IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

1527

On the Capacity of Two-Dimensional
Run-Length Constrained Channels

Akiko Kato, Member, IEEE and Kenneth ZegeiSenior Member, IEEE

Abstract—Two-dimensional binary patterns that satisfy one-
dimensional (d, k) run-length constraints both horizontally and
vertically are considered. For a givend and k, the capacityCy, i
is defined asCy, 1 = limm, n—co logy A"ﬁil,’ff)/nm, where A",ﬂfjff)
denotes the number ofm x n rectangular patterns that satisfy
the two-dimensional(d, k) run-length constraint. Bounds onCly, «
are given and it is proven for everyd > 1 and every k > d that
Cq,r =0 if and only if ¥ = d + 1. Encoding algorithms are also
discussed.

Index Terms—Channel capacity, optical storage, run-length
coding, two-dimensional codes.

I. INTRODUCTION AND MAIN RESULTS

Aone-dimensional binary sequence is said to satisfy

(d, k)-constraint if there are at moét 0's in the row
and the number ofi's between any pair of consecutités is
at leastd. The one-dimensionalapacityis defined as
log, N,(,(f’ 2

Ed k= lim
’ m

m—oo

where NS is the number of binary patterns of lengthon

whereN,(,‘i’,’f) denotes the number of valid patterns onar n
rectangle. It is trivial to see thatly ¢ = 0 for all d > 0,
and hence we assunie> d throughout this paper. Note that
the definition of(d, k)-constraints implies monotonicity of the
capacity in each variable, namely,

for
for

Cy.; £Cy &,
Cj i <Cuk,

J<k
J=zd.

(1)
()

Thus in particular, limg—oc Cax = Cgoo. The two-
dimensional capacity is important for certain digital recording
applications, and has recently become the focus of increased
study.

aln this paper we derive various upper and lower bounds
on Cy &, and in particular demonstrate the curious result that
for everyd > 1, the two-dimensional capacity equals zero

if and only if & = d + 1. The two-dimensional capacity has
been mentioned previously in the literature, but a concise and
complete proof of its existence appears to be lacking. For the
sake of completeness we provide such a proof in the Appendix.
While there have been numerous studies of one-dimensional

constrained codes, far fewer results have appeared concerning

a line that satisfy théd, k)-constraint. The one-dimensionaltwo-dimensional codes. Marcellin and Weber introduo®a-

capacity £y . is known to be the logarithm (bas®) of the
largest real root of the equation

Xk+1—Xk_d—Xk_d_l—"'—X—1:0

for0 < d <k < oo, and it is known thaty o = Eg—1,24—1

titrack (d, k)-constrained binary codem [9]. In an n-track

(d, k)-constrained binary code, thé-constraint is required
to be satisfied one-dimensionally on each track, but/ithe
constraint is required to be satisfied only by the bitwise logical
“or” of n consecutive tracks. Orcutt and Marcellin [15] com-

for d > 1 (see, e.g., [1] and [10]). Therefore, for ever)PUted capacities ofedundantmultitrack (d, k)-constrained

nonnegative integed, the one-dimensional capaci®,  is
positive for allk > d. A two-dimensional binary pattern 6fs

binary codes, which allow only some fixed-size subset of the
tracks (redundant tracks) to be faulty at every time instant. For

and1’s arranged in am: x n rectangle is said to satisfy a two-the case ol > k, those capacity bounds were derived by Vasic
dimensional(d, k)-constraint if it satisfies a one-dimensional22]- Erxleben and Marcellin [4] examined error-correcting
(d, k)-constraint both horizontally and vertically. We call suclPn€-dimensionald, k)-constrained binary codes for multi-

patternsvalid. The two-dimensionald, k)-capacityis defined
as

logy Naww)
mn

Ca =

lim

m,n—oo
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In contrast to the one-dimensional capachy , there is
little known about the two-dimensional capaciy, ;. It was
shown by Calkin and Wilf [3] tha€; .. exists and is bounded
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as0.587891 < 'y o, < 0.588339. Siegel and Wolf [18] used Theorem 3:For every positive integek,
“bit stuffing” techniques to map one-dimensional sequences
onto diagonals in the plane in order to create two-dimensional o> 1 4)
(d, o) and (0, k) constrained codes. Ashley and Marcus [2] Ok = (k/2]

recently discovered the surprising result tdat, = 0. That

is, for the (1, 2)-constraint, effectively no positive amount ofin [20] and [21], Talyansky, Etzion, and Roth provided an
information can be stored per bit written in two dimensiongncoding algorithm for generating “conservative arrays.” As a
In the present paper, we generalize this result and show tBpkcial case, their algorithm generates two-dimensional binary
Cax =0ifand only if £ = d + 1, for all 4 > 1. Numerous patterns that do not contain more thanconsecutived’s or

1-0C1

bounds are also given. 1’s, which yields the lower bound
We are confident that some of the bounds in this paper can
be improved upon by future researchers. Our motivations for 1

. . . >
presenting these bounds are that they are analytically aesthetic, Cor 21+

the derivations are interesting, and in most cases no previous
bounds were published or known.

The main results of this paper are Theorems 1-8 and
Corollaries 1-4, which are stated below. Their proofs are givditie lower bound in (5) appeared in [19] (in Hebrew) for 8
in Section II. and is stronger than the lower bound in (4) for falk 8. The
proof technique of Theorem 3 is, however, interesting in its
own right and may lead to future ideas for improving bounds.

(lk/2] + 1)
log, (1 —(|k/2] + 1) -2—<Lk/2i—1>). (5)

Theorem 1: For every positived,

Ca,a+1 = 0. Theorem 4:1f d and k are positive integers such that
(k+1)/(d+1) is an even integer, then
Theorem 2:1f k£ > d + 1, then
1 2

Ll + %J log, (4!) + log, (1) Ca1 2 dr1 E+1 (1-C1,00)- (6)
Car > max - 3 3)
2< <1 bgd (j+d) . o o
The inequality in (6) is valid whenevér= —1 mod 2(d+1).
wherer = dmod j. It can be seen from (3) (by taking=2) The right-hand side of (6) gives a lower bound ©p - for
that Cy 5 > 0 for all (d, k) such thatk > d + 2, since all " € {k+1,k+2, -, k+2d+1} by the monotonicity
in (1). Thus Theorem 4 actually gives a lower bound@y;
#7 d even for all d and k.
Cogan > 2(d+2) Note that ask — oo the lower bound in (6) approaches
= d+1 4 odd Cy = 1/(d+ 1). The following theorem gives a tighter
2(d +2)%’ lower bound forCy, . than the limiting inequality of (6).

which is positive for alld > 0. Combining this fact with ~ Theorem 5:For everyd > 2,
Theorem 1 gives a characterization of whiech &)-constraints
induce nonzero capacities.

Ci,
Cd,oo 2 1 L (7)

Corollary 1: For everyd > 1 and everyk > d, +1d/2]
Cyrn=0ak=d+1. Theorem 6 below tightens the lower bound in Theorem 5 if
7 and only ifd # 3, but is less analytically attractive.
Fact 1. 007 1= 017 oo
Fact 1 holds since the two-dimensiondl, ~o)-constraint
is equivalent to the two-dimensiondD, 1)-constraint, by

interchanging the roles of and 1. From Fact 1 and the Corollary 2: The lower bound in Theorem 6 is stronger

monotonicity in (1), itimmediately follows thafo » > C1 o, than the lower bound in Theorem 5 if and onlydif£ 3.
for all £ > 2. Theorem 3 gives a stronger lower bound on

Co &; this lower bound approachdsas & — co. The bounds
in Theorems 3-5 are given in terms of the quantity .,
whose value was determined to within0.0002 by Calkin Corn<1— <L> log, <;> 9)
and Wilf [3]. ’ k+1 1—2-(4D)

Theorem 6: For everyd > 2, see (8) at the bottom of this
page, wherer = dmod s.

Theorem 7: For every positive integek,

(8)
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Theorem 8: For every positive integet,

d
1 d\ 1
Cg, 00 < 7 log, <d! E <L) ﬁ)

i=0
1 2d 1
§810g2< )+¥10g2v27rd+

c

1

o0 log, e.

The first upper bound in Theorem 8 is twice the value of the

term inside the maximization in (8) when= d, and becomes
the trivial upper bound”; ., < 1 for d = 1.
Note that since

oo

—In(1-2)=

whenevell < < (21n 2-1)/(2 In 2+ 1), the lower bound
in (5) implies that
4log, e
(Lk/2] + 1)2(Lx/2]+1)
log, e
= (k+1)2(Lk/2]=2)

1-Cy i < + 16 - 27 2(K/2]+1)

+16-27%1

for all sufficiently largek, which was seen in [19]. Combining
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Fig. 1. Example of3 x 3 adjacent matrices aof3, 5)-constrained code on
(7,11)
(0,0) -

n,m)

for some integers, b, n, m, and we denote this set Iﬁéa by -

(n,n)

A rectangle of the formS - s

(n)
denoted bysS(,",,.

is called asquareand is

this with Theorem 7, gives asymptotic bounds on how fast Note that, given a two-dimensional binary cageon z,

(as k grows) the capacity’, 5 approached for the (0, k)-
constraint.

Corollary 3: For sufficiently largek,

42 - log, ¢ E
(k‘ + 1)2k/2 2k "

% log, e

TSR

(10)

It is interesting to note that the one-dimensional capaciBf

Ey. . is known to converge to one (dsgrows) at the rate
(1 log, €)/2*. Corollary 4 follows from Theorems 6 and 8
and it shows that’y .., decays to zero (ag grows) exactly
at the ratelog, 4)/d. The one-dimensional capacity; .. is

known to decay to zero (asgrows) exactly at the same rate

(logy d)/d.
Corollary 4:

lim
d—oo

(

PROOFS OFRESULTS

-Cg 00 = 1.
log, d) “

The set of integers is denoted By andZ? denotes the two-
dimensional integer lattice. Awo-dimensional binary codé&
on Z? is a set of distinct mappingg: Z> — {0, 1}, and
each mapping is called @deword Given a codeword, for
each point(z, y) € Z* we call the valuef(x, y) the label of
(z. y) (underf), and for any sef§ C Z” the set of labels of
the points ofS is called thdabel of S (underf) and is denoted
by 5. When no confusion results, the label 4f may be also
referred to as a codeword. If all the codewordsAnsatisfy
the (d, k)-constraint, we say thaf is a (d, k)-constrained
binary codeon Z2. A subset ofZ? is called arectangleif it
can be written in the form

{@,yeZ a<a<a+n-1,b<y<b+m-—1}

the labelS of any squares C Z2 underf € F can be viewed
as a binary square matrix. Let denotej consecutived’s. If
the patterrl0¢1 occurs as a label of a horizontal line segment
{(x,b) € Z* : a < & < a+d+ 1} of lengthd + 2 for some
integersa andb, then we call the binary x d square matrices
S‘Ejlljwr?_ and S, , ,_, the adjacentmatrices of thel0’1
attern. Fig. 1 shows an example of the two adjacent matrices
an occurrence of0%1 in a (3, 5)-constrained binary code.

Similarly, if the pattern10¢1 occurs as a label of a vertical

line segment{(a, y) € Z* : b <y < b+ d+ 1} of length

d+2 for some integera andb, we call the binaryl x d square
matricesé‘((;izrljbﬂ) and ﬁ((;i)_d bt1) the adjacentmatrices of
the 1041 pattern.

A square matrix is gpermutation matrixif there is ex-
actly one1 in each row and also in each column, and all
other components ai@s. If all the antidiagonal components
a; d—iy1 (¢ = 1,2,---,d) arel’s in ad x d permutation
matrix A = (a;, ;);,; then A is called ananti-identity matrix.

A subset ofZ? is called adiagonal of widthw if it can be
written in the form{(z, ) € Z2° :a <z +y < a+w —1}
for some integera. Similarly, a subset otZ? is called an
antidiagonal of widthw if it can be written in the form
{(z,y) € Z° :a <2z —y < a+w— 1} for some integer:.

For nonnegative integers, b, ¢, we use the notation =
bmod ¢ to indicate thate|(a — b) and we use the notation
a = bmodc to meana = bmodc and0 < a < ¢ (i.e.,

a b — |b/c|e). Finally, for any given collection oft”
valid codewords on am x n rectangle, we call the quantity
log, V/(mn) the coding rateof the collection.

A. Proof of Theorem 1

It is already known tha€’; » = 0 [2]. Hence we will prove
Theorem 1 forl > 2 in what follows. (Our proof of Theorem 1
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does not directly specialize tb= 1, but a slight modification ¥y
does.)

Before giving the formal proof of Theorem 1 we give a
brief intuitive description of the proof in order to facilitate
an understanding of the rigorous details. The main idea in
showing that the capacit§/y i is zero whenk = d + 1 is to
show that the number of valid patterns in a rectangle grows °
subexponentially as a function of the area of the rectangle.
That is, the ratio of the growth exponent to the area of the x
rectangle tends to zero as the rectangle’s area grows without
bound. As an example, the capacity is zero if every bit of
information stored in a large square requires, for example, an
amount of storage space that is linear in the side length of the ;
square, instead of constant in the side length.

Our proof of Theorem 1 first looks for any occurrence
of the pattern10¢1 in the plane and then inspects the two ==
corresponding adjacent matrices. First it is shown that these _ _
adjacent matrices must equal each other and must be perm{ja2:  Example of Lemma 2d = 7): A (7, §)-constrained binary code-

. . . . word whose7 x 7 adjacent matrices of any0‘1 pattern are neither the
tion matrices. Then two cases are considered: a) the adjaGgéHiity nor the anti-identity matrix.

matrices are neither the identity matrix nor the anti-identit

matrix or b) the adjacent matrices are either the identi{ llows from f(o~!(y),y) =1fory=1,2,---,d~1, and
matrix or the anti-identity matrix. In case a) it is shown thafe latter fromf(0, 0) = f(d+1, 0) = 1. Thus the statement
the (d, d + 1)-constraint forces the label of all & to be IS true fory_:. d, and a straightforward induction argument
completely determined so that there is no freedom for choosifigows that it is also true foy = d — 1, d -2, -- -, 1, which
any bits beyond the choice of the permutation matrix. In ca§@mpletes the proof. -

b) it is shown that the bits that appear on any horizontal or| emma 2. Letl > 2. Any (d, d + 1)-constrained binary
vertical line inZ? completely determine the rest of the choiceode on 22 has at most(d + 2)! distinct codewords that
of bits in Z*, since every occurrence 80?1 or 104+11 forces contain the patterri0?1, and whosel x d adjacent matrices

the existence of an infinite diagonal or antidiagonal of widthre neither the identity matrix nor the anti-identity matrix.
at leastd. Hence, each bit of stored information occupies an __
amount of area in a square that grows linearly, instead off19- 2 shows an example of the statement of the lemma,

constant, with the length of the side of the square. We conclu@ed Fig- 3 is “aeﬂ‘)l for following the steps in the proof. In

that the combined number of patterns that can be stored iffi§- 2, the seti, ;* and the sets whose labels are the same

rectangle due to cases a) and b) is not enough to achia%A‘(ngl) are shown as square areas surrounded by thick lines

positive capacity. (including the boundaries), wheseindicates that the label of
Conversely, to prove that the capacity is nonzeroior the point is1; otherwise the label of the point i& (We adopt

d+2, we demonstrate codes that achieve nonzero coding rate# convention in all the figures in this paper.)

Lemma 1. Letl > 2. For any(d, d+1)-constrained binary Proof: Given a(d, d + 1)-constrained binary code on
code onZ?, if the pattern10¢1 occurs either horizontally or Z*, assume thatf: Z° — {0, 1} is a codeword such that
vertically in a codeword then itd x d adjacent matrices are f(0,0) = f(d+1,0) =1 and S‘(f)l is neither the identity
permutation matrices and are equal to each other. matrix nor the anti-identity matrix. It suffices to prove that

Proof: Without loss of generality, we can assume that(0, d+1) = f(d+1, d+1) = 1, for then Lemma 1 forces the
the pattern10?1 occurs horizontally as the label of the lineremainder ofZ” to be labeled in repeated patterns of adjacent
segment{(z, 0) : 0 < = < d + 1}. Let f: Z2* — {0, 1} be matrices, i.e., the label of the whole spaZé is uniquely
a codeword in &d, d + 1)-constrained binary code 08* Jetermined by the Iabe@((gt)l) of the squareS‘((g*;;).
such thatf(0, 0) = f(d+1,0) = 1 (and thusf(0,y) = et o be a permutation of{l,2, ---,d} such that
fld+1,y) =0fory = 1,2, ---, d). Therefore, for each r(; ;(z))=1forz =1,2, -, d, (as given in the proof of
z € {1,2,.--, dj there must exist am € {1,2,---,d} |emma 1). Either(1) # d or o(d) # d, S0 assume without
such thatf(z, z) = 1, for otherwise0*+? would occur on the |ggs of generality that(d) # d. For ally =1, 2, - -+, d such
horizontal liney = z. Also, for eachw € {1, 2, -- -, d} there thaty £ o(d), we havef(—1, y) = 0, sincef (o~ (y), y) = 1
can be at most ong € {1, 2, ---, d} such thatf(w, y) = 1. ando~1(y) < d for suchy’s. Also, we havef(—1, —1) = 0,
Hence the adjacent matrS{i)l) is ad x d permutation matrix. since f(o=(d), d) = f(o=*(d), —1) = 1 ando~*(d) < d,

Let o be the unique permutation ¢f, 2, -- -, d} such that and we havef(—1, 0) = 0, since f(0, 0) = 1. Therefore,
fle™ y),y) = 1fory = 1,2, ---, d. We will show that f(—1, o(d)) = 1 (for otherwise0*+? occurs vertically) and
fle Y y),y—(d+1) =1forally =1,2,---,d. We hencef(—1, d+ 1) = 0 becauser(d) > 1. Together with the
have f(c=1(d), —1) = 1 since f(c=!(y), —1) = 0 for y = factthatf(z, d+1) = 0forallx € {1, 2, ---, d}, this implies
1,2,---,d—1andf(0, —1) = f(d+1, —1) = 0; the former that f(0, d+ 1) = 1 (for otherwise0¢*+2 occurs horizontally).
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From (11) and the definition ofwe havef(d+1+r, y) =0
for

fO.d+1)=1

fld+1,d+1)=1

y=d—(r—-1),d—r,d—(r+1), -, —r

fld+=2.d)=1 such thaty # o(r). More precisely, for
;ﬂd+r,d—r+2):]

flo’(d), d)=1

fir-1Ldre2)=1 y=d—(r—1,d=r,---,a(r)+1,0(r)-1,---,1

_ 00000 the equality follows since!(y) > r +1 for thesey’s by the

JoL otd)= .o.o.o.ogo fuxi+r, o=t definition of r; for y = 0 it follows since f(d + 1, 0) = 1;
- X S fory=—1, -2, ---, —(r—1) it follows from (11), indicated

fio'(d), -h=1 ——] T by the third type of circle in Fig. 3; foyy = —r it follows
5. fdsr-rel)=1 sincef(r+1, —r) = f(r+1,d+1—r)=1 by Lemma 1.
% Therefore, since(r) # d+ 1 —r by definition, we must have

[
y—d ¢ fd+147r 0(r)=1 (12)
x=1 x=d

for otherwise0’+? appears vertically.
Now we will show that

O :the original 0’s

© :the new 0 by (-1, c(d)=1 . . .

© :the new 0’s by Eq. (11) f(d+1+7>_ja d+1—7‘+])=1, forj =1,2,--,r-1

® . the new O's by Eqs. (12) and (13) (13)

® :flxy)=1 by induction onj. (These points are indicated in Fig. 3 as

the circled black discs in the upper-right corner.) Foge 1
we have f(d + r,d — r + 2) = 1 for otherwise 0¢+2
would appear horizontally, sincg(z, d — » + 2) = 0 for

It thus remains to be shown thgfd +1,d+ 1) = 1. Let , _ ror+1, -, d+r—1 (becausef(r—1, d—r+2) = 1)
r=min{r > 1:0(zx) #d+1-x}, ie, therth row is the and forz = d+r+1 by (12). Now assume the statement is true
first row from the top of the adjacent matnﬁ{f?l) that differs up to and including — 1, for j > 2. Then f(z, d—r+j+1)=0
from the identity matrix. Ifr = 1 then f(d+1,d+1) =1 for
follows by symmetry from an analogous argument to the proof ) ) )
in the preceding paragraph that showg®, d + 1) = 1. So r=r—gtLr—j+2 - dtr—j
assumer > 2.

First we show that

Fig. 3. lllustration of the proof of Lemma 2 for the cade= 7, r = 4.

since f(r —j,d—r+3j+1) =1, and

fld+r—j+2,d—r+5+1)=0
Fd+144, —j)=1, forj=1,2 ---,r—1 (11)
sincef(d+r—j+2, d—r+j) = 1 (by the induction hypothesis
by induction onj. (These points are indicated in Fig. 3 asor j —1). Therefore, to avoid*t?2 occurring horizontally, we
the circled black discs below the-axis.) Forj = 1 we have must have
f(d+2, —1) =1sincef(d+2, y) =0fory=0,1,---, d-1 . .
and also fory = —2, becauser—1(y) > 2 for thesey’s, and fld+r—j+Ld=-—r+j+1)=1

becausef(d +1, 0) = 1 and completing the induction argument.
FloYd=1),—=2) = floYd=1),d—1) =1 In particular, we havef(d + 2, d) = 1 so thatf(d + 2,
d+1)=0. Thus sincef(z, d+1)=0forz=1,2, -, d,
(the last equality follows from Lemma 1 combined wittwe must havef(d+1, d+1) = 1 to avoid a horizontad**2.
the assumptionf(0, 0) = f(d + 1,0) = 1). Now assume Itis concluded that in &d, d + 1)-constrained binary code
the induction statement is true up to and includingl < on Z°, the number of distinct codewords Z* — {0, 1}
j <r—1).Thenf(d+14+(j+1),y) = 0fory = sych thatf(0, 0) = f(d+1, 0) =1 and the adjacent matrix

d—j—-1,d—-—5—-2,---,—j and fory = —j — 2. More S((f?l) is neither the identity matrix nor the anti-identity
precisely, fory = d—j—1,d—j —2,---, 1 the equality matrix is at mostd! —2. There ared +1 choices ofz €
follows sinceo~*(y) > j + 2 for thesey’s by the assumption {0, 1, - - -, d} for which a codewordf: Z* — {0, 1} satisfies
J < r—1 and the definition of-; for ¥ = 0 it follows since f(z, 0) = f(x+d+1, 0) = 1, and there arel+1 choices
f(d+1,0)=1;fory= -1, -2, ---, —j it follows from the of 4y {0, 1, ---, d} for which f(0, y) = f(0, y+d+1) = 1.
induction hypothesis; foy = —j — 2 it follows since Therefore, dd, d+1)-constrained binary code df’ can have

. . ) . ) ) at most(d+1)2(d!—2) < (d+2)! distinct codewords that con-
flo™(d=j=1), =j=2) = fle™(d=j—1),d=j—1) =1 (ain the pattern01, and whosel x d adjacent matrices are

by Lemma 1 anc—}(d — j — 1) > j + 2. Hence we have neither the identity matrix nor the anti-identity matrix. [

fd+1+4(j+1),—j—1) =1 (for otherwise0?t2 appears  Note that the proof of Lemma 2 implies that if d, d+1)-
vertically), completing the induction argument for (11). constrained binary codeword & contains the patterh0?1,
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y y (n-d-2,m-d-2)
(d+1,m-d-2) (n-1,m-1)

I}

(0, m-1)

(=]
(=)
(=)
o
(e}
(=]

/

—olo|lo
o
=
o

olo |k
o

Fig. 4. Example of a3, 4)-constrained binary codeword oﬁggjgg that

cannot be extended 2. If one more row is appended below the rectangle,
it must be a binary pattern of the forb®0.X 00, but bothX = 0 andX =1
violate the horizontal(3, 4)-constraint.

and whose adjacent matrices are neither the identity matrix NEEREREREEE
nor the anti-identity matrix, then it is forced to be(d, d)- - / . .
constrained codeword. In other words, such a codeword cannot - T x
contain 109+11 horizontally nor vertically, in spite of the 0 P P
(d, d + 1)-constraint.

To determine the capacity’y », we need an analog of
Lemma 2 for '[WO-C'irnemSiOﬂE(Id7 d+ 1)'C0n5trained binary ithe labels of the grid points bordering these squares might not be
codes on aoundedrectangle rather than all a%*. Given determined
integersn, m > 1, atwo-dimensionald, d + 1)-constrained Fig. 5. Example of Corollary §n = 23, m = 19, d = 3).

binary codeF on S((&’(;;’) is a set of distinct mappings

(a+1,d+1) (n-d-2,d+1)
{n-1,0)

Lemma 3. Letl > 2. For any(d, d+ 1)-constrained binary
f: S((&’(Sl) — {0, 1} code onZ?, if the pattern10¢1 occurs in a codeword and
its d x d adjacent matrices are identity (respectively, anti-
that satisfy the(d, d + 1)-constraint. That is, every codewordigentity) matrices then the01 pattern is contained in an
(i.e., the label OfS((&’S';) under everyf € F) satisfies the infinite diagonal (respectively, antidiagonal) of widihy 2.
(d, d+1)-constraint. Note that &I, d+ 1)-constrained binary Proof: Let f: Z° — {0, 1} be a codeword in &, d+1)-

code onS((g”g')") might not be extendible t&”. Fig. 4 shows constrained binary code of” such thatf(0, 0) = f(d+

) ) . ad) . . . .
an example of &3, 4)-constrained binary code OS((S’S)) 1,0) = 1 and 5, is the identity matrix. It suffices to
that cannot be extended . In [11] related nonextendable S"OW thatf(=1,1) = f(0, d+1) = 1. Since f(~1, y) = 0
. for y =2,3,---,d and also fory = 0 andy = —1, we
patterns are discussed.
have f(—1,1) = 1. Therefore, (0, d+1) = 1 because
Corollary 5. Letd>2 andn>m>3d+3. Any (d, d+1)- f(-1,d+1)=0and f(z, d+1)=0forz=1,2, ---,d. O

H H (n,rn)
constrained binary code Oﬁ(O, 0) has at most Fig. 6 shows an example of Lemma 3 fér= 7, and the

(d 4 2)122( D (ntm—2d-2) proof is also illustrated in Fig. 7.

o _ ) _ Corollary 6. Letd > 2. For any(d, d 4+ 1)-constrained bi-
distinct codewords such that the pattdif1 is contained in nary code orZ?, a codeword cannot have occurrences of both

n—2d—2, m—2d—2 : : . H . . .. . . . .
Sédﬂydﬂ) ) and itsd x d adjacent matrices are neithefihe jdentity and the anti-identity matrices as adjacent matrices
the identity matrix nor the anti-identity matrix. of different 1041 patterns.

Proof:(The) number of points contained in the x n Proof: In light of Lemma 3, if the pattern0¢1 occurs
rectangles ;’g)” but not contained in the on Z? with its adjacent matrices being the identity matrix,
and the patterri041 also occurs somewhere else B with
(m —2(d+1)) x (n—2(d+1)) its adjacent matrices being the anti-identity matrix, then the
. (n—2d—2,m—2d—2) diagonal strip of widthd 4+ 2 that contains the former0¢1
Inner rectangIeS‘(d+17d+1) IS pattern and the antidiagonal strip of widiht+ 2 that contains
4 . o
mn—(m—2(d+1))(n—2(d+1)) = 2(d+1)(n+m—2d—2). the Iattgrl_o 1 pattern intersect somewhere &1. This is a
contradiction. O

There are at mos2*(¢+1)(n+m=2d=2) |ahels of these points.

From Lemma 2 (whose proof does not use points farther th%} any (d, d+ 1)-constrained binary code o8, a codeword
1 t ? ’
d +1 from the inner rectangle) there are at meat+ 2)! cannot have occurrences of both the identity matrix and any
valid labels of the inner rectangle, completing the proof of th(Se(her matrix as adjacent matrices of differaiit!l patterns.
corollary. Similarly, a codeword cannot have occurrences of both the
Fig. 5 shows an example of Corollary 5 far= 23, m = anti-identity matrix and any other matrix as adjacent matrices
19,d = 3. of different 1041 patterns.

Remark 1. Let! > 2. In view of the proof of Lemma 2,
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0006:6:0:0 ]
0006000 [#]
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O : the original 0’s by f(x,-x-1)=1
y © :thenew 0’s

Fig. 8. lllustration of the proof of Lemma 4 for the cage= 5.

10¢+11 on the z-axis induce diagonals of widtd + 3 (see
Fig. 8). O

The following corollary is an analog of Lemma 4 for

g‘-’“ - - (d, d + 1)-constrained binary codes (ﬁf&’g)’).
e obo: Corollary 7. Letd > 2andn > m > 3d + 3. Given a

R aaaasads (n,m)

(d, d + 1)-constrained binary code oﬁ(o o) » Suppose that
a codeword has the property that everg?l pattern in

Fig. 6. Example of Lemma 3/(= 7). S((g;fddfl’)m’“’?) has identity (anti-identity) matrices as its
adjacent matrices. Then, given the labels of the horizontal line
0.8 segments
LI:{(x,d—i—l)GS((&’(;;) :0<e<n—1}
' 3 and
Ly={(z,m—d-2) €Sy :0<z<n—1}
('1'1% +-x the label ofS((g;fyddfl’)"”Qd’Q) in the codeword is uniquely
| ‘ determined.
roof: In view of Lemma 4, if the label of.; is given
Proof: In vi f L 4, if the label of.; is gi
O :the original 0’s then the label of the set

@ :thenew 0 by f(-1,1)=1

S = {(.I', y) c S(n—?d—?,nl—?d—?) . d—|— 1 S = +y S "+ d}

Fig. 7. lllustration of the proof of Lemma 3 for the cade= 7. (d+1,d+1)

is uniquely determined. Furthermore, if the label of the set

. . 5 L, \ S is given and is consistent with the label §funder
constrained binary code o™ has the property that everyy,q (g 44 1)-constraint, then it additionally determines the
101 pattern has identity (anti-identity) matrices as its adjacergba of the set

matrices. Then, given the label of any infinite horizontal strip
of width 1, the codeword is uniquely determined. S ={(x,y) € S((Z;fddfl,)m_w—m .

Proof: Without loss of generality assume we are given ' ’
the label of the integers on theaxis and that every occurrence ntdsztysmtn—d-3}
of 1041 induces (via Lemma 3) a diagonal of width+ 2. .
Further assume without loss of generality that the sequen-lt-:réIS completes the proof. H
104104+11 occurs on the horizontal line segment frgt 0) Fig. 9 shows an example of Corollary 7 far= 23, m =
to (2d+3, 0). The sequenc#0?1 induces a diagonal of width 19, d = 3.
d + 2, and therefore the sequent@?*'1 induces a diagonal
of width d + 3. This follows because eachon the diagonal . . m
{(y, —y): y € Z) forcesd+10's to the right (if onlyd 0's (({l(i,—i_ 1)-constrained binary code oﬁ((()’ 0)) has at most
followed then another diagonal of widdh+ 2 would result, 2@t T2(&FD(Fm=2d=2) distinct codewords in which every
forcing a1l in position (2d + 2, 0)). This argument can easily 1041 pattern in S((g;iddfl’)"”“’?) has the identity (anti-
be extended using induction to show that all occurrences identity) matrix as its adjacent matrices.

Lemma 4. Let/ > 2. Suppose that a codeword in@ d+1)-

Corollary 8. Letd > 2 andn > m > 3d + 3. Any
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y (n-d-2,m-d-2} distinct codewords; this number is smaller tHzy+1)(n+m)
(0,m-1) fart, mod=2) (n-1.m-1)  for sufficiently largen, m. Hence we have
) . N (d,d+1)
. 7 / 7 C 1 10%2 N'rn,n
’ . = 11m —_—
B e . / o 7 d, d+1 m,n—oo mn
_ Y P I G I U I 7 3(d+ 1D(n+m
y=14 1. e = ) < lim M —0. O
m,n—o0 mn

B. Proof of Theorem 2
Lemma 6: Let d and ¥’ be nonnegative integers such that

- B i k' — d is positive and even. Lett = (k' + d + 2)/2,

- - : b= (K —-d+2)/2, r =amodb, and letV, ;s be the set

et B ) of all block-diagonala x a matrices of the form
’ . j I T
- | Ay

- / . 1 x ]

(&+1,d+1) (n-d-2,a+1)
(n-1,0)
: the labels of tl}e grid points bordering these squares might ALa/bJ
not be determined
A/

. : the labels of the grid points bordering these squares or o -

triangles are determined by the label of y=4 ) . . .

where eachd; is ab x b permutation matrixA’ is anr x r

permutation matrix, and all the elements not specified are
0's. If a mapping f: 2> — {0, 1} satisfiesS((;)y) € Vaw
wheneverz = y = 0mod a, then f is a (d, k’)-constrained
codeword. )

Proof: Immediately follows from Corollary 7, since we Proof: By symmetry, it suffices to show that H((g’)o) €
have(n +m)/(d+ 1) choices for _the(nlanki)els of the honzontalvdj y thenﬁ(;”)o) can be any element df; ;. without violating
line segmentd.; and Lo, and also inS, )", there are at most the (4, k/)-constraint. If
2(d+1)(n+m—2d—2) grid points in the rectangular annulus ) ale)
of width d, as in the proof of Corollary 5. O Si0.0) Sa.0y € Ve, &

[:] : the labels of the grid points bordering these squares or
triangles are determined by the label of y=14

Fig. 9. Example of Corollary Tn = 23, m = 19, d = 3).

Lemma 5. Letl > 2. Any (d, d + 1)-constrained binary yhen for1 < 4 < 7 the label of the rectanglé‘((g“’ "_)U) (i.e.,
code onZ~ has at most(d + 2)! codewords that do not (2a,a)y A
contain the patterri0¢1. (0,0y ) is of the form

Proof: Any codeword in &d, d+ 1)-constrained binary -
code that does not contain the patteat1 on Z* is uniquely S((Oi;_)bi) = { O(i-1) 041 [ p] | Oazsiimy) }
determined by the Iabeﬂ((gtﬁ) of a(d+2) x (d+2) square,
which must be a permutation matrix. There &iet 2)! such Where O; is the b x j rectangular matrix, all of whose
matrices. O elements ar@'s, and P and”’ areb x b permutation matrices.

Therefore, the number of consecuti¥s between any pair of

let\e foIIowi5ngf corgllzry in;media;ely fogO\g.s from thg prOOftwo horizontally consecutivé’s in S((éal;ﬁ)ib is at leastd and
ol -emma or (d, d + 1)-constrained binary codes Nat most(b— 1) +d+ (b— 1) = k. Similarly, the label of the

(n,m) i itrari .
5(07 o) » Since0 or 1 can be chosen arbitrarily for at mOStrectangIeS((gaé)’) is of the form

2(d + 1)(n +m — 2d — 2) locations inS

rows b(i — 1) + 1 throughbi of $

(n,m)
0,0) *

&(2a,r
Corollary 9. Letd>2 andn>m>3d+3. Any (d, d+ 1)- 5((0, 0)) = { Oplasn) O4—r P }
constrained binary code orﬁ((g’(;;’) has at most(d +
2)122(d+ D) (n+m—2d=2) distinct Cod7ewords that do not containWhereP and P’ arer x r permutation matrices. Therefore,
dy i a(n—2d—2 m—2d—2) the number of consecutiv®’s between any pair of two
the patternlo’l in Sy gy " horizontally consecutiva’s in %! is at least
Proof of Theorem 1:For sufficiently largen andm, Re- (0,0)
mark 1 holds for anyd, d-+1)-constrained binary code on the a—r>a—(b—1)=d+1

bounded rectanglé‘((g’(;;’). Therefore, combining Corollaries

5, 8, and 9, anyd, d+ 1)-constrained binary code (g’g;’) and at most

has at most (r—=)+(@-r)+@r—-1)=a+r—2<a+b-3=F -1
((d+ 2)! + (d + 2)! 4 277 +1) 22D (npm—2d—2) This completes the proof. O
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Proof of Theorem 2:Let F be a(d, k’)-constrained bi- 5 fi 5
nary code onZ? consisting of all mappingg given in the oTiTiTo T ToliTs
statement of Lemma 6. Given integeisand m, we define 1lof1]1 liilo1] olilold
a (d, k’)-constrained binary codé-"((g’o’;’) on S((g’(;;’) as the 0l1i1]0 lifolilol 1lairio
restriction of F to S((g’(;;’); i.e., each codeword id—"((g’o’;’) is ' ‘ \

(n, m)

the restriction of a codeword itF to S(O 0

a—b = d, we have

. Then, since

. xxi [xxo]xxi [xxo

OXX | 1XX | 1XX | 0XX
' , xxg [ xx1 [xXxo [xx1

1XX | OXX | 1XX | 1XX

. (n, m)
1082 |f‘(07 0) | _ 10g2 |Vd, k’|

o> i
Cd, K Z m}rllll)loo mn a2 : : xx1 | xx1[xx1]xx0
‘ Bl 1 bd ) o [z [Rox X1z [ ox]
_1082 ((b!)l_a/ . (7!)) _ L%J log, (b!) + log, (1) 0xX [ 1xx [ 1xX | 0XX
a? (b +d)? ’ L 1 j
) y \J
SinceCy ;, > Cy 4 for all ¥ < k, we have 1 74
) ) xixiil s xpolxixin]xlx]o o|01000001110
" S TR G e
LTJlogQ(b!)—i—logQ(r!) ojx|x| 1] x[ x|z ]x]x[o]x]x of11100110000
Cd,kZd;2%¥<k (b+d)2 X xjojxixiilxixjolxixi1) Triafo]ofojifoioo]olol1
425K Sk, EYEET I P30 o1 EAEA e mal 5 1) B (A (A EYEN
—d even Lde x| x| ol x[x[1]x[x]1]x]x 1]olofololof1lo]o]1]o]o
i10~(bl)+10~(7>l) xixii|xixlifxixi]x[xo ofofifolofafiliirfolz
b g2 \0- g2l T - 9
=  max b+ )P (14) XX . a i gk
2<h<1+ olx[x|1[x]x]|1]x[x[o]|x|x olofo]1fofcfr]ofofolr]otsx
T T

All free bits X can be arbitrarily
chosen from {0, 1 }.

One example of a complete (0,5)-constrained
binary code with particular choices of X ’s.

The range oft’ in (14) is restricted td’ > d + 2 instead of

k' > d because’y 4 = 0 and &’ — d must be even. O 2. 9) (1
- d,d Fig. 10. A (0, 5)-constrained binary codeworgl(,}z’g) on S((é?é)g) con-

Recall that the coding rate of arfy, k)-constrained binary structed from thre¢0, 1)-constrained binary codewords, fi, and f2 on

code]—"((g’g;’) on S((g’g;’) is defined as S(o,0) See Theorem 3.
log, |J-"((&’O’;’)| S((g;,(};") into a single codeword on the originad x » rectangle
mn S((g”(;;"), by interlacing; i.e., regarding théh row of f, as
k+1)(z—1 .
where If((gdo?n is the number of codewords iﬁ((gwom)- We the (% it 1>th fow of the resulting codeword on

will see in the following sections that the limits of the codingﬁ((g;’g;), fori e {1,2,---, m'}. (The rows are ordered from
rates of certain sequences of binary codes will also establipitom to top.)
the lower bounds in Theorems 3-6, as was done in the proofFormally, let 7™ pe a(0, 1)-constrained binary code
of Theorem 2. on S(",’m,), let

(0,0
H={fo, fi. s fo—1y/2}
be a set of k + 1)/2 codewords inF*-™") and let

(n, m)
5(070) — {0, 1}

) be any mapping such that the label of the rectangle
18 k=5, S((ik:)l)/Q’l) under g{*™ satisfies

§((41)/2,1)

(z,v)

C. Proof of Theorem 3

We construct(0, k)-constrained binary codes om x n
rectangles, whose coding rates approach the lower bound in gf{{’ ™,
(4) asn, m — oo. Fig. 10 illustrates this construction for a
(0, 5)-constrained binary codeword oﬁ((é%f
m =9, andn = 12.

Intuitively, if k£ is odd then such a sequence (@f, k)-

constrained binary codes is constructed as follows. het o T y—t
and m be positive integers that are divisible ¥ 4 1)/2 Xt0x7= 7t f ft<(/€+ 02" Uit 1)/2) =0
and assume: > m. Let n’ = (H"W and m’ = W = s _ . y—t
First, we construct (0, 1)-constrained binary codewords XX7 " f ft((k+1)/2’ G+n2) = 1
fo, f1s o+ fae—1)/2 ON S((g;é;" ). Then, for each codeword (15)
f+» we replace its bits by x (k& + 1)/2 rectangles containing
' for
the bit patterns kit 1)
X X0X---X andX---X1X---X (z,y) = (0, ¢) mod 5
t (k—1)/2—1 t (k—1)/2—t for eacht = 0,1, ---, (k — 1)/2, and where eactX is an

where eachX is arbitrarily chosen fromr{0, 1}. That is, each
such rectangle ha§: — 1)/2 “free bits” and one fixed) or

one fixed1. Finally, we merge thesg: + 1)/2 codewords on (0, k)-constraint onS ",y

arbitrary choice of eithed or 1.

The resulting codeword;;’,“m) is shown to satisfy the
(n.m) as follows. It is straightforward
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(n, m)

from the definition thaty;; satisfies the(0, k)-constraint
horizontally; the number of consecuti®s between any pair
of two horizontally consecutivé’s is at most((k — 1)/2) —
t+ ((k+1)/2) +t = k, since eachf, satisfies the(0, 1)-
constraint horizontally (this is achieved if01 maps to
0t10(k—1)/2)—to(k+1)/2)t10(k—1)/2)=t) " A similar argum-

ent shows thagg“ ™) satisfies th€0, k)-constraint vertically.

Proof of Theorem 3:First, suppose thak is odd. Let
n, m, n’, m’' be positiye integers such t/hé@—lm, k£l |m,
and n 2 m, and letn’ = m andm’ = m Let

n

gl(;/, ™) be the set of all mapping@l(q” ™) defined above, and
let

gom= U e,

HCF&  mh): |H|=k1L

a (0, k)-constrained binary code cﬁ’fg’(;;’). We will show that
the coding rate of;(™™ approaches the lower bound in (4)
asn, m — oo, for a particular choice of &0, 1)-constrained
code F'-m") on S((g?a;"). Let

{F(n o )};.Lc’),rn’:l

n’,m’)

be a sequence @b, 1)-constrained binary codes cﬁf()? 0
such that the coding rateg, |F™"|/(n'm’) of F'»m")
approacheg’; ; asn/, m’ — oo (such codes were shown to _ _

exist in [3]). %% patterns are interlaced, each chosen frofi9 1 A(1, 7)-constrained binary codewoig}; (0,0)
among|j_—(n’,m’)| possible patterns. Each resulting interlacegjructed from two(0, 3)-constrained binary codewords oﬁ((o’:gg. See
m x n. rectangular pattern ha-Lmn free bits. Thus the total Theorem 4 and Lemma 7.

number of validn xn patterns created with this construction is

12,10 12,10
' )onS( 110) con-

|G | = ) [(D)/2)  g((h=1)) () In particular, whend’” = 0 this implies
1
and hence Ca, 1 2 d+1 Co, i (16)
lim logy [¢ "] where
m,n—oo mn o k/—k+1—1
:k+1 limn <10g2|]-“(n,m)|'m/n/> E—1 _—d+1 .
m,n—od 'n!
' mn mn kel Proof of Lemma 7:Let
2 k-1
_ _ Cd+1l K+
Together with Fact 1, this completes the proof of Theorem_3 ] ) )
for odd k. To establish Lemma 7, we constryet k)-constrained binary
For evenk, Theorem 3 immediately follows from theCOU€S onm x = rectangles, whose coding rates approach
monotonicity in (1), and Theorem 3 fdr— 1 odd. 0 (1/s)Cy v asn, m — oo. Fig. 11 illustrates this construc-
tion for a(1, 7)-constrained binary codeword 0%26)10) from
D. Proof of Theorem 4 two (0, 3)-constrained binary codeword cﬂﬁgg)) ie,d=1,
Theorem 4 follows directly from Theorem 3 and (16) iff =1, & =0, ¥ =3, s =2, m = 10, andn = 12.
Lemma 7 below (using:’ odd). Let » andm be positive integers that are divisible By

assumen > m, and letn’ = n/s andm’ = m/s. A (d, k)-

. / / 1 H
Lemma 7:Letd, k, d', &’ be nonnegative integers such thag, qained binary codeword (g’(;;’) is constructed from

C(;l/+11 = :/Jrll a set ofs (d’, k')-constrained binary codewords cﬂéglbg",)
_ _ + + as follows. LetF™") be a(d’, k')-constrained binary code
is an integer. Then / on S((&(’J;"), and letH = {fo, fi, -+, fs_1} be a set of
Oy > d+1 Cy 1. s codewords inF(™™)_ For each codeword,, we replace
T d+1 ’ every occurrence df and1 by al x s rectangle containing the



KATO AND ZEGER: CAPACITY OF TWO-DIMENSIONAL RUN-LENGTH CONSTRAINED CHANNELS 1537

bit patterns0® and 0:10°—1~¢, respectively. Then, we merge Corollary 10: Let d and ¢’ be nonnegative integers such
theses codewords into a new large codeword, on the origin#hat (d' + 1)|(d 4+ 1). Then

mXxn rectangIeS((g’(;;’), by regarding theth row of f, as d+1
the (s(i — 1) + ¢t + 1)th row of the resulting codeword for Ca,00 2 d+1 Car, oo-

i € {1,2,---,m'} (the rows are ordered from bottom tosettings’ = 1, Corollary 10 implies Theorem 5 for od# For

top). Formally, letgy;” ™ 5((&’5;) — {0, 1} be any mapping evend, Theorem 5 immediately follows from the monotonicity

such that the label 05((; le)) underg{™™ satisfies C4, 00 > Cyt1, 00, and Theorem 5 forl + 1 odd.
’ Also, whend’ = 0, Corollary 10 implies that
. AT t) 1
0°, if f,(=,2—)=0
A((i,;))_ ft(s Ca, 00 2 1 a7

for all positive integers!, sinceCy -, = 1 is the unconstrained

capacity. It is easy to check that the lower bound in (7) in

Theorem 5 is tighter than that in (17), unless- 2 or d = 4.
Corollary 10 ensures that(@, oc)-constrained binary code

The resulting codewordy;, ; _
(d, k)-constraint ons™ ™ as follows. Since eacl, satisfies can be constructed from él, co)-constrained binary code
) 0,0) ' in the manner of the previous section for oddby setting

7 / - 2 - - g
the (d', k’)-constraint horizontally by definition, the number (d+1)/2 andk = ¥ = oo. We next demonstrate this

of consecutive0’s between any pair of two horizontally zoistruction
Let n andm be positive integers that are divisible Hg—l

mm) s atleasts — 1 —t+ds+t=d
assumen > m, and let

. —t
0101, if ft<f, v_r ) =1
S S

for (x, y) = (0, t) mod s, for eacht =0, 1, ---, s — 1.
(n.m) s shown to satisfy the

consecutivel’s in gfq
and at mosts — 1 — ¢t + k’s + t = k; the former is achieved
since the patterri0¢ 1 maps to
Otlos—l—t OS . OS Otlos—l—t n/
N——
d/

m

I
and m _4(d+1)/2'

"
(d+1)/2
and the latter is achieved since the patt&édf 1 maps to

Otlos—l—t OS I OS Otlos—l—t'
——’
1%

(n, m)

A (d, oc)-constrained binary codeword ofi, 0) is con-
structed from a set ofd + 1)/2 (1, oo)-constrained binary
codewords or§” :™) as follows. LetF™ ™) pe a(1, cc)-

(0,0)
A similar argument shows thagg“ ™) satisfies the(d, k)- constrained binary code oﬁi((g 6;" ), and let
constraint vertically. ’
y (n, m) HZ{fO? f17 Tty f(d—l)/?}

, and let

ggl, rn)’

Let gg;“ ™) be the set of all mappin

U

be a set of¢tl codewords inF("™"). For each codeword

glnm = f+» we replace every occurrence®@fndl by al x (d+1)/2

HCFG/ . m'): | H|=s
a(d, k)-constrained binary code cﬁt(g”(;;"). We show that the
coding rate ofG(">™ approaches the lower bound in Lemma
asn, m — oo, for a particular choice of &', k’)-constrained

binary codeF ™) on S((&,a;",). Let

7

rectangle containing the bit patterrﬁ)sdg—1 and 0'10°F—,
respectively. Then, we merge thegk+ 1)/2 codewords into

a new large codeword, on the originalx n rectangIeS‘((g”(;;’),

by regarding theth row of f; as the(&;i’l) +t4+ 1)th
row of the resulting codeword foi € {1, 2, ---, m'} (the

rows are ordered from bottom to top). Formally(@ oc)-
constrained binary codeword

(n,m) . o(n,m)
9n ¢ S(o, 0)

{F(n,7nl,)}z<’>,nl’=l
— {0, 1}

n’,m’)

be a sequence ¢t’, k’')-constrained binary codes cﬂfo 0)

such that the coding rateg, | (™| /(n'm’) of (™) is defined as any mapping such that the labegjf 5"/ ¥

ap_proache@dgk/ asn/, m’_—_>_oo. Note that such a sequencqmdergghm) satisfies

exists because of the definition of the capacity . Then,

we have S(@D/2,)
(=)

logy [G¢™)] _ log, |7

lim T —t
m, n—oo mn m,n—oo mn 0((d+1)/2) if ft< s L ) =0
; log, |f‘(n/7nl’)| m'n! _ (d+1)/2° (d+ 1)t/2
=s lim . _ _t z Y-
W i 0100/t it < , -

1 T (d+1)/2" (d+1)/2

= — Cd’, L/ - I:l
s

for (z, v) (0, ) mod ((d + 1)/2), and for eacht

0,1,---, (d—1)/2 (for odd d). Fig. 12 illustrates this con-
struction for &5, oo)-constrained binary codeword dﬁé%)g),

ie.,d=5 m=29, andn = 12.

E. Proof of Theorem 5

The following Corollary is Lemma 7 withh = £’ = oc (the
proof is unchanged).
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i fi 5 Since each4; andA’ has at mpst ongin each row and in e_ach
olal1 TTalola] REErIE column, the number of choices for eaeh is (enumerating

o100 0lol1lo] IEREERT over nonzero rows and columns)

1]lolol o101} ololol s

2 s
s s\ 1
‘ . il =s! e
2 2 0) =)o
ooo].001]oo0] 001 =0 =0
0101000000 ]000] and the number of choices fot’ is
L 001 000 001] 000 o\ "L\ 1
JUUIPUH APPSOt a1 — ! —
000}100)000]|000 =0 =0 '

100[000[000[100 s 1 1+|d/s] r 1
Z S Z T

ofifoio [0 ]olo The maximization in (8) follows since (18) holds for every
ofojelofo] s<d. O

0fo0 gjojojoio|1 0 -

O L (CSEHON PO ST RS H0) 0

dlojbloojolialo oo G. Proof of Corollary 2
g g 8 é g 8 g g g 8 g i For d < 13, Corollary 2 is verified by direct calculation.
Sleisle it Note that the right-hand side of (8) is greater than or equal to
1/o]o|o|olo]olojo]z]o]o x
[

log, <d! éo (4) i)

Fig. 12. A (5, co)-constrained binary codeworquf’g) on 5¢12:9) con.

(0,0) 2
structed from threg(1, oo)-constrained binary codewordf, fi, fo on 2d
Sto'q) See Theorem 5. (by settings = d in the maximization of (8)), and Stirling’s

inequality [6] implies that

d
F. Proof of Theorem 6 log, <d!2 (f) %) Loy ()
iz : ogo(d!
Let s be an integer such that< s < d, let r = d mod s, 0 > 082

2 - 2

and letV,, . be the set of all block-diagongk + d) x (s + d) 2d 2d N
binary matrices of the form S log, (V 2rd () )

_ - 2d?

loe., (¢
A > %Cgﬁ). (19)
Az But for all d > 14
. 1Og2 (%) > 201,00 > Cl,oo Cl,oo
Artlass) 2d ~ d T+ ((d=1)/2) = 1+ d/2]
A/

- - H. Proof of Theorem 7
where eachy; is ans x s matrix and4’ is anr x » matrix, and Let n and m be divisible byd with n > m, and let

each row and each column of; and A’ has at most oné, F™) be any(0, k)-constrained binary code on thex m
and all the nonblock-diagonal elements ér& If a mapping rectangIeS("’ ™) We breakS((g”(;;") into squaresS‘(';J;l)) of

2 0,0 : :
f: 2% - {0, 1} satisfiesS((jfyd)) € Va s Whenever size (k + 1)( X %k +1), wherez = y = O0mod (k + 1(). Since
every codeword inF(™ must have at least onkin each
z=y=0mod (s +d) row and in each column of eadT‘t(;“B), we have
then f is a (d, oo)-constrained codeword, since the number - logy |[FOmm)|
of 0's between consecutives is at leastd. Let F be the set  Co.x < m’l}}Em T
of all such mappingd. Given integers: andm, we define a , Kkl ‘
(d, oo)-constrained binary cod& ™ ™ on S((&’(;;’) such that logy <2<k+1) -2 (kfl) (24 - 1)k+1_z>
each codeword iF(™ ™) is the restriction of a codeword in < Z_](Lk 1) ;
F to S((g;’g')"). Then, we have

where
logy |F(m) log s kE+1 ) ] )
Cpow> lim ‘B2l _lom Pasf g < : )(2“1—1)’411

m, n—00 mn (s +d)? i
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indicates the number oft + 1) x (k + 1) binary squares Smcez (%) (1/i!) = 1, the quantity in (20) is larger than

consisting ofi zero rows andk — ¢ nonzero rows. Equation =0
(9) follows since d d S\ 8
——log,(s) > ——— log, (V2rs( >
LAESS ] ‘ s(s+d)? og2(s) > s(s + d)? 082 ( 7 (e) )
Z (2k+1 _ 1)k+l—z d
, ¢ > -——7>2o log 3
- k41 (s+d)? "= e
= (2kFL —1)kHL Z <k + 1) (ML 1)~ for all d (using Stirling’s lower bound [6]). Substituting= ed
im1 t (for any e € (0, 1))
= 2(k+D% (1 — (1 — 2= (HLykty, O d

s 1 €
IR = o (10g2 = +log, d).

I. Proof of Th 8
roor of Iheorem Thus for anye € (0, 1), it follows that

Let » andm be divisible byd with n > m, and letF (% ™)

be any(d, oo)-constrained binary code on the< m rectangle lim < d ) Oy oo >
S((g 5')’) We breakS(g 5;’) into squaresS((;i)y) of sized x d, d—co \log, d ’ (1+e)?
wherez = y = 0Omod d. Since every codeword itF(-™ and therefore,
can have at most one in each row and in each column of
each$“ ' we have - +Cy00 2 1.
(l‘ y) d—oo \ log, d
1 . (n, rn) . ) . .
Cioo < lim og, | F' | But Theorem 8 immediately implies that
m, Nn—0o0 mn d
d 2 d lm | —— ) -Cy oo < 1. O
o (3 (1)) tom (2% (1) 8) i ()
< i=0 _ i=0 ) )
- d? d? APPENDIX
Since EXISTENCE OF THE TWO-DIMENSIONAL CAPACITY

d g d Theorem 9: The two-dimensiona(d, k)-capacityCy_ s ex-

> <> iy <> < ) =24 ists.

i—o \! i=0 Theorem 9 is stated in [8] and [12] without a complete

proof. It is a special case of a complicated proof in the preprint

[7]. We give here a concise proof using an extension of [8,

log, (\/ﬂ (g)dm;—d .Qd) !_emma 4.1.7] to double sequences. Note that both the proof
in [7] and our proof below essentially depend only on the

two-dimensional subadditivity.

Stirling’s upper bound [6] implies that

Cd, =) S 22

2d 1
7] <1082 V2rd+ d log, < ) 12d log, ) - Lemma 8: Let {a,n, » }3 .-, be a double sequence of non-
negative reals such that
J. Proof of Corollary 3

a/nn—l—rng, n S a/nl] ,n + a/rng, n (21)
The right-hand inequality in (10) is straightforward from < 29
Theorem 3. The left-hand inequality in (10) is derived from Gm, natnz S Gm,ny o Gm, ny- (22)
(9) as follows: Then
1-Co > — . log, (1 2—(k+1)) . 1711111)00 o)
1 (log, 6)27(k+1) (ask — o0) exists and equalif,, .>1 {am, »/(mn)}.
k +1 Proof: It follows from (21) and (22) that
_ logy e
- (k. + 1)2k+1 arnl+rnz,n1+n2 S arnl,nl +an12,n1 +arnl,n2 +an12,n2~ (23)

oo Also, by induction we getuym, n £ Pam,n AN Gy pr <
where we used-In(1 —xz) = > («"/n) >, forallz. O 54 for all m, n, andp.

=t Let
K. Proof of Corollary 4 a= inf am n/(mn).
The lower bound in (8) is greater than or equal to

) By definition, a,, »/(mn) > « for everym, n > 1. Fix an
2 log, <3! > (3) %) arbitrarily smalle > 0. It suffices to show that,,,, ,./(mn) <
i=0 (20) a+te for all m, n sufficiently large. Sincex is the largest

(s +d)? ' number less than or equal to all of ths, ,/(mn), there
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exist . and v such that(a, ,)/(w) < « + (e/4). Let
p and ¢ be positive integers such thdt, 1)/p < (¢/4),
(a1,1)/a < (e¢/4), and leti and j be integers satisfying
0<i<pand0 < j < p. Then

(1]

(2]

App+i, qv+i < App, qv + App, §
pr+a)(gr+35) = (pp+i)(av +7) - (pr+i)(av +7) a3l
i, qv i, 4
+ - ~ + - -
(pp+i)(gv+35)  (p+i)(gr+j) A
< Sy | Gppi | %qv i, j
T pugv pugy  pEgY  pugv [5]
< paa,, v brau, 1 1qay, tjai,1 (6]
pgpv - pguv - pgpv o pauv
£ a a a 7
<(a+—)+ L1, 4,1, M1 [7]
4 q p pq (8]
<wa+E. (24)

9]
For anym > pu and anyn > gr we can always write [10]
m = p'p+iandn = ¢'v+j, wherep’ > p, ¢’ > ¢, 0 < i < p,

and0 < j < v, and thus the inequalities above show that

am,n/(mn) < a+e foral m > pp andn > gr. m
Proof of Theorem 9:Let [12]
Am,n = 10g2 Nr(7;l77’:)
’ [13]
Then, we have
[14]
Amy+ma,n < Amy,n + Amy,n
since N,(,fl’i)mzm < N,(,f;f‘;z N,(,fg,’“;z, because the right-hand[15]

side is the number of patterns on @n; + ms) x n rectangle [16]
created by concatenating valid patterns omanx n rectangle
and valid patterns on am x n rectangle. Similarly, we have [17]

U, ny4ng < Om,ng T Gm,n, - [18]

Hence, Lemma 8 can be applied to this double sequence
{@m, ntoe et O [19]
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