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Sufficient Conditions for Existence of Binary
Fix-Free Codes

Zsolt Kukorelly and Kenneth Zeger, Fellow, IEEE

Abstract—Two sufficient conditions are given for the existence
of binary fix-free codes (i.e., both prefix-free and suffix-free). Let

be a finite multiset of positive integers whose Kraft sum is
at most 3 4. It is shown that there exists a fix-free code whose
codeword lengths are the elements of if either of the following
two conditions holds. i) The smallest integer in is at least 2,
and no integer in , except possibly the largest one, occurs more
than 2

min( ) 2 times. ii) No integer in , except possibly the
largest one, occurs more than twice. The results move closer to the
Ahlswede–Balkenhol–Khachatrian conjecture that Kraft sums of
at most 3 4 suffice for the existence of fix-free codes.

Index Terms—Lossless source coding, Huffman codes, reversible
codes.

I. INTRODUCTION

FOR each nonnegative integer let denote the set of
all binary words of length , and let denote the set

of all finite-length binary words, including the empty word . In
particular, for . Let (resp., ) denote a
sequence of zeros (resp., ones), with . A binary
code is any finite subset of . The elements of a code are
called codewords. For any two words , let
denote the concatenation of and (where , for all

). The word is called a prefix of and is called a suffix of
. A prefix-free code is a code such that no codeword is a prefix

of any other codeword. A suffix-free code is a code such that no
codeword is a suffix of any other codeword. A fix-free code is a
code that is both a prefix-free code and a suffix-free code. Fix-
free codes are also known in the literature as affix codes (e.g.,
[6]), biprefix codes (e.g., [3]), never-self-synchronizing codes
(e.g., [8]), and reversible variable-length codes (e.g., [18]).

The empty word is a prefix and a suffix of any word in
, and the only prefix-free, suffix-free, or fix-free code that

contains is . For any word , let denote the
length of in bits. For any two codes and , let

In particular, . For any word
and any code , let
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The set is defined similarly. Accordingly

In a fix-free code, any finite sequence of codewords can be
decoded in both directions, thus reducing the decoding time
and/or error propagation. Various properties of fix-free codes
are known [3], [17] and algorithms were given in [6], [9] to
construct a complete fix-free code for a given set of codeword
lengths. Some other studies involving fix-free codes include [2],
[10], [11], [16]. Fix-free codes have been used in the develop-
ment of certain international video compression standards for
robustness to channel errors [4], [7], [13], [15], [19], [22]–[24].
A special case of a fix-free code is a palindromic code (also
called a symmetrical reversible variable-length code), which is
defined as a prefix-free code, all of whose codewords are palin-
dromes. Constructions of such codes were considered in [18],
[20], [21].

If a probability distribution is put on a code such that for
each , the th codeword has probability , then the average
length of the code is defined as

For data compression it is important to minimize the average
length of a code with respect to a probability distribution. For
a given distribution, Huffman codes are prefix codes for which
no other prefix code has smaller average length [5]. However,
Huffman codes cannot in general be decoded in both directions,
making them sometimes less convenient than fix-free codes for
use on a noisy channel. The average length properties of fix-free
codes have been studied in many of the previously cited papers.

Let be a nonnegative mapping defined on the
positive integers. The Kraft sum of is the quantity

The Kraft sum of a code is the quantity

If a code has exactly codewords of length for each ,
then we say the code is an -code. Every -code satisfies

. The support of is denoted

and the elements of are called lengths and each quan-
tity is called the multiplicity of the length . The mapping

0018-9448/$20.00 © 2005 IEEE



3434 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 10, OCTOBER 2005

is called a multiplicity function. For a multiplicity function
, let

Kraft [14] showed in 1949 that every prefix-free code must
satisfy , and for every multiplicity function with

there exists a corresponding prefix-free -code.
The same result holds for suffix-free codes as well. Ahlswede,
Balkenhol, and Khachatrian conjectured in 1996 that an anal-
ogous result holds for fix-free codes, but with the Kraft sum
bound being , instead of . The conjecture is stated as fol-
lows.1

Conjecture I.1 (Ahlswede, Balkenhol, and Khachatrian
[1]):

Let be a multiplicity function.
If , then there exists a fix-free -code.

They proved the conjecture is true in the weaker case when
the Kraft sum is at most . They also proved a converse of the
conjecture, namely, that any Kraft sum bound guaranteeing the
existence of a fix-free code can be at most . There are clearly
fix-free codes whose Kraft sum is larger than (such as the
set of all binary words of a given length, whose Kraft sum is ),
but these do not violate the conjecture. Instead, the conjecture
gives the Kraft bound as a sufficient condition to guarantee the
existence of a fix-free code.

Ahlswede, Balkenhol, and Khachatrian proved their conjec-
ture in the special case where every two codewords either have
the same length or have one codeword at least twice as long as
the other codeword. Since their conjecture was made, several re-
searchers have proven other special cases, although the general
conjecture still remains an open problem. The following propo-
sition is a summary of the known results relating to the conjec-
ture.

Proposition I.2: Let be a multiplicity function.

a) (Kraft [14])
If , then there exists a prefix-free -code.
Conversely, every prefix-free -code satisfies .

b) (Ahlswede, Balkenhol, and Khachatrian [1])
If , then there exists a fix-free -code.
Conversely, for every , there exists a multiplicity
function , satisfying , such that no -code
is fix-free.

c) (Ahlswede, Balkenhol, and Khachatrian [1])
Suppose for every distinct , either ,
or .
If , then there exists a fix-free -code.

d) (Harada and Kobayashi [12])
Suppose .
If , then there exists a fix-free -code.

e) (Ye and Yeung [25])
Suppose .
If , then there exists a fix-free -code.

1The authors in [1] appropriately described this conjecture as “remarkable.”

f) (Ye and Yeung [25])
Suppose .
If , then there exists a fix-free -code.

g) (Yekhanin [26])
Suppose .
If , then there exists a fix-free -code.

h) (Yekhanin [26])
Suppose .
If , then there exists a fix-free -code.

i) (Yekhanin [26])
Suppose there is with
and , such that

If , then there exists a fix-free -code.
j) (Yekhanin [27])

If , then there exists a fix-free -code.

Parts f) and g) of Proposition I.2 were proven by exhaustive
computer searches. In addition to these previous results, Ye and
Yeung gave other conditions for the existence of fix-free codes,
although not in the form of Kraft sum bounds. One such condi-
tion is stated as follows.

Proposition I.3 (Ye and Yeung [25]): For integers
, let be the smallest index with , and

define

If are all positive, then there is a fix-free code
with codeword lengths .

In this paper, we partly prove Conjecture I.1 by considering
two special cases (Theorems II.4 and III.1). In both cases, we
prove that the general conjecture holds if an additional con-
straint is put on the multiplicity function. Our proofs are con-
structive—specific codes are created in each case examined. We
demonstrate that the classes of multiplicity functions for which
our results hold contain many cases not covered by previous
known results.

II. SUFFICIENT CONDITIONS FOR FIX-FREE CODES—PART I

First, some lemmas are given that are used to prove Theorem
II.4.

Lemma II.1: If and are fix-free codes then is a
fix-free code.

Proof: The lemma holds if or . Suppose
now that neither nor contains . Let such that

. Then there exist and such that
and . Suppose is a prefix of . Then is

a prefix of . If then is a prefix of , and
if then is a prefix of , both violations of the
fact that is a prefix-free code. Thus, , but this
implies that and hence, is a prefix of violating
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the fact that is a prefix-free code. A similar argument holds if
is a suffix of .

Lemma II.2: Let and be fix-free codes such that
for all and . Let . Then is

fix-free if and only if the following two conditions hold:

1) any codeword in has a prefix in or no prefix in ;
2) any codeword in has a suffix in or no suffix in .

Proof: By symmetry, it is enough to prove that 1) implies
that is prefix-free. If or , then the
proof is easy. If , then and therefore, or

.
Now let , and suppose that is not

prefix-free. Then there exists and such that is
a prefix of , that is, is of the form . By 1), has a prefix in

, i.e., for some , and thus . Both and
are in . If , then is a prefix of . If ,

then is a prefix of . Both possibilities contradict the fact that
is prefix-free. Therefore, and we conclude that

, which is also a contradiction as and . The
converse of the lemma is easily seen to be true.

Lemma II.3: Let and be binary codes such that
and are fix-free. Let for all
and . Let . Then is fix-free if

the following two conditions hold:

1) any codeword in has a prefix in or no prefix in ;
2) any codeword in has a suffix in or no suffix in .

Proof: The sets and are fix-free since
was assumed to be fix-free. Using Lemma II.2, in the

forward direction, then implies that any codeword in has a
prefix in or no prefix in , and has a suffix in or no suffix
in . Therefore, using Conditions 1) and 2), the fact that
is fix-free (since and have equal length codewords), and
Lemma II.2 in the backward direction, we have that

is fix-free.

Theorem II.4: Let be a multiplicity function such that
, and for all . If ,

then there exists a fix-free -code.
Proof: If , then the theorem holds by

Proposition I.2, part d). Assume now .
First, we construct a fix-free code with Kraft sum equal to

, that has codewords of length , for all .
Then we use the code to construct a fix-free code that has

codewords of length for all , and whose Kraft
sum satisfies . Such a code has

codewords of length . Finally, we delete code-
words of length from , to obtain a fix-free -code.

Define the sets

The set is fix-free (constant-length codewords) and
is fix-free as well. Therefore, the code is

fix-free by Lemma II.1 and consists of words of length
for . The words of are all of length ,

and thus is fix-free. We have

and therefore the Kraft sum of is

It can be seen that no codeword of is a prefix or
a suffix of a word in . Therefore, is fix-free.

Let be a subset of containing
words of length , for each . Let be a set of at

least

words of length , none of which are in . By removing the
words of from and adding the words of to

, we create the code

The Kraft sum of is at least as large as the Kraft sum of
and thus is at least , and has words of length for

. It remains to choose and in such a way
that is fix-free. Lemma II.3 guarantees that is fix-free if
the following two conditions hold:

1) each word in has a prefix in or no prefix in
;

2) each word in has a suffix in or no suffix in
.

A. For each satisfying , proceed
as follows. Include in any words of the
form , where . For each of
these words, include in :

— the words of the set

These words have a prefix in . They also have no
suffix in because they end with
for some whereas the words in

end with for some .
— the words of the set

These words have a suffix in , and they have no
prefix in because they begin with .
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B. For each satisfying
and , proceed as follows. Include in
any words of the form , where

, that have a in the
th bit from the left. (There are such words, and

.) For each of these words, in-
clude in

— the words of the set

These words have a suffix in , and they have no
prefix in because they begin with .

— the words of the set .
These words have a prefix in . They have no suffix
in because they have a in position

, and thus end with for some
whereas the words in

end with for some .
C. For each satisfying

and , proceed as follows. Include in
the words of the form , where

, that have a in position .
For each of these words, include in the same words as
in Part B. Also, include in any words
of the form that have a in
position . For each of these words, include
in the words of the set

. As in Part B, these words have a suffix in
and no prefix in .

By Lemma II.3, we conclude that is fix-free. The size of
is (with sums whose lower limit is larger than their upper limit
taken as )

TABLE I
FIX-FREE CODES FOR THE TWO CASES OF m SATISFYING

l = 2;m(2) = 1;m(3) � 1; AND l = 4. THE TOP ROW

SPECIFIES THE MULTIPLICITY FUNCTION m

III. SUFFICIENT CONDITIONS FOR FIX-FREE CODES—PART II

Theorem III.1: Let be a multiplicity function with
for all .
If , then there exists a fix-free -code.

Proof: We consider eight cases. The notation
will be used to mean for

.

.
The existence of a fix-free code follows from
Proposition I.2, part h).

and .
The existence of a fix-free code follows from
Proposition I.2, part i).

.
The existence of a fix-free code follows from
Theorem II.4.

and .
The existence of a fix-free code follows from
Proposition I.2, part i).

and .
Then and the theorem holds by
Proposition I.2, part d).

and .
There are only two possibilities, and for each of
these two cases a fix-free code is given in Table I.
Only the case where the Kraft sum exactly equals

is shown in Table I. If the Kraft sum is less
than then the desired -code is a subcode of
one of the two codes listed in Table I, formed by
deleting some codewords of length .

, and .
There are six possibilities for , and for each of
these a fix-free code is given in Table II. As in
Table I, all of the codes in Table II have Kraft
sum exactly equal to , and codewords of
length can be removed to obtain codes with
smaller Kraft sums.

, and .
We prove this lengthy case by constructing a
fix-free code that has codewords of length

for all and a Kraft sum of at least .
Define the set

and notice that it is a fix-free code.
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TABLE II
FIX-FREE CODES FOR THE SIX CASES OF m SATISFYING l = 2;m(2) = 1;m(3) � 1; AND l = 5. THE TOP ROW

SPECIFIES THE MULTIPLICITY FUNCTION m

We first construct a fix-free code for the case where
and for . Then we use to

construct a fix-free code satisfying the conditions of Case 8,
and with Kraft sum at least . Then, as in Theorem II.4, some
codewords of length can be removed from to ensure
there are such codewords. Define

The code has one codeword each of length and and two
codewords of length for . All codewords of
have length and . Therefore, the Kraft
sum of is

Also, no codeword of is a prefix or a suffix of a codeword
in . Therefore, is fix-free.

We now construct a fix-free code from . Let be a subset
of containing codewords of length and
codewords of length for . Let be a set con-
taining at least

words of length , none of which are in . By removing the
words of from and adding the words of to , we create
the code

Such a set has a Kraft sum at least as large as the Kraft sum
of and thus at least , and has words of length
for . It remains to choose and in such a way

that is fix-free. Lemma II.3 guarantees that is fix-free if
the following two conditions hold:

1) each word in has a prefix in or no prefix in ;
2) each word in has a suffix in or no suffix in .

We first choose .
If , then include in the word . For

• if then include in the word ;
• if then include in the words and

.
The set is then constructed as follows.

• Include in the words of the set

These words have neither a prefix nor a suffix in .
• For each word in , for , include

in
— the words of the set

These words have a suffix in and no prefix in ;
— the words of the set

These words have a prefix in and no suffix in .
• For each word in , for , include

in
— the words of the set

These words have a suffix in and no prefix in ;
— the words of the set

These words have a prefix in and no suffix in .
• For each word in , for , include

in
— the words of the set
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These words have a suffix in and no prefix in ;
— the words of the set

These words have a prefix in and no suffix in .
• For each word in , for , include

in
— the words of the set

These words have a suffix in and no prefix in ;
— the words of the set

These words have a prefix in and no suffix in .
• If contains the word , include in

— the word . This word has a suffix in and
no prefix in ;

— the word . This word has a prefix in and
no suffix in .

• If contains the word , include in
— the word . This word has a suffix in and

no prefix in ;
— the word . This word has a prefix in and

no suffix in .
• If contains the word , include in

— the word . This word has a suffix in
and no prefix in ;

— the word . This word has a prefix in
and no suffix in .

• For all , if and contains
and , then include in

— the words of the set

These words have both a prefix and a suffix in .
• For all if and contains

and , then include in
— the words of the set

These words have both a prefix and a suffix in .
• For all , if and contains

and , then include in
— the words of the set

These words have both a prefix and a suffix in ;
— the words of the set

These words have both a prefix and a suffix in .

• For all , if and contains
and , then include in

— the word . This word has both a prefix
and a suffix in .

• For all , if and contains
and , then include in

— the word . This word has both a prefix
and a suffix in .

• For all , if and contains
and , then include in

— the word . This word has both a prefix
and a suffix in ;

— the word . This word has both a prefix
and a suffix in .

By Lemma II.3, is fix-free. It remains to prove that

Order the elements of

and

and of

and

and then denote them by and , respectively.
Note that

Then

Recall that

We have
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After some manipulations, one sees that

if and only if , where

(3.1)

We prove in the Appendix that . This completes the proof
of Case 8 and hence of Theorem III.1.

IV. NEW CODES FROM THEOREM II.4

Theorem II.4 constructs codes that establish sufficient con-
ditions for the existence of fix-free codes. Such codes include
new fix-free codes that have not been accounted for in prior lit-
erature. As an example, we next demonstrate that a subfamily of
fix-free codes given by Theorem II.4 was not implied by Propo-
sitions I.2 and I.3.

By Theorem II.4, for each , there exists a fix-free
-code satisfying

if
if
if

It can be verified that these codes are not implied by either
Proposition I.2 or Theorem III.1. We now prove that they are
also not implied by Proposition I.3.

Let and be integers such that , and
. Then , and

Note that in the multiset

each element of

appears exactly 16 times. Therefore, for each satisfying
, the multiset
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contains occurrences of the number . Thus,

and therefore,

From this it follows that if and only if

Since was chosen to satisfy , there exists an
that makes , provided that

or, equivalently, if .
Therefore, for all , we have and hence, the sup-

position of Proposition I.3 is not satisfied. This demonstrates
that Proposition I.3 does not anticipate the fix-free codes con-
structed in Theorem II.4.

V. NEW CODES FROM THEOREM III.1

Analogous to Section IV, we demonstrate here that The-
orem III.1 constructs new fix-free codes that have not been
accounted for in prior literature. As an example, we next
demonstrate that a subfamily of fix-free codes given by The-
orem III.1 was not implied by Propositions I.2 and I.3.

By Theorem III.1, for each , there exists a fix-free
-code satisfying

if
if
if
if

It can be verified that these codes are not implied by either
Proposition I.2 or Theorem II.4. We now prove that they are
also not implied by Proposition I.3.

Let and be integers such that

and

Then

and

Note that in the multiset

the pair appears once, each element of

appears twice, and each element of

appears four times. Therefore, the multiset

and

contains one occurrence of the number , four occurrences of
the number , and occurrences of the number , for

. Thus,

and therefore,

From this it follows that if and only if

or, equivalently, if .
Therefore, for all , we have and hence, the sup-

position of Proposition I.3 is not satisfied. This demonstrates
that Proposition I.3 does not anticipate the fix-free codes con-
structed in Theorem III.1.

APPENDIX

PROOF OF , WITH DEFINED IN (3.1)

We first prove two more general inequalities. The inequality
in (3.1) is then a special case of one or the other, depending on
the parity of .

Lemma 1: Let and be integers with . Let
and be sets of nonnegative integers, such that

for all , and . Then ,
where
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(A1)

Proof: First, note that

The expressions for and for the mixed elements are similar.
Let (resp., ) be the number of occurrences of the number

in (resp., in ). Note that because , we
have for all . Then we can write

which we write as , or
simply as .

We show that by induction. If , then
since , and therefore,

Now, let . Then

if
if
and
if

since .
Let and assume that . We now consider the

three cases separately.
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and

For this case we consider the ’s and ’s as
real variables, and by differentiating , we will
show that is monotonic nonincreasing in each
variable, and thus achieves a minimum on the
boundary (i.e., when all the variables equal ).
The minimum value of is shown to be zero,
which will establish . Various useful
derivatives are

if
if

if
if

if
if

and similar expressions exist for the derivative
with respect to of the quantities containing
only ’s. For the quantities containing both ’s
and ’s

if
if

if
if

Thus, for
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Since , the first term in
every sum disappears, giving

and similarly . Furthermore

Thus, for is mini-
mized in the cube

when
. At this minimum

Lemma 2: Let and be integers such that .
Let and be finite sets of nonnegative integers, such that

for all , and . Then ,
where

(A2)

Proof: The proof is essentially the same as the one of
Lemma 1.

We are now ready to prove (3.1).

Corollary 3: Let , and let and be finite lists
of integers, with and , in
which each integer occurs at most once, and .
Then .

Proof: First let . We extract from the sums each
occurrence of and obtain

Now suppose . If is even, set and
use Lemma 1 with in (A1). If is odd, set

and use Lemma 2 with in (A2).
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