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Abstract

For integers d and k satisfying 0 < d < k, a binary sequence is said to satisfy
aone-dimensional (d, k) run length constraint if there are never more than k zeros
in arow, and if between any two ones there are at least d zeros. For n > 1, the
n-dimensiona (d, k)-constrained capacity is defined as

C(n) — lim 1052 N%’%cz),---,mn
d m1,Mm2,...,Mp—>00 m1m2 “ee mn

whereNT(,Z;%Z),___,mn denotesthe number of m; X mg X - - - X m,, n-dimensional binary

rectangular patterns that satisfy the one-dimensional (d, k) run length constraint in the
direction of every coordinate axis. Itisprovenforaln > 2,d > 1, and k > d that

C’gfk) =0ifandonlyif k = d + 1. Also, itis proven for every d > 0 and k > d that
limy o0 Cyj = 0 if and only if & < 2d.
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1 Introduction

A binary sequenceis (d, k)-constrained (or “runlength constrained”) if there are at most &
consecutive zeros and between every two ones there are at least d consecutive zeros. An
n-dimensional pattern of zerosand onesarranged in anm, x my X - - - X m,, hyper-rectangle
is (d, k)-constrained if it is (1-dimensional) (d, k)-constrained in each of the n coordinate
axisdirections. The n-dimensional (d, k)-capacity is defined as

10g2 N'r(r?l;,c'ir;'{cg),...,mn

n .
Cgk) = lim ,
’ TN ,TTD yeeey Ty, —> OO m1m2 .« .. mn

where N{mdk)  denotes the number of (d, k)-constrained patterns on an m; x ms X
-+ X m, hyper-rectangle. A simple proof was given in [5] that shows the existence of
two-dimensional (d, k)-capacities, and a slight modification of the proof can show that the
n-dimensional (d, k)-capacities exist. The capacity Cg}c) represents the maximum number
of bits of information that can be stored asymptotically per unit volume in n-dimensional
space without violating the (d, k) constraint.

The study of 1-dimensiona (d, k)-capacities was originally motivated by applications
in magnetic storage. Interest in 2-dimensional (d, k)-capacities has recently increased
due to emerging 2-dimensional optical recording devices, and the 3-dimensiona (d, k)-
capacities may play arolein future applicationsaswell. A tutorial on these topicsis given
in [4]. Capacitiesin four and higher dimensionsyield natural generalizations of interesting
mathematical questionsin lower dimensions.

Ingeneral, the exact valuesof thevariousn-dimensional (d, k)-capacitiesare not known
except in afew cases[6]. For example, inal dimensions, if £ = d the capacity is zero, and
if d = 0 the capacity is positive for all £ > 1. In one dimension the capacity is positive
whenever k > d > 0. The capacity is known to be a monotonically nonincreasing function
of n and d and a monotonically nondecreasing function of k. It was recently shown [5] that
whenever k > d > 1, the 2-dimensional capacity is zero if and only if £ = d + 1. These
facts are summarized in our Lemma 1.

Some interesting facts are known about the capacitiesfor d = 0 and £ = 1 in three
and lower dimensions. In one dimension, N{%% jsknown [6] to be a Fibonacci sequence
with initial conditions N\ = 2 and N{"®Y = 3, and thus the 1-dimensional (0, 1)-
capacity is the logarithm of the golden mean, namely 0311) = log, ”T‘E’ ~ 0.694. Very
tight upper and lower bounds on the (0, 1)-capacity were given for two dimensionsin [2]
and for three dimensions in [7]. These two and three dimensional (0, 1)-capacities are
C& ~ 058789116 and C{] ~ 0.52, given here to their known accuracies.

In this paper we present two main results that characterize the zero capacity region
for finite dimensions and in the limit of large dimensions. The first result generalizes the
zero capacity characterization in [5] to all dimensions greater than one. Namely it givesa
necessary and sufficient condition on d and & for the capacity to equal zero. This condition
turns out to be exactly the same asin dimension 2. The second result gives a necessary and
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sufficient condition on d and &, such that the capacity approaches zero in the limit as the
dimension n growsto infinity. These results are summarized in the following two theorems.

Theorem 1 For everyn > 2,d > 1,and k > d,
Cil=0sk=d+1.
Theorem 2 For everyd > 0and k > d,

lim C§) =04k < 2d.

The following lemma contains useful facts about capacities for various constraints and
is used to establish Theorems 1 and 2.

Lemmal

€) cg7g+1 > 057,3; whenevern > 1, 0<d <k
(b) Cé"k) > Céi)lk; whenevern > 1, 0 <d <k
(0) C’”rl <C’dk, whenevern > 1, 0<d < k
(d) C5) =0; whenevern>1,d>0

(e) chf‘z)dﬂ > m; whenevern > 1, d > 0
(f) Céfﬁc) >0; whenevern>1,k>1

(@) CY) >0; whenever0 <d <k

(h ¢} =0 ifandonlyif k=d+1; whenever1 <d<k.

Proof.
(a) Follows from the fact that N{m%k+t) > Nimdk) sinceany pattern that satis-
fiesthe (d, k) constraint also sﬁtlsﬁesthe (d, k + 1) constraint.
(b) Followsfrom N{mdk) > N(mdiLk)
(©)
C(n+1 — llm log N7(nnl—i—7}7zg k)amn-‘rl
1,2,y 41— 00 m1m2 mn+1
lo N(n d,k) Mp+1 lo N(n d,k)
< lim g2 ( mi,ma,.. ,mn) — lim 82 m1,m2,...,Mn
M1,MM2,...,Mn 4100 mims...Mp41 M1,M2,.-0, M =0 MMy ... My,
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(d) C) = 0 since N{49) < d + 1. The result then follows by induction and from the
monotonicity in part ().

(e LetT ={1,2,...,m}, wherem isamultiple of 2(d + 1). Any mapping f : T" —
{0,1} satisfying f(z1, xa, . .., x,) = 1 When2(d+1) divides}"? | z;, and f(z1, za, . .., Tp)
= 0 when d + 1 does not divide Y- , z;, induces a (d, 2d + 1)-constrained pattern on
T™. Since the value of f(z1, zs,...,z,) can be chosen arbitrarily when 37 , z; = (d +
1) mod 2(d+1), the number of (d, 2d+1)-constrained patternson T™ is at least 2™"/(2(d+1))
and hence N{d:2d11) > 9m™/(2(d+1) Thus

n . o m*/(2(d+1 1
Cipars = Jim, /(77(1” ) 2(d+1)

(f) Follows from (a) and (eg.
() Itisknown [1] that C1), = CY, ,,_, ford > 1, and dlso that for 0 < d < k < oo,
the 1-dimensional capacity is the logarithm (base 2) of the largest real root of the equation
Xkl Xk-d __ xk-d-l ... X 1=0. Theequation clearly hasaroot greater than
1, and thus the result follows.

(h) Thiswas provenin [5].

2 Proof of Theorem 1

Proof. Lemma 1(c),(h) shows that C‘%) ;= 0forald > 1andaln > 2. To prove

C((fk) > 0 for k > d+ 2, it suffices by Lemma1(a),(h) to provec*ffd)+2 > (0foralld>1and
n > 3. Thisis shown below in Proposition 1 for evend > 0, and in Proposition 2 for odd
d > 3. A special case of Lemma 1(e) showsthe result for d = 1 and for all n > 3. This
completes the proof of Theorem 1.

O

The following definitions are useful for proving Propositions1 and 2. Let S={0,1,. . .,
d + 1}. The set S™ isan n-cube, and any mapping g : S™ — {0, 1} isabinary n-cube. A
row of an n-cube is any set of the form {(c1,...,¢ 1,2, ¢141,...,¢,) : © € S} for some
fixed [, and somefixedc; € Sforj =1,...,1 - 1,14+ 1,...,n. A binary n-cube g isa
permutation n-cubeif g equals 1 once per row of S™.

A binary n-cube g is (d, d + 2)-constrained unless g takes the value one twice on some
consecutive d pointsin somerow of S™. Itisclear that permutation n-cubes are (d, d + 2)-
constrained. A set of permutation n-cubes is (d, d + 2)-compatible if the concatenation
of any two of the cubes along a face (i.e. with trandation but without rotation) is also
(d,d + 2)-constrained. If Sy, ..., S, are subsets of S, each consisting of two consecutive
integers, the smaller of which is even, then S; x --- x S, is a bi-subcube of S™. If a
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permutation n-cube g equals 1 exactly once per row in a bi-subcube, then the restriction of
g to the bi-subcube is said to be a permutation bi-subcube.

A binary n-cube h is a reversal of a permutation n-cube g if h equals 1 — g on the
members of a (possibly empty) subset of all the bi-subcubes in S™, on each of which g
is a permutation bi-subcube, and h equals g elsewhere. A reversal h of any permutation
cube g is aso a permutation cube, and g and h together form a (d, d + 2)-compatible set.
More generally, any collection of reversals of agiven permutation n-cubeformsa(d, d+2)-
compatible set (see LemmaZ2). In Propositions 1 and 2, we construct a(d, d+2)-compatible
family of reversals of a certain permutation n-cube, and then obtain alower bound on the
(d, d + 2)-capacity from the cardinality of the family.

A mapping f : S — S isalatinn-cubeif on every row of S*, f isapermutation of S.
Thisdefinition isageneralization of alatin square, although alternate definitions have been
givenin [3]. For any permutation n-cube g, any I < n,andanyc; € S (forj =1,...,1 —
1,1+1,...,n—1),therelationz — y determined by g(c1, ..., c1_1, 2, Cli1y - -y Cro1,Y) =
1 isapermutation. This leads us to define a correspondence between permutation n-cubes
and latin (n — 1)-cubes as follows. Let g : S® — {0,1} be a permutation n-cube and
for each (z1,22,...,2, 1) € S"7', let y(zy,...,z, 1) be the unique element of S such
that g(z1, 2, ..., Tp 1,y(T1,...,2, 1)) = 1. Then the mapping g : S"~* — S defined
by g(z1, s, ..., 2n-1) = y(z1,...,2,—1) isalatin (n — 1)-cube, and the correspondence
g — gishijective (seeLemmaZ2). The bar notation will be exclusively used for latin cubes.
For any integersa > 0 and b > 0, we usethe notation “a mod b” to mean the unique integer

a— L4

Lemma?2 Lete, : S™ — S be a sequence of mappings defined recursively for n > 3 by

én<$1,...,$n) = é2(én_1(a:1,...,a:n_1),:cn) (1)

where e, is a latin square. Then ¢, is a latin n-cube for all n > 2, and the set of all
reversals of the corresponding permutation (n + 1)-cubee, is(d, d + 2)-compatible.

Proof. Useinductiononn. Assumees,, ..., é,_; arelatin cubes(forn > 3) andfix all
but one of thearguments x4, ..., z, of &,. If 24, ..., z,_, arefixed then &, isapermutation
of S since fixing the first argument of &, yields a permutation of S. Likewise, if z,, and all
but one of x4, ..., z,_; arefixed, then by the induction hypothesise,_;(z1,...,z,_1) iSa
permutation of S and &, is a permutation of .S since its second argument z,, is fixed. Thus
€, iISalatin n-cube.

Let h beabinary (n + 1)-cubeh : S** — {0, 1} satisfying

1 ifzp =en(ze, ..., 2p
h(xl""’m”“):{ 0 otherJ\r/\llise. o )

Then h is a permutation (n + 1)-cube since &, is alatin n-cube, and h = &, from the
definition of the bar notation. This shows that there exists a unique permutation (n + 1)-
cube h (i.e. e,) corresponding to the latin n-cube &,,.
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The permutation (n + 1)-cubee,, hasrows of length d + 2, each containing asingle one.
For any collection of bi-subcubes, on each of which e, is a permutation bi-subcube, any
row of S™*! can intersect at most one of these bi-subcubes. Thisimplies that any facewise
concatenation of any two reversals of e,, will only have pairs of ones at distancesd, d + 1,
or d + 2 apart, and thus any set of reversalsof e, is(d, d + 2)-compatible.

O
Proposition 1 For everyn > 2 and every evend > 0,
) < 1
C’d,d—|—2 - 2n_1(d + 2) :
Proof. Defineamapping é, : S? — S such that
_ ) (z14+22—2)mod (d +2) if 2, and z, are odd
ea(e1,3) = { (z1 + z9) mod (d +2) otherwise 2

asin Figure 1. The mapping e, isalatin square since &, is a permutation of the set S when
either the first or second component is held fixed. For each n > 3, use (1) to recursively
definethe latin n-cube e, : S™ — S.

Foreachn > 2, let zq, ..., z, be any set of even integers from S. We claim that for

anyyla'-"yne {0,1},

(&1 +---+z,)mod (d+2) if X7,y iseven

én($1+y1,,$n+yn):{ (1+x1++g;n) mod(d+2) |f2?:1% |SOdd

To prove this claim, use induction on n. It is easy to see from (2) that the claim is true for
n = 2. By (1) and the induction hypothesis,

én(x1+y17"'7xn+yn) =
&((x1 + -+, 1) mod (d +2),z, +y,) if 20y iseven
&((1+z1+ -+, 1)mod (d+2),z, +y,) if 217"y isodd.

Equivalently, when 327, v; iseven

52(($1+“'+$n_1) mOd(d+2), .’L’n) |fyn:0
1+z14+--4+2z24-1)mod(d+2), z,+1) ify,=1

= (z1+---+z,) mod (d + 2),

én(x1+y1,...,:cn+yn) = { ég(

and when }-7 , y; isodd

e ... _ 2 1 -f :1
en(T1+ Y1,y T + Yn) {62( é((z1+---+xp—1)mod(d+2), z,+1) ify,

I4+z14+--4+25_1) mod (d+2), z,) ify,=0
= (1+z,+---+x,) mod(d+ 2),
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thus proving the claim.

The claim just proved implies that the corresponding permutation (n + 1)-cube e,, sat-
isfies "

1 it Yy iseven
en(xl + Yy, Tn+1 + yn—|—1) - { 0 if E?jll n isodd

for any evenintegerszy, ..., z,41 € S suchthat z,,; = 31 ; 2; mod (d + 2), and for any
Y1, -, Ynt1 € {0,1}. Thustherestriction of e,, to each bi-subcube {(z1 + 1, ..., Tns1 +
Yn+1) P YL, -+, Ynt1 € {0,1}} isapermutation bi-subcube. Then the cardinality of the set

of al reversals of e, is2(5)", and Lemma 2 gives the lower bound

M)nfl

(n) > 10g2 2( 2 — 1
A2 = (d 4 2)n 2n-1(d 4 2)°
a
Proposition 2 For every n > 2 and every odd d > 3,
n 1 n—1+9%3
Cé,}+22(d+2)n( n—12>'
Proof.
Define amapping &; : S — S such that
_ o .’IZ‘1+£L'2—2 if.’I?land.’EgareOdd
62(:1;1, .’L’g) N { 1+ o otherwise (3)

for2|2]4+2|%2] < d—3. Thevauesof &; for 2|4 | +2| % | > d— 3 (i.e. below the bold
2-step staircase line in Figures 2 and 3) are defined as follows. The points on the diagonal
line above the main diagona have value d, as does the bottom right corner of the square.
Thus, d appearsonce in each row and in each column in the square. The portion of the next
higher diagonal that lies below the 2-step staircase line has value d — 1. The area below
and including the main diagonal of the square, except the bottom row and the rightmost
column, is partitioned into diagonal strips of width 4. Each diagonal strip is formed by
repeating the staircase pattern shape of

®[+|O]
o-|e]

med by repeating the pattern
—®[O]

in is formed by repeating the pattern
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d = 1 mod 4 the bottom-rightmost diagonal strip is truncated at width 3,
and the above patterns are cut off accordingly, asillustrated in Figure 2.) Within any given
diagonal strip, al labels containing a particular symbol represent the same integer. In
particular, in the jth diagonal, (for j = 1,2,..., L%J + 1), thesquarelabels, (O], [e],
B, and[~Irepresent 45 — 2, 45 — 3,45 — 4, 45 — 5, and 45 — 6 respectively (for j = 1,
(=] and represent d — 1 and d + 1, respectively). Forany i € {0,1,...,d — 2} it can
be seen that the value i appears once in every row and column of the top left 2 L%'J + 2 rows
and columns, and the value 7 appears once in every row and column of the bottom right
d — 2| %] rowsand columns. Also, the main diagonal of S* contains only the valued + 1,
and the value d — 1 appearsin the rightmost column at (z, z2) = (1, d + 2), in the bottom
row at (z1, z2) = (d+2, 1), andin aternating positions on the diagonals that lie two above
and two below the main diagonal of S2. The value d — 1 appears in the rightmost column
at (z1,z2) = (1,d + 2) and in the bottom row at (1, z2) = (d + 2, 1), and these points do
not lie on the diagonals two below nor two above the main diagonal. Consequently, every
number 0,1, ..., d+ 1 appears exactly once in each row and in each column in the original
(d +2) x (d + 2) square S?, showing that &, is alatin square.

Using (1) and the definition of &, just given, recursively define for each integer n > 3,

thelatin n-cubee, : S™ — S. Forany n > 2,if x4, ..., x, are evenintegersfrom S such
that 7 , z; < d — 3,thenforany y1,...,y, € {0,1},

T+ -+ 2y, if Z?:lyi iseven

en(x1+ylv---axn+y"):{ 14z +---+a, if X,y isodd

from the same proof asin Proposition 1, but with the added constraint -7, z; < d — 3.
Asin Proposition 1, the set of reversals of the permutation (n + 1)-cubee, is(d, d+ 2)-

compatible. There are (”*:5_3) permutation bi-subcubes in this case and the volume of the
(n + 1)-cube S™** (i.e. thedomain of e,,) is (d + 2)"*'. Hence

1 n—1+%3
(n)
dezm( n_lz)-
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3 Proof of Theorem 2

n n)
)

Proof. Lemma1(e) giveslim, ., CV3,,, > 0 for every d > 0, and thuslim,, ., C{%) >

0 for every k > 2d+1 by Lemma1(a). Lemma3 below impliesthat C’g;c) < (kf;il)n_l 0,5,},3

whenever d < k < 2d, and hencelim,,_, « Cfif}g = 0. Thistogether with Lemma 1(d) com-
pletes the proof of Theorem 2.

)

O

Lemma3 Ifn>2and1 <d < k < 2d then

n k—d n—1
Cait < =g o1

Proof.  Let ! and m be positive integers and let V' = {1,2,...,m}. Define the
following n-dimensional hyper-rectangles(for j = 1,2,...,1):

T = {(xlv"'axn—laxn):mla"'axn—lEV;_dgxn<(k_d+]—)l}
UO = {(xlv"'axn—laxn):mla"'axn—l € V" _déxn <0}
Ui = {(z1,...,2p1,2p) 1 21,...,2p1 €V, (k—d+1)(j—1) <z, < (k—d+1)j}

and let U = U_, U;. Note that there is a gap of width one between consecutive sets U;
and U, 4 (To help visualize the proof, the case of n = 3 isillustrated in Figure 4). A binary
mapping on U is said to be (d, k)-constrained if it induces a (d, k)-constrained pattern on
each U;. Let Ny and Ny, be the numbers of distinct (d, &)-constrained mappings on 7" and
U; (forj =0,1,...,1), respectively. We show that Ny < [T}_, Ny, .

To this end, it suffices to exhibit an injection from the set of al (d, k)-constrained
mappingson 7T to those on U. Thus we demonstrate that every (d, k)-constrained mapping
on T iscompletely determined by its restrictionto U.

Assumethe contrary. Then thereexist two (d, k)-constrained mappings fo : T — {0, 1}
and f; : T — {0,1} that agreeon U but differ onT. Let (¢1,...,¢4-1,¢,) € T besuch
that f()(Cl, ey Cn—1, Cn) ?é fl(Cl, ceeyCn—1, Cn)-

Since fy and f; agreeon U, ¢, must beamultipleof £ — d + 1. Let J be the smallest
nonnegative integer j such that fo(ci,...,ch1,(k — d + 1)j) # fi(er, ..., cne1, (B —
d + 1)7). Without loss of generality assume fy(cy,...,cn1,(k — d +1)J) = 0 and
filer, .- eno1, (k—d+1)J)=1.Notethat (k —d+1)(J+1)—1<(k—d+1)J+d
sncek < 2d. Also, since fi(cy, ..., cno1, (k — d+ 1)J) = 1, f; must equal zero for at
least d consecutive positions next to thispoint. Thus f;(ci, ..., c,—1,2) = 0 foradl z inthe
range(k—d+1)J—d <z < (k—d+1)(J+1),excludingz = (k —d+ 1)J. Therefore
foler, .oy en1,x) = 0 for thissame set of z’s, since either (cy, ..., ¢, 1,2)iSinU or else
because of the choiceof J. But by assumption fo(cy, ..., ¢, 1, (k—d+1)J) = 0,s0astring
of k+1 zerosinarow occursfor f, (fromz = (k—d+1)J—dtoz = (k—d+1)(J+1)—1)



THE ELECTRONIC JOURNAL OF COMBINATORICS 6(1999), #RXX 11

contradicting the (d, k) constraint. This provesthat every (d, k)-constrained mapping on T’
isuniquely determined by itsrestriction to U. This establishesthat Ny < Hé-:o Ny, .

Now, let M denote the number of distinct (d, k)-constrained mappings on an (n — 1)-
dimensional hypercube of sidelengthm. Clearly, [Tj_, Ny, < M®*~4+4, since Ny, < M4
and Ny, < M* 4forj=1,2,...,1. Thus,

oW~ fim logy Nz < lim loga IT;0 N
d.k Lmsoo ((k d—i—l)l—i—d)m” 1 = Im=oo ((k d—l—l)l—i—d)m”—l
(k—d)i-+
< lim log, M
tm=oo ((k—d+ 1)+ d)mn!
= lim (k—d)l+d - lim log, M = k—d Cc(iﬁc_l)'

I (k—d+1)l+d mvo mr-l  k—d+1

4 Comments

For d = 1, Lemma 1(e) implies that Cl(f;) > 1/4 for n > 3. A more complicated proof
can show that Cl(’;) > C((,’fl) /2 for aII n > 2 (note that Cé"l) > 1/2 by Lemma 1(€)). For
odd d > 3 Proposition 2 gives Cd a2 2> 5 d +2 —“—= Whereas a dightly better lower bound

Cd a2 > (ji; > wasgivenin [5, Theorem 2] Propositions 1 and 2 establish that C d+2 >

0. Alternatively it |s possible to prove Cd d+2 > 0inasimpler manner, but with weaker
lower bounds on C’d 442 than those given in these propositions.
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Figure 1. Latin square e, for d = 16 (even d).
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4l s| 6| 7| 8| 9f10|11|12|13]|d3|a2ft @+ O
5| 4| 7] 6| 9| 8|11|10[13]|12|d2| a3 O|—|® —
6| 7| 8| 910|112 |12]13|a3| a2t @ + O ® O
7| 6| 9| 8|11|10|13]|12|d2|d3 Ol— @ Ol— e 7
8| 9|10 |11 |12 |13 a3 a2t @ + O ® + O
9| 8|11]10[13]12|d2|d3 Ol— @ O|—|® —
10 |11 |12 |13 | @3] d-2] + @ + O ® + O ® O
11|10 |13 |12 | d-2| d-3 Ol— @ Ol— @ O|—|@| d6
&5 a4 d-3| d-2f + ® + O ® O ® + O
d-4| a5 d-2| d-3 O|—|® O|—|® O|—|® —
&3 a2] + @ +|O @ + O ® + O @ O
d-2| a3 Ol—| @ Ol—| @ O|—|® O|—|@|  d2
+ =d-1 —=+ ® +| O ® +| O ® + O ® + O
d — Ol—|@ O|—|@® O|—|® O|—|® —
d+1 — @O — @0 — @0 — @0 — d
4-6 — d-1=16 2 6 10 14
4-5 [ d+1=18 3 7 11 15
4-4 @ 0 4 8 12
4-3 O 1 5 9 13 d=17=
4-2 + 2 6 10 14
i=1 j=2 j=3 i=4 i=5

Figure 2: Latin squareeé, for d = 17 (d = 1 mod 4).
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+=d1
% V S/ d+1
‘_‘ o| 1| 2| 3|a |5 |6 |7 |8 |9 |10]11|12 |13 |d5|d4a|ds|d2]+
X' 1| o 3| 2|5 |4 |7 |6 |9 |8 |11|10]|13]12|d4|ds5|a2| a3 —
2| 3| a4l 5| 6| 7| 8| 9f10|11|12]13|a5|d4a|as|d2] Tt ® O
3| 2| 5| 4|l 7| 6| 9| 8|11|10|13]|12]d4|d5|d2|d3 O|—|@®@| 3
4| 5| 6| 7| 8| 9|10|11|12|13]|d5|¢4|ds| a2+ ® +|O
5| al 7| 6| 9| 8|11|10]|13 |12 |d4|a5|d2|d3 Ol—|@® —
6| 7| 8| 9| 10 11]12 |13 |d5|d4a|ds|d2]+ ® + O ® O
7] 6| 9| 8| 11 1013 |12 | d4| d-5| d-2| 03 O|l— @ Ol—|@| 7
8| 9f10|11|12|13|d5|d4afas| a2t ® +|O ® +|O
9| 8|11]10]|13 |12 |d4|a5|d2|d3 Ol— @ Ol—|@® -
10|11 |12 |13 -5 (4 | o3| d-2] + @+ O ® +|O ® O
11|10 |13 | 12 -4 @5 | d2| d-3 O|l— @ O|l— @ O|—|@|  d8
12 | 13 | d-5| d-4 o3| d-2] + ® + O ® +| O ® +|O
13 | 12 | d-4| d-5[ d-2| 03 Ol—|@® Ol—|@® Ol—|@® -
&5 d4| d-3| a2 + ® +|0O ® + O ® + O ® O
d-4| d-5| d2| a3 Ol—|@® Ol—|@ Ol—| @ O|—|@®| d4
o3| d-2f + @ + O ® + O ® + O ® +|O
d-2| d-3 Ol—|@® Ol—| @ Ol—| @ Ol—| @ —
+ =d-1—={+ ® + O ® + O ® + O ® + O ® O
d = Ol—|® Ol—|® Ol—|@ Ol—|@ Ol—| @
d+1 — @O — @0 — @O — @O — @ O]l d
46 — d-1=18 2 6 10 14
45 =20 3 7 1 15 d=lo=| |
4-4 @ 0 4 8 12 16
4-3 O 1 5 9 13 17
4-2 + 2 6 10 14
=1 j=2 j=3 j= j=5

Figure 3: Latin squareé, for d = 19 (d = 3 mod 4).
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Figure 4: Illustration of the sets T and U; for three dimensionsin the proof of Lemma 3.



