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using the process with hidden states in [3]. The capacity may be esthere N{**1:92#2) denotes the number of (dy, k1, da, k2)-con-
mated to beH ~ H(10) — H(9) = 0.4682. strained m X n binary patterns. We determine whether the capacity is
positive or is zero, for many choices of dy, k1, dz, k2).

VII. CONCLUSION Index Tgrms—(:apacity, constraints, magnetic, optical recording, run
length coding.
New bounds on the capacity of constrained 2-D codes were derived.
The bounds are based on the transfer matrix of superset and subset
sources, respectively. The bounds are expressed in terms of capac-
iies of bands and cylinders, which may be determined using well-Run length constraints derive from digital storage applications
known one-dimensional results. Two upper and a lower bound apfl{. For nonnegative integeré and %, a binary sequence is said
cable to any finite-order constraint were presented. One of the upggrsatisfy a one-dimensionatl, k)-constraintif every run of zeros
bounds was applied to three second-order constraints, improving figs length at least and at most: (if two ones are adjacent in the
vious upper bounds. The lower bound was applied to one of these ceaquence we say that a run of zeros of length zero is between them).
straints, improving previous results based on transfer matrices. A two-dimensional binary pattern arranged in:anx » rectangle is
said to beg(dy, k1, d2, k2)-constrainedf it satisfies a one-dimensional
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|. INTRODUCTION
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ky,dz,

{(di, k1, d2, k2) : Cay ky do by > 0}

It is of interest to determine the exact values of the capacities of the

Partial Characterization of the Positive Capacity various two-dimensional constraints in the positive capacity region, or
Region of Two-Dimensional Asymmetric Run Length at least to find good approximations or bounds. A more basic question,
Constrained Channels however, is to determine which constraints actually lie in the positive

capacity region and which do not. We provide here a partial answer to
Akiko Kato, Member, IEEEand Kenneth ZegeFellow, IEEE this question.
The exact value of the capacityy, .x, 4,5, has been unknown for

Abstract—A binary sequence satisfies a one-dimensiondld, k) run E" but a fer cases. Iln f?]Ct’ IS all cases Wdl‘]ek? the Capa.CIty ::as bbeen
length constraint if every run of zeros has length at leastl and at mostk. nown e)_(aCt Y, 'ts_ valué has been zero an_ the C_onStra'nts _ave een
A two-dimensional binary pattern is (dy, k1, d=, k2 )-constrained if it ~Symmetric. The first exactly known two-dimensional capacity was
satisfies the or}e—dim‘ensiona{dl, k1) run length const_raint h(_)rizontally shown in [1] to beC,» = 0 and a complete characterization of which
and the one-dimensional(d,, k») run length constraint vertically. For (4 ) integer pairs yield positive capacities for symmetric constraints

gg?r?egla’skl’ dz, and k,, the asymmetric two-dimensional capacity is was given in [9] and is stated as the proposition below.

Proposition1: Cy , > Oifandonlyifk—d > 2 or(d. k) = (0,1).
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P: Positive capacity|
Z: Zero capacity

2667

either A or B. Thus N\" 2 k2) 5 olm!/m)(n'/n) gng, therefore,

Cay kq,do ke > 1/(mn). 0

Il. MAIN RESULTS

Theorem 1: Letd,, k1, d2, andk- be nonnegative integers such that
di < ki andds < k. Letd = min(dy,d2), D = max(di,d2),

[@=0] @D k= min(ky, k2), K = max(k1,k2),6 = k— D,andA = K — d.
P Then the following partially characterizes the positive capacity region
of two-dimensional run length constrained channels.
i) If 6 < 0thenCq, ky,dy,ks = 0.
i) If 6 = 1then
[k=d+1] [k>d+2] )
7 P (A) If d =0thenCq, iy do,ks > 0.

(B)

Fig. 1. Zero and positive capacities for the symmetric two-dimensiehal)
constraints.

If d > 1then
a) IfA < 1thenCyy iy dy,is = 0.
b) IfA > dy = dsthenCay xy 5.8, > 0.
c) If A > 3andd = 1thenCy, r, dyky > 0.

In the present correspondence we determine whether or not the twoiii) If 6 > 2 thenCy, %, 45,2, > 0.

dimensional capacity is positive, for a large set of asymmetric con-
straints(dy, k1, dz, k2 ). The cases where we determine the asymmetr*'g
capacity to be zero (i.e., Theorem 1 part i) and part ii(B)a)) add to t

collection of exactly known capacities. We do not, however, determirl)]%lrn
the exact capacity for any constraints yielding positive capacity. TPU\;n e
remains an open problem.

The theorem above reveals whether the capacity is zero or positive
r many but not all possible four-tuplég; . k1, d2, k2). The only case

atis presently not completely characterized in Theorem 1is partiiB),
ely, whert = 1,d > 1, andA > 2. In partii(B)b), it is unknown

ther the capacity is positive or zerodif # d2, for example. If

6 =1,d =1, andA = 2, the only capacities that need be considered

The main results are summarized in Theorem 1. It is interesting ey o1 s andCy 505, BUtCyoqs > 0 from part ii(B)b). Thus if

note that for the symmetric constraint (i.e., whan= d, andk, =

we were able to show that, 3 2,3 > 0 then we could replaca > 3

k»), the capacity is zero whenevérandk are positive and differ by by A > 2 in part ii(B)c). However, computer simulation suggests,
one, whereas for many asymmetric constraints the capacity is positij(g goes not prove, that perha@s s » 5 = 0. This remains an open

when the horizontal constraints or the vertical constraints differ by OBestion.

(e.g., Theorem 1 part ii(B)b)). However, in the asymmetric case if, for
examplek, = dy + 1 < d» then the capacity is zero (by Theorem 1
parti)). The present knowledge of the positive capacity region is shown
in Figs. 1 and 2.

The capacityCy, x,,45,5, IS Symmetric with respect to exchanging
horizontal and vertical constraints, andiasor d» decreases arfd or
k. increases thé&ly, k1, d., k2)-constraint allows more valid patterns.
Hence, the definition of théd . k1, d», k2)-constraint implies mono-
tonicities of the capacity in each variable. These facts are stated in the
following two lemmas.

i)

Lemma 1: Cuy ky,do.ke = Clg ky,dq .k, fOralldi, ki, ds, andks.

. u 7
Lemma 2: Cuy by ,d5.ks < Cy 3, 2,5, Wheneverdy < dy <

k] S ];H andd} S (12 S kz S ]{2.

The following lemma provides a useful technique for establishing
that certain capacities are positive.

Lemma 3: Let A andB bemxn matrices such that > k- andn >
k1.Let AB denote the horizontal concatenation (ar2» matrix) and
let A/ B denote the vertical concatenatior2¢axn matrix) of A andB,
respectively. IfA andB are distinct binaryd,, k., d2, k2 )-constrained  iiA)
matrices suchthatA, AB, BA, BB, A/A, A/B,B/A,andB/B all
satisfy the(d, k1, d2, k2)-constraint, then

Cay ke dg kg > —-
ay,k1,a2,82 mn

Proof: Let m' andn’ be divisible bym andn, respectively.
Any m’ x n’ rectangle can be tiled by» x n rectangles. 1f4 and
B satisfy the conditions of the lemma, then thé x »' rectangle
is (di, k1,d2, k2)-constrained whenever eagh x n rectangle is

Proof:

Assume without loss of generality thét < d». Thend, <
k1 < d2 < kg sincemax(di,d2) > min(ky, ko) from
6 < 0. Therefore, it suffices to show théty, x,,ds,k, = 0
for d; = k; since Lemma 2 implies
Cay kydo ks < Cy by kg koo das > k1.
Any (di, ki, ki, ko)-constrained(ky + 1) x (k1 + 1)
square must have at least ohen each row and at most
onel in each column, and thus must contain exactly one
1 in each row and column. Thus if,m > ki then a
(d1, k1, k1, k2)-constrainedn x n rectangle is determined
by any (ki1 + 1) x (k1 + 1) square in it. Therefore, the
number of(dy, k1, k1, k2 )-constrainedn x n rectangles is
bounded asvi/;F1#152) < (k4 1)! and thus

. log, (k 1!
Cy kg by ky < lim M:O

m,n—oo mn

Assume without loss of generality; = 0, and thusi; =
k—6=1Fk—1.Eitherk; = k andk, = K orelsek; = K
andk; = k. Using Lemma 2, we have

Coke—1,5 2 Co ke e—1,k
and

Co,x =1k 2 Cok =1,k

and thusC'y, &y dy, k5 = Co,k k—1,k. We show that

Cokk—1,6 >0
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P: Positive capacity
Z: Zero capacity
?: Unknown

@D G=d G2d =D e 2dd Cey>24D

[a,<ky|az3k,|/ [a,>4,]

/e p oz | z
Z P Z
= G2 D @D

Z P Z

[x,=2[¥, 23][k,=3][ ¥, 4| [i;<2d] [i5,>28] [k =, +1] [, 30, +2] [kp=dp+1] [k, 24, +2] [k <29 [kp>24
Z P 7 P ? P ? P ? P ? P
(*) )

[k,=a; +1] [l >d,+2][k,<2q] [k, >24]
? P ? P

Fig. 2. Zero, positive, and unknown capacities of asymmetric run length constrained channels. These follow from Proposition 1 and Theorem dbwkwo unkn
capacities indicated by (*) would be zero if Conjecture 1 holds. (We asfufhd; < k; < oo for¢ = 1,2 andd, < d,.)

for everyk > 1.Let A andB be binaryk(k+1) x (k+1)
matrices defined as

Iy e I e
I e I €2
A= Ik (3] B = Ik €;
I €1 Iy, €
Iy €1 I 0

wherel}, is thek x k identity matrix,e; is ak x 1 column
vector in which thejth element from the top i$ and the
other elements ar& and0 is the zero column vector. Then
the two matricest andB satisfy the conditions of Lemma 3,
and thus for every: > 1

1
>
= k(k+1)2
Sinceé < A andé = 1, we haveA = 1. Together with
d < D < k < K, thisimplies thatl = D andk = K
d+1,andthusly = ds =d < ky = ks = d + 1. But
Cq,a+1 = 0ford > 1 by Proposition 1.

Co ke k=1 .k

ii(B)a)

ii(B)b) Sinced = d; = d., assume without loss of generality that
kr = k. We havek = d + 1 (sinceé = 1) and K > 2d
(sinceA > d), and, therefore,

Cdl.kl.dz,kz = C'd.d+1,d,1< > Od,d-&-l,d,zd-&-l
(using Lemma 2). Thus it suffices to prove

Ca,d+1,d,2d+1 > 0

ford > 1. Define A and B as the two distincB(d + 1) x
(2d + 3) matrices shown in Fig. 3, whetg is thej x j
identity matrix and)’ denotesj horizontal or vertical con-
secutivels. ThenA andB satisfy the conditions of Lemma
3, giving

> L

= 3(d+1)(2d+3)

iiB)c) Wehavek = 6+ D >6+d=1+1=2andK =
A +d > 3+ 1 = 4. Assume without loss of generality
di=d=1landdo =D =k—-6=k — 1.
If K = 2thenD = d» = 1 and, therefore,

Cd,d41,d,2d+1

Ciki2=Ci21,xk>Ci213>0

for K > 4 by Lemma 2 and part ii(B)b) of this theorem.

If & = 3 then eithert; = 3 andk; = K orelsek, = I
and ks = 3. But 01,3,2’[{ 2 01,3,2,4 andCLK,z’s 2
Ci423 for K > 4 by Lemma 2. Therefore, it suffices
to show thatC'i 304 > 0 andC 423 > 0. To prove
C1,3.2,4 > 0, defineA andB as the binar2l x 7 matrices
shown in Fig. 4. It can be verified that and B satisfy the
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[ d+1 1 d+l ~—— d+1 1 d+1 b
d+1 d+1
Laia 0 Loe vl Lai 0 Lo a1
110 0¢ 1000 0*?
10| 0%
A = Id+l Od Od Ia  ja+z B = ,Id+1 Od' L
G 07| Taz
110 o
I dl Ad
d 0% 0 Ii.s d+1 I,., e lod g+1
o o] 1

Fig. 3. Two distinct binang(d + 1) x (2d + 3) matrices4 andB for the proof of Theorem 1 part ii(B)b) that afd, d + 1, d, 2d 4 1)-constrained for > 1.
I; is thej x j identity matrix and)? is j horizontal or vertical consecutivks. All tilings of the plane with4 and B are alsa(d, d + 1, d, 2d + 1)-constrained
ford > 1.

conditions of Lemma 3 witll; = 1,k = 3,d> = 2, and

OO[100[0 100[1000

ks = 4. ThusCi 324 > 1/147. To proveCi 423 > 0, 010/001/0 0100100
define A and B as the binaryi6 x 12 matrices shown in 88(1)%8% 28% 88%
Fig. 5. Then4 and B satisfy the conditions of Lemma 3, 5100001/0 b1oloido
giving Cy 42,3 > 1/192. 00110001 0010001
, = . . LOOJLOO|0 100[1000

If & > 4 then eitherk; = k andk; = K orelsek; = K b1olo1olo 0100010

ko = k. iNCE & k—1,K > e k—1.k 001/000]L 001/0101
andk2 Therefore, SinC€'y r 1—1,x > Cl,{w,k 1,k and oot Rt
Ci i k=11 2 Ci kx—1,% (by Lemma 2) it suffices to prove A=p1ojozojol B=[010/0010
001/000[1 001/0101

Chhhre>0 L100[100[0 100[1000

B 010j001/0 010|000

. ; . 1/000[1 00110001

for everyk > 4. Define A and B as the binary2k + 1) x 031200 eqgo0l
(k+ 1) matrices shown in Fig. 6 fdr > 4. The matricest 010[101{0 010{1010
and B satisfy the conditions of Lemma 3, implying for all 583828}) 28% 888%
k > 4 that 010/001[0 010[0010
- po1jpo0f 001/0001

1
> .
= @2k +D(k+1)
iii) Sinceé > 2 impliesD < k — 2, we have

Ch ke k—1,k

Fig. 4. Two distinc1 x 7 binary(1, 3,2, 4)-constrained matriced andB
used to prove Theorem 1 part ii(B)c) with Lemma 3. All tilings of the plane
with A andB are alsq1, 3, 2, 4)-constrained. Note that andB do not differ
below the 12th row nor outside of the 5th and 6th columns.

using Lemma 2 for the first two inequalities and Proposition

Cdy ky,dg ks 2 Cokpke 2 Crh—a ke k—2,k > 0

1 for the third inequality. O
. . . . 010[000[1L00|010 010]|000[L00/010
The_ following corollary states some interesting special cases 0011010011000 1001010011000
resulting from Theorem 1. 0010000101100 0011000/010{100
. 010[010[100|001 000]|010j100/001]
Corollary 1: Let dy, k1,d-, and k2 be nonnegative integers such 000[101/001/010 010[101/001]010
thatd; < ki, anddz < k.. Letd = min(di,d2), D = max(di,d2), 1011000/010/100 1011000010]100
k = min(ki, k2), K = max(ki,k2),8 = k — D andA = K — d. _[QV0pLOILO000L 000010200001
A=[010[101/001(010 B =[0101012/001]010
Then 1011000/010[100 101/000/010/100
: y _ g1 _ 1. 000/010/L00|001L 000|010{L00/001
D) Cit ey daa = D Wheneved, = ki ordz = ks. 010101(001/010 0101101001/010
i) Cd,dt1,d,2441 > 0 foralld > 0. 101/000/010/000 101/000/010[000
iil) Cay ky,do,ke > 0 wheneverD < min(k, K/2). 000|0L0[L00101T 000]010[100[101]
: ) X v 0 ; 010(101[001|010 010/101{001/1010
iv) Let k&, > 0 andds < k2. ThenCy i, ,4,.k, = 0 if and only if 010601010050 1010doiolono
k1 < da. 000[010[000[101 000010000101

V) Letk; > 4 andda < k2. ThenC) xy,4,,5, = O if and only if

ki < do.
Proof: Fig.5. Twodistinctbinaryt6 x 12 matrices4 andB for the proof of Theorem

. . . 1 partii(B)c) thataré1, 4, 2, 3)-constrained. All tilings of the plane with and
i) This follows from Theorem 1 part i) sinceé < k1 — di and B arealsq1, 4, 2. 3)-constrained. Note that and B differ only in the two bits
6 < ko — do. located in the fourth and fifth rows of the second column.
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— -2 3——T — k-2 ~—3—>I
Ts O |k Lo O [*2
010 010
A-|_9 poi i o__o__l_g
= B
B
Lz O |*2 I 0 k-2
010 o1o|t
0 001)° 0 001f2
10004 10014

Fig. 6. Two distinct binary2k+1) x (k+ 1) matrices4 andB for the proof
of Theorem 1 partii(B)c) fok > 4 thatare(1, k, k — 1, k)-constrainedl;, _

is the(k — 2) x (k — 2) identity matrix andD is the zero matrix of appropriate
size. All tilings of the plane wittA andB are alsd 1, k, k — 1, k)-constrained
for k > 4. Note that4 and B differ only in two bit locations.

i) This follows from Proposition 1 forl = 0 and from Theorem 1
part ii(B)b) ford > 1.

i) If D < min(k, K/2)thens > 1andK > 2D.If 6 > 1then
Cdy ki, do ks > 0 by Theorem 1 partiii). I = 1 andd = 0
thenCyq, x,,d5.k, > 0 by Theorem 1 partiiA). So assume= 1
andd > 1.

If d = D then
A=K-d>2D—-d=d
and thusCy, x,,ds,k, > 0 by Theorem 1 part ii(B)b).
If 1 =d < D then
A=K—-d>2D-d>4-1=3
and, thereforeC'q, .45k, > 0 by Theorem 1 part ii(B)c).
If 2 < d < D then
A-D>A—-d=K-2d>K-2D>0
which impliesA > D, and, therefore,
Cay kydaky 2 CD kD ky >0
by Lemma 1 and Theorem 1 part ii(B)b).

iv) Taking d; = 0 in Theorem 1 givesnin(ki,k2) = 6 + do.

Therefore, ifk; < dz thend = k —dy < k1 —ds < 0.

ThusCo,k, 5.k, = 0 by Theorem 1 part i). Ik; > d, then

6 =Fk—dz > 0.ThusCo &, ,d,,1, > 0 by Theorem 1 part iiA)

and part iii).

The “if” direction follows from part iv) of this corollary and

Lemma 2. To establish the “only if” direction suppose that>

d>. Then in Theorem 1, we have > 1,A > 3,andd = 1

and, therefore(”'y 1,45,k > 0 by Theorem 1 part ii(B)c) and

part iii). O

v)

lll. A CONJECTURE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

Thus it would characterize with Theorem 1, part ii(B)b) the positive
capacity region fok = d + 1 andd, = d» as

Car dd+1 =Caat1.drx =0,
Also,

if and only if K < 2d.
if Conjecture 1 holds then (using Lemma@), «,,¢,a+1 = 0

wheneverd < d; < ki < 2d, and alsaCq,441,4,,5, = 0 Whenever
d<dy <k <2d.

Figs. 1 and 2 summarize the zero and nonzero capacities given by
Proposition 1, Theorem 1, and Corollary 1, assuming< d2,d; <
kl./dQ < ko.
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We now state a conjecture for which we presently do not have &7

proof, although computer simulations suggest its plausibility.
Conjecture 1: Cy 4+1,4,24 = 0 wheneverd > 0.

Conjecture 1 holds fo# = 0 by Corollary 1 part i) and holds for
d = 1 by Proposition 1. In contrast, note th@% ¢42,4,2« > 0 for
everyd > 1. Thisfollows since&”, 3 1,2 > 0 by Theorem 1 partii(B)b)

and sinceC'y,q+2,4,2¢ > Ca,ay2 > 0ford > 2 (by Lemma 2 using
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2d > d+ 2, and by Proposition 1). If Conjecture 1 holds then it would

imply that
Ca, ky,do,ks =0 wWheneve =1, d >0, and A < d; = ds.
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