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Tradeoff Between Source and Channel Coding
Bertrand Hochwald,Member, IEEE, and Kenneth Zeger,Senior Member, IEEE

Abstract—A fundamental problem in the transmission of ana-
log information across a noisy discrete channel is the choice of
channel code rate that optimally allocates the available trans-
mission rate between lossy source coding and block channel
coding. We establish tight bounds on the channel code rate
that minimizes the average distortion of a vector quantizer
cascaded with a channel coder and a binary-symmetric channel.
Analytic expressions are derived in two cases of interest: small
bit-error probability and arbitrary source vector dimension;
arbitrary bit-error probability and large source vector dimension.
We demonstrate that the optimal channel code rate is often
substantially smaller than the channel capacity, and obtain a
noisy-channel version of the Zador high-resolution distortion
formula.

Index Terms—Combined source and channel coding, error ex-
ponents, high-resolution vector quantization, separation theorem.

I. INTRODUCTION

SUPPOSE a lossy source coder (vector quantizer) takes
an input vector and produces an -bit output,

which is expanded to bits by a block channel coder and then
sent over a binary-symmetric channel. For a fixed transmission
rate per source component , what is the best channel code
rate to use? This question is studied in this paper, and
substantially answered for large in Theorems 1 and 2,
which are summarized at the end of this introduction.

An -bit vector quantizeris a function

from to where
is a partition of into disjoint regions or “cells,” each of
which is represented by a codevector and has
indicator function Quantizers are used to compress
the information in a random vector , whose range is usually
a continuum, into a discrete set of-bit indices suitable for
transmission over a digital channel. Each index is associated
with a single quantizer codevector. For notational simplicity,
we abbreviate as as and as
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Much work has gone into finding quantizers that are optimal
for noiseless channels, or what we callnoiseless-optimal.Such
quantizers achieve the distortion , where

represents theth power of the usual Euclidean norm,
and is the probability density function of Let denote
a quantizer achieving the infimum. Then is known to obey
nearest neighbor and, for , centroid conditions [10], [11],
which sometimes determine uniquely [13]. Many other
properties are known, such as the quantizer’s limiting (in)
“point density” [6].

When the channel is binary-symmetric (BSC), the-bit
th quantizer index changes into theth index with probability

, where is the Hamming distance between
the th and th quantizer indices. The distortion of using
then becomes

Quantizers that minimize this distortion are known to obey
generalized nearest neighbor and centroid conditions [3], [8],
[9], but very little else is known about the complicated struc-
ture of, or even how to find, a that minimizes It
is therefore popular, in practice, to adapt quantizers that work
well over noiseless channels (such as a noiseless-optimal)
for use over noisy channels. This paper studies the cascading
of a quantizer with a channel coder to minimize the average
end-to-end distortion over a BSC.

Channel coding reduces the codeword error probability
by adding redundancy to the binary representation of the
quantizer indices. The -bit index produced by the quantizer is
expanded to an-bit channel codeword, where the extra
bits are used to guard against channel errors. We address the
question: For a given channel transmission rate per source
component (dictated, say, by available channel
bandwidth), what channel code rate minimizes the
average distortion from sender to receiver?

For a real-valued source with distortion-rate function
and a noisy binary channel of capacity, Shannon’s well-
known “separation theorem” says that one can transmitbits
per source sample across the channel and achieve a distortion
arbitrarily close to by independently designing source
and channel coders. However, this requires long blocks of
source symbols , and long channel codewords

In practice, the vector dimensionis often bounded
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because of delay constraints. It is therefore generally of greater
interest to determine the best achievable performance of a
cascaded source and channel coder for afixed value of
In particular, a fundamental open problem is to determine the
optimal channel code rate, as a function of We solve this
problem, in part, by obtaining tight upper and lower bounds on
the optimal using high-resolution quantization theory. These
bounds turn out to be independent of the source distribution
and of the transmission rate, as

There is a clear tradeoff between channel coding redundancy
versus source coding resolution. Low redundancy (large) can
be had only at the expense of high probability of codeword
error. In this case, the channel codeword bits are used almost
exclusively for carrying quantization information, and there is
little channel error correction. The source coding or quantiza-
tion distortion is small, but since the channel decoding error
probability is relatively high, the sender-to-receiver distortion
may also be unacceptably high. The limiting case of zero
redundancy generally has strict performance limits that
cannot be exceeded. For example, in the case of a uniformly
distributed scalar source, the mean-squared distortion of using

is bounded from below by some known function of, no
matter how large is [2].

On the other hand, high redundancy (small) occurs at
the expense of low source coding resolution. In this case, the
channel decoding error probability is small, but the source cod-
ing distortion is relatively high, thus again possibly yielding a
large total distortion. The limiting case of conveys no
information about the source at all.

Between these two extremes there exists a channel code rate
that minimizes distortion. We examine the optimal choice

of in the high-resolution limit (when is large). Analytic
results are given in two cases: low channel bit-error probability
and arbitrary source vector dimension; arbitrary channel bit-
error probability and large source vector dimension. The
minimizing is generally a function of the bit-error probability
, since as decreases, less redundancy is required to achieve

good performance.
High-resolution quantization theory has a long history, is

relatively well-understood, and is essentially the only known
technique for obtaining analytic expressions for quantizer
performance. Furthermore, the high-resolution theory is known
often to model accurately even low-resolution quantizers. In
many low-resolution source coding schemes, high-resolution
quantizers act as key embedded building blocks in the overall
compression system. For these reasons, high-resolution theory
is a useful tool.

In [15] it is shown that the distortion decays exponentially
with the channel transmission rate, on a BSC, but no explicit
rate of decay is identified. We show, in Theorem 1 that, for
small bit-error probability , the lowest th-power distortion,
averaged over all codevector-to-codeword assignments over a
BSC, is achieved for some channel code ratesatisfying

The terms go to zero as , uniformly in
; the terms go to zero as This result is valid

for any fixed , and is consistent with the fact that as
for any

On the other hand, in Theorem 2 we show that, for large,
the channel code rate that minimizes average distortion is

where is the BSC capacity
and is a function of and The term goes to zero
as , uniformly in , and the term goes to zero as

Note that, unlike Theorem 1, this is an asymptotic
equality and is valid for any fixed Furthermore, this equality
is consistent with the fact that as for any
(via Shannon’s rate distortion and channel coding theorems).

The corresponding distortion in Theorems 1 and 2 is

as , thus yielding a noisy-channel version of the
well-known Zador [14] distortion The optimal
channel code rate is the penalty imposed on source
coding resolution due to channel noise, and is always below
the channel capacity The conclusions of both theorems
are especially appealing because they are independent of the
source density

Section II lists the assumptions used throughout the paper.
Sections III and IV contain the analytical results, including
Theorems 1 and 2. Section V provides numerical illustrations
of the analytical results. Proofs of lemmas needed along the
way are relegated to appendices. Some items of notation: i)
Let be a sequence of positive numbers. We say that

as if for some and all
sufficiently large. We say that if for

some and all sufficiently large. Finally, if
. ii) Unless specified otherwise, logarithms

are base two.

II. A SSUMPTIONS

In the system we consider, a transmitter, consisting of
a source encoder (vector quantizer) followed by a channel
encoder, sends its output over a BSC to a receiver consisting
of a channel decoder and a source decoder. We call such a
system acascaded vector quantizer and channel coder, and
now describe what is assumed about the source and channel
encoders/decoders.

It is assumed that the random vector being quantized
has probability density function supported in , a closed
bounded subset of with nonempty interior. We assume that
the source encoder/decoder pair uses the nearest neighbor rule
to partition and achieves the (noiseless channel) distortion

(1)

as We call any vector quantizer that achieves this
exponential rate of decay with a good vector quantizer.It is
well known [1], [14], that the noiseless-optimal quantizer
is good, as are many suboptimal, including the uniform and
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Fig. 1. Cascaded vector quantizer and channel coder system.

other lattice-based, quantizers. Besides depending on the type
of quantizer, the term generally depends on and
The quantizer resolution is bits per source component.

It is assumed that the channel encoder employs bits
of redundancy added to the original-bit quantization index.
Furthermore, the channel decoder is maximum-likelihood. The
channel codeword size is thereforebits, and the number of
channel codeword bits per source component is

We also assume that the quantizer codevectors
are mapped to -bit channel codewords
through a permutation mapping, commonly called anindex
assignment, which is an element of the symmetric group on

letters. That is, gets mapped to the th codeword
(using any convenient ordering of the codewords). Fig. 1
shows a system block diagram. The choice ofis assumed
random and equally likely from the different possible index
assignments, although we do not use this particular assumption
until Section III-B.

Throughout the paper, we consider onlybelow the channel
capacity , since, for , it can be shown (see Section III-
B) that the average distortion is bounded away from zero, no
matter how large is. The next section finds analytic bounds
on the optimal channel code rate, when the channel bit-error
probability is small and the channel transmission rateis
large.

III. FIXED SOURCE VECTOR DIMENSION

AND SMALL BIT-ERROR PROBABILITY

Theorem 1: The minimum th-power distortion, averaged
over all index assignments, of a-dimensional cascaded
good vector quantizer and channel coder that transmits over
a binary-symmetric channel with bit-error probability, is
achieved with a channel code ratesatisfying

where the terms go to zero as , uniformly
in the channel transmission rate, and the terms go to

zero as These bounds are independent of the density
of the source vector.

The proof is deferred until later, and follows from the upper
and lower bounds on average distortion developed in Sections
III-A and III-B.

Define as the probability that the channel decoder
decides that theth channel codeword was sent when, in fact,
the th was sent. Then the cascaded quantizer/channel-coder
system with a BSC has distortion

A. Distortion Upper Bound

The distortion may be written

as , where is the probability of incorrect
decoding, given that the th codeword is sent. The
term is positive and is due to the fact thathas support ,
and is contained in for all

Shannon’s channel coding theorem guarantees that, for
channel code rates below capacity, channel codes exist for
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which

(2)

as , where

(3)

is the “expurgated error exponent” for the binary-symmetric
channel [4], [7], and Hence

(4)

Note that this upper bound does not depend on the index
assignment , or the source density Since is known
to be a convex decreasing function of, the right-hand side
of (4) is minimized for large by choosing so that the
exponents in both terms are within of each other (see also
[15]). For otherwise, the term whose exponent is less negative
would dominate the sum when is sufficiently large. Let
be the resulting channel code rate; then obeys

(5)

as Since for and for
, where

is the channel capacity, it follows that for
sufficiently large. The next lemma provides an analytic

solution to (5) that is accurate when the bit-error probability
is small.
Lemma 1: For any and , suppose that satisfies

(6)

and is bounded as Then, the channel code rate that
minimizes the upper bound on distortion in (4) is

(7)

where the term goes to zero as
, uniformly in the channel transmission rate, and the

term goes to zero as This result is independent
of the index assignment

Proof: See Appendix I.
Remarks: Equation (7) is equivalent to

The left-hand side of (6) is continuous in and is negative
at and positive at for
sufficiently small Thus there exists a satisfying (6) that
is bounded as We conclude that the left-hand side of
(6) is as , and
hence

One important conclusion to draw from this lemma is that
for small

(8)

Combining this with (4), we see that there exist channel codes
such that

The right-hand side clearly does not depend onor

B. Distortion Lower Bound

We derive a lower bound on average distortion and minimize
it over all channel code rates when the channel
transmission rate is large. The lower bound explicitly uses
the assumption that the index assignmentis chosen randomly
and equally likely from the different possible assignments.
Before we can proceed, a lemma is needed.

Lemma 2: Any good vector quantizer with codevectors
satisfies

as
Proof: See Appendix II.

The distortion, averaged over all index assignments, is

(9)

(10)
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(11)

(12)

where is the average probability of
error for the channel decoder, and Lemma 2 is used in (11),
yielding a positive term in (12). Clearly, if does not
decay to zero as , then the right-hand side of (12)
also does not decay to zero. To minimize the right-hand side
of (12) for large , we therefore consider only below the
channel capacity, and only channel codes for which

A lower bound on appears in [12, Theorem 2], where
it is shown that

where

(13)

is the “sphere-packing exponent” of the binary-symmetric
channel. It follows that

(14)

This bound does not depend on the source densityTo get a
lower bound that does not depend on, we minimize the right-
hand side of (14) over in the same way that we minimize
(4) for large Let be the resulting rate. Then

(15)

as For sufficiently large, The next
lemma provides an analytic solution to (15) that is accurate
when is small.

Lemma 3: For any and , let be any solution to

(16)

that is bounded as Then, the channel code rate that
minimizes the lower bound on distortion is

(17)

where the term goes to zero as
the bit-error probability , uniformly in the channel
transmission rate , and the term goes to zero as

Proof: See Appendix III.
Remark: A simple argument, identical to the one contained

in the remarks following Lemma 1, shows that there exists a
satisfying (16) such that as
The expansions of and given in (7) and (17) are

remarkably similar. We can conclude from Lemma 3 that, for
small

(18)

which differs from the expression for given in (8) by only
a factor of two in the second term. Combining (18) with (14)
yields

(19)

Proof of Theorem 1:Because the upper bound in (4)
does not depend on, it holds that

Comparing this inequality with (14), we see that thethat
minimizes the average distortion obeys

(20)

when is sufficiently large. Lemmas 1 and 3 now complete
the proof of Theorem 1.

Remarks on Theorem 1:i) Theorem 1 implies that, for
small , somewhere between at least approximately

fraction, and at most approximately
fraction, of the transmission rate

should be used for channel coding to minimize the average
distortion. Clearly, these upper and lower bounds are quite
close to each other. For the optimal, the corresponding
average distortion obeys

independently of the probability density function of the source
vector.

ii) The optimal code rate can be thought of as
a penalty due to channel noise, since the Zador (noiseless
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channel) distortion [14] corresponds to The statement
of Theorem 1 is consistent with the fact that as
for any

iii) The small bounds on given in Theorem 1 are, of
course, approximations of and Bounds suitable for
any can be obtained by solving (5) and (15) numerically,
or by using the additional terms in the asymptotic expansions
given in Lemmas 1 and 3 (see also Section V).

IV. FIXED BIT ERROR PROBABILITY AND

LARGE SOURCE VECTOR DIMENSION

The following theorem shows that when the source dimen-
sion exceeds a certain threshold, the optimal channel code
rate can be exactly characterized since the code rate upper
and lower bounds coincide.

Theorem 2: Let a source vector have dimension

where

and

Then, the minimum th-power distortion, averaged over all
index assignments, of a-dimensional cascaded good vector
quantizer and channel coder that transmits over a binary-
symmetric channel with bit-error probability is achieved
when the channel code rate is

(21)

where

and

is the channel capacity. The term goes to zero as
, uniformly in the channel transmission rate, and

the term goes to zero as
The proof is deferred until later, and follows from the upper

and lower bounds on average distortion developed in Sections
IV-A and IV-B.

A. Distortion Upper Bound

We replace the upper bound on probability of error given
in (2) with

(22)

where

(23)

is the “random coding exponent” for the binary-symmetric
channel [4]. Observe that in (23) and in (13) differ
only in the range of over which maximization is performed.

The same argument used in Section III now yields

(24)

and the channel code rate that minimizes this upper bound
satisfies

(25)

as Note that this upper bound does not depend on the
index assignment , or the source density The next lemma
provides an analytic solution to (25) that is accurate when
is large.

Lemma 4: For any fixed bit-error probability, the channel
code rate that minimizes the upper bound on distortion in (24)
is

(26)

where

and

is the binary-symmetric channel (BSC) capacity. The
term goes to zero as the source vector dimension ,
uniformly in the channel transmission rate, and the
term goes to zero as This result is independent of
the index assignment, and the source density

Proof: See Appendix IV.
Combining Lemma 4 with (24) yields

B. Distortion Lower Bound

From (19)

where is the solution to The
following lemma shows that and meet as ,
provided that is large enough.

Lemma 5: Let

and

If

(27)

then

as
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Fig. 2. Shaded regions between upper boundrsp and lower boundmax(rex; rra) on channel code rater that optimizes tradeoff between source and
channel coding (inequality (29) with large channel transmission rateR, and p = 2) as a function of channel bit-error probability�, for source vector
dimensionsk = 1; 2; 4; 8; 16; and 64. The curvek = 1 is the channel capacity.

Proof: See Appendix V.
Proof of Theorem 2:Because the upper bound in (24)

does not depend on, it follows that

Comparing this inequality with (14), we see that thethat
minimizes the average distortion obeys

(28)

when is sufficiently large. Lemmas 4 and 5 now complete
the proof of Theorem 2.

Remarks on Theorem 2:i) The corresponding distortion
obeys

independently of the probability density function of the source
vector.

ii) The requirement
becomes restrictive as , since, for small , this require-
ment is approximately , the right-hand
side of which can be quite large. For example, when
and , then

iii) Theorem 2 is consistent with the fact that the optimal
as for any (via Shannon’s rate distortion

and channel coding theorems).
iv) In Theorem 2, is fixed and is large, this case not

being addressed by Theorem 1, whereis fixed and small.
Therefore, Theorems 1 and 2 complement each other on their
applicable range of

v) The proof of Theorem 1 uses inequality (20) which is
valid for large and for all and The proof of Theorem

2 uses inequality (28), which is also valid for largeand for
all and Hence, for all and , the channel code rate
that minimizes the average distortion satisfies

(29)

when is sufficiently large. This inequality is used in some
of the illustrations given in the next section.

V. ILLUSTRATIONS OF OPTIMAL CHANNEL CODE RATE

In this section, we complement the analytic smalland
large bounds on the optimal channel code rate given in
Theorems 1 and 2 with plots of the exact bounds, without
the approximations in and All of the plots assume the
standard squared-error distortion

In Fig. 2, the upper and lower bounds on the optimal
channel code rate given in (29) are displayed as a function
of bit-error probability for various values of source vector
dimension The regions between the upper and lower bounds
are shaded gray. To compute the regions, (5), (15), and (25)
were solved numerically (using (3), (13), and (23)), and the

terms were ignored. Note that the optimal channel code
rate is often substantially smaller than the channel capacity.

Another perspective of (29) is shown in Fig. 3, where the
optimal channel code rate bounds are displayed as a function
of for various values of

Fig. 4 shows (20) as a function of for Also dis-
played are the analytic approximations presented in Theorem
1 and expanded more fully in Lemmas 1 and 3 (see (7) and
(17)). As predicted, the analytic approximations become more
accurate as decreases.
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Fig. 3. Shaded regions between upper boundrsp and lower boundmax(rex; rra) on channel code rater that optimizes tradeoff between source and
channel coding (inequality (29) with large channel transmission rateR, and p = 2) as a function of source vector dimensionk for channel bit-error
probabilities � = 10�1; 10�2; 10�3; 10�4; and 10�8: For each�, as k ! 1, the upper and lower bounds eventually meet and then approach the
channel capacity (via Theorem 2).

Fig. 4. Shaded region between upper boundrsp and lower boundrex on channel code rater that optimizes tradeoff between source and channel coding
(inequality (20) with large channel transmission rateR, andp = 2) as a function of channel bit-error probability� for k = 3: The dashed lines are the
analytic approximations presented in Theorem 1 and expanded more fully in Lemmas 1 and 3.

From Figs. 2 and 3 it can be seen that, for large, the upper
and lower bounds meet This fact is
proven in Theorem 2, and in Fig. 5 we plot the optimal channel
code rate (21) (omitting the term) as a function of for
three different bit-error probabilities The requirement that

exceed the threshold is
reflected in the starting values offor each curve.

Fig. 6 plots the threshold
given in (27), beyond which the large upper and

lower bounds on the optimal meet, as a function of
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Fig. 5. Optimal channel code rater (for large channel transmission rateR, andp = 2) as a function of the source vector dimension,k, for channel bit-error
probabilities� = 10

�1; 10�2; and10�3: Solid lines represent solutions to (25), and dashed lines represent analytic approximations (21) given in Theorem 2.

Fig. 6. Threshold on source vector dimensionk beyond which largeR upper and lower bounds on channel code rater meet.

VI. CONCLUSION

We have derived the tradeoff between lossy source coding
and block channel coding for a binary-symmetric channel.
Tight bounds on the optimal channel code rate that minimized
average distortion were provided. Analytical expressions were
obtained for arbitrary source vector dimension and small chan-
nel error probability, and arbitrary channel error probability
and large source dimension.

These bounds were derived by balancing the source and
channel coding error exponents, and indicate the best per-
formance that can be expected from a cascaded source and
channel coder. To realize this performance, channel codes that
have error exponents at least as good as the expurgated and
random coding exponents are needed.

This paper has assumed that the-bit source indices were
individually channel coded and transmitted to the receiver.
One may consider grouping a certain number of source indices
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together to increase the overall channel codeword blocklength.
Shannon’s coding theorem would then assure a decrease in
the channel codeword error probability. It would then be
straightforward to modify the results of Sections III and IV
to decide the best channel code rate to use as a function of
the number of grouped indices.

APPENDIX I
PROOF OF LEMMA 1

For any the function

(30)

is concave for since its second derivative with respect
to is Hence, this
function can be maximized over by finding the
stationary point, assuming one exists. This proof proceeds by
specifying , and then deriving an for which this is a
stationary point.

Define

Since as , it follows that for
sufficiently small. Taking the derivative of (30) with respect
to , we conclude that any for which is a
stationary point must satisfy

We have , which goes to zero as
goes to zero. Thus standard power series expansions yield

(31)

where Because for suf-
ficiently small, the constraint in (3) is inactive.
Therefore,

where the third and the last equalities follow from (31), and
the penultimate from (6).

We know that obeys (5), and hence

where the term goes to zero as
, uniformly in , and the term goes to zero as

The two differences enclosed within brackets both
have the same sign because is a decreasing function
of Therefore,

and the lemma is proven.

APPENDIX II
PROOF OF LEMMA 2

Let the minimum over of be achieved,
for each , at some For any , let the closed
ball of radius centered at be denoted Suppose
that the lemma is false; that is,

Then, for some subsequence , only quantizer code-
vectors fall outside the sets , as We
proceed to obtain a contradiction.

For sufficiently small, because has nonempty interior,
there exists a closed ball of positive probability contained in

with some radius and center , and a sub-subsequence
, such that is empty for all Then the

number of codevectors in is as

The number of codevectors in the closed ball
is also Because the quantizer uses the nearest

neighbor rule to partition , and the number of codevectors
in any subset of must go to infinity as , we conclude
that when is sufficiently large, codevectors outside
are not used to quantize the region, and codevectors inside

are not used to quantize the region outside We now
modify the original quantizer to create a new quantizer
having codevectors , by increasing the number
of codevectors in by the same number of codevectors that

contains in the shell Then we arrange all the
codevectors and cells in so as to minimize

subject to the constraint that use only codevectors within
to quantize the region (In the above,

.) With , we obtain
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Equation (1) then implies that

as But this contradicts Zador’s formula [14], which,
since there are codevectors in , implies that

Thus it must be that

This proves the lemma.

APPENDIX III
PROOF OF LEMMA 3

This proof is similar to the proof of Lemma 1, and is
therefore slightly abbreviated. For any the
function

(32)

is concave for since its second derivative is

which is negative. Therefore, any stationary point must be a
maximum. Define

Since as , it follows that for
sufficiently small. Taking the derivative of (32) with respect
to , we conclude that any for which is a
stationary point must satisfy

(33)

We have

which goes to zero as goes to zero. Furthermore,

Thus standard power series expansions yield

(34)

where

Because the remainder term is
negligible in comparison with all other terms, it is dropped.
From (13)

where the penultimate equality follows from (16), and the last
from (34).

The same argument used in the proof of Lemma 1 now
shows that

where the term goes to zero as

APPENDIX IV
PROOF OF LEMMA 4

In Appendix III it is argued that

is a concave function of, and therefore any stationary point
must be a maximum. Define

where
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is the binary entropy. Then, it follows from (33) that any
for which is a stationary point must satisfy

(35)

We are interested in an asymptotic expansion of the right-
hand side of (35) for small , or large First observe
that

as , and there is a similar expansion for
Therefore,

where and, furthermore,

(36)

Equation (35) therefore becomes

(37)

(38)

as

For sufficiently large, Hence, from (23) and
(36), we obtain

where the third equality follows from (37), and the last from
(38).

An argument similar to the one used in the proof of Lemma
1 now shows that

APPENDIX V
PROOF OF LEMMA 5

Let

and

We first show that when
Observe that as long as the maximizing’s
in (13) and (23) are the same. It is easy to show that, as

increases, the maximizing decreases; we therefore seek
the smallest , sometimes known as the critical rate [4], for
which the maximizing equals one. From (35) we see that
the maximizing equals one when

As increases, the satisfying
increases. Hence, for some critical value, we have

when From (13)

Solving

for , we obtain

Hence, for
Since as , it follows that
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The two differences enclosed within brackets both have the
same sign because is a decreasing function of
Therefore, Because and

as , it follows that both and are at least
for large enough. Therefore, ,

and, hence,
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