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On the Capacity of Two-Dimensional
Run-Length Constrained Channels

Akiko Kato, Member, IEEE, and Kenneth Zeger,Senior Member, IEEE

Abstract—Two-dimensional binary patterns that satisfy one-
dimensional (d; k) run-length constraints both horizontally and
vertically are considered. For a givend and k, the capacityCd; k
is defined asCd; k = limm;n!1 log

2
N

(d; k)
m;n =mn, where N (d; k)

m;n

denotes the number ofm � n rectangular patterns that satisfy
the two-dimensional(d; k) run-length constraint. Bounds onCd; k
are given and it is proven for everyd � 1 and every k > d that
Cd; k = 0 if and only if k = d+ 1. Encoding algorithms are also
discussed.

Index Terms—Channel capacity, optical storage, run-length
coding, two-dimensional codes.

I. INTRODUCTION AND MAIN RESULTS

A one-dimensional binary sequence is said to satisfy a
-constraint if there are at most ’s in the row

and the number of ’s between any pair of consecutive’s is
at least . The one-dimensionalcapacity is defined as

where is the number of binary patterns of lengthon
a line that satisfy the -constraint. The one-dimensional
capacity is known to be the logarithm (base) of the
largest real root of the equation

for , and it is known that
for (see, e.g., [1] and [10]). Therefore, for every
nonnegative integer, the one-dimensional capacity is
positive for all . A two-dimensional binary pattern of’s
and ’s arranged in an rectangle is said to satisfy a two-
dimensional -constraint if it satisfies a one-dimensional

-constraint both horizontally and vertically. We call such
patternsvalid. The two-dimensional -capacityis defined
as
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where denotes the number of valid patterns on an
rectangle. It is trivial to see that for all ,
and hence we assume throughout this paper. Note that
the definition of -constraints implies monotonicity of the
capacity in each variable, namely,

for (1)

for (2)

Thus in particular, . The two-
dimensional capacity is important for certain digital recording
applications, and has recently become the focus of increased
study.

In this paper we derive various upper and lower bounds
on , and in particular demonstrate the curious result that
for every , the two-dimensional capacity equals zero
if and only if . The two-dimensional capacity has
been mentioned previously in the literature, but a concise and
complete proof of its existence appears to be lacking. For the
sake of completeness we provide such a proof in the Appendix.

While there have been numerous studies of one-dimensional
constrained codes, far fewer results have appeared concerning
two-dimensional codes. Marcellin and Weber introducedmul-
titrack -constrained binary codesin [9]. In an -track

-constrained binary code, the-constraint is required
to be satisfied one-dimensionally on each track, but the-
constraint is required to be satisfied only by the bitwise logical
“or” of consecutive tracks. Orcutt and Marcellin [15] com-
puted capacities ofredundantmultitrack -constrained
binary codes, which allow only some fixed-size subset of the
tracks (redundant tracks) to be faulty at every time instant. For
the case of , those capacity bounds were derived by Vasic
[22]. Erxleben and Marcellin [4] examined error-correcting
one-dimensional -constrained binary codes for multi-
track -constrained codes; they constructed multitrack

-constrained codes having better rates and better error-
correcting capabilities than those previously known. Etzion [5]
obtained results on mergings of two-dimensional patterns that
satisfy both a -constraint horizontally and a -
constraint vertically, and discussed the Hamming distances
of such two-dimensional patterns. Weeks and Blahut [23]
calculated numerical bounds on the capacity of various two-
dimensional non-“run-length” constrained systems and used
a Richardson extrapolation to obtain conjectures for tighter
bounds.

In contrast to the one-dimensional capacity , there is
little known about the two-dimensional capacity . It was
shown by Calkin and Wilf [3] that exists and is bounded
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as . Siegel and Wolf [18] used
“bit stuffing” techniques to map one-dimensional sequences
onto diagonals in the plane in order to create two-dimensional

and constrained codes. Ashley and Marcus [2]
recently discovered the surprising result that . That
is, for the -constraint, effectively no positive amount of
information can be stored per bit written in two dimensions.
In the present paper, we generalize this result and show that

if and only if , for all . Numerous
bounds are also given.

We are confident that some of the bounds in this paper can
be improved upon by future researchers. Our motivations for
presenting these bounds are that they are analytically aesthetic,
the derivations are interesting, and in most cases no previous
bounds were published or known.

The main results of this paper are Theorems 1–8 and
Corollaries 1–4, which are stated below. Their proofs are given
in Section II.

Theorem 1: For every positive ,

Theorem 2: If , then

(3)

where . It can be seen from (3) (by taking )
that for all such that , since

even

odd

which is positive for all . Combining this fact with
Theorem 1 gives a characterization of which -constraints
induce nonzero capacities.

Corollary 1: For every and every ,

Fact 1. .
Fact 1 holds since the two-dimensional -constraint

is equivalent to the two-dimensional -constraint, by
interchanging the roles of and . From Fact 1 and the
monotonicity in (1), it immediately follows that ,
for all . Theorem 3 gives a stronger lower bound on

; this lower bound approachesas . The bounds
in Theorems 3–5 are given in terms of the quantity ,
whose value was determined to within by Calkin
and Wilf [3].

Theorem 3: For every positive integer,

(4)

In [20] and [21], Talyansky, Etzion, and Roth provided an
encoding algorithm for generating “conservative arrays.” As a
special case, their algorithm generates two-dimensional binary
patterns that do not contain more thanconsecutive ’s or
’s, which yields the lower bound

(5)

The lower bound in (5) appeared in [19] (in Hebrew) for
and is stronger than the lower bound in (4) for all . The
proof technique of Theorem 3 is, however, interesting in its
own right and may lead to future ideas for improving bounds.

Theorem 4: If and are positive integers such that
is an even integer, then

(6)

The inequality in (6) is valid whenever .
The right-hand side of (6) gives a lower bound on for
all by the monotonicity
in (1). Thus Theorem 4 actually gives a lower bound on
for all and .

Note that as the lower bound in (6) approaches
. The following theorem gives a tighter

lower bound for than the limiting inequality of (6).

Theorem 5: For every ,

(7)

Theorem 6 below tightens the lower bound in Theorem 5 if
and only if , but is less analytically attractive.

Theorem 6: For every , see (8) at the bottom of this
page, where .

Corollary 2: The lower bound in Theorem 6 is stronger
than the lower bound in Theorem 5 if and only if .

Theorem 7: For every positive integer,

(9)

(8)
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Theorem 8: For every positive integer,

The first upper bound in Theorem 8 is twice the value of the
term inside the maximization in (8) when , and becomes
the trivial upper bound for .

Note that since

whenever , the lower bound
in (5) implies that

for all sufficiently large , which was seen in [19]. Combining
this with Theorem 7, gives asymptotic bounds on how fast
(as grows) the capacity approaches for the -
constraint.

Corollary 3: For sufficiently large ,

(10)

It is interesting to note that the one-dimensional capacity
is known to converge to one (as grows) at the rate

. Corollary 4 follows from Theorems 6 and 8,
and it shows that decays to zero (as grows) exactly
at the rate . The one-dimensional capacity is
known to decay to zero (asgrows) exactly at the same rate

.

Corollary 4:

II. PROOFS OFRESULTS

The set of integers is denoted by, and denotes the two-
dimensional integer lattice. Atwo-dimensional binary code
on is a set of distinct mappings , and
each mapping is called acodeword. Given a codeword , for
each point we call the value the label of

(under ), and for any set the set of labels of
the points of is called thelabelof (under ) and is denoted
by . When no confusion results, the label of may be also
referred to as a codeword. If all the codewords insatisfy
the -constraint, we say that is a -constrained
binary codeon . A subset of is called arectangleif it
can be written in the form

Fig. 1. Example of3 � 3 adjacent matrices of(3; 5)-constrained code on
S
(7; 11)
(0; 0) .

for some integers , and we denote this set by .

A rectangle of the form is called asquare and is

denoted by .

Note that, given a two-dimensional binary codeon ,
the label of any square under can be viewed
as a binary square matrix. Let denote consecutive ’s. If
the pattern occurs as a label of a horizontal line segment

of length for some
integers and , then we call the binary square matrices

and the adjacentmatrices of the
pattern. Fig. 1 shows an example of the two adjacent matrices
of an occurrence of in a -constrained binary code.
Similarly, if the pattern occurs as a label of a vertical
line segment of length

for some integers and , we call the binary square
matrices and the adjacentmatrices of

the pattern.
A square matrix is apermutation matrixif there is ex-

actly one in each row and also in each column, and all
other components are’s. If all the antidiagonal components

are ’s in a permutation
matrix then is called ananti-identity matrix.
A subset of is called adiagonal of width if it can be
written in the form
for some integer . Similarly, a subset of is called an
antidiagonal of width if it can be written in the form

for some integer .
For nonnegative integers , we use the notation

to indicate that and we use the notation
to mean and (i.e.,

). Finally, for any given collection of
valid codewords on an rectangle, we call the quantity

the coding rateof the collection.

A. Proof of Theorem 1

It is already known that [2]. Hence we will prove
Theorem 1 for in what follows. (Our proof of Theorem 1
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does not directly specialize to , but a slight modification
does.)

Before giving the formal proof of Theorem 1 we give a
brief intuitive description of the proof in order to facilitate
an understanding of the rigorous details. The main idea in
showing that the capacity is zero when is to
show that the number of valid patterns in a rectangle grows
subexponentially as a function of the area of the rectangle.
That is, the ratio of the growth exponent to the area of the
rectangle tends to zero as the rectangle’s area grows without
bound. As an example, the capacity is zero if every bit of
information stored in a large square requires, for example, an
amount of storage space that is linear in the side length of the
square, instead of constant in the side length.

Our proof of Theorem 1 first looks for any occurrence
of the pattern in the plane and then inspects the two
corresponding adjacent matrices. First it is shown that these
adjacent matrices must equal each other and must be permuta-
tion matrices. Then two cases are considered: a) the adjacent
matrices are neither the identity matrix nor the anti-identity
matrix or b) the adjacent matrices are either the identity
matrix or the anti-identity matrix. In case a) it is shown that
the -constraint forces the label of all of to be
completely determined so that there is no freedom for choosing
any bits beyond the choice of the permutation matrix. In case
b) it is shown that the bits that appear on any horizontal or
vertical line in completely determine the rest of the choice
of bits in , since every occurrence of or forces
the existence of an infinite diagonal or antidiagonal of width
at least . Hence, each bit of stored information occupies an
amount of area in a square that grows linearly, instead of
constant, with the length of the side of the square. We conclude
that the combined number of patterns that can be stored in a
rectangle due to cases a) and b) is not enough to achieve
positive capacity.

Conversely, to prove that the capacity is nonzero for
, we demonstrate codes that achieve nonzero coding rates.

Lemma 1. Let . For any -constrained binary
code on , if the pattern occurs either horizontally or
vertically in a codeword then its adjacent matrices are
permutation matrices and are equal to each other.

Proof: Without loss of generality, we can assume that
the pattern occurs horizontally as the label of the line
segment . Let be
a codeword in a -constrained binary code on
such that (and thus

for ). Therefore, for each
there must exist an

such that , for otherwise would occur on the
horizontal line . Also, for each there
can be at most one such that .
Hence the adjacent matrix is a permutation matrix.

Let be the unique permutation of such that
for . We will show that

for all . We
have since for

and ; the former

Fig. 2. Example of Lemma 2(d = 7): A (7; 8)-constrained binary code-
word whose7 � 7 adjacent matrices of any1071 pattern are neither the
identity nor the anti-identity matrix.

follows from for , and
the latter from . Thus the statement
is true for , and a straightforward induction argument
shows that it is also true for which
completes the proof.

Lemma 2. Let . Any -constrained binary
code on has at most distinct codewords that
contain the pattern , and whose adjacent matrices
are neither the identity matrix nor the anti-identity matrix.

Fig. 2 shows an example of the statement of the lemma,
and Fig. 3 is useful for following the steps in the proof. In
Fig. 2, the set and the sets whose labels are the same

as are shown as square areas surrounded by thick lines
(including the boundaries), whereindicates that the label of
the point is ; otherwise the label of the point is. (We adopt
this convention in all the figures in this paper.)

Proof: Given a -constrained binary code on
, assume that is a codeword such that

and is neither the identity
matrix nor the anti-identity matrix. It suffices to prove that

, for then Lemma 1 forces the
remainder of to be labeled in repeated patterns of adjacent
matrices, i.e., the label of the whole space is uniquely
determined by the label of the square .

Let be a permutation of such that
for , (as given in the proof of

Lemma 1). Either or , so assume without
loss of generality that . For all such
that , we have , since
and for such ’s. Also, we have ,
since and ,
and we have , since . Therefore,

(for otherwise occurs vertically) and
hence because . Together with the
fact that for all , this implies
that (for otherwise occurs horizontally).
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Fig. 3. Illustration of the proof of Lemma 2 for the cased = 7; r = 4.

It thus remains to be shown that . Let
, i.e., the th row is the

first row from the top of the adjacent matrix that differs
from the identity matrix. If then
follows by symmetry from an analogous argument to the proof
in the preceding paragraph that showed . So
assume .

First we show that

for (11)

by induction on . (These points are indicated in Fig. 3 as
the circled black discs below the-axis.) For we have

since for
and also for , because for these ’s, and
because and

(the last equality follows from Lemma 1 combined with
the assumption ). Now assume
the induction statement is true up to and including

. Then for
and for . More

precisely, for the equality
follows since for these ’s by the assumption

and the definition of ; for it follows since
; for it follows from the

induction hypothesis; for it follows since

by Lemma 1 and . Hence we have
(for otherwise appears

vertically), completing the induction argument for (11).

From (11) and the definition ofwe have
for

such that . More precisely, for

the equality follows since for these ’s by the
definition of ; for it follows since ;
for it follows from (11), indicated
by the third type of circle in Fig. 3; for it follows
since by Lemma 1.
Therefore, since by definition, we must have

(12)

for otherwise appears vertically.
Now we will show that

for
(13)

by induction on . (These points are indicated in Fig. 3 as
the circled black discs in the upper-right corner.) For
we have for otherwise
would appear horizontally, since for

(because )
and for by (12). Now assume the statement is true
up to and including , for . Then
for

since , and

since (by the induction hypothesis
for ). Therefore, to avoid occurring horizontally, we
must have

completing the induction argument.
In particular, we have so that

. Thus since for
we must have to avoid a horizontal .

It is concluded that in a -constrained binary code
on , the number of distinct codewords
such that and the adjacent matrix

is neither the identity matrix nor the anti-identity
matrix is at most . There are choices of

for which a codeword satisfies
, and there are choices

of for which .
Therefore, a -constrained binary code on can have
at most distinct codewords that con-
tain the pattern , and whose adjacent matrices are
neither the identity matrix nor the anti-identity matrix.

Note that the proof of Lemma 2 implies that if a -
constrained binary codeword on contains the pattern ,
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Fig. 4. Example of a(3; 4)-constrained binary codeword onS(6; 4)
(0; 0) that

cannot be extended toZZZ2. If one more row is appended below the rectangle,
it must be a binary pattern of the form100X00, but bothX = 0 andX = 1
violate the horizontal(3; 4)-constraint.

and whose adjacent matrices are neither the identity matrix
nor the anti-identity matrix, then it is forced to be a -
constrained codeword. In other words, such a codeword cannot
contain horizontally nor vertically, in spite of the

-constraint.
To determine the capacity we need an analog of

Lemma 2 for two-dimensional -constrained binary
codes on aboundedrectangle rather than all of . Given
integers , a two-dimensional -constrained
binary code on is a set of distinct mappings

that satisfy the -constraint. That is, every codeword
(i.e., the label of under every ) satisfies the

-constraint. Note that a -constrained binary
code on might not be extendible to . Fig. 4 shows

an example of a -constrained binary code on

that cannot be extended to . In [11] related nonextendable
patterns are discussed.

Corollary 5. Let and . Any -
constrained binary code on has at most

distinct codewords such that the pattern is contained in
and its adjacent matrices are neither

the identity matrix nor the anti-identity matrix.
Proof: The number of points contained in the

rectangle but not contained in the

inner rectangle is

There are at most labels of these points.
From Lemma 2 (whose proof does not use points farther than

from the inner rectangle) there are at most
valid labels of the inner rectangle, completing the proof of the
corollary.

Fig. 5 shows an example of Corollary 5 for
.

Fig. 5. Example of Corollary 5(n = 23; m = 19; d = 3).

Lemma 3. Let . For any -constrained binary
code on , if the pattern occurs in a codeword and
its adjacent matrices are identity (respectively, anti-
identity) matrices then the pattern is contained in an
infinite diagonal (respectively, antidiagonal) of width .

Proof: Let be a codeword in a -
constrained binary code on such that

and is the identity matrix. It suffices to
show that . Since
for and also for and , we
have . Therefore, because

and for .

Fig. 6 shows an example of Lemma 3 for , and the
proof is also illustrated in Fig. 7.

Corollary 6. Let . For any -constrained bi-
nary code on , a codeword cannot have occurrences of both
the identity and the anti-identity matrices as adjacent matrices
of different patterns.

Proof: In light of Lemma 3, if the pattern occurs
on with its adjacent matrices being the identity matrix,
and the pattern also occurs somewhere else on with
its adjacent matrices being the anti-identity matrix, then the
diagonal strip of width that contains the former
pattern and the antidiagonal strip of width that contains
the latter pattern intersect somewhere on . This is a
contradiction.

Remark 1. Let . In view of the proof of Lemma 2,
for any -constrained binary code on , a codeword
cannot have occurrences of both the identity matrix and any
other matrix as adjacent matrices of different patterns.
Similarly, a codeword cannot have occurrences of both the
anti-identity matrix and any other matrix as adjacent matrices
of different patterns.
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Fig. 6. Example of Lemma 3 (d = 7).

Fig. 7. Illustration of the proof of Lemma 3 for the cased = 7.

Lemma 4. Let . Suppose that a codeword in a -
constrained binary code on has the property that every

pattern has identity (anti-identity) matrices as its adjacent
matrices. Then, given the label of any infinite horizontal strip
of width , the codeword is uniquely determined.

Proof: Without loss of generality assume we are given
the label of the integers on the-axis and that every occurrence
of induces (via Lemma 3) a diagonal of width .
Further assume without loss of generality that the sequence

occurs on the horizontal line segment from
to . The sequence induces a diagonal of width

, and therefore the sequence induces a diagonal
of width . This follows because eachon the diagonal

forces ’s to the right (if only ’s
followed then another diagonal of width would result,
forcing a in position ). This argument can easily
be extended using induction to show that all occurrences of

Fig. 8. Illustration of the proof of Lemma 4 for the cased = 5.

on the -axis induce diagonals of width (see
Fig. 8).

The following corollary is an analog of Lemma 4 for
-constrained binary codes on .

Corollary 7. Let and . Given a
-constrained binary code on , suppose that

a codeword has the property that every pattern in
has identity (anti-identity) matrices as its

adjacent matrices. Then, given the labels of the horizontal line
segments

and

the label of in the codeword is uniquely
determined.

Proof: In view of Lemma 4, if the label of is given
then the label of the set

is uniquely determined. Furthermore, if the label of the set
is given and is consistent with the label of under

the -constraint, then it additionally determines the
label of the set

This completes the proof.

Fig. 9 shows an example of Corollary 7 for
.

Corollary 8. Let and . Any
-constrained binary code on has at most

distinct codewords in which every
pattern in has the identity (anti-

identity) matrix as its adjacent matrices.
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Fig. 9. Example of Corollary 7(n = 23; m = 19; d = 3).

Proof: Immediately follows from Corollary 7, since we
have choices for the labels of the horizontal
line segments and , and also in , there are at most

grid points in the rectangular annulus
of width , as in the proof of Corollary 5.

Lemma 5. Let . Any -constrained binary
code on has at most codewords that do not
contain the pattern .

Proof: Any codeword in a -constrained binary
code that does not contain the pattern on is uniquely
determined by the label of a square,
which must be a permutation matrix. There are such
matrices.

The following corollary immediately follows from the proof
of Lemma 5 for -constrained binary codes on

, since or can be chosen arbitrarily for at most

locations in .

Corollary 9. Let and . Any -
constrained binary code on has at most

distinct codewords that do not contain
the pattern in .

Proof of Theorem 1:For sufficiently large and , Re-
mark 1 holds for any -constrained binary code on the
bounded rectangle . Therefore, combining Corollaries

5, 8, and 9, any -constrained binary code on
has at most

distinct codewords; this number is smaller than
for sufficiently large . Hence we have

B. Proof of Theorem 2

Lemma 6: Let and be nonnegative integers such that
is positive and even. Let ,

, , and let be the set
of all block-diagonal matrices of the form

...

where each is a permutation matrix, is an
permutation matrix, and all the elements not specified are
’s. If a mapping satisfies

whenever , then is a -constrained
codeword.

Proof: By symmetry, it suffices to show that if

then can be any element of without violating
the -constraint. If

then for the label of the rectangle (i.e.,

rows through of ), is of the form

where is the rectangular matrix, all of whose
elements are’s, and and are permutation matrices.
Therefore, the number of consecutive’s between any pair of
two horizontally consecutive’s in is at least and
at most . Similarly, the label of the
rectangle is of the form

where and are permutation matrices. Therefore,
the number of consecutive’s between any pair of two
horizontally consecutive’s in is at least

and at most

This completes the proof.
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Proof of Theorem 2:Let be a -constrained bi-
nary code on consisting of all mappings given in the
statement of Lemma 6. Given integersand , we define
a -constrained binary code on as the

restriction of to ; i.e., each codeword in is

the restriction of a codeword in to . Then, since
, we have

Since for all , we have

(14)

The range of in (14) is restricted to instead of
because and must be even.

Recall that the coding rate of any -constrained binary
code on is defined as

where is the number of codewords in . We
will see in the following sections that the limits of the coding
rates of certain sequences of binary codes will also establish
the lower bounds in Theorems 3–6, as was done in the proof
of Theorem 2.

C. Proof of Theorem 3

We construct -constrained binary codes on
rectangles, whose coding rates approach the lower bound in
(4) as . Fig. 10 illustrates this construction for a

-constrained binary codeword on , i.e., ,
, and .

Intuitively, if is odd then such a sequence of -
constrained binary codes is constructed as follows. Let
and be positive integers that are divisible by
and assume . Let and .
First, we construct -constrained binary codewords

on . Then, for each codeword
, we replace its bits by rectangles containing

the bit patterns

and

where each is arbitrarily chosen from . That is, each
such rectangle has “free bits” and one fixed or
one fixed . Finally, we merge these codewords on

Fig. 10. A (0; 5)-constrained binary codewordg(12; 9)H on S
(12; 9)
(0; 0) con-

structed from three(0; 1)-constrained binary codewordsf0, f1, andf2 on
S
(4; 3)
(0; 0) . See Theorem 3.

into a single codeword on the original rectangle

, by interlacing; i.e., regarding theth row of as

the th row of the resulting codeword on

, for . (The rows are ordered from
bottom to top.)

Formally, let be a -constrained binary code
on , let

be a set of codewords in , and let

be any mapping such that the label of the rectangle
under satisfies

if

if

(15)

for

for each , and where each is an
arbitrary choice of either or .

The resulting codeword is shown to satisfy the
-constraint on as follows. It is straightforward
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from the definition that satisfies the -constraint
horizontally; the number of consecutive’s between any pair
of two horizontally consecutive’s is at most

, since each satisfies the -
constraint horizontally (this is achieved if maps to

). A similar argum-
ent shows that satisfies the -constraint vertically.

Proof of Theorem 3:First, suppose that is odd. Let
be positive integers such that , ,

and , and let and . Let

be the set of all mappings defined above, and
let

a -constrained binary code on . We will show that

the coding rate of approaches the lower bound in (4)
as , for a particular choice of a -constrained
code on . Let

be a sequence of -constrained binary codes on

such that the coding rate of
approaches as (such codes were shown to
exist in [3]). patterns are interlaced, each chosen from
among possible patterns. Each resulting interlaced

rectangular pattern has free bits. Thus the total
number of valid patterns created with this construction is

and hence

Together with Fact 1, this completes the proof of Theorem 3
for odd .

For even , Theorem 3 immediately follows from the
monotonicity in (1), and Theorem 3 for odd.

D. Proof of Theorem 4

Theorem 4 follows directly from Theorem 3 and (16) in
Lemma 7 below (using odd).

Lemma 7: Let , , , be nonnegative integers such that

is an integer. Then

Fig. 11. A (1; 7)-constrained binary codewordg(12; 10)H on S
(12; 10)
(0; 0) con-

structed from two(0; 3)-constrained binary codewords onS(6; 5)
(0; 0) . See

Theorem 4 and Lemma 7.

In particular, when this implies

(16)

where

Proof of Lemma 7:Let

To establish Lemma 7, we construct -constrained binary
codes on rectangles, whose coding rates approach

as . Fig. 11 illustrates this construc-
tion for a -constrained binary codeword on from

two -constrained binary codeword on , i.e., ,
, , , , , and .

Let and be positive integers that are divisible by,
assume , and let and . A -
constrained binary codeword on is constructed from

a set of -constrained binary codewords on

as follows. Let be a -constrained binary code
on , and let be a set of

codewords in . For each codeword , we replace
every occurrence of and by a rectangle containing the



KATO AND ZEGER: CAPACITY OF TWO-DIMENSIONAL RUN-LENGTH CONSTRAINED CHANNELS 1537

bit patterns and , respectively. Then, we merge
these codewords into a new large codeword, on the original

rectangle , by regarding the th row of as
the th row of the resulting codeword for

(the rows are ordered from bottom to
top). Formally, let be any mapping

such that the label of under satisfies

if

if

for , for each .
The resulting codeword is shown to satisfy the

-constraint on as follows. Since each satisfies
the -constraint horizontally by definition, the number
of consecutive ’s between any pair of two horizontally
consecutive ’s in is at least
and at most ; the former is achieved
since the pattern maps to

and the latter is achieved since the pattern maps to

A similar argument shows that satisfies the -
constraint vertically.

Let be the set of all mappings , and let

a -constrained binary code on . We show that the

coding rate of approaches the lower bound in Lemma 7
as , for a particular choice of a -constrained
binary code on . Let

be a sequence of -constrained binary codes on

such that the coding rate of
approaches as . Note that such a sequence
exists because of the definition of the capacity . Then,
we have

E. Proof of Theorem 5

The following Corollary is Lemma 7 with (the
proof is unchanged).

Corollary 10: Let and be nonnegative integers such
that . Then

Setting , Corollary 10 implies Theorem 5 for odd. For
even , Theorem 5 immediately follows from the monotonicity

, and Theorem 5 for odd.
Also, when , Corollary 10 implies that

(17)

for all positive integers , since is the unconstrained
capacity. It is easy to check that the lower bound in (7) in
Theorem 5 is tighter than that in (17), unless or .

Corollary 10 ensures that a -constrained binary code
can be constructed from a -constrained binary code
in the manner of the previous section for odd, by setting

and . We next demonstrate this
construction.

Let and be positive integers that are divisible by ,
assume , and let

and

A -constrained binary codeword on is con-
structed from a set of -constrained binary
codewords on as follows. Let be a -

constrained binary code on , and let

be a set of codewords in . For each codeword
, we replace every occurrence ofand by a

rectangle containing the bit patterns and ,
respectively. Then, we merge these codewords into
a new large codeword, on the original rectangle ,

by regarding theth row of as the th

row of the resulting codeword for (the
rows are ordered from bottom to top). Formally, a -
constrained binary codeword

is defined as any mapping such that the label of

under satisfies

if

if

for , and for each
(for odd ). Fig. 12 illustrates this con-

struction for a -constrained binary codeword on ,
i.e., , , and .
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Fig. 12. A (5; 1)-constrained binary codewordg(12; 9)H on S
(12; 9)
(0; 0) con-

structed from three(1; 1)-constrained binary codewordsf0; f1; f2 on
S
(4; 3)
(0; 0) . See Theorem 5.

F. Proof of Theorem 6

Let be an integer such that , let ,
and let be the set of all block-diagonal
binary matrices of the form

...

where each is an matrix and is an matrix, and
each row and each column of and has at most one,
and all the nonblock-diagonal elements are’s. If a mapping

satisfies whenever

then is a -constrained codeword, since the number
of ’s between consecutive’s is at least . Let be the set
of all such mappings . Given integers and , we define a

-constrained binary code on such that

each codeword in is the restriction of a codeword in
to . Then, we have

(18)

Since each and has at most one in each row and in each
column, the number of choices for each is (enumerating
over nonzero rows and columns)

and the number of choices for is

Hence

The maximization in (8) follows since (18) holds for every
.

G. Proof of Corollary 2

For , Corollary 2 is verified by direct calculation.
Note that the right-hand side of (8) is greater than or equal to

(by setting in the maximization of (8)), and Stirling’s
inequality [6] implies that

(19)

But for all

H. Proof of Theorem 7

Let and be divisible by with , and let
be any -constrained binary code on the

rectangle . We break into squares of
size , where . Since
every codeword in must have at least one in each
row and in each column of each , we have

where
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indicates the number of binary squares
consisting of zero rows and nonzero rows. Equation
(9) follows since

I. Proof of Theorem 8

Let and be divisible by with , and let
be any -constrained binary code on the rectangle

. We break into squares of size ,

where . Since every codeword in
can have at most one in each row and in each column of
each , we have

Since

Stirling’s upper bound [6] implies that

J. Proof of Corollary 3

The right-hand inequality in (10) is straightforward from
Theorem 3. The left-hand inequality in (10) is derived from
(9) as follows:

as

where we used , for all .

K. Proof of Corollary 4

The lower bound in (8) is greater than or equal to

(20)

Since , the quantity in (20) is larger than

for all (using Stirling’s lower bound [6]). Substituting
(for any )

Thus for any , it follows that

and therefore,

But Theorem 8 immediately implies that

APPENDIX

EXISTENCE OF THETWO-DIMENSIONAL CAPACITY

Theorem 9: The two-dimensional -capacity ex-
ists.

Theorem 9 is stated in [8] and [12] without a complete
proof. It is a special case of a complicated proof in the preprint
[7]. We give here a concise proof using an extension of [8,
Lemma 4.1.7] to double sequences. Note that both the proof
in [7] and our proof below essentially depend only on the
two-dimensional subadditivity.

Lemma 8: Let be a double sequence of non-
negative reals such that

(21)

(22)

Then

exists and equals .
Proof: It follows from (21) and (22) that

(23)

Also, by induction we get and
for all and .

Let

By definition, for every . Fix an
arbitrarily small . It suffices to show that

for all sufficiently large. Since is the largest
number less than or equal to all of the , there
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exist and such that . Let
and be positive integers such that ,

, and let and be integers satisfying
and . Then

(24)

For any and any we can always write
and , where , , ,

and , and thus the inequalities above show that
for all and .

Proof of Theorem 9:Let

Then, we have

since , because the right-hand
side is the number of patterns on an rectangle
created by concatenating valid patterns on an rectangle
and valid patterns on an rectangle. Similarly, we have

Hence, Lemma 8 can be applied to this double sequence
.
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