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Abstract

For integers and satisfying , a binary sequence is said to satisfy
a one-dimensional run length constraint if there are never more than zeros
in a row, and if between any two ones there are at least zeros. For , the

-dimensional -constrained capacity is defined as

where denotes the number of -dimensional binary
rectangular patterns that satisfy the one-dimensional run length constraint in the
direction of every coordinate axis. It is proven for all , , and that

if and only if . Also, it is proven for every and that

if and only if .
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1 Introduction

A binary sequence is -constrained (or “runlength constrained”) if there are at most
consecutive zeros and between every two ones there are at least consecutive zeros. An

-dimensional pattern of zeros and ones arranged in an hyper-rectangle
is -constrained if it is ( -dimensional) -constrained in each of the coordinate
axis directions. The -dimensional -capacity is defined as

where denotes the number of -constrained patterns on an
hyper-rectangle. A simple proof was given in [5] that shows the existence of

two-dimensional -capacities, and a slight modification of the proof can show that the
-dimensional -capacities exist. The capacity represents the maximum number

of bits of information that can be stored asymptotically per unit volume in -dimensional
space without violating the constraint.

The study of -dimensional -capacities was originally motivated by applications
in magnetic storage. Interest in -dimensional -capacities has recently increased
due to emerging -dimensional optical recording devices, and the -dimensional -
capacities may play a role in future applications as well. A tutorial on these topics is given
in [4]. Capacities in four and higher dimensions yield natural generalizations of interesting
mathematical questions in lower dimensions.

In general, the exact values of the various -dimensional -capacities are not known
except in a few cases [6]. For example, in all dimensions, if the capacity is zero, and
if the capacity is positive for all . In one dimension the capacity is positive
whenever . The capacity is known to be a monotonically nonincreasing function
of and and a monotonically nondecreasing function of . It was recently shown [5] that
whenever , the -dimensional capacity is zero if and only if . These
facts are summarized in our Lemma 1.

Some interesting facts are known about the capacities for and in three
and lower dimensions. In one dimension, is known [6] to be a Fibonacci sequence
with initial conditions and , and thus the -dimensional -
capacity is the logarithm of the golden mean, namely . Very
tight upper and lower bounds on the -capacity were given for two dimensions in [2]
and for three dimensions in [7]. These two and three dimensional -capacities are

and , given here to their known accuracies.
In this paper we present two main results that characterize the zero capacity region

for finite dimensions and in the limit of large dimensions. The first result generalizes the
zero capacity characterization in [5] to all dimensions greater than one. Namely it gives a
necessary and sufficient condition on and for the capacity to equal zero. This condition
turns out to be exactly the same as in dimension . The second result gives a necessary and
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sufficient condition on and , such that the capacity approaches zero in the limit as the
dimension grows to infinity. These results are summarized in the following two theorems.

Theorem 1 For every , , and ,

Theorem 2 For every and ,

The following lemma contains useful facts about capacities for various constraints and
is used to establish Theorems 1 and 2.

Lemma 1

(a) ; whenever

(b) ; whenever

(c) ; whenever

(d) ; whenever

(e) ; whenever

(f) ; whenever

(g) ; whenever

(h) if and only if ; whenever .

Proof.
(a) Follows from the fact that since any pattern that satis-

fies the constraint also satisfies the constraint.
(b) Follows from .
(c)
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(d) since . The result then follows by induction and from the
monotonicity in part (c).

(e) Let , where is a multiple of . Any mapping
satisfying when divides , and

when does not divide , induces a -constrained pattern on
. Since the value of can be chosen arbitrarily when
mod , the number of -constrained patterns on is at least

and hence . Thus

(f) Follows from (a) and (e).
(g) It is known [1] that for , and also that for ,

the -dimensional capacity is the logarithm (base ) of the largest real root of the equation
. The equation clearly has a root greater than

, and thus the result follows.
(h) This was proven in [5].

2 Proof of Theorem 1

Proof. Lemma 1(c),(h) shows that for all and all . To prove

for , it suffices by Lemma 1(a),(h) to prove for all and
. This is shown below in Proposition 1 for even , and in Proposition 2 for odd
. A special case of Lemma 1(e) shows the result for and for all . This

completes the proof of Theorem 1.

The following definitions are useful for proving Propositions 1 and 2. Let
. The set is an n-cube, and any mapping is a binary n-cube. A

row of an -cube is any set of the form for some
fixed , and some fixed for . A binary -cube is a
permutation -cube if equals once per row of .

A binary -cube is -constrained unless takes the value one twice on some
consecutive points in some row of . It is clear that permutation -cubes are -
constrained. A set of permutation -cubes is -compatible if the concatenation
of any two of the cubes along a face (i.e. with translation but without rotation) is also

-constrained. If are subsets of , each consisting of two consecutive
integers, the smaller of which is even, then is a bi-subcube of . If a
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permutation -cube equals exactly once per row in a bi-subcube, then the restriction of
to the bi-subcube is said to be a permutation bi-subcube.

A binary -cube is a reversal of a permutation -cube if equals on the
members of a (possibly empty) subset of all the bi-subcubes in , on each of which
is a permutation bi-subcube, and equals elsewhere. A reversal of any permutation
cube is also a permutation cube, and and together form a -compatible set.
More generally, any collection of reversals of a given permutation -cube forms a -
compatible set (see Lemma 2). In Propositions 1 and 2, we construct a -compatible
family of reversals of a certain permutation -cube, and then obtain a lower bound on the

-capacity from the cardinality of the family.
A mapping is a latin -cube if on every row of , is a permutation of .

This definition is a generalization of a latin square, although alternate definitions have been
given in [3]. For any permutation -cube , any , and any (for

), the relation determined by
is a permutation. This leads us to define a correspondence between permutation -cubes

and latin -cubes as follows. Let be a permutation -cube and
for each , let be the unique element of such
that . Then the mapping defined
by is a latin -cube, and the correspondence

is bijective (see Lemma 2). The bar notation will be exclusively used for latin cubes.
For any integers and , we use the notation “ mod ” to mean the unique integer

.

Lemma 2 Let be a sequence of mappings defined recursively for by

(1)

where is a latin square. Then is a latin -cube for all , and the set of all
reversals of the corresponding permutation -cube is -compatible.

Proof. Use induction on . Assume are latin cubes (for ) and fix all
but one of the arguments of . If are fixed then is a permutation
of since fixing the first argument of yields a permutation of . Likewise, if and all
but one of are fixed, then by the induction hypothesis is a
permutation of and is a permutation of since its second argument is fixed. Thus

is a latin -cube.
Let be a binary -cube satisfying

if
otherwise.

Then is a permutation -cube since is a latin -cube, and from the
definition of the bar notation. This shows that there exists a unique permutation -
cube (i.e. ) corresponding to the latin -cube .
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The permutation -cube has rows of length , each containing a single one.
For any collection of bi-subcubes, on each of which is a permutation bi-subcube, any
row of can intersect at most one of these bi-subcubes. This implies that any facewise
concatenation of any two reversals of will only have pairs of ones at distances , ,
or apart, and thus any set of reversals of is -compatible.

Proposition 1 For every and every even ,

Proof. Define a mapping such that

mod if and are odd
mod otherwise

(2)

as in Figure 1. The mapping is a latin square since is a permutation of the set when
either the first or second component is held fixed. For each , use (1) to recursively
define the latin -cube .

For each , let be any set of even integers from . We claim that for
any ,

mod if is even
mod if is odd

To prove this claim, use induction on . It is easy to see from (2) that the claim is true for
. By (1) and the induction hypothesis,

mod if is even
mod if is odd

Equivalently, when is even

mod if
mod if

mod

and when is odd

mod if
mod if

mod
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thus proving the claim.
The claim just proved implies that the corresponding permutation -cube sat-

isfies
if is even
if is odd

for any even integers such that mod , and for any
. Thus the restriction of to each bi-subcube

is a permutation bi-subcube. Then the cardinality of the set
of all reversals of is , and Lemma 2 gives the lower bound

Proposition 2 For every and every odd ,

Proof.
Define a mapping such that

if and are odd
otherwise

(3)

for . The values of for (i.e. below the bold
-step staircase line in Figures 2 and 3) are defined as follows. The points on the diagonal

line above the main diagonal have value , as does the bottom right corner of the square.
Thus, appears once in each row and in each column in the square. The portion of the next
higher diagonal that lies below the -step staircase line has value . The area below
and including the main diagonal of the square, except the bottom row and the rightmost
column, is partitioned into diagonal strips of width . Each diagonal strip is formed by
repeating the staircase pattern shape of

.

The bottom row is formed by repeating the pattern

and the rightmost column is formed by repeating the pattern
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.

(For the case mod the bottom-rightmost diagonal strip is truncated at width ,
and the above patterns are cut off accordingly, as illustrated in Figure 2.) Within any given
diagonal strip, all labels containing a particular symbol represent the same integer. In
particular, in the th diagonal, (for ), the square labels + , , ,

, and – represent , , , , and respectively (for ,
– and represent and , respectively). For any it can
be seen that the value appears once in every row and column of the top left rows
and columns, and the value appears once in every row and column of the bottom right

rows and columns. Also, the main diagonal of contains only the value ,
and the value appears in the rightmost column at , in the bottom
row at , and in alternating positions on the diagonals that lie two above
and two below the main diagonal of . The value appears in the rightmost column
at and in the bottom row at , and these points do
not lie on the diagonals two below nor two above the main diagonal. Consequently, every
number appears exactly once in each row and in each column in the original

square , showing that is a latin square.

Using (1) and the definition of just given, recursively define for each integer ,
the latin -cube . For any , if are even integers from such
that , then for any ,

if is even
if is odd

from the same proof as in Proposition 1, but with the added constraint .
As in Proposition 1, the set of reversals of the permutation -cube is -

compatible. There are permutation bi-subcubes in this case and the volume of the
-cube (i.e. the domain of ) is . Hence
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3 Proof of Theorem 2

Proof. Lemma 1(e) gives for every , and thus

for every by Lemma 1(a). Lemma 3 below implies that

whenever , and hence . This together with Lemma 1(d) com-
pletes the proof of Theorem 2.

Lemma 3 If and then

Proof. Let and be positive integers and let . Define the
following -dimensional hyper-rectangles (for ):

and let . Note that there is a gap of width one between consecutive sets
and (To help visualize the proof, the case of is illustrated in Figure 4). A binary
mapping on is said to be -constrained if it induces a -constrained pattern on
each . Let and be the numbers of distinct -constrained mappings on and

(for ), respectively. We show that .
To this end, it suffices to exhibit an injection from the set of all -constrained

mappings on to those on . Thus we demonstrate that every -constrained mapping
on is completely determined by its restriction to .

Assume the contrary. Then there exist two -constrained mappings
and that agree on but differ on . Let be such
that .

Since and agree on , must be a multiple of . Let be the smallest
nonnegative integer such that

. Without loss of generality assume and
. Note that

since . Also, since , must equal zero for at
least consecutive positions next to this point. Thus for all in the
range , excluding . Therefore

for this same set of ’s, since either is in or else
because of the choice of . But by assumption , so a string
of zeros in a row occurs for (from to )
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contradicting the constraint. This proves that every -constrained mapping on
is uniquely determined by its restriction to . This establishes that .

Now, let denote the number of distinct -constrained mappings on an -
dimensional hypercube of side length . Clearly, , since
and for . Thus,

4 Comments

For , Lemma 1(e) implies that for . A more complicated proof

can show that for all (note that by Lemma 1(e)). For

odd Proposition 2 gives whereas a slightly better lower bound

was given in [5, Theorem 2]. Propositions 1 and 2 establish that

. Alternatively it is possible to prove in a simpler manner, but with weaker

lower bounds on than those given in these propositions.
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Figure 4: Illustration of the sets and for three dimensions in the proof of Lemma 3.


