension increases, the distortions of the quantizers 
approach the distortion of the globally optimal quantizer 
for the source at the same transmission rate. The class of 
sources chosen and the method of measuring the rate and 
the distortion give different modes of universality. In 
Section IV, we examine a fixed-rate lossy coding scheme 
which is universal on the class of all stationary and er- 
godic sources of bounded support, where the distortion is 
measured by the squared error. We investigate the rate at 
which the distortion of the universal code decreases to its 

lower bound, the distortion rate function, as the encoded 
block length increases, on the subclass of i.i.d. sources. 

Another interesting type of vector quantizer design 
problem is the following: G iven a finite set of training 
data, design a quantizer of a given rate with the lowest 
possible per-letter distortion. This problem is more corn- 
plicated than ordinary vector quantizer design since in 
addition to designing the quantizer, one must determine 
the vector dimension of the quantizer. In particular, it is 
not the distortion of the best possible quantizer of a given 
dimension that one seeks to approach as the training set 
grows in size, but rather the distortion-rate function D(R) 
of the source, since this is the lowest distortion achievable 
using quantizers of arbitrarily large dimension and with a 
rate constraint R. 

Suppose we are given n scalar samples from an i.i.d. 
source, from which we are to design a quantizer of a given 
dimension with low distortion. Clearly, as Shannon’s 
source coding theorem with respect to a fidelity criterion 
suggests, we should try to design a vector quantizer of 
large dimension since this improves the potential to get 
close to D(R). At the same time, however, the ability to 
do so decreases, as it is harder to estimate the best 
quantizer in higher dimensions. This is because the code- 
book size of full-search fixed-rate vector quantizers in- 
creases exponentially with the quantizer dimension. Also, 
since the number of scalar training samples n is fixed, the 
number of available k-dimensional training vectors that 
can be formed from this set decreases as the dimension k 
grows. The empirically optimal quantizer would tend to 
overfit the training data with the increasing quantizer 
dimension. Therefore, a compromise in this trade-off must 
be determined. To handle the problem, it is not enough to 
know that the performance of the empirically optimal 
quantizer converges to the optimum; one should also 
know about the finite sample performance of such quan- 
tizers. 

In Section II, exponential large deviation inequalities 
are derived for the empirical distortion (Lemma 1) and 
for the average distortion (Theorem 11, of quantizers with 
minimal empirical distortion. Lemma 1 is later used to 
obtain convergence rates in universal coding, while Theo- 
rem 1 is subsequently used for the problem of quantizer 
design. These nonasymptotic inequalities are valid for all 
memoryless sources of bounded support. One of the main 
tools we use to obtain these results is the elegant 
Vapnik-Chervonenkis inequality (Lemma 3). For the 
problem of vector quantizer design, Corollary 1, an imme- 
diate consequence of Theorem 1, shows that if a vector 
quantizer with fixed dimension k is designed to minimize 
the empirical distortion with respect to m training vectors, 
then its distortion for the true source converges in expec- 
tation and almost surely to the minimum possible distor- 
tion as O(-Jiogm/m>. This is proved for memoryless 
real-valued sources with bounded support. 

Section III concerns the other side of the trade-off, the 
difference between the distortion of the best k-dimen- 
sional quantizer of rate R and the distortion-rate function 
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D(R), where R = (log N)/k, where N is the codebook 
size of the quantizer. Pile [9] proved that for memoryless 
sources with a finite alphabet, this difference is of order 
log k/k. We show in Theorem 2 that for real memoryless 
sources (and real reproduction alphabets), this difference 
is at most of order dm. 

Section IV investigates the problem of fixed-rate uni- 
versal lossy coding, that is, transmitting messages of an 
unknown source with distortion under a certain rate R. 
This was first formulated by Ziv [lo], who proved the 
existence of a fixed-rate scheme whose expected distortion 
converges to D(R) for any stationary process. This scheme 
was analyzed using high-resolution quantization theory by 
Zeger, Bist, and Linder [ll] and Chou and Effros [12]. 
Neuhoff, Gray, and Davisson [13] extended Ziv’s results 
and provided a unified approach to fixed-rate universal 
lossy source coding. Pursley and Davisson [14] demon- 
strated universal variable-rate source codes. Recently, Yu 
and Speed [15] obtained bounds on the rate of conver- 
gence of variable-rate universal coding for finite alphabet 
memoryless sources. 

In Section IV, the results of the previous sections are 
applied to the problem of fixed-rate universal lossy cod- 
ing. It is shown in Theorem 3 that for real memo less 
bounded sources, Ziv’s scheme gives a &--iG&x 
type convergence rate of the average distortion to D(R), 
in both expectation and almost surely, where y1 is the 
input block length. 

In Section V, the problem of choosing the dimension of 
an empirically designed quantizer of rate R (used on 
independent test data) is considered. Using the results of 
Sections II and III, it is shown in Theorem 4 that the 
quantizer dimension k can be chosen as a function of the 
number of training samples II so that the average distor- 
tion approaches D(R) as dlog log n/log it . 

We limit our discussion to squared-error distortion, 
though it seems possible to extend our results to distor- 
tion functions with certain regularity properties, such as 
“nice functions” of norms. 

II. DESIGNING QUAN~ZERS FROM TRAINING DATA 

Let zk denote k-dimensional Euclidean space. A k- 
dimensional, N-level vector quantizer Q ,,k is a measur- 
able function of the form Q ,,,: Sk + {yi;.., yN} csk, 
such that 

Q ,,,(x) =Yi, if IIx - yill < 11x - yjll for all j, 

where II * I1 denotes the Euclidean norm. In this definition, 
the quantizer is determined by its code vectors {yl;**, yN] 
via the nearest-neighbor quantization rule, and ties are 
broken arbitrarily. The rate of this quantizer is (log N)/k 
bits per source letter. Throughout this paper, the notation 
“log” will always mean logarithm in base 2. Let 
z, Zl,..*, Z, E Sk be independent and identically dis- 
tributed random vectors. Here Z is the source we want to 
quantize, and Zr;.., Z,, which are i.i.d. copies of Z, 
represent the training data. G iven a quantizer Q2N,k, de- 

fine its average distortion (mean square) as 

A@,,,) = EIIZ - QN,k(z)l12, 
and its empirical distortion as 

A,(QN,k) = i .g IIZi - QN,k(Zi)l12. 
z-1 

Note that A,(QN,,> is a random variable depending on 
z(m) = (,q,..., Z,). Throughout the paper, we will often 
refer to these distortions simply as the “MSE” (mean- 
square error), when no confusion results. 

tit QZz, N,k be a quantizer with minimal empirical 
distortion, which again depends on the training set Zcm), 
and let Qg, k be a quantizer of minimal average distortion. 
That is, 

Q ;,, = arg min A(QN, k) (1) 
Qry,k 

and 

Q :,N,k = arg min A,(QN, k). (2) 
QN, k 

Note that Qc,, is a deterministic mapping, while Qg,,,, 
is a function of Zi;.., Z,. We will refer to Qg, k as the 
truly optimal quantizer and to Qz, N k as the empirically 
optimal quantizer. By the nearest-neighbor encoding rule, 
finding an optimal quantizer is equivalent to finding its 
codeword set {yi;.., yN]. 

The existence of a quantizer in (2) minimizing the 
empirical distortion is clear, although it may not be unique; 
in the case of (1) the existence of a minimizing quantizer 
is proved in [3] for EllZI12 < m. Since we deal only with 
the associated distortions, the issue of uniqueness is im- 
material in what follows. 

We are interested in two random quantities, each de- 
pending on Zcrn). The first is 

‘hn(Q:,N,k ) - NQ;,,), (3) 

the difference between the empirical distortion of the 
empirically optimal quantizer Qz  N,k and the average 
distortion of the truly optimal quantizer Qg k. This is the 
difference between the distortion of a quantizer designed 
from training data when used to encode the very same 
training data, and the distortion of a “globally best” 
quantizer. This quantity is very important for analyzing 
the performance of certain universal quantization schemes, 
where the encoder determines Qz N,k from the source 
input Zi;.., Z,, and then transmits’ its description to the 
decoder along with the quantized sequence Qz, N,k(Zi), 
i = 1 ,.. , m. Note that in this case Qz, N, k is used for the 
same’data it was designed from. 

The second quantity of interest is 

‘%tz,N,k 1 - A(Q;,,), (4) 

the difference between the average distortion of the empir- 
ically optimal quantizer and the average distortion of the 
optimal quantizer, where 

A(Qik,~,k ) = E(llz - Q~,~,~tz)~~z~~,,~~~,~,). 
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This quantity specifies the difference in performances 
(when encoding the true source) between a quantizer 
designed to minimize the distortion on a training set and 
a quantizer designed optimally for the true source. This 
quantity is important in the context of vector quantizer 
design (see, e.g., [16]), where the quantizer that was de- 
signed from the training data is used later for encoding 
data from a source which has the same distribution as the 
training data, but is independent of the training data. The 
difference is nonnegative and can be thought of as the 
penalty for designing a quantizer based on a training set 
rather than the actual source distribution. 

Note that the generalized Lloyd algorithm (if it does 
not get trapped in a local optimum) produces quantizers 
whose empirical distortions converge to A,(Qz, N, k) as 
the number of iterations in the algorithm increases. The 
random variable A(Qz, N, k), depending only on Z(“), rep- 
resents the average distortion when this quantizer is used 
on a source with the same distribution but independent of 
z,, z,, **- . In what follows, we obtain exponential large 
deviation inequalities for (3) and (4). 

The next lemma shows that if the Zi’s are independent 
and have bounded support, then the probability that 
kn@:,N,k ) is larger than A(Q;,,) plus any positive con- 
stant is exponentially small in m. 

Lemma I: Let Z,, Z,, *** ~9~ be an i.i.d. source such 
that Pr{(lZ,J12 5 B} = 1 for some B < a. Then for every 
t > 0, the difference between the empirical distortion of 
the empirically optimal quantizer and the average distor- 
tion of the truly optimal quantizer satisfies 

Pr {Am@&v,k > - A(Qg,,) > t} I e-mr*/(8BZ). 

Proofi From (1) and (2), it follows that A,(QL,,,) 
5 A,(Qg, k). Thus we have 

Pr &n(Q:, N,k > - A&?;,,) > t} 

I Pr{h,(&~,k) - h(Qz,k) > t} 

k .E lIZi - Qc,k(zi)112 
z=l 

-EIIZ - Q ;,,<Z>li’ > t . 
1 

(5) 

The random variables lIZi - Q~,k(Zi>l12 are independent 
and bounded almost surely by 4B since the optimal quan- 
tizer for Z clearly has all its levels inside a sphere of 
radius \/B. Thus, we can apply Hoeffding’s inequality [171, 
which asserts that if X1;.., X,,, are independent random 
variables taking values in a bounded interval [a, bl, then 
for all t > 0, we have 

Pr f ,g (Xj - EXj) 2 t 

i 
< e-2mtZ/(b-a)Z. (6) 

J-1 

Taking Xi = lIZi - Q~,k(Zi)II* and b - a = 4B in 

Hoeffding’s inequality, (5) gives 

Prhn(Q:,N,k > - A(Q;,k) > t} < e-mtZ/(882), 

which was to be shown. 0 
The relevance of Lemma 1 will be made explicit in 

Section IV, where it is used to evaluate the empirical 
distortion performance of Ziv’s universal lossy source 
coding scheme. 

The random variable A(Qz, N,k) - A(Q;, k) gives the 
difference between the distortion of a quantizer that best 
fits the training sequence and the distortion of a best 
theoretically achievable quantizer. To obtain the counter- 
part of Lemma 1 for this quantity, a stronger technique is 
needed. We begin with the following simple observation. 

Lemma 2: If Pr{l~Z~~* I B} = 1 for some B < a, then 

A(Q~,N,~ > - A(Q;,N> 4 2 s$: I&,&,,,) - A@,,,>1 

a.s., 
where the supremum is taken over all quantizers Qhi,k 
with SUPrE 9k I&&,(d,,* I B. 

Proofi The inequality follows from 

A(Q&v,k ) - AtQ;,,) 

= A@:,& - k,ztQ:,N,k) + A,tQ&v,d 
- A(Q;, d 

5 2 Sup IA,@ ,,,) - A@,,,>/. 
QN, k 

It is enough to take the supremum over the QN,k’\ with 
IIQN,k(z>ll 5 B, since we Clearly have llQ~,N,k(Z)ll I B 
a.s. and IlQ~,k(z)112 5 B a.s. for all z ~9’. 0 

For the sake of notational simplicity, define the func- 
tion f,:sk +9 by 

f&d = lb - QN,ktz>l12. 

By the bounded support assumption on Z and the restric- 
tion on the quantizers over which the supremum is taken, 
the random variables fe(Zi> are uniformly bounded (a.s.) 
by 4B. Therefore, 

sup lA,(Q, k) - At&d 
QN, k 

= sup 
Q  

= sup 
Q  ii 

m  ;i$Q(z,)>u, - Pr{fe(Z) > 4) d.1 
0 

14B;t ;,!I 
(fQ(z,)>u) - Pr {fe(Z) > U} a.s., 1-1 

(7) 

where IA is the indicator of the set A. We see, for 
example, that supeN k &&?,,,) - AtQN,k)l Converges to 
zero with probability 1, if the averages of the Bernoulli 
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random variables ZtfQ(zi) > u 
l 

converge to the probabilities 
Pr {fe(Z) > u} uniformly over all Q ’s and U’S), almost 
surely. At this point we recall a celebrated inequality of 
Vapnik and Chervonenkis. 

Lemma 3 (Vapnik and Chervonenkis 1181): Let {S,: 8 E 
0) be an arbitrary collection of measurable subsets of 

Sk, and let Zi;.., Z, be i.i.d. random variables in Sk. 
Then for all m  and t > 0 such that mt2 2 2, 

pr 
i I 

sup ; ,g qzi= S,) -Pr{Z, ES,} >t 
e Z-1 I I 

5 4V(2m)e-m12/8, 

where the shatter coejjicient V(m) is defined as follows. Fix 
m points, zl;*., z, Esk, and count how many distinct 
binary vectors 

can be obtained by varying 0 over 0. Taking the maxi- 
mum over zi;**, z, E 9’ of the number of distinct binary 
vectors gives the value of V(m). 

Note that V(m) is the maximum number of different 
subsets of m points {zl;.-, zm} that are of the form 
s, l-3 IZl,“‘, z,} for some 8 E 0. Clearly, V(m) I 2” and 
V(m) is monotone increasing in m. If V(m) is upper 
bounded by a polynomial in m, then we have an exponen- 
tial upper bound in Lemma 3, and, for example, 

1 m 
sup & ,c 42; E S,} - Pr {Z, E S,> -+ 0, a.s. 

e t-l 

by the Borel-Cantelli lemma. 
Now, define the index set 0 = {(u, Q)}, where u runs 

through the positive reals and Q  runs through all k- 
dimensional N-level quantizers, and for each 8 = (u, Q> 
E 0, let S, = {z: fe(z> > u}. In order to apply Lemma 3 
to (7), we need an upper bound on the shatter coefficient 
of the class of sets of the form {z: fe(z) > u). 

Lemma 4: The shatter coefficient V(m) of the class of 
sets {z: f&z> > u}, where u runs through all positive 
reals and Q  through all k-dimensional quantizers with N 
levels, is bounded as 

V(m) 5 mNck+l). 

Proof? It is easy to see that for each Q  and U, the set 
{z: fe(z) > u} is just the intersection of the complements 
of N spheres of radius 6. Thus {S,: 0 E O}  is just the 
collection of all sets that are the intersections of the 
complements of N k-dimensional spheres of equal radii. 

Consider now two collections &I and ti2 of subsets of 
Wk, and denote their shatter coefficients by V(A?~, m> and 
VW2, m), respectively. Let d = {A, n A,: A, Edi, A, 
E&}. We will prove that 

VW, m> 5 VWI, m>Vb2, m>. (8) 

Fix the points zi;-*, z,, and let B1;.*, BI be an enumera- 
tion of all the distinct sets of the form {zl;.*, ZJ n A, 
where A E til. Then 1 I V(MI, m), and since JX?* can pick 

at most VW2,1Bil) subsets of Bi, and since IBil _< m, we 
have that the number of sets of the form {zl;**, zm} n A, 
n A,, where A 1 E &I and A, E J;s,, is upper bounded as 

I C V(&,IBiI) 
i=l 

which proves (8). 
Let 9 be the collection of complements of all spheres. 

For N = 2, since {S,: 13 E 0) c {S, n S,: S,, S, ET’}, (8) 
shows that V(m) I VW, m)*, and by induction we get, 
for all N 2 1, 

V(m) I WY, mjN. (9) 
The shatter coefficient of the collection of all k-dimen- 
sional spheres is at most mk+’ (see, e.g., Devroye [19] or 
Dudley [20]). Since the shatter coefficient does not change 
if each set in the collection is replaced by its complement, 
we have 

VW, m> 5 mk+ ‘, 
which, together with (9), proves the lemma. 0 

The following theorem, the main result of this section, 
gives a nonasymptotic large deviation inequality ,concern- 
ing the performance of empirically designed quantizers. 

Theorem 1: Let Z,, Zv -a. E%‘~ be i.i.d. random vec- 
tors such that Pr{llZ1ll I B} = 1 and m(t/8Bj2 2 2. 
Suppose an M-level, k-dimensional quantizer Q*,, N k is 
designed to minimize the empirical MSE over a training 
set of m vectors Zi;**, Z,. Then the difference between 
the MSE of this quantizer for the true source and the 
MSE of the best quantizer, Q$,,, for the true source, 
satisfies 

Pr {A@;, N, k ) - AtQ;,k> > t} 

2 4(2m) N(k+l)e-mt2/(m&) (10) 
Proofi From Lemma 2, (7), Lemma 3, and Lemma 4, 

we have 

Pr {A@;, N, k ) - A(QE,,> > t) 

2 sup lA,(QN, k) - A(QN, k)l > t 
QN, k 

5 4(2m) N(k+l)e-mtZ/(5n82) 0 

Note that the upper bound in the theorem depends on 
the dimension k. This reflects the fact that quantizers of 
larger dimensions (and thus of smaller distortion) require 
a larger training sequence size m. This matter will be 
pursued in Section V. 
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For N and k fixed, a simple corollary of Theorem 1 
follows by the Borel-Cantelli lemma, namely, 

‘% i,N,k > - Ate;,,) + 0 a.s. as m + ~0, (11) 

This is Pollard’s theorem [7], [3], who showed (11) under 
the more general condition EllZII* < 00. However, unlike 
Pollard’s result, Theorem 1 also yields an upper bound on 
the rate of convergence, which will be important in the 
sequel. To obtain this almost sure rate of convergence 
for A@:, iv, k ) - A(Qg k) from Theorem 1 via the 
Bore]-Cantelli lemma, the parameter t should be chosen 
(as a function of m) so that the right-hand side of (10) 
becomes summable in m. It is easy to see that the choice 
t = CJ/~ satisfies this if c > 16Bdm, but 
the upper bound fails to be summable in m when c I 16B 
dm. In this sense, c = 16Bdm + E is an 
asymptotically optimal choice for a small E > 0. The al- 
most sure convergence implies convergence in expecta- 
tion, since the random variables here are bounded. How- 
ever, the rate of convergence in expectation is not imme- 
diately implied by the almost sure rate of convergence. 

G iven a sequence of random variables VI, V,, **a and a 
sequence of nonnegative numbers a,, a2;--, the notation 
V, = @a,) a.s. denotes that there exist a positive con- 
stant c and a nonnegative integer-valued random variable 
M such that V, 2 ca, if n 2 M. Using this notation, we 
can state the following corollary. 

Corollary 1: Let Z,, Z,, ... E&J?~ be an i.i.d. source 
that is bounded with probability 1 and suppose an N-level, 
k-dimensional quantizer Qz, N, k is designed to minimize 
the empirical MSE over a training set of m vectors 
Zj,..., Z,,,. Then its MSE for the true source converges 
almost surely as m --+ 00 to the minimum MSE of the best 
quantizer, Qg, k, for the true source, at a rate bounded as 

‘%+n,iv,k ) - A@;,,> = 0 a.s. 

Remarks (Convergence in Expectation): (a) Theorem 1 
also implies that the rate of convergence given in Corol- 
lary 1 holds for convergence in expectation. To see this, 
note that 

ElA@:, N,k > - A@;,,)[ 

4a+ / mPr {htQz,N,k) - A@:,,) > t) dt (12) a 

5 a + 4(2m)N(k+1) (13) 

mN(k+l)-(1/2)-(cZ,‘(512B*)) 1 (14) 

= 16Bdm /z +o(pq. (15) 

Inequality (12) holds for all a 2 0 with equality when 
a = 0. Inequality (13) follows from inequality (10) in The- 
orem 1 along with the substitution u = t&/(16B). In- 
equality (14) follows from the inequality /~e~u2/2 du < 
(l/~)e-‘~/~, Vx > 0, and choosing a = c log m/m, and 
(15) follows from choosing c = 16BJN(kfl). 

(b) Following our proof of Theorem 1, it is also possible 
to obtain the result 

EIA(Q:,N,k > - A(Q;,k)l I cW, k, B)$, (16) 

where the constant c(N, k, B) does not depend on m. To 
derive this upper bound, we have to replace the basic 
Vapnik-Chervonenkis inequality (Lemma 3) by a result of 
Alexander [21] stating that, for mt2 2 64, 

pr sup ;&z&) 
i I 

-Pr{Z,ES,] >t 
0 I I 

_< 16(t&)40g6Vde-2mf*, (17) 

where V, is the so-called Vapnik-Chervonenkis dimension 
of the class {S,: 8 E O}, i.e., the smallest integer m such 
that the shatter coefficient satisfies V(m) < 2”‘. The fact 
that in this case the expected value of the supremum in 
(17) decreases as 1/ & was pointed out in [22]. How- 
ever, the constant c(N, k, B) is so enormous, even for 
small values of N and k, that the bound (16) is worse than 
(15) for any practical values of m. 

(Convergence Almost Surely): (c) It was pointed out [23] 
that one could slinhtlv imnrove our almost sure rate 
O(Jm> in Corollary l’to O(dm) by using 
another result of Alexander [21]. However, in this case the 
constant is not identified, nor is any exact upper bound in 
the form of (10) obtained. 

III. F~TEOFCONVERGENCEINTHESOURCECODING 

THEOREM 

In the previous section, we derived bounds on how 
much the average and sample distortions of the empiri- 
cally designed quantizer of dimension k differ from the 
distortion of the truly best quantizer of the same dimen- 
sion. However, if we are to compare the performance of 
the empirically designed quantizers with the distortion-rate 
bound D(R), we have to estimate the excess distortion 
caused by the finiteness of the quantizer dimension. In 
this section, we establish an upper bound for memoryless 
sources on the rate at which the distortion D,(R) of the 
best k-dimensional quantizer of rate R converges to the 
distortion-rate function D(R). For finite-alphabet i.i.d. 
sources, the problem was addressed by Pile [91, who showed 
a c log k/k-type upper bound on the difference D,(R) - 
D(R). 

Unfortunately, there are no results as strong as Pile’s 
for wide classes of real sources. Sakrison [241 has demon- 
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strated that, for any i.i.d. Gaussian source, there exists 
a sequence of k-dimensional quantizers having MSE 
D(R) + 0(1/k) and normalized output entropy R + 
O(log k/k). For memoryless Gaussian sources, Wyner 
[25] proved that D,(R) - D(R) = O(log k/k), and he 
later showed in [26] that the bound D,(R) - D(R) = 
O(dm) holds for any stationary Gaussian source 
with a spectral density having a Lipschitz-continuous 
derivative. 

Remark: Pile also reported a c log k/k type lower 
bound on the same quantity, but it has been pointed out 
by several researchers that his proof of this lower bound is 
flawed. Thus, at present, finding a lower bound is an open 
question and there is no indication if the O(log k/k) 
upper bound on D,(R) - D(R) is sharp. 

In what follows, we provide a rate of convergence result 
for i.i.d. sources with bounded support but otherwise 
arbitrary distribution. The method of proof is an exten- 
sion of an earlier result of Gallager [27], who showed 
O(dw) rate of convergence for finite-alphabet 
sources. We consider only mean-square distortion; the 
result straightforwardly extends to distortion functions 
p: W ~9 -t,%‘+ such that p(x, x) = 0 and p is bounded 
over compact subsets of s2. 

The distortion-rate function D(R) for the mean-square 
distortion function of a real i.i.d. source Xi, X2, a** is 
defined for R 2 0 as 

D(R) = inf E/X - Y12, 
Y: I(X;Y)sR 

where X has the common distribution of the Xi’s and the 
infimum is taken over all real random variables Y such 
that the mutual information between X and Y is at most 
R. For the definition of the mutual information in this 
case, see [28]. 

Let Xck) = (Xl;--, X,). If ElX,l’ < ~0, the source cod- 
ing theorem for memoryless sources 127, Thm. 9.6.21 as- 
serts that 

D(R) 

= lim Kim 

= ,lilim D,(R), (18) 

where the infimum is taken over all k-dimensional, N-level 
quantizers QN k, with rate (l/k)log N not exceeding R. 
With the notation of the previous section, 

D,(R) = ;A(Q;,,(X’k’)), 

where N = 12kR]. 
For bounded memoryless sources, an upper bound on 

the rate of the convergence in (18) is given in the follow- 
ing theorem. 

Theorem 2: Let Xl, X2, *** be a real-valued i.i.d. source 
that is bounded with probability 1 and has distortion-rate 
function D(R). Then for every R > 0 with D(R) > 0, 
there is a constant c such that, for every k, the difference 
between the per-letter MSE of the best k-dimensional 
quantizer of rate R and D(R) satisfies 

D,(R) -D(R) SC 

The essential condition D(R) > 0 holds for all R > 0 
when Px has a continuous component. The proof of 
Theorem 2 is given in the Appendix and is based on 
Csiszar’s generalization [29] of the parametric representa- 
tion of the distortion-rate function for abstract-alphabet 
sources. 

IV. UNIVERSAL FIXED-RATE LOSSY CODING 

In this section, we apply the previous results to fixed-rate 
universal lossy coding of i.i.d. sources. The notation of 
universality we consider is defined next. 

Definition I: For R > 0, a sequence of pairs of func- 
tions (f,, +,J of the form 

f,: R” + {0, l}‘“R’ and &: {O, l}‘“R’ +zn 

is called a jixed-rate universal source coding scheme of rate 
R with respect to a family of real stationary and ergodic 
sources, if for each source X,, X,, 0.. in the family, the 
n-blocks (Yi, n,**., Y,,,> = $,Jf~(X;**, X,>) satisfy 

i ,$ (Xi - yl,n>2 
I 

= D(k), (19) 
L-l 

where D(R) is the distortion-rate function of the source 
x1, x2, *** . 

In [13], various types of universality of fixed-rate lossy 
source codes are defined and analyzed in detail. Our  
Definition 1 is similar to their “weakly minimax” univer- 
sity. While [131 deals with general alphabets and distortion 
functions, and stationary sources, we restrict our investi- 
gation to memoryless sources, which allows us to obtain a 
stronger result at the expense of lesser generality. 

Ziv [lo] considered stationary sources with metric space 
source and reproduction alphabets such that every 
bounded subset is compact. The distortion criterion was a 
“nice” function of the metric. Under these general condi- 
tions, he gave a construction of a sequence of source 
codes of rate less than or equal to R such that the 
expected distortion converges to D(R) for all stationary 
sources. (Here D(R) = lim, D,(R), where D,(R) is the 
minimum distortion a quantizer of fixed dimension n and 
rate R can achieve.) 

In what follows, we restrict the class of sources to 
memoryless real sources with bounded support, that is, for 
i.i.d. sources such that there exists a bounded set K cg 
such that Pr IX, E K) = 1. We. establish an almost sure 
rate of convergence result for the sample distortion of 
Ziv’s scheme when used on such a source. G iven a se- 
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quence of random variables Vr, V,, a.. and a sequence of 
nonnegative reals a,, a2;**, we say that V, = o(a,> a.s., if 
lim supn --f m  (K/a,> 4 0 a.s. 

Theorem 3: For every rate R > 0, there exists a hxed- 
rate universal source coding scheme for the family of 
stationary and ergodic real sources with bounded support 
that satisfies the following: For any i.i.d. source 
Xi, X2 ,: * *, in this family with distortion-rate function 
D(R) > 0, there is a constant c > 0 such that the differ- 
ence between the per-letter expected MSE and D(R) 
decays as 

~ .~ (Xi - ~l,~>~ 
C-1 

] -D(R) <c/y. (20) 

Moreover, the per-letter sample squared error satisfies 

$ .g (Xi - &I2 -D(R) 
L-l 

s c/r + O( ( T)*‘2mE) a.s. (21) 

for any E E (0,;). 
Here c is a deterministic constant depending only on 

the source statistics and the second term on the right-hand 
side of (21) is a random variable. 

We prove the theorem by constructing a universal 
source coding scheme similar to Ziv’s [lo]. Ziv proved that 
his scheme is universal for the class of stationary and 
ergodic sources. Our  scheme is also universal for the class 
of stationary and ergodic sources, which easily follows 
from Ziv’s proof. In the sequel we will omit the subscripts 
from the positive integers b,, k,, N,, and m,, but they 
always will be understood as functions of n. Now, we are 
prepared to describe the universal schemes that provide a 
constructive proof for Theorem 3. Split the data Xcn) = 
(X1,**-, X,) into k-long blocks Z1;.*,Zm (m = [n/k]>, 
where Zi = (X~i~l)k+l,.**, Xki) is the k-dimensional vec- 
tor formed by the ith block of X’“). Consider the k- 
dimensional quantizer with N code vectors that minimizes 
the empirical distortion over Z,; . ., Z,, namely, 

Q :,,,k = argmin k ,g IlZi - QN,k(zc)112, 
Q  N,k I-1 

and let c0 be a positive number such that K c [-co, co]. 
Quantize uniformly each of the coordinates of the code 
vectors of QL,,, k with b bits, and transmit them. The 
uniform quantizer partitions the interval [-co, co] into 2’ 
subintervals of equal length. Denote the quantized quan- 
tizer by em,,, k, that is, &,,,, is the quantizer whose 
code vectors are the code-vectors of Qz,,,, quantized 
uniformly using b bits per coordinate. Finally, quantize 
the vectors Zi with Qz  N k and transmit them. The re- 
maining letters of Xcn) ‘are not transmitted, and will be 
de*coded as zeros. Observe that to transmit the quantizer 
Q  m,N k (the approximation to the empirically optimal 
quantizer Qz, N, k), we use bkN bits, since each of the k 
coordinates of the N code vectors is quantized with b bits. 

To transmit the Zi’s, we use m log N bits. Therefore, the 
overall per-letter rate is 

mlog N bkN 
y =-f- n n ’ (22) n 

The reproduction value for a block 

will be the code vector of the quantized version of the 
Q :,,, k which is closet to Zi, and zero for X,,,k+l,...,Xn. 
Formally, 

(~i-l)k+l,n,...,Yki,n) = dm,N,k(Zi), for i = l,“‘,m, 

and 
q = 0, for j = mk + l;.., n. 

Our  aim is to choose the parameters k, N, and b (as 
functions of n) such that rn 5 R and the overall per-letter 
distortion converges to D(R) at the fastest possible rate. 
Clearly, a necessary condition for Theorem 3 is that 
k --f 00 and (log N)/k --f R as n --+ to, i.e., the overhead 
bkN/n should become asymptotically negligible. 

Proof of Theorem 3: Assume, for the sake of simplic- 
ity, that a positive constant c,, is known to the receiver for 
which Pr {IX,1 < cO} = 1. O therwise a bound for 
mmW,I;~~, I&J can be transmitted using a constant 
number of bits, and therefore, will not affect the rate 
asymptotically. The overall per-letter sample distortion is 

= --& ,$ ll.Zj - ~~,,,k(zj>l12 + i ,_ I? lxi12 
I-1 r-km+1 

We want to prove that there is a choice of the parameters 
k, N, and b such that (20) and (21) are satisfied while 
r,, I R. In order to show this, we use the following decom- 
position: 

i .e (Xi - yl,nj2 - D(R) 
1=1 

+ ,i -&,@ ;,,,,) - ;k,&?-d) 

+ ;A&$& - $-&k) i 
;A@ ;,,, - D(R) 

In what follows, we give upper bounds for the four terms 
on the right-hand side of (23). For the first term, the 
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boundedness assumption obviously implies By a first-order Taylor expansion of D(R), we have 

(24) 

Therefore, (I/n>c~=k,+illxil12 + 0 a.% if 
k/n + 0. (25) 

For the second term, observe first that by the triangle 
inequality, 

llz - &,,&)l12 
= llz - Q&r&) + Q:,N,k(z) - &&‘f,k(Z)112 

2 llz - Qi,,,, tz>l12 + 2112 - Q ;,N,ktz) 
%?;,~,k(z) - &,N,k(Z)lI 

+ llQ;,N,ktz) - &N,k(z)l12 

5 llz - Q;,N,ktz>l12 

-t 6CofillQ~,N,ktz> - 6;,N,ktZ)Il? a& 

where c,fi is a bound on IlZll (a.s.1. On the other hand, 
since each coordinate of the code vector of 122, N,k is 
uniformly quantized with b bits, 

Therefore, we can bound the second term of (23) as 

;A,,(&,,,,) - $hn@:,~,i) 

-IIZj - QL, N,/c(‘j)I12) 
I 

C()& 0’ I k .g 6c,fi~ = g a.s., (26) 
J-1 

which goes to zero if b + co as n -+ 00. For the third term, 
first we use definitions (1) and (2) to conclude that 

-$&tQ:;,,,)l - ;“@ ;;,k) 

) - ;A,&;,,, 
I 

5 0. (27) 

As for the almost sure statement for the same term, we 
have by Lemma 1 that for every t > 0, 

~tA,(Q~,N,k) - A@$,,)) > t 

I ,-mkzt2/(8kZc;) = e-mt2/(8c,4)e (28) 
Therefore, taking t = l/ p, we get (l/k)p 
(A&?:, N, k > - A(QE,k)) + 0 a.s. for any E > 0 by the 
Borel-Cantelli lemma. 

To handle the last term of (23), write 

~A(Q;,~) - D(R) = 

as (log N)/k + R, where the existence of the derivative 
D’(R) follows from Lemma 5 in the Appendix. Further- 
more, from Theorem 2, we have 

5 (c(N,k) + o(l)) 

(31) 

where c(N, k) depends on N and k. It follows from the 
proof of Theorem 2 that c(N, k) + c2, for some constant 
c2, as (log N)/k + R. Thus we have from (29), (301, and 
(31) that for some constant c3, 

-&(Q;, k) - D(R) 

log N 
i-R-- 

k , (32) 

as N, k + ~0 such that (log N)/k t R. Combining these 
bounds, we have 

LE t’(X, - &)2 1 -D(R) 
n i=l 

+ 2-b + R - 
log N 

k 

and 

~ .~ (Xi - Yl,n)2 - D(R) 
I-1 

+ 2-b + R - 
log N 

k 

+ 0 & a.s. 
i I 

for some constant c4. Now, the parameters are to be 
chosen to minimize this upper bound, subject to the 
constraint 

log N bkN 
r =-+ n k 

- IR. 
n 
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The choices 

k = ;(I - E)logn, 

N = [2k(R-(l/lW n))], b = log log n 

give the desired results, completing the proof. q 
Remarks: (a) By the proofs of Theorem 2 and Theorem 

3, the constant c in (20) depends on the derivative D’(R) 
of the distortion-rate function and the diameter of the 
support of the source. 

(b) It. follows from [lo] that a scheme almost identical 
to what we used in the preceding proof is universal (in the 
sense that the expected squared distortion converges with 
increasing block length to the infimum of the distortions 
of all rate-R quantizers of arbitrary dimension) over the 
class of stationary sources with marginals of finite second 
moment. It is easy to conclude that the scheme we used is 
also universal in the above sense over the class of station- 
ary sources with marginals of bounded support. In fact, if 
we only require universality over the class of all i.i.d. 
sources of bounded support, then a faster convergence 
rate can be achieved [30]. 

Theorem 4: Let Xi;.., X, be n samples from a real- 
valued i.i.d. source that are bounded with probability 
1, and suppose these samples are blocked into k- 
dimensional “training” vectors Zi;.., Z,, where Zi = 
(x(i- l)k+ l,“‘, Xki> and m  = [n/k]. Let Qz,, k be a k- 
dimensional vector quantizer designed to m inimize the 
empirical MSE for the m  training vectors. Then by choos- 
ing k = [(l/R)(l - e)log n], for any E E (0, l), the per- 
letter MSE Of Q;,,,, for the true source, converges to 
the distortion-rate function at the rate 

+,*,.N,t a.s. (33) 

Remark: We can also obtain the same rate of conver- 
gence for convergence in expectation by following the 
same technique as in the remark after Corollary 1. 

V. AVERAGEDISTORTIONOFEMPIRICALLY 
DESIGNEDQUANTIZERS 

The evaluation of the performance of quantizers de- 

Proof of Theorem 4: First we note that if n > mk, 
then the samples Xmk+i;**, X, are not used. Setting the 
quantizer dimension as the logarithm of the sample size is 
not necessarily optimal; it is a choice required by our 
proof technique. 

The left-hand side of (33) can be written as 

signed from a set of training data is a fundamental prob- 
lem of vector quantizer design. Here we give an exact 
upper bound for the case when the source is memoryless 
and of bounded support. 

;A@ :,N;x ) -D(R) = ;A@;,,& - ;A@;,,) 

As defined in (2), let Qz,,,, k be the N-level, k-dimen- 
sional quantizer m inimizing the sample distortion over the 
k-vectors Zi;.., Z,. The usual analysis (see, e.g., [l], [7], 
[3], and [8]), examines the consistency of Qz, ?, k, i.e., the 
convergence of its average distortion to the distortion of 
the optimal quantizer Qg, k. 

+ -$(@,rk) - D(R), (34) 

where, by the rate constraint, we have N < 2kR. We will 
use Theorem 1 to upper bound (l/k)A(Qz,N,k) - 
(l/k)A(Qg,,). Since Zi = (X+r)k+i,“‘, Xki), the condi- 
tions of Theorem 1 are satisfied with B = kc;, and we 
have 

However, a different question of equal importance can 
be addressed. Suppose we are given the n scalar samples 
X1,*-*, X, from a source. What is the m inimal distortion 
(for encoding the true source) over all possible vector 
quantizers, of rate of most R, designed from this training 
set? This problem differs from the previous one in that 
the dimension of the quantizer (and therefore the number 
of quantization levels) is a free parameter that needs to 
be determined. That is, the n samples are to be parti- 
tioned into m  = [n/k] vectors, each of dimension k. 
Clearly, a quantizer of large dimension can produce 
smaller distortion but needs much more training data to 
fit the source statistics properly. As the dimension k 
increases, the number m  of training vectors decreases. 
This in turn decreases the ability to design a quantizer 
from the m  training vectors that will perform well on the 
true source, since the resulting quantizer will tend to 
over-tit the training data. Hence, for a fixed rate R, there 
is a trade-off in determining the optimal vector dimension 
k as a function of the training set size n, between using 
longer blocks for better quantization and using more 

) - i&e:,,) > c 

5 4C2m) N(k+l)ept2/(512c;) . (35) 
For the sake of simplicity, we assume that n = mk in the 
following argument. 

Since both differences in (34) are nonnegative, the 
left-hand side can converge to zero only if (l/k)A(Qz, k) 
- D(R) + 0 as n + ~0. This means that the number of 
quantization levels is of the form N = 2k(R-En), where 
E,, J, 0 as n -+ m . Thus, the right-hand side of (35) equals 

2k(R-c4k+ 1) 
e-tzn/(512kc~) (36) 

It is easy to check that, for any E E (0,l) and 6 E (0, e/4), 
if k = (l/R)(l - e)log n and t = KS, then (36) is 
summable over n, and we have, by the Borel,-Cantelli 
lemma, that 

+?:,,,x ) - ~A(Q;,,) = O(n-“) a.s. (37) 

training vectors for a better fit of the quantizer to the true 
source. The next theorem examines this trade-off and 
gives an upper bound on the rate of convergence of the 
m inimal distortion to the distortion-rate function. 
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Note that for any E > 0, the choice k = (l/RX1 + ~)log n 
makes the sum infinite for fixed t > 0, so that our choice 
of k is the best possible for the given proof technique. 
Setting N = ]2kR] and using Theorem 2 gives 

;AtQ ;,k) -D(R) = 0 (38) 

and we have 

a.s. 

Also note that the order of the term O(n-8) does not 
change for the more general choice N = 2k’R-En), but the 
convergence in (38) can only be made slower. Thus for 
N = 12kR] and k = (l/R)(l - e)log n, we have 

which proves the theorem. 0 
Remarks: (a) There is a certain duality between the 

proofs of Theorems 3 and 4. When proving Theorem 3, 
we were forced by the overall rate constraint to limit the 
quantizer dimension to be proportional to the logarithm 
of the block length. The same choice is made in Theorem 
4, but for a different reason, namely that, for larger k, our 
large deviations inequality does not guarantee that the 
quantizer is well trained. ’ 

(b) It may be possible to improve our convergence rate 
result in a couple of ways. First, if Pile’s upper bound 
could be proven for the nondiscrete case, the square root 
could be eliminated in (33). Second, one might attempt to 
improve the factor 4(2m)N(kf’) in Theorem 1 by exploit- 
ing the fact that not only are the training vectors Z1;*., Z, 
independent, but so are the coordinates themselves. 

(c) Theorem 4 (as well as Theorem 3) could be slightly 
generalized by considering i.i.d. vectors sources, i.e., a 
sequence of independent and identically distributed ran- 
dom vectors (the coordinates need not be i.i.d. random 
variables). It is clear that the methods of proof carry over 
to this setup. Lemma 1 and Theorem 1 apply without any 
change; only Theorem 2 needs to be generalized for i.i.d. 
vector sources. 

APPENDIX 

In the course of the proof of Theorem 2, we will make use of 
Csiszh’s generalization of the parametric representation of the 
distortion-rate curve. The following lemma summarizes some 
general results from [29] adopted here for real-valued sources. 

Lemma 5 (Csiszch [29/j: Let X be a real-valued random 
variable such that EIX12 < m and consider the squared error 
distortion measure. Then for each point (D(R), R) of the distor- 
tion-rate curve, there exists a random variable Y such that 

Z(X;Y) = R and EIX - Yj2 = D(R). (Al) 

Furthermore, the Radon-Nikodym derivative ah, y) of Pxu 
with respect to PxxY is given as 

a(x, y) = CY(X)~-~~~-~I~, tfm 

where s > 0 and a(x) 2 1 satisfy 

/ cr(x)2~“~“-Y~‘P,(di) 5 1, for all y E%l. (A31 

Here - l/s is the derivative of the distortion-rate function at R. 
Remark: When 1x1 is bounded by cs, the same is true for the 

Y achieving the distortion-rate bound in (Al). This is easily seen 
by defining g(y) = ~~~~~~~ co) + cdcy> c,) - cdty < -co)’ where ZA 
is the indicator of the set A. Then we have, for any random 
variable Y, 

and 
EIX - g(Y)12 I EIX - Y12 

ztx; g(Y)) I Z(X,Y). 

The claim now follows because the first inequality is strict when 
Pr {]Y] > co} > 0. Also, recall that the definition of Z(X; Y) in 
this case is given as follows. If Pxv is absolutely continuous with 
respect to PxxY with Radon-Nikodym derivative dP,,/dP,, Y 
= a(x, y), then 

Z(X; Y> = /log ah, y)Px,(dx, dy); 

otherwise Z(X, Y> = ~0. 
Proof of Theorem 2: We follow the classical random coding 

proof of the source coding theorem [27]. Let N = [2k(R+u)], 
where u > 0 will be specified later. Let Al;.., A, be k-dimen- 
sional random vectors, Ai = (Ail;.., Aik), such that the Ajj’s 
are i.i.d. and have the same distribution as the Y which achieves 
the distortion-rate bound in (Al). 

Furthermore, let the collection Al;.., A, be independent of 
x(k) = (xl,..., X,). The vectors Al;.., A, are the codevectors 
of a k-dimensional random quantizer Q  using the nearest- 
neighbor rule. Then by independence, 

D,(R + u) 5 E(D(Q)) 

= 
where the measure P$ is the k-fold product of Px. Now, as in 
the finite-alphabet case, we have an a.s. upper bound on the 
distortion of Q, which is 412; by the above remark. It is easily 
checked that, using the same steps for bounding the right-hand 
side of (A4) as in the proof of the finite-alphabet case (convert- 
ing sums to integrals with respect to the corresponding probabil- 
ity measures>, we get 

D,(R + u) I D(R) + u + 4~; Pr {Y@) +Z Sx~k,] 

+ 4cie-2ku’z, (&j) 

where Yck) = (Yi;.. , Y,), and the pairs (Xi, YJ are i.i.d. with the 
same joint distribution as (X, Y>. The sets S,(k), for xCk) = 
(X1,‘.‘, x,) EzZ~, are defined as 

1 k 
J’k): k ,z log a(Xi,yi) I R + U/2, 

]=l 

xck) - yck’112 I D(R) + u . 
I 
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Here a(nc, y) is the Radon-Nikodym derivative dPxu/dPxx y, or, equivalently, using a base-2 logarithm, 
and we have E[log a(X, Y)] = 1(X; Y). We then get the bound 

Pr {YCk) e Sxc*,} I Pr 
( 

i ,h log U(Xi,Yi) 2 R + u/2 
1 

D,(R) - D(R) I c(1 + o(l)) 
log k 

i-- 
7 , 

]=l 

+ Pr 
where c = c,(l + l/s)ln2, which completes the proof. 

ck) - Y(k)112 2 D(R) + u . 
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At this point, we depart from Gallager’s proof and instead use ees 
Hoeffding’s inequality to give exponential upper bounds on the 
probabilities on the right-hand side of (A6). The second term in 
(A6) is easily handled using the 4~: upper bound on the distor- 111 
tion and Hoeffding’s inequality (6) to get 

Pr $IlX 
( 

ck) - Y@)j1’ 2 D(R) + u 
1 

5 e-ku2/@ci). (A7) 
121 

131 
To apply Hoeffding’s inequality to the first term, we must show 
that ]log a(X, Y)] is a bounded random variable. Here we use [41 

Lemma 5. By (A2), we have log a(x, y) = log a(x) - SIX - y]*, 
where a(x) 2 1. Integrating both sides of (A2) with respect to 151 
P,(dy) yields 

i 1 

-1 
a(x) = j2-‘Ix-YI*P~(dy) , for Px a.e. W3) 161 

But Ix - yl* I 4ciP,, a.e., thus 171 
1 2 ~-s~x-YI~ 2 2-s4G and 1 I a(x) I 2s4ca, [81 

for Px a.e., (A9) 
191 

which gives us 

and hence 
2-“4ci 5 a(X,Y> 5 2”4ca a.s. (Al’3 [IO] 

llog a(x, y)I 2 s4c,2 a.s. (All) 1111. 

Now, Hoeffding’s inequality implies Ml, 
1 k 

LlLl 

k .x log a(& E;:) 2 R + u/2 5 ,-ku2’@256c~~. (A12) 
j=l 1131 

In view of (A5), (A6), (A7), and (A12), we can upper bound 
D,(R + u) as 1141 

D,(R + u) I D(R) + u + 4~;(e-~~~/@“3 
+,-ku2/(s*256cd)) + e-2ku/2. (A13) [ISI 

Putting c, = max{2c,,, sac,‘} and u = c$J/~, we get 

D,(R + c,Jm) - D(R) = (cs + o(l)) 
J- 

y . 
[I61 

(A14) 

1171 
Since - l/s is the slope of the distortion-rate curve at the point 
CR, D(R)), for c,, corresponding to a rate R’ < R we have [I81 
c,. I c,. This means that (A14) also holds when R is replaced by 
any R’ I R. This implies 1191 

D,(R) - D(R - Q/V) I (cs + o(l)) L201 

and it follows from the first-order Taylor expansion of D(R) at [21] 
R, and the fact that D’(R) = -l/s, that 

D,(R) - D(R) I c, 
1221 

for some useful technical comments and corrections. 

REFERENCES 
E. A. Abaya and G. L. Wise, “Convergence of vector quantizers 
with applications to optimal quantization,” SLAM J. A&. Math., 
vol. 44, pp. 183-189, 1984. 
A. Gersho and R. M. Gray, Vector Quantization and Signal Com- 
pression. Boston, Kluwer, 1992. 
D. Pollard, “Quantization and the method of k-means,” IEEE 
Trans. Inform. Theory, vol. IT-28 pp. 199-205, Mar. 1982. 
M. J. Sabin and R. M. Gray, “Global convergence and empirical 
consistency of the generalized Lloyd algorithm,” IEEE Trans. 
Znfomt. Theory, vol. IT-32, pp. 148-155, March 1986. 
P. C. Cosman, K. 0. Perlmutter, S. M. Perlmutter, R. A. Olshen, 
and R. M. Gray, “Training sequence size and vector quantizer 
performance,” in Proc. Asilomar Conf. Signals, Syst. Comput., pp. 
434-438, 1991. 
D. Cohn, E. Riskin, and R. Ladner, “Theory and practice of vector 
quantizers trained on small training sets,” IEEE Trans. Pattern 
Anal. Machine Intell., vol. 16, pp. 54-65, Jan. 1994. 
D. Pollard, “Strong consistency of k-means clustering,” Ann. Stat., 
vol. 9, no. 1, op. 135-140, 1981. 
M. J. Sabin, “Global convergence and empirical consistency of the 
neneralized Llovd aleorithm.” Ph.D. thesis, Stanford Unv., 1984. 
R. Pile, “The transn&sion distortion of a’source as a function of 
the encoding block length,” Bell Syst. Tech. J., vol. 47, pp. 827-885, 
1968. 
J. Ziv, “Coding of sources with unknown statistics-Part II: Dis- 
tortion relative to a fidelity criterion,” IEEE Trans. Znform. Theory, 
vol. IT-18, pp. 389-394, May 1972. 
K. Zeger, A. Bist, and T. Linder, “Universal source coding with 
codebook transmission,” IEEE Trans. Commun., vol. 42, pp. 
336-346, Feb. 1994 
P. A. Chou and M. Effros, “Rate and distortion redundancies for 
universal source coding with respect to a fidelty criterion,” sum- 
mary in IEEE Int. Symp. Inform. Theory, San Antonio, TX, 1992. 
D. L. Neuhoff, R. M. Gray, and L. D. Davisson, “Fixed rate 
universal block source coding with a fidelity criterion,” IEEE 
Trans. Inform. Theory, vol. IT-21, pp. 511-523, Sept. 1975. 
M. B. Pursley and L. D. Davisson, “Variable rate coding for 
nonergodic sources and classes of ergodic sources subject to a 
fidelity constraint,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 
324-337, May 1976. 
B. Yu and T. P. Speed, “A rate of convergence result for a 
universal D-semifaithful code,” IEEE Trans. Inform. Theory, vol. 
39, pp. 813-821, May 1993. 
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector 
quantizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, 
Jan. 1980. 
W. Hoeffding, Probability inequalities for sums of bounded ran- 
dom variables,” 1. Am. Stat. Assoc., vol. 58, pp. 13-30, 1963. 
V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform conver- 
gence of relative frequencies of events to their probabilities,” 
Theory Probab. Appl., vol. 16, pp. 264-280, 1971. 
L. Devroye, “The uniform convergence of the Narayada-Watson 
regression function estimate,” Can. .I. Stat., vol. 6, pp. 1797191, 
1978. 
R. M. Dudley, “Balls in % ” do not cut all subsets of k + 2 
points,” Adv. Math., vol. 31, no. 3, pp. 306-308, 1979. 
K. Alexander, “Probability inequalities for empirical processes and 
a law of the iterated logarithm,” Ann. Probab., vol. 4, pp. 
1041-1067, 1984. 
L. Devroye, “Automatic pattern recognition: A study of the proba- 
bility of error,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, 
pp. 530-543, 1988. 



1740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 6, NOVEMBER 1994 

[23] A. Nobel and R. Olshen, personal communication. 
[24] D. J. Sakrison, “A geometric treatment of the source encoding of a 

Gaussian random variable,” IEEE Trans. Inform. Theory, vol. 
IT-14, pp. 481-486, May 1968. 

[25] A. D. Wyner,  “Communication of analog data from a Gaussian 
source over a noisy channel,” Bell Syst. Tech. J., pp. 801-812, 
May-June 1968. 

[26] A. D. Wyner,  “On the transmission of correlated Gaussian data 
over a noisy channel with finite encoding block length,” Znf. Con&., 
vol. 20, pp. 193-215, 1972. 

[27] R. G. Gallager, Information Theory and Reliable Communication. 
New York, Wiley, 1968. 

1281 T. Berger, Rate Distortion Theoy. Englewood Cliffs, NJ. Pren- 
tice-Hall, 1971. 

[29] I. CsiszLr, “On an extremum problem of information theory,” Stud. 
Sci. Math. Hung., pp. 57-70, 1974. 

[30] T. Linder, G. Lugosi, and K. Zeger, “Fixed rate universal lossy 
source coding and rate of convergence for memoryless sources,” 
IEEE Trans. Inform. Theory, to appear. 


