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using the process with hidden states in [3]. The capacity may be esti-
mated to beH � H(10) �H(9) = 0:4682.

VII. CONCLUSION

New bounds on the capacity of constrained 2-D codes were derived.
The bounds are based on the transfer matrix of superset and subset
sources, respectively. The bounds are expressed in terms of capac-
ities of bands and cylinders, which may be determined using well-
known one-dimensional results. Two upper and a lower bound appli-
cable to any finite-order constraint were presented. One of the upper
bounds was applied to three second-order constraints, improving pre-
vious upper bounds. The lower bound was applied to one of these con-
straints, improving previous results based on transfer matrices.
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Partial Characterization of the Positive Capacity
Region of Two-Dimensional Asymmetric Run Length

Constrained Channels
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Abstract—A binary sequence satisfies a one-dimensional( ) run
length constraint if every run of zeros has length at least and at most .
A two-dimensional binary pattern is ( )-constrained if it
satisfies the one-dimensional( ) run length constraint horizontally
and the one-dimensional( ) run length constraint vertically. For
given and , the asymmetric two-dimensional capacity is
defined as

= lim (1 ( )) log2
( )
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where denotes the number of ( )-con-
strained binary patterns. We determine whether the capacity is
positive or is zero, for many choices of( ).

Index Terms—Capacity, constraints, magnetic, optical recording, run
length coding.

I. INTRODUCTION

Run length constraints derive from digital storage applications
[7]. For nonnegative integersd and k, a binary sequence is said
to satisfy a one-dimensional(d; k)-constraint if every run of zeros
has length at leastd and at mostk (if two ones are adjacent in the
sequence we say that a run of zeros of length zero is between them).
A two-dimensional binary pattern arranged in anm � n rectangle is
said to be(d1; k1; d2; k2)-constrainedif it satisfies a one-dimensional
(d1; k1)-constraint horizontally and a one-dimensional(d2; k2)-con-
straint vertically. The two-dimensional(d1; k1; d2; k2)-capacity is
defined as

Cd ;k ;d ;k = lim
m;n!1

log2N
(d ;k ;d ;k )
m;n

mn

whereN (d ;k ;d ;k )
m;n denotes the number ofm � n rectangles that

are (d1; k1; d2; k2)-constrained. Ifd = d1 = d2 andk = k1 =
k2 (this is called thesymmetric constraint) then the two-dimensional
(d1; k1; d2; k2)-capacity is called the two-dimensional(d; k)-capacity,
and is denoted byCd;k. Two-dimensional run length constraints have
recently become a focus of increased study [1], [2], [4]–[7], [9], [15],
[16], [21]. A proof was given in [9] that shows the two-dimensional
(d; k)-capacities exist, and essentially the same proof shows that the
Cd ;k ;d ;k exist.

The two-dimensional asymmetricpositive capacity regionis the set

f(d1; k1; d2; k2) : Cd ;k ;d ;k > 0g :

It is of interest to determine the exact values of the capacities of the
various two-dimensional constraints in the positive capacity region, or
at least to find good approximations or bounds. A more basic question,
however, is to determine which constraints actually lie in the positive
capacity region and which do not. We provide here a partial answer to
this question.

The exact value of the capacityCd ;k ;d ;k has been unknown for
all but a few cases. In fact, in all cases when the capacity has been
known exactly, its value has been zero and the constraints have been
symmetric. The first exactly known two-dimensional capacity was
shown in [1] to beC1;2 = 0 and a complete characterization of which
(d; k) integer pairs yield positive capacities for symmetric constraints
was given in [9] and is stated as the proposition below.

Proposition 1: Cd;k > 0 if and only ifk�d � 2 or (d; k) = (0; 1).

Fairly tight upper and lower bounds on the value ofC0;1 were
given in [2], improved in [6], [12], and extended to three-dimensional
run length constraints in [12]. In [15], an encoding procedure for the
symmetric two-dimensional(0; 1)-constrained channel was given
whose coding rating comes incredibly close to the capacityC0;1. For
other positive two-dimensional(d; k)-capacities various bounds were
given in [9], [16], and approximations were given in [21]. Asymmetric
two-dimensional (d1; k1; d2; k2)-constraints were studied in [4],
which discussed mergings and the Hamming distances between
(d1; k1; d2; k2)-constrained rectangles. Codes for certain other types
of constraints in two dimensions were studied in [3], [6], [10], [11],
[13], [14], [17]–[21].
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Fig. 1. Zero and positive capacities for the symmetric two-dimensional(d; k)
constraints.

In the present correspondence we determine whether or not the two-
dimensional capacity is positive, for a large set of asymmetric con-
straints(d1; k1; d2; k2). The cases where we determine the asymmetric
capacity to be zero (i.e., Theorem 1 part i) and part ii(B)a)) add to the
collection of exactly known capacities. We do not, however, determine
the exact capacity for any constraints yielding positive capacity. This
remains an open problem.

The main results are summarized in Theorem 1. It is interesting to
note that for the symmetric constraint (i.e., whend1 = d2 andk1 =
k2), the capacity is zero wheneverd andk are positive and differ by
one, whereas for many asymmetric constraints the capacity is positive
when the horizontal constraints or the vertical constraints differ by one
(e.g., Theorem 1 part ii(B)b)). However, in the asymmetric case if, for
example,k1 = d1 + 1 � d2 then the capacity is zero (by Theorem 1
part i)). The present knowledge of the positive capacity region is shown
in Figs. 1 and 2.

The capacityCd ;k ;d ;k is symmetric with respect to exchanging
horizontal and vertical constraints, and asd1 or d2 decreases andk1 or
k2 increases the(d1; k1; d2; k2)-constraint allows more valid patterns.
Hence, the definition of the(d1; k1; d2; k2)-constraint implies mono-
tonicities of the capacity in each variable. These facts are stated in the
following two lemmas.

Lemma 1: Cd ;k ;d ;k = Cd ;k ;d ;k for all d1; k1; d2, andk2.

Lemma 2: Cd ;k ;d ;k � Cd̂ ;k̂ ;d̂ ;k̂ wheneverd̂1 � d1 �

k1 � k̂1 andd̂2 � d2 � k2 � k̂2.

The following lemma provides a useful technique for establishing
that certain capacities are positive.

Lemma 3: LetA andB bem�nmatrices such thatm�k2 andn�
k1. LetAB denote the horizontal concatenation (anm�2nmatrix) and
letA=B denote the vertical concatenation (a2m�nmatrix) ofA andB,
respectively. IfA andB are distinct binary(d1; k1; d2; k2)-constrained
matrices such thatAA;AB;BA; BB;A=A; A=B;B=A; andB=B all
satisfy the(d1; k1; d2; k2)-constraint, then

Cd ;k ;d ;k �
1

mn
:

Proof: Let m0 and n0 be divisible bym and n, respectively.
Any m0 � n0 rectangle can be tiled bym � n rectangles. IfA and
B satisfy the conditions of the lemma, then them0 � n0 rectangle
is (d1; k1; d2; k2)-constrained whenever eachm � n rectangle is

eitherA or B. ThusN (d ;k ;d ;k )
m ;n � 2(m =m)(n =n) and, therefore,

Cd ;k ;d ;k � 1=(mn).

II. M AIN RESULTS

Theorem 1: Letd1; k1; d2; andk2 be nonnegative integers such that
d1 � k1 andd2 � k2. Let d = min(d1; d2);D = max(d1; d2);
k = min(k1; k2);K = max(k1; k2); � = k � D, and� = K � d.
Then the following partially characterizes the positive capacity region
of two-dimensional run length constrained channels.

i) If � � 0 thenCd ;k ;d ;k = 0.

ii) If � = 1 then

(A) If d = 0 thenCd ;k ;d ;k > 0.

(B) If d � 1 then

a) If � � 1 thenCd ;k ;d ;k = 0.

b) If � > d1 = d2 thenCd ;k ;d ;k > 0.

c) If � � 3 andd = 1 thenCd ;k ;d ;k > 0.

iii) If � � 2 thenCd ;k ;d ;k > 0.

The theorem above reveals whether the capacity is zero or positive
for many but not all possible four-tuples(d1; k1; d2; k2). The only case
that is presently not completely characterized in Theorem 1 is part iiB),
namely, when� = 1; d � 1; and� � 2. In part ii(B)b), it is unknown
whether the capacity is positive or zero ifd1 6= d2, for example. If
� = 1; d = 1; and� = 2; the only capacities that need be considered
areC1;2;1;3 andC1;3;2;3. ButC1;2;1;3 > 0 from part ii(B)b). Thus if
we were able to show thatC1;3;2;3 > 0 then we could replace� � 3
by � � 2 in part ii(B)c). However, computer simulation suggests,
but does not prove, that perhapsC1;3;2;3 = 0. This remains an open
question.

Proof:

i) Assume without loss of generality thatd1 � d2. Thend1 �
k1 � d2 � k2 sincemax(d1; d2) � min(k1; k2) from
� � 0. Therefore, it suffices to show thatCd ;k ;d ;k = 0
for d2 = k1 since Lemma 2 implies

Cd ;k ;d ;k � Cd ;k ;k ;k ; d2 > k1:

Any (d1; k1; k1; k2)-constrained(k1 + 1) � (k1 + 1)
square must have at least one1 in each row and at most
one1 in each column, and thus must contain exactly one
1 in each row and column. Thus ifn;m > k1 then a
(d1; k1; k1; k2)-constrainedm� n rectangle is determined
by any (k1 + 1) � (k1 + 1) square in it. Therefore, the
number of(d1; k1; k1; k2)-constrainedm� n rectangles is
bounded asN (d ;k ;k ;k )

m;n � (k1 + 1)! and thus

Cd ;k ;k ;k � lim
m;n!1

log2(k1 + 1)!

mn
= 0:

iiA) Assume without loss of generalityd1 = 0, and thusd2 =
k� � = k� 1. Eitherk1 = k andk2 = K or elsek1 = K
andk2 = k. Using Lemma 2, we have

C0;k;k�1;K � C0;k;k�1;k

and

C0;K;k�1;k � C0;k;k�1;k

and thusCd ;k ;d ;k � C0;k;k�1;k. We show that

C0;k;k�1;k > 0
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Fig. 2. Zero, positive, and unknown capacities of asymmetric run length constrained channels. These follow from Proposition 1 and Theorem 1. Two unknown
capacities indicated by (*) would be zero if Conjecture 1 holds. (We assume0 � d < k �1 for i = 1; 2 andd � d .)

for everyk � 1. LetA andB be binaryk(k+1)� (k+1)
matrices defined as

A =

Ik eee1

Ik eee1

...
...

Ik eee1

...
...

Ik eee1

Ik eee1

B =

Ik eee1

Ik eee2

...
...

Ik eeej

...
...

Ik eeek

Ik 000

whereIk is thek � k identity matrix,eeej is ak � 1 column
vector in which thejth element from the top is1 and the
other elements are0, and000 is the zero column vector. Then
the two matricesA andB satisfy the conditions of Lemma 3,
and thus for everyk � 1

C0;k;k�1;k �
1

k(k + 1)2
:

ii(B)a) Since� � � and� = 1, we have� = 1. Together with
d � D < k � K, this implies thatd = D andk = K =
d + 1, and thusd1 = d2 = d < k1 = k2 = d + 1. But
Cd;d+1 = 0 for d � 1 by Proposition 1.

ii(B)b) Sinced = d1 = d2, assume without loss of generality that
k1 = k. We havek = d + 1 (since� = 1) andK > 2d
(since� > d), and, therefore,

Cd ;k ;d ;k = Cd;d+1;d;K � Cd;d+1;d;2d+1

(using Lemma 2). Thus it suffices to prove

Cd;d+1;d;2d+1 > 0

for d � 1. DefineA andB as the two distinct3(d+ 1)�
(2d + 3) matrices shown in Fig. 3, whereIj is thej � j

identity matrix and0j denotesj horizontal or vertical con-
secutive0s. ThenA andB satisfy the conditions of Lemma
3, giving

Cd;d+1;d;2d+1 �
1

3(d+ 1)(2d+ 3)
:

ii(B)c) We havek = � + D � � + d = 1 + 1 = 2 andK =
� + d � 3 + 1 = 4. Assume without loss of generality
d1 = d = 1 andd2 = D = k � � = k � 1.

If k = 2 thenD = d2 = 1 and, therefore,

C1;K;1;2 = C1;2;1;K � C1;2;1;3 > 0

for K � 4 by Lemma 2 and part ii(B)b) of this theorem.
If k = 3 then eitherk1 = 3 andk2 = K or elsek1 = K

and k2 = 3. But C1;3;2;K � C1;3;2;4 andC1;K;2;3 �

C1;4;2;3 for K � 4 by Lemma 2. Therefore, it suffices
to show thatC1;3;2;4 > 0 andC1;4;2;3 > 0. To prove
C1;3;2;4 > 0, defineA andB as the binary21� 7 matrices
shown in Fig. 4. It can be verified thatA andB satisfy the
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Fig. 3. Two distinct binary3(d+1)� (2d+3) matricesA andB for the proof of Theorem 1 part ii(B)b) that are(d; d+1; d; 2d+1)-constrained ford � 1.
I is thej � j identity matrix and0 is j horizontal or vertical consecutive0s. All tilings of the plane withA andB are also(d; d + 1; d; 2d+ 1)-constrained
for d � 1.

conditions of Lemma 3 withd1 = 1; k1 = 3; d2 = 2; and
k2 = 4. ThusC1;3;2;4 � 1=147. To proveC1;4;2;3 > 0,
defineA andB as the binary16 � 12 matrices shown in
Fig. 5. ThenA andB satisfy the conditions of Lemma 3,
giving C1;4;2;3 � 1=192.

If k � 4 then eitherk1 = k andk2 = K or elsek1 = K
andk2 = k. Therefore, sinceC1;k;k�1;K � C1;k;k�1;k and
C1;K;k�1;k � C1;k;k�1;k (by Lemma 2) it suffices to prove

C1;k;k�1;k > 0

for everyk � 4. DefineA andB as the binary(2k + 1)�
(k+1) matrices shown in Fig. 6 fork � 4. The matricesA
andB satisfy the conditions of Lemma 3, implying for all
k � 4 that

C1;k;k�1;k �
1

(2k+ 1)(k+ 1)
:

iii) Since � � 2 impliesD � k � 2, we have

Cd ;k ;d ;k � CD;k;D;k � Ck�2;k;k�2;k > 0

using Lemma 2 for the first two inequalities and Proposition
1 for the third inequality.

The following corollary states some interesting special cases
resulting from Theorem 1.

Corollary 1: Let d1; k1; d2; andk2 be nonnegative integers such
thatd1 � k1; andd2 � k2. Let d = min(d1; d2);D = max(d1; d2);
k = min(k1; k2);K = max(k1; k2); � = k � D and� = K � d.
Then

i) Cd ;k ;d ;k = 0 wheneverd1 = k1 or d2 = k2.
ii) Cd;d+1;d;2d+1 > 0 for all d � 0.

iii) Cd ;k ;d ;k > 0 wheneverD < min(k;K=2).
iv) Let k1 > 0 andd2 < k2. ThenC0;k ;d ;k = 0 if and only if

k1 � d2.
v) Let k1 � 4 andd2 < k2. ThenC1;k ;d ;k = 0 if and only if

k1 � d2.
Proof:

i) This follows from Theorem 1 part i) since� � k1 � d1 and
� � k2 � d2.

Fig. 4. Two distinct21� 7 binary(1;3; 2; 4)-constrained matricesA andB
used to prove Theorem 1 part ii(B)c) with Lemma 3. All tilings of the plane
with A andB are also(1;3; 2; 4)-constrained. Note thatA andB do not differ
below the 12th row nor outside of the 5th and 6th columns.

Fig. 5. Two distinct binary16�12matricesA andB for the proof of Theorem
1 part ii(B)c) that are(1;4; 2; 3)-constrained. All tilings of the plane withA and
B are also(1;4; 2; 3)-constrained. Note thatA andB differ only in the two bits
located in the fourth and fifth rows of the second column.
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Fig. 6. Two distinct binary(2k+1)�(k+1) matricesA andB for the proof
of Theorem 1 part ii(B)c) fork � 4 that are(1; k; k� 1; k)-constrained.I
is the(k�2)� (k�2) identity matrix andO is the zero matrix of appropriate
size. All tilings of the plane withA andB are also(1; k; k� 1; k)-constrained
for k � 4. Note thatA andB differ only in two bit locations.

ii) This follows from Proposition 1 ford = 0 and from Theorem 1
part ii(B)b) for d � 1.

iii) If D < min(k;K=2) then� � 1 andK > 2D. If � > 1 then
Cd ;k ;d ;k > 0 by Theorem 1 part iii). If� = 1 andd = 0
thenCd ;k ;d ;k > 0 by Theorem 1 part iiA). So assume� = 1
andd � 1.

If d = D then

� = K � d > 2D � d = d

and thusCd ;k ;d ;k > 0 by Theorem 1 part ii(B)b).
If 1 = d < D then

� = K � d > 2D � d � 4� 1 = 3

and, therefore,Cd ;k ;d ;k > 0 by Theorem 1 part ii(B)c).
If 2 � d < D then

��D > �� d = K � 2d > K � 2D > 0

which implies� > D, and, therefore,

Cd ;k ;d ;k � CD;k ;D;k > 0

by Lemma 1 and Theorem 1 part ii(B)b).
iv) Taking d1 = 0 in Theorem 1 givesmin(k1; k2) = � + d2.

Therefore, ifk1 � d2 then � = k � d2 � k1 � d2 � 0.
ThusC0;k ;d ;k = 0 by Theorem 1 part i). Ifk1 > d2 then
� = k� d2 > 0. ThusC0;k ;d ;k > 0 by Theorem 1 part iiA)
and part iii).

v) The “if” direction follows from part iv) of this corollary and
Lemma 2. To establish the “only if” direction suppose thatk1 >
d2. Then in Theorem 1, we have� � 1;� � 3, andd = 1
and, therefore,C1;k ;d ;k > 0 by Theorem 1 part ii(B)c) and
part iii).

III. A C ONJECTURE

We now state a conjecture for which we presently do not have a
proof, although computer simulations suggest its plausibility.

Conjecture 1: Cd;d+1;d;2d = 0 wheneverd � 0.

Conjecture 1 holds ford = 0 by Corollary 1 part i) and holds for
d = 1 by Proposition 1. In contrast, note thatCd;d+2;d;2d > 0 for
everyd � 1. This follows sinceC1;3;1;2 > 0 by Theorem 1 part ii(B)b)
and sinceCd;d+2;d;2d � Cd;d+2 > 0 for d � 2 (by Lemma 2 using
2d � d+2, and by Proposition 1). If Conjecture 1 holds then it would
imply that

Cd ;k ;d ;k = 0 whenever� = 1; d � 0; and � � d1 = d2:

Thus it would characterize with Theorem 1, part ii(B)b) the positive
capacity region fork = d + 1 andd1 = d2 as

Cd;K;d;d+1 = Cd;d+1;d;K = 0; if and only ifK � 2d:

Also, if Conjecture 1 holds then (using Lemma 2)Cd ;k ;d;d+1 = 0
wheneverd � d1 � k1 � 2d, and alsoCd;d+1;d ;k = 0 whenever
d � d2 � k2 � 2d.

Figs. 1 and 2 summarize the zero and nonzero capacities given by
Proposition 1, Theorem 1, and Corollary 1, assumingd1 � d2; d1 <
k1; d2 < k2.
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