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Improved Bounds on Maximum Size Binary Radar Arrays

Jon Hamkins and Kenneth Zeger,Senior Member, IEEE

Abstract—The maximum size of binary radar arrays (matrices) with
only eight or fewer rows has previously been determined. We determine
the maximum size of radar arrays containing 9–16 rows, and for those
containing 17 rows we narrow the maximum size down to two values. We
also give improved upper and lower asymptotic bounds on the maximum
size of radar arrays, which narrow the gap between the existing upper
and lower asymptotic bounds by more than 25%.

Index Terms—Binary matrices, frequency hopping, radar arrays.

I. INTRODUCTION

A radar may transmit a sequence of tones whose frequency “hops”
in time. The echo returning to the radar from a moving object
is shifted in both time and frequency, according to the range and
velocity, respectively, of the object. One design goal for such a
radar is to construct a frequency-hopping pattern that results in the
minimum ambiguity in the range and velocity of the object upon
evaluation of the returned signal [1]. The frequency-hopping pattern
may be described by anN �M binary array (matrix) with exactly
one “1” per column. A “1” in the (i; j)th position indicates that
the ith frequency tone is transmitted in thejth time slot. When the
velocity is not important, such as for slowly moving objects, the
returned echo pattern will correspond to a binary array shifted in time,
i.e., shifted horizontally. The distance of the object is determined
by the horizontal shift that maximizes the correlation between the
transmitted signal and returned echo. Thus a good design for the
binary array is one which has a large number of columns and yet
in which the horizontal autocorrelation is nearly zero at every shift
except the null-shift. The more columns a binary array has, the more
difficult it becomes to satisfy such an autocorrelation requirement.

A radar array is anN �M binary matrix, such that every column
contains exactly one “1,” and such that the horizontal autocorrelation
function can only take on the values0, 1, andM [2]. That is, the
1’s of a horizontally (time) shifted version of the array overlap
1’s of the unshifted array at most one time. LetG(N) be the
maximum value for which anN�G(N) radar array exists. The radar
array problem is to determineG(N): This is currently an unsolved
problem, although some bounds have been obtained in the past by
several researchers.

We may regard a radar array as anN �M grid with one “dot”
per column, expressed by a vector(r1; � � � ; rM), where for eachi,
the integerri indicates which row contains the dot of theith column.
Wheneverri = rj , the distanceji�jj is called thespacingof the pair
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TABLE I
IMPROVED UPPER AND LOWER BOUNDS ONG(N)

(i; j): Note that a binary matrix with exactly one “1” per column is a
radar array if and only if each positive spacing appears at most once.1

The radar array problem was first introduced by Golomb and Taylor
[1] in 1982. They provided the following bounds on radar array sizes.

Proposition 1[1]: 2 � G(N)
N

� 3, for all N:
A computational approach was taken by Robinson [2] in 1985, and

radar arrays withN � 25 rows were designed.
Table I lists the best known upper and lower bounds onG(N) for

all N � 20 (listed under the headings “old lower bound” and “old
upper bound”). It can be seen that forN � 8 the values ofG(N) are
known exactly whereas for9 � N � 20 the value ofG(N) has not
been known exactly. In this correspondence we determine the exact
value ofG(N) for 9 � N � 16, and we obtain lower bounds that
are within1 of the best known upper bound forN = 17:

The precise asymptotic behavior ofG(N) is not presently known.
Robinson noted that in the finite set of cases he examined,G(N)=N
was never smaller than2:5. Asymptotic bounds extending Robinson’s
observation were proved in 1988 by Blockhuis and Tiersma as stated
in the following proposition.

Proposition 2 [3]:

5

2
� lim sup

N!1

G(N)

N
� 80

27
:

In 1994 this asymptotic result was further improved by Zhang and
Tu as given in the following proposition.

Proposition 3 [4]:

306

113
� lim sup

N!1

G(N)

N
� 9 +

p
5

4
:

This lower bound relied on the following lemma.

1A radar array has the property that for any horizontal shift of the array,
at most one dot in the shifted array overlaps a dot in the unshifted array. A
Costas arrayis a special case of a radar array in which this property holds
for any horizontal shift followed by any vertical shift. The vertical shifts of
the Costas array model Doppler shifts resulting from moving targets.
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Lemma 1 [4]: If there exists anN �M radar array whose rows
each contain two or three dots, and one of the rows is a two-
dot row with a spacing of1, then for all integersi, there exists a
(((6N � 1)7i + 1)=6) � (7iM) radar array.

There is a gap of0:101 between the bounds in Proposition 3. In
the present correspondence, we provide improved asymptotic upper
and lower bounds which reduce the gap to0:074. Our asymptotic
lower bound exploits our discovery of a17� 46 radar array and our
upper bound is based on a counting argument.

II. RADAR ARRAY SEARCH ALGORITHM

In this section we give an algorithm to search for radar arrays of
a given size. The number ofN �M arrays that have one dot per
column isNM , a prohibitively large number for exhaustive computer
searches. Thus effective heuristic searching techniques are important
if they produce new radar arrays. Most radar arrays known to be
optimal have the following characteristics:

1) All rows have either two or three dots.
2) The spacings present in the radar array are all the integers in

the range1 to 2M � 3N:

We construct an efficient search algorithm that restricts attention to
radar arrays meeting the conditions above.

For eachi, let P (i) be an integer that indicates the column of the
leftmost dot of spacingi, if spacing i is present in the array, and
otherwise letP (i) = 0: The positionsP (1); � � � ; P (2M � 3N) are
said to form aradar subarray if dots may be placed in an empty
N �M array such that no row has more than three dots, no column
has more than one dot, no spacing is repeated, and for allP (i) 6= 0;
the leftmost dot of spacingi is in columnP (i): This condition can
be easily checked. The following algorithm finds all radar arrays
meeting conditions 1 and 2 above.

Step 1: Initialize an emptyN �M array, lets := 2M �3N , and
let P (i) = 0 for all i:

Step 2: Ifs = 2M � 3N + 1, output “No Solution” and halt. If
s = 0, output “Solution found” and halt.

Step 3: temp := minfj >P (s): P (1); � � � ; P (s � 1); j;
P (s+ 1); � � � ; P (2M � 3N) is a radar subarrayg:

Step 4: If the minimum in Step 3 existed, then:

a) P (s) := temp

b) s := s � 1.

Else

c) P (s) := 0

d) s := s + 1.

Step 5: Go to Step 2.

One feature of the algorithm is that it gives a definite yes or no
answer for whether a radar array of the given type exists. To see that
the algorithm always terminates, note thatP (2M � 3N); P (2M �
3N � 1); � � � ; P (1) can be viewed as digits of a number written
in baseM , whereP (1) is the least significant digit. LetPt denote
the value of this number after thetth execution of Step 4 a). Since
s � 2M � 3N , Step 4 d) can be executed at most2M � 3N times
between executions of Step 4 b). When Step 4 a) is executed, the
value ofPt increases by at leastM s�1, which is strictly greater than
the sum of all the decreases occurring in executions of Step 4 c)
which followed the previous execution of Step 4 a). ThusPt>Pt�1

and the algorithm eventually halts sincePt is bounded above by
Pt<M (2M�3N):

Table I summarizes the improvements made in the best known
bounds on small radar arrays, using the algorithm above, or minor
modifications of it. We have eliminated the gap between upper and

TABLE II
EXAMPLES OF IMPROVED RADAR ARRAYS, IN VECTOR NOTATION

(The ith integer of each array indicates the row position
of the dot in theith column.)

lower bounds for allN � 16, and reduced the gap to one forN in
the range17 � N � 19:

The upper bounds in Table I were obtained by modifying the
algorithm into an efficient exhaustive search. In anyN �M radar
array, letxi denote the number of rows which contain exactlyi dots,
where i = 1; 2; 3; � � � : Then �i xi = N;�i ixi = M; and the
number of distinct spacings present in the radar array is

�i

i

2
xi �M � 1:

These three conditions constrain(x1; x2; � � �): Let T denote the set
of spacings not represented in the radar array. The definition of radar
subarray is modified to allow for more than three dots per row,
according to(x1; x2; � � �): Step 4 b) is modified to “dos := s � 1
while (s 2 T ),” and Step 4 d) is modified analogously to “do
s := s + 1 while (s 2 T ):” An exhaustive search over permissible
(x1; x2; � � �) and T is conducted.

For example, if a10� 27 radar array exists, the only possibilities
are (x1; x2; x3; x4) = (0; 3; 7; 0); (0; 4; 5; 1); (0; 5; 3; 2); (1; 1; 8; 0);
or (1; 2; 6; 1). With (x1; x2; x3; x4) = (1; 1; 8; 0); there are exactly
25 distinct spacings, i.e., only one missing spacing in the range1 to
26. Thus the algorithm is run withT = f26g, then it is run with
T = f25g, thenT = f24g, and so on. If no radar array is found,
then configuration(1; 1; 8; 0) is eliminated. If all configurations are
eliminated in a similar manner, then no radar array of that size exists.
In this manner, a reduced complexity full search is accomplished.

Theorem 1: There exist radar arrays of sizes9 � 24; 13 � 35;
16 � 43; and 17 � 46: There do not exist radar arrays of sizes
10� 27; 11� 30; 12� 33; 14� 38; 15� 41; or 16� 44:

III. N EW ASYMPTOTIC BOUNDS

Theorem 2:

276

101
� lim sup

N!1

G(N)

N
� 20 +

p
6

8
:

Proof: To prove the lower bound note that every row of the
17� 46 radar array in Table II has either two or three dots, and the
last row has two dots and a spacing of1. By Lemma 1

lim sup
N!1

G(N)

N
� lim

i!1

6 � 7i � 46
(6 � 17� 1)7i + 1

=
276

101
:

To prove the upper bound we letA be an arbitraryN �M radar
array and we will count the spacings inA: (Throughout the proof
we takeN even—this does not affect the result.) LetCk be the
subset ofA consisting of the columns from locations1 to k together
with the columns from locationM � k + 1 to M: . For any fixed
K 2 f1; 2; � � � ;Mg; let Wj be the subset ofA consisting of the
columns starting from locationmaxf1; j�K+1g up to and including
the column at locationminfM; jg, i.e., a window inA of lengthK
columns or smaller. Asj sweeps from0 to M + K, the window
Wj slides acrossA: Let Sk = fM � k;M � k + 1; � � � ;M � 1g;
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the set ofk largest possible spacings inA: Let Dj be the number of
spacings contained inWj : If K � 2N , it follows (from [4, Lemma
6 and Lemma 7] with� = 3 andk = 1, in their notation), that

M+K

j=1

Dj � K(K � 1)

2
(1)

M+K

j=1

Dj � (2K � 3N)M + 5N2 � 3KN: (2)

The bound in (2) can be strengthened by noting that its derivation
does not count any spacings in windowsWj which containN or
fewer columns. Letr be the number of rows inA which have at
least two spacings inSN : In each of theser rows, there exists at
least three dots, two of which are either in the firstN columns ofA
(i.e., inWN ) or in the lastN columns ofA (i.e., inWM+K�N ).

Of the r rows, letl denote the number of rows which contain two
or more dots inWN : ThenDN � l: Furthermore, a left shift of the
windowWN results in the windowWN�1, and this affects the bound
by at most one, that is,DN�1 � l � 1: Similarly, DN�2 � l � 2,
and in generalDN�i � l � i for 1 � i � l: Also, Di � l for all
i 2 fN + 1; � � � ; N + lg:

The analysis in [4] uses the looser boundDi � maxf0; i � Ng
for i � 2N; and thus undercounts�2N

j=1 Dj by at least

1 + 2 + � � �+ (l� 1) + l+ (l� 1) + (l� 2) + � � �+ 2 + 1

=

l

i=1

(2i� 1):

A similar undercount occurs in windowsWj for j ranging from
M +K � 2N to M +K, yielding a total of at least

2

br=2c

i=1

(2i� 1) = 2
r

2

2

(3)

uncounted spacings in (2). Hence, (2) is strengthened to

M+K

j=1

Dj � (2K � 3N)M + 5N2 � 3KN + 2
r

2

2

: (4)

Together with (1), this implies

M � K2 �K � 10N2 + 6KN � 4br=2c2
4K � 6N

: (5)

The inequality in (5) can be tightened by carefully choosingK:
We choose

K =
3N

2
+

1

2

p
5N2 � 4r2

(recall thatr � N , and thusK � 2N as required) and simplify
to obtain

lim sup
N!1

M

N
� lim sup

N!1

9 + 5� 4
r

N

2

4
: (6)

This is a generalization of the result in [4] which implicitly assumes
r = 0:

Next, we develop another upper bound forM: The analysis from
here to (13) applies to anyN �M arrayÂ (not necessarily a radar
array) for which every column contains exactly one dot and for which
every row contains three or fewer dots. It is later extended to arbitrary
N � M radar arrays.

Let P be the set of spacings present in theN�M radar array. Let
Tk = jSknP j, i.e., the total number of spacings inSk not represented
in the radar array. Letri;j be the number of rows which have exactly

i spacings inSN and exactlyj dots inCN=2, i.e., in the collection
of the first and lastN=2 columns. It is easy to see thatr1;3 = 0:
Each of the two dots defining any spacing inSN=2 must be inCN=2;
at least one dot of a spacing inSN must be inCN=2: Counting the
columns inCN=2 gives

N =

2

i=0

3

j=1

jri;j � r1;1 + 2r1;2 + r2;1 + 2r2;2 + 3r2;3: (7)

Counting the spacings inSN=2 which are represented in̂A at least
once gives

jP \ SN=2j = jSN=2j � TN=2 � r1;2 + r2;2 + 2r2;3: (8)

Since jSN=2j = N=2 andTN � TN=2, this gives

TN � N=2� r1;2 � r2;2 � 2r2;3: (9)

Counting the spacings inSN which are represented in the array at
least once gives

jP \ SN j = jSN j � TN =

2

i=0

3

j=1

iri;j : (10)

Since jSN j = N , this gives

TN � N � r1;1 � r1;2 � 2r2;1 � 2r2;2 � 2r2;3: (11)

Adding (7), (9), and (11) gives

TN � N=4� (r2;1 + r2;2 + r2;3)=2 (12)

and usingr = r2;1 + r2;2 + r2;3 andTM�1 � TN gives

TM�1 � N=4� r=2: (13)

The inequality in (13) holds for any arraŷA which has one dot per
column and at most three dots in any row. Since2 � G(N)=N � 3,
anyN �G(N) radar arrayA can be transformed into an arraŷA of
this type by performing a sequence of operations, as follows. Each
operation moves a single dot. If a row containsd1 dots and another
row containsd2 dots, withd1 � d2 + 2, then a single-dot operation
consists of a dot moving from the row containingd1 dots to the row
containingd2 dots. This results in one row havingd1�1 dots and the
other row havingd2+1 dots. The sequence of operations ends when
every row has either two dots or three dots, at which point the entire
transformation is complete. After this transformation, the resulting
array satisfies (13), for it meets the condition that every column has
one dot and every row has at most three dots.

Suppose the transformation consists of a total ofR operations.
TheR operations can be reversed to obtain the radar arrayA from
Â again. In each of these reverse operations, consider the effect on
the inequality (13). Letai denote the net increase in the number of
spacings due to theith reverse operation. (For example, suppose in a
reverse operation that a dot is moved from a three-dot row to another
three-dot row, to yield a two-dot row and a four-dot row. A two-dot
row has one spacing, a three-dot row has three spacings, and a four-
dot row has six spacings, and thusai = (1+6)� 2 � 3 = 1:) For the
ith reverse operation,TM�1 decreases by at mostai, since at mostai
unique spacings are created in the reverse operation. After the entire
sequence of reverse operations, the radar arrayA is obtained, and
inequality (13) is weakened to

TM�1 � N=4� r=2�
R

i=1

ai: (14)

It is easy to show that any array with one dot per column and two
or three dots per row contains exactly2M � 3N spacings. By the
definition of ai, the reverse transformation from this type of array
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to anN � M radar arrayA increases the number of spacings by
exactly �Ri=1ai: Thus

2M � 3N +

R

i=1

ai � jP j =M � 1� TM�1

�M � 1� N=4� r=2�
R

i=1

ai : (15)

Hence

M � 11N=4 + r=2� 1: (16)

Equations (6) and (16) imply

lim sup
N!1

M

N
� lim sup

N!1

min
11

4
+

r

2N
;
9 + 5� 4

r

N

2

4

(17)

� 11

4
+

1

2

p
6� 2

4
(18)

=
20 +

p
6

8

with equality in (18) whenr = (
p
6� 2)N=4:

IV. CONCLUSIONS

We have shown that

2:733 � 276

101
� lim sup

N!1

G(N)=N � (20 +
p
6)=8 � 2:806:

The remaining gap is approximately0:0735.
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Aperiodic Autocorrelation and
Crosscorrelation of Polyphase Sequences

Wai Ho Mow, Member, IEEE, and
Shuo-Yen Robert Li,Senior Member, IEEE

Abstract—In the first part of this correspondence, a detailed analysis
of the maximum aperiodic autocorrelation of the original Chu sequences
(equivalently, P3=P4 pulse compression codes) is presented. The result
implies the best known upper bound on the minimax aperiodic autocor-
relation for polyphase sequences except when the length is very small
or a perfect square. It is well known that determining the minimax
aperiodic correlation for polyphase sequence sets is an intractable task.
In the second part, the simplest nontrivial cases for Barker and general
polyphase sequences are solved for the first time.

Index Terms— Autocorrelation, Barker sequences, Chu sequences,
crosscorrelation, Frank sequences, Golomb sequences, minimax aperiodic
correlation, P3 and P4 pulse compression codes.

I. INTRODUCTION

Sequences with low aperiodic autocorrelation and crosscorrelation
are well known to have extensive applications in spread-spectrum
communications [3], system identification [9], and pulse compression
radar [13]. However, aperiodic correlation properties of sequences
are notoriously difficult to analyze. In this work, the minimax
aperiodic autocorrelationB(L) of polyphase sequences and the
minimax aperiodic correlationD(L) of two polyphase sequences
are considered, whereL denotes the sequence length. (Mathematical
definitions ofB(L) andD(L) will be given in next section.)

The best known general lower bound forB(L) is still the trivial
bound

B(L) � 1: (1)

In general, any sequence that meets this bound is called Barker.
Polyphase Barker sequences up to length36 have recently been
reported [6] (c.f. [7], [2], [20]).

Best known upper bounds of minimax autocorrelation are of the
order of

p
L: In 1967, Turyn [15] dealt withoriginal Frank sequences

and his result implies for perfect squareL = m2 (c.f. Section III)

B(L) =

1

sin(�=m)
for m even

1

2 sin(�=2m)
for m odd

(2)

and hence

lim
m!1

B(m2)

m
�

1

�
� 0:318310: (3)
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