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Tradeoff Between Source and Channel Coding

Bertrand HochwaldMember, IEEE and Kenneth ZegeSenior Member, IEEE

Abstract—A fundamental problem in the transmission of ana- Much work has gone into finding quantizers that are optimal
log information across a noisy discrete channel is the choice of for noiseless channels, or what we aadiseless-optimaBuch

channel code rate that optimally allocates the available trans- quantizers achieve the distortionf, D,,(Q), where
mission rate between lossy source coding and block channel

coding. We establish tight bounds on the channel code rate

M

that minimizes the average distortion of a vector quantizer _ IS

cascaded with a channel coder and a binary-symmetric channel. Dim(@) = 2 /s I = vl f () v,
1 YS

Analytic expressions are derived in two cases of interest: small

bit-t_arror p_robability ano! _arbitrary source vector di_mensi_on; |- || represents theth power of the usual Euclideds norm
arbitrary bit-error probability and large source vector dimension. '

We demonstrate that the optimal channel code rate is often and f is the probability density function ok Let Q* denote

substantially smaller than the channel capacity, and obtain a & quantizer achieving the infimum. ThéJt is known to obey
noisy-channel version of the Zador high-resolution distortion nearest neighbor and, fpr= 2, centroid conditions [10], [11],

formula. which sometimes determin@* uniquely [13]. Many other

Index Terms—Combined source and channel coding, error ex- Properties are known, such as the quantizer’s limiting/di
ponents, high-resolution vector quantization, separation theorem. “point density” [6].

When the channel is binary-symmetric (BSC), thebit
ith quantizer index changes into tfilh index with probability
edii(1—e)m=4.i, whered; ; is the Hamming distance between
PPOSE a lossy source coder (vector quantizer) tak@g jth and jth quantizer indices. The distortion of usir
n input vectorX € R* and produces am-bit output, then becomes

which is expanded ta bits by a block channel coder and then v
sent over a binary-symmetric channel. For a fixed transmissi i di m—d; '
rate per source componemnfk, what is the best channel codeoﬁm(Q’ €) def= Z ) /& lz=yll" f () d.
rate m/n to use? This question is studied in this paper, and
substantially answered for large/k in Theorems 1 and 2, Quantizers that minimize this distortion are known to obey
which are summarized at the end of this introduction. generalized nearest neighbor and centroid conditions [3], [8],
An m-bit vector quantizeiis a function [9], but very little else is known about the complicated struc-
ture of, or even how to find, & that minimizesD,,,(Q, ¢). It
M is therefore popular, in practice, to adapt quantizers that work
Qum(z) = Z Yimls, . (z) well over noiseless channels (such as a noiseless-opfiiial
p— for use over noisy channels. This paper studies the cascading
of a quantizer with a channel coder to minimize the average
end-to-end distortion over a BSC.
Channel coding reduces the codeword error probability
y adding redundancy to the binary representation of the

I. INTRODUCTION

i,j=1

from R* t0 {y1m, -, ynim}, Where M = 27 {S; .},
is a partition of R* into disjoint regions or “cells,” each of b

Wg'.Cht'S freprte_seglted by a Coci_evecty;[m < Ijtand has guantizer indices. The:-bit index produced by the quantizer is
indicator functionls, ,,(-). Quantizers are used to compres xpanded to an-bit channel codeword, where the extra- m

the |nf(_)rmat|or_1 ina ra_ndom vector, V\_/h_ose_ range Is usually bits are used to guard against channel errors. We address the
a continuum, into a discrete set pf-bit indices suitable for stion: For a given channel transmission rate per source

transmission over a digital channel. Each index is assoc'a%cﬂiponent}z — n/k (dictated, say, by available channel

with a single quantizer codevector. For notational Simp”Ci%andwidth) what channel code rate= m /n minimizes the
we abbreviat@),, as@; yi,m aSyi, and S, asSi. average distortion from sender to receiver?

For a real-valued source with distortion-rate functiby.)
and a noisy binary channel of capacity, Shannon’s well-
Manuscript received Ju!y 3, 1996; revised Fe_bruary 10, 1997. _Thls Wo_réhown “separation theorem” says that one can trangniiits
was supported by the National Science Foundation and by the Joint Services . . .
Electronics Program. per source sample across the channel and achieve a distortion
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because of delay constraints. It is therefore generally of greatdre O(1/log 1/¢) terms go to zero as — 0, uniformly in
interest to determine the best achievable performance ofRathe o(1) terms go to zero a® — oc. This result is valid
cascaded source and channel coder fdixed value of k. for any fixedk, and is consistent with the fact that— 1 as
In particular, a fundamental open problem is to determine thke— 0 for any R.

optimal channel code rate as a function of. We solve this ~ On the other hand, in Theorem 2 we show that, for ldrge
problem, in part, by obtaining tight upper and lower bounds dhe channel code rate that minimizes average distortion is

the optimalr using high-resolution quantization theory. These o 1
bounds turn out to be independent of the source distribution r=C—-—+ O<E> +o(1)
and of the transmission rate, &5 — oo. vk

There is a clear tradeoff between channel coding redundangiereC' = 1+ ¢log ¢ + (1 —¢) log(1 — ) is the BSC capacity
versus source coding resolution. Low redundancy (lajg&n andq is a function ofp ande. The O(1/k) term goes to zero
be had only at the expense of high probability of codeworgs — oo, uniformly in R, and theo(1) term goes to zero as
error. In this case, the channel codeword bits are used almg@st- ~o. Note that, unlike Theorem 1, this is an asymptotic
exclusively for carrying quantization information, and there igquality and is valid for any fixed Furthermore, this equality
little channel error correction. The source coding or quantizgs consistent with the fact that — C ask — oo for any R
tion distortion is small, but since the channel decoding errgjia Shannon’s rate distortion and channel coding theorems).
probability is relatively high, the sender-to-receiver distortion The corresponding distortion in Theorems 1 and 2 is
may also be unacceptably high. The limiting case of zero
redundancyr = 1) generally has strict performance limits that
cannot be exceeded. For example, in the case of a uniforrgg/R —. o, thus yielding a noisy-channel version of the
distributed scalar source, the mean-squared distortion of UsiNgil-known Zador [14] distortion2—PR+0(1) The optimal
Q" is bounded from below by some known functionepno channel code rate € (0, 1) is the penalty imposed on source
matter how largeRt is [2]j coding resolution due to channel noise, and is always below

On the other hand, high redundancy (smdlloccurs at %De channel capacity”. The conclusions of both theorems

2—pR1‘+O(1)

the expense OT low source codmg_resolutlon. In this case, fe especially appealing because they are independent of the
channel decoding error probability is small, but the source co, urce densityf

ing distortion is relatively high, thus again possibly yielding a Section Il lists the assumptions used throughout the paper.

!arge tot_al distortion. The limiting case of= 0 CONVeys N0 gqtions |11 and IV contain the analytical results, including
information about the source at all. . Theorems 1 and 2. Section V provides numerical illustrations
Betwe_er_l these tvyo ex_tremes there e.X'StS a Cha_””e' COd? Bithe analytical results. Proofs of lemmas needed along the
" tha_t minimizes d|stor_t|on._V\(e examine the optimal Cho'c\?/ay are relegated to appendices. Some items of notation: i)
of  in the high-resolution limit (wherR is large). Analytic Let by, by, - - be a sequence of positive numbers. We say that

results are given in two cases: low channel bit-error probablll'&{ — O(by) asi — oo if |ai|/b; < ¢ for somee> 0 and all

and arbitrarylgource vector dimension; arbitrgry chgnnel b%tsuﬁiciently large. We say that, = Q(b;) if |ai|/bi > ¢ for
error PFOba?""V and large source vectc_;r dlmen5|on._ T mec> 0 and all¢ sufficiently large. Finally,a; = o(b;) if
minimizing r is generally a function of the _blt-erro_r probablht_yhmi_)C><> a; /b; = 0. i) Unless specified otherwise, logarithms
€, since ag decreases, less redundancy is required to achieye |-« 1o
good performance.

High-resolution quantization theory has a long history, is
relatively well-understood, and is essentially the only known
technique for obtaining analytic expressions for quantizerIn the system we consider, a transmitter, consisting of
performance. Furthermore, the high-resolution theory is knovnsource encoder (vector quantizer) followed by a channel
often to model accurately even low-resolution quantizers. @ncoder, sends its output over a BSC to a receiver consisting
many low-resolution source coding schemes, high-resolutioh a channel decoder and a source decoder. We call such a
quantizers act as key embedded building blocks in the overdistem acascaded vector quantizer and channel coderd
compression system. For these reasons, high-resolution thea®y describe what is assumed about the source and channel
is a useful tool. encoders/decoders.

In [15] it is shown that the distortion decays exponentially It is assumed that the random vectdr being quantized
with the channel transmission raf& on a BSC, but no explicit has probability density functiorf supported ink, a closed
rate of decay is identified. We show, in Theorem 1 that, fdrounded subset d&* with nonempty interior. We assume that
small bit-error probabilitye, the lowestpth-power distortion, the source encoder/decoder pair uses the nearest neighbor rule
averaged over all codevector-to-codeword assignments ovép @artition K and achieves the (noiseless channel) distortion

Il. ASSUMPTIONS

BSC, is achieved for some channel code ratatisfying Do(Q) = g=pm/k+O(1) _ 9-pRr+O(1) (1)
2ploglog 1 1
1- Fp oi) ?f/ /e + O(lo 1) ) +o(1) as R — oo. We call any vector quantizer that achieves this
gL/¢ L g2/¢€ exponential rate of decay witR a good vector quantizett is
<r<1- p loglog 1/e O< 1 ) + o(1). well known [1], [14], that the noiseless-optimal quantizgt
k logl/e log1/e is good, as are many suboptimal, including the uniform and
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X Quantizer m bits Index m bits Channel n bits
Encoder i Assignment (i) Encoder
T
Binary
Symmetric
Channel
). Quantizer m bits Inverse Index m bits Channel n bits
Decoder i Assignment n(j) Decoder
n—l

Fig. 1. Cascaded vector quantizer and channel coder system.

other lattice-based, quantizers. Besides depending on the tgpeo ask — ~c. These bounds are independent of the density

of quantizer, the)(1) term generally depends ofyk, andp. of the source vector.

The quantizer resolution iRr bits per source component. The proof is deferred until later, and follows from the upper
It is assumed that the channel encoder emptoysm bits and lower bounds on average distortion developed in Sections

of redundancy added to the original-bit quantization index. 1lI-A and 11I-B.

Furthermore, the channel decoder is maximume-likelihood. TheDefine ¢(j|¢) as the probability that the channel decoder

channel codeword size is therefatebits, and the number of decides that thgth channel codeword was sent when, in fact,

channel codeword bits per source component /5. the ith was sent. Then the cascaded quantizer/channel-coder
We also assume that the quantizer codeveciors- -,yas  System with a BSC has distortion

are mapped ta\/ = 2™ = 2kRB" ,.pit channel codewords

through a permutation mapping commonly called amndex det M

assignmentwhich is an element of the symmetric group on Dr(Q,€,m) = Z Q(W(j)|7r(i))/ lz = y; || f () da.

M letters. That is;y; gets mapped to the(:)th codeword i,j=1 Si

(using any convenient ordering of the codewords). Fig. 1

shows a system block diagram. The choicerofs assumed A. Distortion Upper Bound

ran(_jom and equally likely from th&/! diffe_rent p_ossible index _ The distortion may be written

assignments, although we do not use this particular assumption

until Section I1I-B. M
Throughout the paper, we consider onligelow the channel p e,m) = Dlr(s / —IP

capacityC, since, forr > C, it can be shown (see Section IlI- a(@6m) ;(J(W(L)|W(L)) S; o=yl =) de

B) that the average distortion is bounded away from zero, no M

matter how largeR is. The next section finds analytic bounds + Z q(7r(j)|7r(i))/ lz—y;||Pf(x) de
on the optimal channel code ratewhen the channel bit-error Q=1 5

probability is small and the channel transmission r&tds i

large. M
< [ omulrsa) do
=1 7'

Ill. FIXED SOURCE VECTOR DIMENSION

M M
AND SMALL BIT-ERROR PROBABILITY +0(1) Z P(S) Z q(m(§)|m (7))
Theorem 1: The minimumpth-power distortion, averaged =t g

over all index assignments, of &-dimensional cascaded M
good vector quantizer and channel coder that transmits over = D (Q)+0(1) 'ZP(Si)Pehr(i)
a binary-symmetric channel with bit-error probability is =

achieved with a channel code ratesatisfying

< . 3 .
= D"l(Q)+O(1) 1%%)1(\4 Pe|7r(z)

2p loglog1/e
- +o(1) : . .
k logl/e log1/e as B — oo, where P, ;) is the probability of incorrect
<)< ploglogl/e O 1 decoding, given that the(:)th codeword is sent. Th&(1)
srsl- L log1/e log1/e +o(1) term is positive and is due to the fact thathas supporty,

and y; is contained inK for all j.
where theO(1/log 1/¢) terms go to zero as— 0, uniformly Shannon’s channel coding theorem guarantees that, for
in the channel transmission rafe and theo(1) terms go to channel code rates below capacity, channel codes exist for
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which The left-hand side of (6) is continuous iy and is negative
at cs = log(k/p) — 1 and positive ats = log(k/p) + 1 for
max Py <27 nEex(r)toln) = g=kREx(Fe(R) —(2)  gufficiently smalls. Thus there exists as satisfying (6) that

== is bounded a$ — 0. We conclude that the left-hand side of
as R — oo, where (6) is (p/k)2°% —1+O((log log 1/6)/log1/6) asé — 0, and
hencecs — log k/p.
Eex(r) = sup{p[l — r — log(1 + 6'/*)]} (3)  One important conclusion to draw from this lemma is that
rzt for small ¢
is the “expurgated error exponent” for the binary-symmetric S plog log 1/6 1
channel [4], [7], andd = 21/¢(1 — €). Hence Tex =1— k log1/6 log 1/6 +o(1)
o L . 2plog log 1/e 1
pRr+0(1) kREox(r)+o(R) -1 /" . (8
Dgr(Q,e,m) <2 +2 .4 1 klog 1/c + 0 log 1/ +o0(1). (8)

Note that this upper bound does not depend on the indgsmbining this with (4), we see that there exist channel codes
assignmentir, or the source density. Since E..(r) is known such that

to be a convex decreasing function qfthe right-hand side P RroxtO(1)

of (4) is minimized for largeR by choosingr so that the Dr(@,e,m) < i ! . | ol
exponents in both terms are withii(1) of each other (see also = 2 PRIL-(p/k)loglog1/e)/ log 1/ e+ O(1/ Tog 1/)+o(L)],

[15]). For otherwise, the term whose exponent is less negati " .
would dominate the sum wheR is sufficiently large. Let . Wﬁe right-hand side clearly does not dependroar f.

be the resulting channel code rate; thep obeys B. Distortion Lower Bound
We derive a lower bound on average distortion and minimize
Eex(rex) = (p/F)rex + 0o(1) () it over all channel code rates € (0,1) when the channel

transmission rate? is large. The lower bound explicitly uses
the assumption that the index assignmeig chosen randomly
and equally likely from theV/! different possible assignments.
C=1+¢loge+(1—ec) log(l—e) Before we can proceed, a lemma is _neede(_JI.
Lemma 2: Any good vector quantizer with codevectors

is the channel capacity, it follows that, € (0,0) for ¥1,--+,ym € K satisfies
R sufficiently large. The next lemma provides an analytic
solution to (5) that is accurate when the bit-error probability min Z |z — uil|P = QM)
e is small. wek s

Lemma 1: For anyp andk, suppose thats satisfies

as R — o0. Since Ee(r) >0 for »r < C and Ee(r) = 0 for
r > C, where

as M — ooc.
Proof: See Appendix Il.

£2‘:6 - (p/F)(log log 1/6 + log e + c) — 27 —1=0 (6) The distortion, averaged over all index assignments, is
k log 1/6 o
and is bounded a8 — 0. Then, the channel code rate that Dr(@, )
minimizes the upper bound on distortion in (4) is def il ZDR Q,e,m)
. :1_2_cé<10g10g 1/6+10ge+65) 1
= log 173 LSS i) | o= upsa) do

O<10g(;)¥0g 1/6)_1_0(1)7 @) Tx =1

s - S S sttt /Ilw—yzll”f ) ds

where theO((log log 1/6)/log? 1/8) term goes to zero as =l 7
6 — 0, uniformly in the channel transmission rakk and the v
o(1) term goes to zero aB — oc. This result is independent Ml Z >_alw (I () / le = w1 f () dx
of the index assignment. W
Proof: See Appendix I. (9)
Remarks: Equation (7) is equivalent to 1M M
= — il x—y;||P flz) dx
A qumzjs_n wll (@)
5_,0p oo log log 1/6
- . . — p
Do (R o i 32, Aot [ e i
log 1/6 zj;é]l @

< 0. (10)
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M

_ 2—pR1‘+O(l)i Z(l _pp) Lemma 3: For anyp andk, let ¢, be any solution to
M €|t

| £2CC n (1-p/k)(loglog 1/e+loge+c.)+27¢ _1-0
1 M k log 1/ B
+ (M =2t > (k) (16)
k=1
ksl that is bounded as — 0. Then, the channel code rate that
Mo M minimizes the lower bound on distortion is
. — a1: 1P
/S- ZHx yill” f (@) do e <10g log 1/e+ log c—i—Ce)
i=1"7"°i j=1 Tep =1 —27%
e log 1/€
—pRr+0O(1) 1 _ : 1
> 2P (1-P.) n O<10g lgg /e) +o(1) 17)
1 M log”1/e
+———— > q(l[k)
MM —-1) &= where theO((log log 1/¢)/log® 1/¢) term goes to zero as
kil the bit-error probabilitye — 0, uniformly in the channel
M M transmission rat®, and thes(1) term goes to zero a8 — oc.
-ZP(Si) min Z llz — y;l|” Proof: See Appendix III.
i=1 ‘ j;:y Remark: A simple argument, identical to the one contained
JFE

in the remarks following Lemma 1, shows that there exists a

= PRrtO(1 — p,) c. satisfying (16) such that, — log k/p ase — 0.

1 M The expansions of.; and g, given in (7) and (17) are
+ mQ(M) Z q(l|k) (11) remarkably similar. We can conclude from Lemma 3 that, for
k=1 small ¢
hl
M ploglog 1/e 1
L _4_P 1
— 9 PRIHOW) (] _ p)) +Q(1)%ZP€|,€ re =l e 1e T O\log1e) O @8

k=1

which differs from the expression fat, given in (8) by onl
— 2—pRr+O(1)(1 _Pe) +Q(1)P€ (12) p t g ( ) Yy y

a factor of two in the second term. Combining (18) with (14)
where P. = (1/M)SM, P, is the average probability of YI€lds
error for the channel decoder, and Lemma 2 is used in (1}),,((), ) > 27 pRrrtOQ)

yielding a positive2(1) term in (12). Qlearly, ifPe,_does not _ 9=PRIL—(p/k)(loglog 1/¢)/ log 1/+O(1/ log 1/¢)+o(L)]
decay to zero agt — oo, then the right-hand side of (12) '
also does not decay to zero. To minimize the right-hand side (19)

of (12) for large R, we therefore consider only below the

channel capacity, and only channel codes for whith— 0.
A lower bound onP. appears in [12, Theorem 2], wher

it is shown that Dr(Q,¢) < 27PEr+0W) | 9—kREex(r)+o(R)

Proof of Theorem 1:Because the upper bound in (4)
edoes not depend on, it holds that

P, > 2 nBep(n)to(n) — g=kREp()+o(R) Comparing this inequality with (14), we see that thehat

minimizes the average distortion obeys
where

Tex ST < Tp (20)
Esp(T) = sup {p(l - T)
pz0 when R is sufficiently large. Lemmas 1 and 3 now complete
— (p+ D log[et/ M7 4 (1 — )/A+7]} (13)  the proof of Theorem 1. O
. . ) , . . Remarks on Theorem 1) Theorem 1 implies that, for
is the “sphere-packing exponent” of the binary-symmetrig, ., ¢, somewhere between at least approximat@lyk)
channel. It follows that - (log log 1/¢)/log 1/e fraction, and at most approximately
Dr(Q, ) > 27PRr+OW) 4 o=kRE, (N +o(B)  (14) (2p/k)(log log 1/¢€)/log 1/e fraction, of the transmission rate
R should be used for channel coding to minimize the average
This bound does not depend on the source derfsifio get a distortion. Clearly, these upper and lower bounds are quite
lower bound that does not depend-grwe minimize the right- close to each other. For the optimal the corresponding
hand side of (14) over in the same way that we minimizeaverage distortion obeys
(4) for large R. Let r, be the resulting rate. Then 3R(Q,6) _ 9—pRr+O(1)

Esp(rsp) = (p/R)rsp + 0(1) (13) independently of the probability density function of the source
as R — oo. For R sufficiently large,rs, € (0,C). The next vector.
lemma provides an analytic solution to (15) that is accurateii) The optimal code rate: € (0,1) can be thought of as
when ¢ is small. a penalty due to channel noise, since the Zador (noiseless
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channel) distortion [14] corresponds to= 1. The statement is the “random coding exponent” for the binary-symmetric

of Theorem 1 is consistent with the fact that- 1 ase — 0 channel [4]. Observe thak, in (23) and E,;, in (13) differ

for any R. only in the range op over which maximization is performed.
iii) The small ¢ bounds onr given in Theorem 1 are, of The same argument used in Section Il now yields

course, approximations of., and r,,. Bounds suitable for —pRr+O(1 CRRE,(r)4+O(1

any ¢ can be obtained by solving 25) and (15) numerically, Dr(Q,em) < 278 W2 e (24)

or by using the additional terms in the asymptotic expansioaad the channel code ratg, that minimizes this upper bound

given in Lemmas 1 and 3 (see also Section V). satisfies
IV. FIXED BIT ERROR PROBABILITY AND Eilrea) = (/F)rea + O/ B) (25)
LARGE SOURCE VECTOR DIMENSION asR — oo. Note that this upper bound does not depend on the

The following theorem shows that when the source dimeffldex assignment, or the source density. The next lemma
sion exceeds a certain threshold, the optimal channel cdqj@vides an analytic solution to (25) that is accurate when

rate can be exactly characterized since the code rate upifel2r9e:

and lower bounds coincide. Lemma 4: For any fixed bit-error probability, the channel
Theorem 2: Let a source vector have dimension code rate that minimizes the upper bound on distortion in (24)
is
k>p(B—pBlog B—7)/(v—p log B) a 1 1
where weo-ro(i)so(z) e
B=Ve+Vl—c where
and o= [(2])0/ log €)

v=—=Velog Ve —v1—¢clogV1—c.

Then, the minimumpth-power distortion, averaged over all
index assignments, of A-dimensional cascaded good vectoand
quantizer and channel coder that transmits over a binary-
symmetric channel with bit-error probability is achieved

e log? e + (1= ) log2(1 — ¢) — (1 — 0)2]]”Z

C=1+4eloge+(1—e¢)log(l—ce)

when the channel code rate is is the binary-symmetric channel (BSC) capacity. The /%)
o 1 term goes to zero as the source vector dimengion oo,
r=0C-—=+ O(%) +o(1) (21)  uniformly in the channel transmission rafe and theO(1/R)
term goes to zero aR — oo. This result is independent of
where the index assignment, and the source densitf.
o= |:(2pC/ log ¢)[e log? ¢ Proof: See Appendix IV.
12 Combining Lemma 4 with (24) yields
+(1—¢) log’(1—e) = (1~ C)Q]} Dr(Q, e, 1) < 27PRra+OW) — g=pRIC—a/VE+O(/RHO0)
and

B. Distortion Lower Bound

C=1+4cloge+(1—¢)log(l—e) From (19)

is the channel capacity. Th@(1/k) term goes to zero as

k — oo, uniformly in the channel transmission ratg and

the o(1) term goes to zero a& — oc. whererg, is the solution toE,(rs,) = (p/k)rsp + o(1). The
The proof is deferred until later, and follows from the uppefollowing lemma shows that,, and ry, meet asR — oc,

and lower bounds on average distortion developed in Sectigin®vided thatk is large enough.

IV-A and IV-B. Lemma 5: Let
B=ve+V1l—c¢

Dp(Q,¢) z 27 PRt

A. Distortion Upper Bound q
We replace the upper bound on probability of error give‘%n

in (2) with v==Velog vVe—+v1—clogvl—ec.
i P S 27RO @
where v—p0log B
E.(r)= Juax, {p(1—7) then
— (p+1) log[e/ ) 4 (1 — /(4]}y Tsp = Tra+o(1)

(23) as R — <.
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Fig. 2. Shaded regions between upper bougd and lower boundnax(rex, rra) on channel code rate that optimizes tradeoff between source and
channel coding (inequality (29) with large channel transmission ftendp = 2) as a function of channel bit-error probability for source vector
dimensionsk = 1,2,4,8,16, and 64. The curvek = oo is the channel capacity.

Proof: See Appendix V. 2 uses inequality (28), which is also valid for largeand for
Proof of Theorem 2:Because the upper bound in (24xall ¢ and k. Hence, for alle and &k, the channel code rate
does not depend on, it follows that that minimizes the average distortion satisfies

) < —pRr+0(1) —kREr(r)—i—O(l)'
Dr(@e) <2 +2 Max(Tex; Tra) <7 < Top (29)
Comparing this inequality with (14), we see that thehat

minimizes the average distortion obeys when R is sufficiently large. This inequality is used in some

of the illustrations given in the next section.
Tra <7 < Top (28)

when R is sufficiently large. Lemmas 4 and 5 now complete V. |LLUSTRATIONS OF OPTIMAL CHANNEL CODE RATE
the proof of Theorem 2. O

Remarks on Theorem 4) The corresponding distortion
obeys

In this section, we complement the analytic smaland
large k£ bounds on the optimal channel code rate given in
Theorems 1 and 2 with plots of the exact bounds, without

Dr(Q,e) = 9=pRr+0(1) _ 9—pR[C—a/VEk+O(1/k)+o(1)] the approximations ire and k. All of the plots assume the

standard squared-error distortipn= 2.
independently of the probability density function of the source In Fig. 2, the upper and lower bounds on the optimal
vector. channel code rate given in (29) are displayed as a function

ii) The requirementk > p(3— 3 log B—~)/(yv— 8 log ) of bit-error probabilitye for various values of source vector
becomes restrictive as— 0, since, for smalk, this require- dimensionk. The regions between the upper and lower bounds
ment is approximately: > p/(1/¢ log 1/+/¢), the right-hand are shaded gray. To compute the regions, (5), (15), and (25)
side of which can be quite large. For example, when10~®> were solved numerically (using (3), (13), and (23)), and the
andp = 2, thenp/(\/e log 1//¢) = 76. o(1) terms were ignored. Note that the optimal channel code

iii) Theorem 2 is consistent with the fact that the optimailate is often substantially smaller than the channel capacity.
r — C ask — oo for any R (via Shannon’s rate distortion Another perspective of (29) is shown in Fig. 3, where the
and channel coding theorems). optimal channel code rate bounds are displayed as a function

iv) In Theorem 2,¢ is fixed andk is large, this case not of %k for various values ot.
being addressed by Theorem 1, whéres fixed ande small. Fig. 4 shows (20) as a function effor £ = 3. Also dis-
Therefore, Theorems 1 and 2 complement each other on th@ayed are the analytic approximations presented in Theorem
applicable range ot. 1 and expanded more fully in Lemmas 1 and 3 (see (7) and

v) The proof of Theorem 1 uses inequality (20) which i$17)). As predicted, the analytic approximations become more
valid for large R and forall ¢ andk. The proof of Theorem accurate ag decreases.
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-4
bep=10

Optimal Channel Code Rate
o o o (=] o o
w > 0 =) ~ ®

o
N

e
=

0 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Source Vector Dimension

Fig. 3. Shaded regions between upper bougd and lower boundnax(rex, rra) on channel code rate that optimizes tradeoff between source and
channel coding (inequality (29) with large channel transmission fateand p = 2) as a function of source vector dimensiénfor channel bit-error
probabilitiese = 1071,1072,1073,10~%, and 10~8. For eache, ask — oo, the upper and lower bounds eventually meet and then approach the
channel capacity (via Theorem 2).

o
[o]
I

o
)

k=3

©
IS

Optimal Channel Code Rate

o
N
T
i

0 Y 1 1 1 1 1
10 10 10 107° 107 107° 107

Bit Error Probability

Fig. 4. Shaded region between upper bougg and lower boundx on channel code rate that optimizes tradeoff between source and channel coding
(inequality (20) with large channel transmission rdte andp = 2) as a function of channel bit-error probabilityfor & = 3. The dashed lines are the
analytic approximations presented in Theorem 1 and expanded more fully in Lemmas 1 and 3.

From Figs. 2 and 3 it can be seen that, for lakgéne upper k exceed the threshol? 3 — 3 log 53— v)/(v — 3 log ) is
and lower bounds meét = r,, = max(rex, 7ra)). This factis reflected in the starting values éffor each curve.
proven in Theorem 2, and in Fig. 5 we plot the optimal channel Fig. 6 plots thek threshold2(3 — 8 log 8 — v)/(y —
code rate (21) (omitting the(1) term) as a function ok for 3 log ) given in (27), beyond which the largg upper and
three different bit-error probabilities. The requirement that lower bounds on the optimal meet, as a function of.
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Optimal Channel Code Rate
© © © © o o o
w I 3 > ~ ™ ©

o
o

e
%

0 1 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 20 100
Source Vector Dimension

Fig. 5. Optimal channel code rate(for large channel transmission ral& andp = 2) as a function of the source vector dimensibnfor channel bit-error
probabilitiese = 10~',10~2, and10~3. Solid lines represent solutions to (25), and dashed lines represent analytic approximations (21) given in Theorem 2.

90

80

70

)]
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Fig. 6. Threshold on source vector dimensiorbeyond which largeR upper and lower bounds on channel code ratmeet.

VI. CONCLUSION These bounds were derived by balancing the source and

We have derived the tradeoff between lossy source codifi annel coding error exponents, and indicate the best per-
and block channel coding for a binary-symmetric channe mance that can be' expepted from a cascaded source and
caannel coder. To realize this performance, channel codes that

Tight bounds on the optimal channel code rate that minimiz% ve error exponents at least as good as the expurgated and
average distortion were provided. Analytical expressions Wers dom coding exponents are needed

obtained for arbitrary source vector dimension and small chan-Thjs paper has assumed that thebit source indices were
nel error probability, and arbitrary channel error probabilitihdividually channel coded and transmitted to the receiver.
and large source dimension. One may consider grouping a certain number of source indices
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together to increase the overall channel codeword blocklengthWe know thatr., obeys (5), and hence

Shannon’s coding theorem would then assure a decrease in

the channel codeword error probability. It would then bEFE..(7(8)) — Eex(rex)] + (p/k)[rex — 7(8)]

straightforward to modify the results of Sections Il and IV — O((log log 1/8)/1oe2 1/6 1
to decide the best channel code rate to use as a function of ({log log 1/8)/1og™1/8) + o(1)

the number of grouped indices. where theO((log log 1/6)/log? 1/6) term goes to zero as

APPENDIX | & — 0, uniformly in R, and theo(1) term goes to zero as
PROOF OF LEMMA 1 R — 0. The two differences enclosed within brackets both
have the same sign becauBg(r) is a decreasing function

For anyr,é € (0,1), the function of . Therefore,

p[1 — r —log(1 + 6+/7)] (30)
is concave forp > 1 since its second derivative with respect Tex = 7(6) + O((log log 1/68)/log? 1/6) + o(1)
to p is —6%/7(log? 6)/[(1 + 6/7)%p* log ¢] < 0. Hence, this
function can be maximized ovep > 1 by finding the and the lemma is proven.

stationary point, assuming one exists. This proof proceeds by
specifying p, and then deriving an- for which this p is a

stationary point. APPENDIX I
Define PROOF OF LEMMA 2
5 e log 1/6§ Let the minimum over € K of X, ||z—y;||? be achieved,
p(8) = log log 1/6+cs for eachM, at somez,, € K. For anyé > 0, let the closed

, . ball of radiusé centered at:y; be denoted .S
Sincecs — log k/p asé — 0, it follows that p(6) > 1 for é %haat c:h;alétjnsm;eig fearli.e. thA;t is enoteds; (). Suppose

sufficiently small. Taking the derivative of (30) with respec

to p, we conclude that any = 7(¢) for which p(¢é) is a M
stationary point must satisfy 1}\14ninf (1/M) Z l#as — wil P = 0.
7(6) =1 — log(1 4 6/7®)) = i=1
1 §474) Jog 1/6. Then, for some subsequengé;, only o(M;) quantizer code-

p(O)(1+ 81/7() vectors fall outside the set&’ N Bs(xy,), asj — oo. We
We have§'/r(®) = 2=¢ /log 1/, which goes to zero a§ proceed to obtain a contradiction.
goes to zero. Thus standard power series expansions yield For § sufficiently small, becaus& has nonempty interior,

27¢ log e 27 (log log 1/6 + cs) there exists a closed ball of positive probability contained in
r(é)=1- log 1/6 9(6) - log 1/6 K with some radiug’ and centerr’, and a sub-subsequence
9—cs 1 M;, such thatBs (x') N Bs(xpy,) is empty for alll. Then the
11— —+ — 31) number of codevectors iBs/ (z') is o( M;) asl .
{ log 1/6 <10g2 1/5” (1) o(@) 18 o Mi) T e

) The number of codevectors in the closed ball =
where g(é) = O(1/log"1/6). Becausep(6) >1 for 6 suf- g (./)is alsoo(M;). Because the quantizer uses the nearest
ficiently small, the constrainp > 1 in (3) is inactive. peighbor rule to partitionk, and the number of codevectors

Therefore, in any subset of¢ must go to infinity ag — oc, we conclude
Eeo(r(8)) = p(8) [1 — 7(8) — log <1 + 27 )} that when! is sufficiently large, codevectors outsids (z')
” log 1/6 are not used to quantize the regiBh, and codevectors inside
log1/6 B’ are not used to quantize the region outsitie{=’). We now
= log log 1/6 4 cs modify the original quantize€) to create a new quantiz&}’
2% log ¢ havingM;+o(M;) codevectorgy.}, by increasing the number
. [1 —r(6) — W + 9(6)} of codevectors inB’ by the same number of codevectors that
e & Q contains in the shelB’ N By (z’). Then we arrange all the
—9~%% {1 _ + < 1 )} codevectors and cells iB’ so as to minimize
log 1/6 log?1/6
—2es D, (QXeB
_ g _ +0< 21 ) (Q'X € B)
log 1/6 log” 1/6 w1 Mi+o(M;)
T . (loglog 1/8 +loge + c; Yo o | le-uliw) ds
=201 -2 P(B) = Jsnw
k log 1/6 = :
< 21 ) subject to the constraint th&}’ use only codevectors within
log™1/6 B’ to quantize the regio®’. (In the abovemn; = log[M; +
= (p/k)r(6) + O((log log 1/6)/log® 1/6) o(My)].) With m; = log M;, we obtain

where the third and the last equalities follow from (31), and

the penultimate from (6). Dy (QIX € B) 2 Dy (@1 X € BY).
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Equation (1) then implies that

Dy (@) =277/ HOW)
=D, (Q|X € B') Pr(X € B')
+ D, (QIX ¢ B') Pr(X ¢ B')
> D, (Q'|X € B') Pr(X € B')
+D,,,(Q|X ¢ B") Pr(X ¢ B)

as! — oo. But this contradicts Zador’s formula [14], which,
since there are(M;) codevectors inB3’, implies that

_ o— k) log{o(M)H)}4+0O(1) _ o—
Dy (Q'|X € B') =2 (p/ k) log{o(Mi)}4O(1) _ o

Thus it must be that

M
1]1\1}1_}&;(1/]\4)2 ||-TM yz“ > 0.

This proves the lemma.

APPENDIX Il
PROOF OF LEMMA 3

This proof is similar to the proof of Lemma 1, and is
1), the

therefore slightly abbreviated. For anye € (0,
function

p(L—7)—

is concave forp > 0 since its second derivative is

(p+1) log (/7 4 (1 — )t/ (10

(1= @YD/ ) log ¢ —log(1 — )2
[e2/A+p) 4 (1 — €)1/ A+]2(1 + p)3log e

which is negative. Therefore, any stationary point must be a

maximum. Define

def log 1/e
ef 98 0/¢ g
ple) log log 1/e+ ¢,

Sincec, — log k/p ase — 0, it follows that p(e) > 0 for e

o(my) .

32
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Thus standard power series expansions yield

27¢% log e
. 125"
) =1= e ol

9-ce 1
S D I Y (S
{ log 1/¢ <10g21/6>}

27%(log log 1/e+ c) e log log 1/e
. +0O0| ——=—"-
log 1/ log 1/

(34)
where

g(e) = O(1/1og? 1/€).

Because the)((e log log 1/¢)/log 1/¢) remainder term is
negligible in comparison with all other terms, it is dropped.
From (13)
Exp(r(€) = p(e)[L = ()] = (p(e) + 1) log[e!/ HH7)
+ (1 — )t/ (Frl
_logl/e
log log 1/e + cc
27%(log log 1/e +c.)
log 1/e

27¢ 1
Nl =4+ 0| ——
[ log 1/ <10g2 1/6):|

= log e
log 1/e
e [ log log 1/e+10ge+c€+2_c<}
=27 |1 -
log 1/e
+O<10g 1(2)g 1/6)
log®1/e
_Pl_ .. log log 1/¢ +log e+ c.
ok log 1/¢
+O<10g 1(2)g 1/6)
log=1/e
= (p/k)r(€) + O((log log 1/e¢)/log® 1/¢)

where the penultimate equality follows from (16), and the last
from (34).

+ g(€)

sufficiently small. Taking the derivative of (32) with respect The same argument used in the proof of Lemma 1 now

to p, we conclude that any =
stationary point must satisfy

r(e) =1 — log[el/ AP 4 (1 — €)1/ A+r(9)))
1
T /(o) 4 (1 — €)1/ Atp(e)
el/(1+p(e)) 1 (1- 6)1/(1+P(6))

r(e) for which p(¢) is a shows that

rsp = 7(€) + O((log log 1/€)/log?1/€) + o(1)
where theo(1) term goes to zero aB — .

APPENDIX IV
PROOF OF LEMMA 4

- loe =
T+pe) °e 1+ o)

We have

H/H2()) = 97¢< /1og 1/€

which goes to zero as goes to zero. Furthermore,

(1 — )Y A+20) =1 4+ O((e log log 1/€)/log 1/e).

og 1—e¢ .
(33)

In Appendix Il it is argued that
p(L=1) = (p+1) logle!/+7) 4 (1= o)/ (+)]
is a concave function of, and therefore any stationary point
must be a maximum. Define
p(k)zi 2pC log e 1/2
VE Lelog?e + (1 =€) log?(1 — ¢) — H2(¢)
where

H(e)=—cloge—(1—¢) log(l—¢)
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is the binary entropy. Then, it follows from (33) that any For & sufficiently large,p(k) < 1. Hence, from (23) and

r = r(k) for which p(k) is a stationary point must satisfy
(k) =1 - log [61/<1+p<k>> r(1- 6)1/<1+p<k>>}
1
T e/ (p(R) 1 (1 — €)1/ (+r(R))
e/ (L+p(k)) ) 1 (1- 6)1/(1+/7(k)) 1
' [ v o) et 1w B 1—6}
(35)

We are interested in an asymptotic expansion of the right-

hand side of (35) for smalp(k), or large k. First observe
that

/(o)
= e[l — p(k) In e+ p?(k)(In e+ (1/2) In? €)] + O(p*(k))

as k — oo, and there is a similar expansion fgt —
€)Y/ (+e(k)) - Therefore,
e/ AHR) 4 (1 — )L/ (k)

=1+ p(k)He(e) + p*(B)[=He(€) + (1/2)e In® ¢
+(1/2)1 = ) In* (1 - O] + O(p* (k)
where H.(¢) = H(¢)/log e, and, furthermore,

log[e/ (XHr() 4 (1 — )L/ (et
= p(k)H(e)
= p(k) [ H(e) + (1/(2 log e))[H2(¢) = ¢ log? e
— (1= log’(1 - 9)l| + 0(p* (k). (36)
Equation (35) therefore becomes
r(k) =1~ p(k)H () + O(p*(k))

N 1
22(k))

1+ p(k)He(e) + O(p

_ [6[1 —p(k) In e+ O(p*(k))]
1+ p(k)

4 (1—¢e)[1—p(k) In (1 —¢)+ O(p?
1+ p(k)

log ¢
(K)]

- log(1 — 6):|
=1—p(k)H(e) +[1 -
O(p ()] [[< Tog [ = p(k)(1 +1n )]

[(1 — ) log(1 = 9I[1 = p(E)(1 + (1 - )]
O(p2(k))] + O(p*(k))
=1- H(e) — p(R)H(©)
+ p(k) [H(e) — (1/loge)[e log®e
+ (1= ) log?(1 = &) = H(Q)]| + O(p* (k)
=1—H(c) = (p(k)/log ¢)[c log® ¢
+(1—¢) log?(1 - €) — HX()] + O(p*(k)) (37)
— (1/VE)[(2pC/ log €)(e log” e+ (1 — ¢)
log?(1 — €) = H¥(e)]Y? + O(1/k)
ask — oo.

p(k)H.(¢)

(38)

(36), we obtain
Ei(r(k)) = p(k)[1 — r(k)] = (o(k) + 1)[p(k)H (¢)
— 0(K)[H(e) = (1/(2 log e))(c log®¢
+(1=¢) log?(1 = ©) = H(0)]]| + O(p*(k))
= p(B)[L — r()] — p(k)H (€)
p*(k)/(2 log ¢))[e log” ¢
1—¢)log*(1l —¢) = HX )]+ O(p®
k)/(2 log ¢))[e log® e
1—¢)log*(1l —¢) = HX )]+ O(p®
= (p/k)C + O(1/k*?)
= (p/k)r(k) +O(1/K*?)

where the third equality follows from (37), and the last from
(38).

An argument similar to the one used in the proof of Lemma
1 now shows that

ra =7(k) + O(1/k) + O(1/R).

(k)
=(p’

(k)

APPENDIX V
PROOF OF LEMMA 5
Let
B=vet+V1—¢
and
v =—velog Ve—+v1—clogV1—e

We first show that’,,(r) = E,.(r) whenr > 1—log f—~/0.
Observe thatt,,(r) = E.(r) as long as the maximizing's

in (13) and (23) are the same. It is easy to show that, as
7 increases, the maximizing decreases; we therefore seek
the smallestr, sometimes known as the critical rate [4], for
which the maximizingp equals one. From (35) we see that
the maximizingpy equals one when

r=1-log 8 —~/5.

As k increases, the, satisfying Eg,(ri) = (p/k)rk
increases. Hence, for some critical valide we haver; >
1—log f—~/8 whenk >k From (13)

Ep(1—log B—v/B)=1-(1-log B—7/B)—2log j
=—log B +~/B.

Solving
Eop(1—log 8 —~/8) = (p/k')(1 —log B —~/B)
for k', we obtain

K =p(B - log §—7)/(v = log ).

(k) = Er(ri) = (p/k)re.
(p/k)rsp+o(l) asR — oo, it follows that

— Esp(rsp)] + (p/F)lrsp — 1] = o(1).

Hence, fork > k', E
SinceEq,(rsp) =

[Eop(r1)
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The two differences enclosed within brackets both have thg] A. Gersho and R. M. Grayector Quantization and Signal Compression

same sign becaus&,(r) is a decreasing function of.
Therefore,rs, = 71, + o(1). Becausek > £’ and

Er(Tra) = (p/k)Tra + O(l/R)

as R — oo, it follows that bothr; and r,, are at least
1-log B—~/p for R large enough. Therefore,, = r,+o(1),
and, hencer, = ra + o(1).
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