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Improved Bounds on Maximum Size Binary Radar Arrays TABLE |
IMPROVED UPPER AND LOWER BOUNDS ON G/(IV)
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Abstract—The maximum size of binary radar arrays (matrices) with 5
only eight or fewer rows has previously been determined. We determine 3 7 7
the maximum size of radar arrays containing 9—16 rows, and for those
containing 17 rows we narrow the maximum size down to two values. We 4 10 10
also give improved upper and lower asymptotic bounds on the maximum 51 12 12
size of radar arrays, which narrow the gap between the existing upper 6 15 15
and lower asymptotic bounds by more than 25%. 7 18 18
8

. ) . 21 21

Index Terms—Binary matrices, frequency hopping, radar arrays. 9 23 24 94
10 26 26 27

11 29 29 30

|. INTRODUCTION 2] 32 39 33

A radar may transmit a sequence of tones whose frequency “hops” 13| 34 35 35
in time. The echo returning to the radar from a moving object 4 37 37 38
is shifted in both time and frequency, according to the range and 15| 40 40 41

velocity, respectively, of the object. One design goal for such a 16| 42 43 43 4

radar is to construct a frequency-hopping pattern that results in the i; ig 46 i;
minimum ambiguity in the range and velocity of the object upon 191 51 52
evaluation of the returned signal [1]. The frequency-hopping pattern 20| 53 55

may be described by al x M binary array (matrix) with exactly
one “1” per column. A ‘1" in the (i, j)th position indicates that
the ith frequency tone is transmitted in théh time slot. When the (i,7). Note that a binary matrix with exactly ong™per column is a
velocity is not important, such as for slowly moving objects, theadgar array if and only if each positive spacing appears at most'once.
returned echo pattern will correspond to a binary array shifted in time,The radar array problem was first introduced by Golomb and Taylor
i.e., shifted horizontally. The distance of the object is determine[g] in 1982. They provided the following bounds on radar array sizes.
by the horizontal shift that maximizes the correlation between the Proposition 1[1]: 2 < @ < 3, for all N.
transmitted signal and returned echo. Thus a good design for they computational approaé:h was taken by Robinson [2] in 1985, and
binary array is one which has a large number of columns and ygjyar arrays withV' < 25 rows were designed.
in which the horizontal autocorrelation is nearly zero at every shift Tape | lists the best known upper and lower boundssgtV) for
except the null-shift. The more columns a binary array has, the mg{g x < 20 (listed under the headings “old lower bound” and “old
difficult it becomes to satisfy such an autocorrelation requirement.upper bound”). It can be seen that & < 8 the values of#(') are

A radar array is an N x M binary matrix, such that every column gnown exactly whereas faf < N < 20 the value ofG(V) has not
contains exactly onel’;” and such that the horizontal autocorrelatiorheen known exactly. In this correspondence we determine the exact
function can only take on the valu@s 1, and M [2]. That is, the 3|ye of G(V) for 9 < N < 16, and we obtain lower bounds that
1's of a horizontally (time) shifted version of the array overlagyre within1 of the best known upper bound fof = 17.
I's of the unshifted array at most one time. L& V) be the  The precise asymptotic behavior 6{ V') is not presently known.
maximum value for which ai¥ x G(N) radar array exists. The radarRgpinson noted that in the finite set of cases he examiéd]) /N
array problem is to determing (V). This is currently an unsolved was never smaller thah5. Asymptotic bounds extending Robinson’s
problem, although some bounds have been obtained in the pastoB¥ervation were proved in 1988 by Blockhuis and Tiersma as stated

several researchers. in the following proposition.
We may regard a radar array as dhx A grid with one “dot” Proposition 2 [3]:
per column, expressed by a vectes, - - -, ), where for each, .
the integer; indicates which row contains the dot of tite column. 5 < lim sup G(N) < @
Whenever; = r;, the distancéi — j| is called thespacingof the pair 27 Nes NOT20

In 1994 this asymptotic result was further improved by Zhang and
Tu as given in the following proposition.
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Lemma 1 [4]: If there exists anV x M radar array whose rows TABLE 11
each contain two or three dots, and one of the rows is a two-  EXAMPLES OF IMPROVED RADAR ARRAYS, IN VECTOR NOTATION
dot row with a spacing of, then for all integers, there exists a (The ith integer of each array indicates the row position
(6N — 1)7i +1)/6) x (7%[) radar array. of the dot in theith column.)

There is a gap 06.101 between the bounds in Proposition 3. In | & x M Row Location of dot in each column

the present correspondence, we provide improved asymptotic uppgf x24 | 123456787439958265142137

and lower bounds which reduce the gap0t674. Our asymptotic 13 x 35 ;: ? i 57’2 ;{;8; 2 ;0 91186123131374 12115210
lower bound e_xpl0|ts our dlscovery ofl& x 46 radar array and our X3 T123456789 101112137 1415128162105 169
upper bound is based on a counting argument. 1513361411693528211471012

17x46 |1234567891011121113148151276 16 17 17
1631041591413259110571242136811

Il. RADAR ARRAY SEARCH ALGORITHM

In this section we give an algorithm to search for radar arrays o
a given size. The number d¥ x M arrays that have one dot perlower bounds for allV < 16, and reduced the gap to one faF in
column isN* | a prohibitively large number for exhaustive computethe rangel7 < N < 19.
searches. Thus effective heuristic searching techniques are importanthe upper bounds in Table | were obtained by modifying the
if they produce new radar arrays. Most radar arrays known to bgorithm into an efficient exhaustive search. In afyx M radar

optimal have the following characteristics: array, letz; denote the number of rows which contain exagttjots,
1) All rows have either two or three dots. wherei = 1,2,3,---. Then¥; =, = N, %, iz, = M, and the
2) The spacings present in the radar array are all the integersnismber of distinct spacings present in the radar array is
the rangel to 2M — 3N. .
We construct an efficient search algorithm that restricts attention to i <;>ZL <M-1.
radar arrays meeting the conditions above.

For eachy, let (i) be an integer that indicates the column of thehese three conditions constrainy, z», - - -). Let T denote the set

Ieftmos_t dot of ;pacing’, if spac_:i_ngi is present in Fhe array, and ¢ spacings not represented in the radar array. The definition of radar
otherwise letP(i) = 0. The positionsP(1),---, P(2M — 3N) are  gyparray is modified to allow for more than three dots per row,
said to form aradar subarrayif dots may be placed in an emptyaccording to(x1, 72, - ). Step 4 b) is modified to “de := s — 1

N x M array such that no row has more than three dots, no colurpije (s € j—),n and Step 4 d) is modified analogously to “do
has more than one dot, no spacing is repeated, and fét(all# 0, , .— 4 1 while (s € T).” An exhaustive search over permissible
the leftmost dot of spacingis in column P(i). This condition can (21,22.--+) and T is conducted.

be easily checked. The following algorithm finds all radar arrays por example, if al0 x 27 radar array exists, the only possibilities

meeting conditions 1 and 2 above. are (w1, o, w3, 24) = (0,3,7,0),(0,4,5,1),(0,5,3,2),(1,1,8,0),

Step 1. Initialize an empty x M array, lets := 2M — 3N, and  or (1,2,6,1). With (21,22, z3,24) = (1,1,8,0), there are exactly

let P(¢) = 0 for all 7. 25 distinct spacings, i.e., only one missing spacing in the ranige
Step 2. Ifs = 2M — 3N + 1, output “No Solution” and halt. If 26. Thus the algorithm is run witd™ = {26}, then it is run with

s = 0, output “Solution found” and halt. T = {25}, thenT = {24}, and so on. If no radar array is found,
Step 3: temp := min{j> P(s): P(1),---,P(s — 1),j, then configuratior(1,1,8,0) is eliminated. If all configurations are

P(s+1),---,P(2M — 3N) is a radar subarrgy eliminated in a similar manner, then no radar array of that size exists.
Step 4: If the minimum in Step 3 existed, then: In this manner, a reduced complexity full search is accomplished.

Theorem 1: There exist radar arrays of siz€sx 24,13 x 35,

a) P(s) := temp 16 x 43, and 17 x 46. There do not exist radar arrays of sizes

b) s:=s-1 10 x 27,11 x 30,12 x 33,14 x 38,15 x 41, or 16 x 44.
Else IIl. NEwW ASYMPTOTIC BOUNDS
c) P(s):=0 Theorem 2:
d) s:=s+1 276 . G(N) _ 2046
— <limsup — < ——.
Step 5: Go to Step 2. 101 = noos N 8

One feature of the algorithm is that it gives a definite yes or no Proof: To prove the lower bound note that every row of the
answer for whether a radar array of the given type exists. To see thatx 46 radar array in Table Il has either two or three dots, and the

the algorithm always terminates, note tiaf2M — 3N), P(2M — last row has two dots and a spacinglofBy Lemma 1

3N —1),---,P(1) can be viewed as digits of a number written v Y i n .

in baseM, where P(1) is the least significant digit. LeP; denote lim squ(‘H) > lim __ 6746 ﬁ
’ Neoo N T iZe(6-17-1)Ti4+1 101

the value of this number after thi¢h execution of Step 4 a). Since
s < 2M — 3N, Step 4 d) can be executed at m@atf — 3N times To prove the upper bound we lgt be an arbitraryV x M radar
between executions of Step 4 b). When Step 4 a) is executed, #my and we will count the spacings . (Throughout the proof
value of P; increases by at leagt/*~', which is strictly greater than we take N even—this does not affect the result.) L€ be the
the sum of all the decreases occurring in executions of Step 4stibset of4 consisting of the columns from locatiotgto & together
which followed the previous execution of Step 4 a). THus> P,_,  with the columns from locatiodd — %k + 1 to M. . For any fixed
and the algorithm eventually halts siné& is bounded above by K € {1,2.---, M}, let W, be the subset of4 consisting of the
Py < M3M=3N), columns starting from locatiomax{1, j— K’ 4+1} up to and including
Table | summarizes the improvements made in the best knowre column at locatiomin{}, j}, i.e., a window inA of length i’
bounds on small radar arrays, using the algorithm above, or mirmlumns or smaller. Ag sweeps from0 to M + K, the window
modifications of it. We have eliminated the gap between upper afid; slides acrossd. Let S, = {M — k.M —k+1,---, M — 1},
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the set ofk largest possible spacings i. Let D; be the number of ¢ spacings inSx and exactlyj dots inCyys, i.e., in the collection
spacings contained ii;. If K > 2N, it follows (from [4, Lemma of the first and lastV/2 columns. It is easy to see that s = 0.

6 and Lemma 7] withp = 3 andk = 1, in their notation), that Each of the two dots defining any spacing9r » must be inC' 2,
MK o at least one dot of a spacing Bw must be inC /.. Counting the
Z D; < I‘(I‘_ -1 1) columns inCy/. gives
Jj=1 2 2 3
MAK N = Z Z]'Ti,] >ria+2rio+re +2r02+3r23. (7)
> D; > (2K —3N)M 4 5N? = 3K N. 2 =0 =1
Jj=1

) . ) _.Counting the spacings i§x/2 which are represented i at least
The bound in (2) can be strengthened by noting that its derivatigce gives

does not count any spacings in windows; which contain N or
fewer columns. Let be the number of rows iM which have at [P0 Snpel = |Sn/2l = T2 Sri2 20+ 2r25. (8)
least two spacings ity . In each of these rows, there exists at Since|S
least three dots, two of which are either in the fiéstcolumns of A
(i.e., inWx) or in the lastN columns of A (i.e., in W+ x—n). In > N/2—r192—r22—2r23. 9)
Of ther rows, let! denote the number of rows which contain twoCounting the spacings iy which are represented in the array at
or more dots inWx. Then Dy > 1. Furthermore, a left shift of the least once gives :
window Wy results in the windowV~_1, and this affects the bound
by at most one, that isDy_; > [ — 1. Similarly, Dy > [ — 2, LI
and in generalDy_; > 1 —i for 1 < i < 1. Also, D; > 1 for all [P0 Sn|=[Sn]—Tn = ZZZ”-J' (10)
i€ {N+1,---,N+1}. =05=1
The analysis in [4] uses the looser boubd > max{0,i — N}  Since|Sy| = N, this gives

for i < 2N, and thus undercounts3Y, D; by at least

ny2| = N/2 andTy > Ty o, this gives

In2>N—rig—1r12—2r21 —2r22 — 2r2 3. (11)
1424 4+{1-D+I+(I-D+I-2)+---+2+1 . .
{ ) { )+( ) ) Adding (7), (9), and (11) gives
= Z(Qi —1). Tn > N/4— (121 + 722+ 7123)/2 12)
=1

. . . . . . and usingr = ro1 +ro9 +7ro3 andIas—1 > T gives
A similar undercount occurs in windowl’; for j ranging from g =Tt Arzs -1 2 AN g

M+ K — 2N to M + K, yielding a total of at least Ta—1 > N/4d=7/2. (13)
Lr/2l , o2 The inequality in (13) holds for any arrag which has one dot per
2 Z (20 -1)=2 bJ (3 column and at most three dots in any row. Sice G(N)/N <3,
=1 any N x G(N) radar array4 can be transformed into an array of
uncounted spacings in (2). Hence, (2) is strengthened to this type by performing a sequence of operations, as follows. Each

operation moves a single dot. If a row contaihsdots and another

M+K . . > . .
Z D, > (2K — 3N)M + 5N? — 3KN 42 FJZ' () row c_;ontalnsdg dots, Wlthd1 > da + 2, then a _smgle-dot operation
= 2 consists of a dot moving from the row containidg dots to the row
) o containingd. dots. This results in one row havirg — 1 dots and the
Together with (1), this implies other row havingls + 1 dots. The sequence of operations ends when
_ K?— K —10N?46KN —4[r/2)? every row has either two dots or three dots, at which point the entire
M < 1Kk — 6N : (5)  transformation is complete. After this transformation, the resulting

array satisfies (13), for it meets the condition that every column has
one dot and every row has at most three dots.
Suppose the transformation consists of a totalRobperations.
3N Y e The R operations can be reversed to obtain the radar addyom
K= { + 2 BNE—dr J A again. In each of these reverse operations, consider the effect on
the inequality (13). Let:; denote the net increase in the number of
spacings due to thih reverse operation. (For example, suppose in a
reverse operation that a dot is moved from a three-dot row to another
94 ,/5— 4(L)2 three-dot row, to yield a two-dot row and a four-dot row. A two-dot
N ©) row has one spacing, a three-dot row has three spacings, and a four-
dot row has six spacings, and thus= (1+6) —2-3 = 1.) For the
gth reverse operatioff;,; 1 decreases by at most, since at most;
unique spacings are created in the reverse operation. After the entire
sequence of reverse operations, the radar artag obtained, and
inequality (13) is weakened to

The inequality in (5) can be tightened by carefully choosfig
We choose

(recall thatr < N, and thusk™ > 2N as required) and simplify
to obtain

lim sup£ < lim sup
N—oo N N—oco 4
This is a generalization of the result in [4] which implicitly assume
r = 0.

Next, we develop another upper bound far. The analysis from
here to (13) applies to any x M array A (not necessarily a radar
array) for which every column contains exactly one dot and for which R
every row contains three or fewer dots. It is later extended to arbitrary Tvr—1 2 N/A—r/2 - Za,;. (14)

N x M radar arrays. =1

Let P be the set of spacings present in tiex M radar array. Let It is easy to show that any array with one dot per column and two
T, = |Sk\ P, i.e., the total number of spacings.$i not represented or three dots per row contains exacfly/ — 3N spacings. By the
in the radar array. Let; ; be the number of rows which have exactlydefinition of «;, the reverse transformation from this type of array
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to an N x M radar arrayA increases the number of spacings by

exactly £, a;. Thus

R
2M — 3N + Zai <|Pl=M—-1-Ty 1

i=1
R
<M-1- <N/4 —r/2 - Z“) (15)
=1
Hence
M <1IN/4+7/2 - 1.

(16)

Equations (6) and (16) imply

. M. .
lim sup ¥ <limsup min 1
/ N—oo

N—oo 4

17)
11 1/vV6-2
S 5( i ) (18)
2046
T8
with equality in (18) whenr = (v/6 — 2)N/4. [

IV. CONCLUSIONS
We have shown that

7

2733 ~ 20 < limsup G(N)/N < (20 + v/6)/8 = 2.806.

~ m N—co
remaining gap is approximately0735.
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Aperiodic Autocorrelation and
Crosscorrelation of Polyphase Sequences

Wai Ho Mow, Member, IEEE and
Shuo-Yen Robert LiSenior Member, IEEE

Abstract—In the first part of this correspondence, a detailed analysis
of the maximum aperiodic autocorrelation of the original Chu sequences
(equivalently, P3/P4 pulse compression codes) is presented. The result
implies the best known upper bound on the minimax aperiodic autocor-
relation for polyphase sequences except when the length is very small
or a perfect square. It is well known that determining the minimax
aperiodic correlation for polyphase sequence sets is an intractable task.
In the second part, the simplest nontrivial cases for Barker and general
polyphase sequences are solved for the first time.

Index Terms— Autocorrelation, Barker sequences, Chu sequences,
crosscorrelation, Frank sequences, Golomb sequences, minimax aperiodic
correlation, P3 and P4 pulse compression codes.

|. INTRODUCTION

Sequences with low aperiodic autocorrelation and crosscorrelation
are well known to have extensive applications in spread-spectrum
communications [3], system identification [9], and pulse compression
radar [13]. However, aperiodic correlation properties of sequences
are notoriously difficult to analyze. In this work, the minimax
aperiodic autocorrelatioB(L) of polyphase sequences and the
minimax aperiodic correlationD(L) of two polyphase sequences
are considered, whetk denotes the sequence length. (Mathematical
definitions of B(L) and D(L) will be given in next section.)

The best known general lower bound fB( L) is still the trivial
bound

B(L) > 1. €
In general, any sequence that meets this bound is called Barker.
Polyphase Barker sequences up to lengéhhave recently been
reported [6] (c.f. [7], [2], [20]).

Best known upper bounds of minimax autocorrelation are of the
order of /L. In 1967, Turyn [15] dealt wittoriginal Frank sequences
and his result implies for perfect squake= m? (c.f. Section IlI)

79111(;/777) for m even
b= ! for m odd @
2sin(w/2m) "
and hence
2
fim B <L 0318310, ©)
’/T

m—oo

m
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