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Asymptotically Dense Spherical Codes—Part II:
Laminated Spherical Codes

Jon HamkinsMember, IEEE and Kenneth ZegetSenior Member, IEEE

Abstract—New spherical codes calledaminated spherical codes
are constructed in dimensions2—49 using a technique similar
to the construction of laminated lattices. Each spherical code
is recursively constructed from existing spherical codes in one
lower dimension. Laminated spherical codes outperform the best
known spherical codes in the minimum distance sense for many
code sizes. The density of a laminated spherical code approaches
the density of the laminated lattice in one lower dimension, Fig. 1. The firstthree layers dfz, which are stacked one on top of the other.
as the minimum distance approaches zero. In particular, the

three-dimensional laminated spherical code is asymptotically op- . . : ) .
timal, in the sense that its density approaches the Fejesdth will not be repeated here. Section I-B outlines some results

upper bound as the minimum distance approaches zero. Lami- @nd terminology regarding laminated lattices that will be
nated spherical codes perform asymptotically as well as wrapped useful in the remainder of the paper. Section Il gives the
spherical codes in those dimensions where laminated lattices areformal construction of laminated spherical codes, derives their

optimal sphere packings. asymptotic density, and gives numerical comparisons.
Index Terms—Asymptotic density, laminated lattices, packing,
source and channel coding, spherical codes. B. Laminated Lattice Terminology
The notation and results in this section can be found in [3,
I. INTRODUCTION ch. 6]. Given a set of point®® c IR*, a nearest neighbor
to X € R* is a point of P closest toX. A Voronoi
A. Overview region (or Voronoi cel), of a point Z € P is the setll

. . . __of all points in IR* for which Z is a nearest neighbor. If
ART | of this two-paper series [1] described a techmqu?P(X)p: infzep ||X = Z||, then a pointX € RF isga hole
to map any packing\. onto the unitt-dimensional sphere ifof N '

S, Inth Part Il hnique is introd p(X) is a local maximum and it is deep holef fp(X)
k- In the present paper( artll), a new tgc nique Is mtro UCtla global maximum. Note that the distance from a deep hole
to construct spherical codes called laminated spherical co

. )  the nearest point aP is equal to the covering radius &f.
Whereas wrapped spherical codes were described by an E4ch vertex of a Voronoi cell has an associdbedaunay cell
plicit function that mapgR*~! onto the unit sphers;, for any

: : X X . . which consists of the convex hull of the nearest neighbors of
k > 2, laminated spherical codes will be defined in a recursiyg point

manner using terminology and techniques from Iaminate@The one-dimensional laminated lattice is defined by
lattice constructions. The laminated spherical codes improve
upon previously known codes, and for low dimensions and M =L
many COd? sizes outperform the wrapped sp_hencal coc_iﬁqse notationA; denotes theé--dimensional laminated lattice.
described in [1]. Most of the known best spherical codes o I
: : ) . (?efore giving the formal definition ofA; for & > 1, an
three dimensions with less than about 30 000 codepoints an in : . L
. . . . .informal construction technique is discussed.
four and five dimensions with less than about 150 codepomtsIn two dimensionsA, is constructed by stacking copies of
2

are due to Hardin and Sloane [2]. For codes larger than tﬂsd as shown in Fig. 1. In order to produce the densest lattice,

Hardin—Sloane codes, the laminated spherical codes introdu%:ne layers are stacked so that a lattice point of one layer is

in this paper often give the best known performance. . : .
2 L irectly above a hole of the previous layer. Becalseis a
See [1] for applications, definitions, and background S . o o
ttice, if one lattice point in a layer is directly above a hole of

spherical codes. The basic notation and definitions in [ e previous layer, then all lattice points of that layer are above
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directly over, or differing in the last coordinate only) holes of
the previous layer. In order to maintain the lattice property,
namely, that the points af3 are closed under integer vector
addition, the layer number af; must be three. That is, the
third, sixth, ninth, etc., layers are directly over the zeroth layer,
i.e., a translation only in the last coordinate.
This procedure can be repeated indefinitely. In each new
dimension, layers of\;,_, are stacked as closely together as
possible. More formally, fok > 2, ak-dimensional laminated  J
lattice Ay, is a lattice whose minimum distance is one, Whose
sublattices include & — 1)-dimensional laminated lattice, and
whose density is the highest possible under these condition
Thus A; can be decomposed as

oo

Ay = U Agzl

l=—o0

WhereAgfll is thelth layer of Ay, i.e., a translation of\;_;.
Somewhat surprisingly\ is not unique for alk, although the
density of A is unique. Since the layers are equinumerous,
each pointX of one layer can be associated with a unique
point n(X) of the next layer. The poini(X) is directly Fig. 2. The apple-peeling spherical codg (3, 0.05) has 4764 points.
opposite a holeh(X) of the layer containingX, i.e., n(X)

andh(X) differ in the last coordinate only. That i&{.X) has The layer number is the smallest number of consecutive layers
ny_1 nearest neighbors in'” ,, regardless of the choice &f  of Ax_; stacked withinA,, such that the top layer is “directly
(one of these nearest neighborsXi$. These nearest neighborover” the bottom layer, i.e., differing in the last coordinate

lattice points are denoted Y(X)q, -+ -, D(X),,_,, and the only. For examplel; = 2, I3 = 3, andl, = 2. Since adjacent
convex hull of these points forms a Delaunay cell. For argyers of A;, are separated by/1 — ¢;_, and the distance
. . . k . -

finite set of pointsP C R, define between distinct points of\; is at leastl, it follows that

H(P)= argmax min || X = Y| ley/ 1= iy =2 1.
Yel HULL(P) X€P

where it is understood that if there is no unique argument Il. LAMINATED SPHERICAL CODES

Y which maximizes the expression above, any maximizing | aminated spherical codes of any size may be constructed,
Y may be chosenH(7P) is a hole of P that lies within the which provides a lower bound on achievable minimum dis-
convex hull of P, and for eachX € P tance as a function of code size. Our method is similar to
. those of [4] and [5] in that a projection frof— 1 dimensions
MX) = H{DX )1, -+, DX ). to £ dimensions is used; the difference lies in the placement of
We saw that forA, and As, the points of one componentPOINts prior to the projection. In Part | of this paper, we saw the
layer are opposite deep holes of adjacent layers. Since #Rple-peeling code was not asymptotically optimal. In contrast,
covering radius- of a layer is the distance from a deep hol&e shall show that the laminated spherical code density
to a lattice point, adjacent layers can be placed at a distarf@@Proaches the density of the laminated latfige,, asd — 0, -
V1 — 12 from each other to maintain a minimum distance ¢tnd thus the laminated spherical code is asymptotically optimal
one between all points. Unfortunately, it is not a simple mattéfheneverA;_; is _the densestt — 1)-d|mens_|ona| pac!«ng.
to show from the definition of laminated lattices that layers Before presenting the formal construction technique, we
are separated by/1 — 72 for higher dimensional laminated describe informally how a three-dimensional laminated spher-
lattices. While this seems intuitively true, this question remairgal code is constructed. To contrast the difference between
unproven for everyk > 12, except16, 24, 25, 26, and the apple-peeling and laminated spherical codes, we show the
32. As a result, the notion of subcovering radius is use@pple-peeling codé(3, 0.05) in Fig. 2. The caps are arranged
The subcovering radiuse;_; of A,_; is defined such that INtO shells (rm_gs). V\_/|th|ﬂ each shell thg caps are placed in an
1— _, is the distance between layerssf. Note thatc; optimal two-dimensional scaled spherical (circle) code. That

i% a lower bound on the covering radius &f. The values of is, points are uniformly placed on the unit circle, and the
circle is scaled and projected upward $9. This operation
¢y, are known fork < 47, and are tabulated in [3, p. 158] for bro) b 50 b

. . is done for each shell, and no effort is made to interlace caps
laminated lattices that are scaled by a factor of two.

) of alternating shells.
We define thdayer numberof A; as In contrast, the laminated spherical codg(3, 0.05) is

o ) P shown in Fig. 3. The caps are again placed in shells, but the
i = min {L >0 (0’ 0, 1y/1 ck_l) < Ak}' () caps of one shell interlace caps of the previous shell, thereby
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than overcomes the spreading out of caps, and the laminated
spherical code has more points than the apple-peeling code.
The laminated code iR® may be viewed in two dimensions
through the mappingzxy, - -, zx—1, ) — (21, -+, Tp—1).
The centers of the caps lie on concentric circles, each circle
representing a shell, as shown in Fig. 4. The angle of a point
on one of the circles is easy to compute, as it is the average of
the angles of the two associated points of the previous shell.
A formula for the radii of the shells is not as simple, but a
radius is readily computed as the smallest number such that
the caps of the given shell do not overlap the caps from the
previous shell.

A. Formal Construction of Laminated Spherical Codes

Let £ < 49 andd < (0, 1]. For k = 2, a largest spherical
code with minimum distancel is obvious (although not
unique); we denote such a code 8y(2, d). Fork > 3, we
recursively define thé-dimensionalaminated spherical code
Cr.(k, d) with minimum distancel as follows:

Fig. 3. The laminated spherical code (3, 0.05) has 5244 points. CL(]€7 d) =

allowing the shells to be closer together. The interlacing N

is done in the same way as the stacking of layers in the (1, 2p_1) € U riCi(k — 1, d/rygy)
construction ofA,. In the lattice construction,, a point ofA, i=0

is placed directly over a hole of a previous layer in the lattice; 2)

analogously, a cap af.(3, 0.05) is placed in relation to a ) ‘ o )
hole of a previous shell in the spherical code. Note that th{ghere the radius of théth shell is given at the bottom of this
procedure cannot be continued indefinitely on the sphere, aB3@€: In the aboves(:) is the index of the first shell of the an-
leads to the spreading out of the caps as more shells are ad@&is that contains théth shell, defined by

To correct fo_r this, the spherg is partitioned ir_lto annuli. s(4) = g(max {j: ry0;y < 7))
The first shell in each annulus is packed very tightly—for . _ ) .
generalk, it is defined to be a scaletk — 1)-dimensional Whereg(z) is the index of the first shell of thé&h annulus,
laminated spherical code that is projected oSfo For this 9iven by
example, this means it is a circle che, the same as a shell in (i) = min {j: r; > id*/*}.
the apple-peeling code. The remaining shells of the annulus o
are interlaced with their previous shell, and each of thed&e total number of shells is given by
has the same number of caps as the first shell. For minimum } e

= Fe 1 < —d? .

distances of0.1 or less, the tighter packing of shells more N = max {L " 1-d /4}

©)

0, if =0
d, ifi=1
r; = < (i, 0), if 4> 1and|r,_ d=%*| #

LInaX (7(L7 1)7 7(L = k-1, 0))d_2/kJ
max (r(¢, 1), (¢ — lx—1, 0)), otherwise

and where the tentative radii used above are defined by

2 2 N ) 5
ri_1| 1 — d— 1-% M +d (1 _ 7,2_1) 1— d_ —b Ti—1Ck—2
2 Ts(i—1) ¢ 4 To(i—1)

1 b<7‘i—1ck—2d> ?
Ts(i—1)

r(i, b) =
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associated withX may be defined by
H(L(X))
JX) = 7
[[H (L(X))]]
where L(X) is a set of points (from a previous shell) that
correspond to a Delaunay cell mﬁtﬁ, given by

L(X) = {w 5y (D(wi—1(X))in 1 < i < mpa}

where w; is

Remarks:

* The sequencdr;} satisfies

O=ro<---<ry<y1-d?/4.

{r;} ands(z) are defined in terms of each other, but each

is well defined. In particulars(¢ — 1) andr; each depend

only onrg, «+-, r;_1.

o wi(X): Cyjypa(k — 1, d) — Al_, associates each point
from a spherical code with a point on a laminated lattice.

» L(X) associates

X € Cypynlk—1,d)

with a subset of;(;y1;(k—1, d) that is used to determine
a point on the shell with radiug,(;)i41-

* [} is defined in (1) ande, D(-), H(-), andn(:) are
defined in Section I.

The following definitions are also used in the code con-

struction:
ith shell:
riCi(k =1, d/rs(i))
ith gap
k-1
T, =4 (z1, -+, ox) € Sy Zaﬁf € (ri—1, 7i
=1
ith annulus:
(b) g(i+1)—1
Fig. 4. (a) Five scaled two-dimensional codes. (b) Three-dimensional codeAi = U TJ
derived from the two-dimensional codes by projecting codepoints out of the j=g(i)+1
page, where codepoints are the centers of the caps. ith buffer zone:
k—1
The lower dimensional codes of (2) are given by Bi=q (w1, -, wk) € Sk | Y 37 € (rggiy—1, To(0)]
=1
Coiulk—1, d) h1
Crk-1, d) if I=0 W= ( . 2 1/k
= [ . . . 1= .’L’l,--',.’L'k)ESk. .’L’i<d
{f(cgw_l(k—l, d)), if 1<I<g(j+1)—g(j) -1 E
i.e., itis either &k — 1)-dimensional laminated spherical code k—1
(if it is the first shell of an annulus) or a code that is interlacedW2 = (21, -+, 2%) € Sy 4| >_ a2 > 1 —d'/*
with such a code (if it is a subsequent shell). We have used i=1

the functionf to define the holes of previous shells. The holeasted regions:
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WEWlLJWQ

[d=2/%1-1 g
1=0 A
[d_z/k]_l
B= |J B. (4) 9
=1

The :th shellis a (k — 1)-dimensional spherical code scaled
to a sphere of radius;. The points between the spheres of
the (z — 1)th andith shells constitute théth gap We refer to
the ith annulusas the set of points ifR*~! whose distance
to the origin is in the intervalr,qy, 74i41)-1]- That is, an
annulus is a collection of consecutive gaps. Note #a}
is the smallest integer for which the set of all points whose
magnitude s in the int.erve(b)s(i)’ il Iie; in a.Single annulus. Fig. 5. The sphere (here = 3) is partitioned into annuli, buffer zones, and
T‘he ith buffer zoneB, is thebset of points lying between thewaétéd regions. In generdll’; and W, may contain one or more annuli
(i — 1)th annulus4;_; andith annulus4,. We call shells,
gaps, annuli, and buffer zones which are projected onto the
unit k-dimensional spheré;, again shells, gaps, annuli, and
buffer zones, respectively. The sét§ and W, are referred
to aswasted regionsin which codepoints are not necessarily
as tightly packed as the rest of the sphere. The radili and
the setsi, 7', and B are determined by the dimension of the
spherical code: and minimum distancd. For anyk and d,
we haveS;, = W UT U B, as seen in Fig. 5.

Each point in the spherical cod& (k, d) corresponds t0  origin
a unique point on the latticd;_;, since each point in the
shell Cy;y41—1(k — 1, d) corresponds to a unique point on
the lattice A,~5, via the functionw;_;. Recall that a lattice
point X € Al~%, gives rise to the poink(X) € Al_, via
the hole H(D(X)y, -+, D(X)n,_,). Likewise, a pointX €
Cy(py+1-1(k — 1, d) gives rise to a point i€y, (k — 1, d)
via the hole of the codepoints @¥;(;);;—1(k — 1, d) which £y 6 Relation between; and ri_;.
correspond taD(X)y, -+, D(X),,_,, namely, L(X). Thus
Cy(iy+1(k =1, d) is equal to the set of (properly normalized)

holes arising fromC,(j)4;—1(k — 1, d), andw; is now also pr(_)jecti(_)n. Supposey, -+, i1 h_a_lve been determined. Then
defined. Fork = 3, the two-dimensional code layers carfi iS defined as the smallest positive number such that for each

explicitly be written as X = (21, o, wp1) € 1iCilk — 1, dfrys)
Cg(j)+i(27 d) and
. {{(COS (Leg(J)_H), sin (Leg(J)_H))}, if ¢+ even Y = (y17 R yk—l) S 7’i—lci—l(k - 17 d/Ts(i))v
= sl AN s+ L Ny if 4

{(eos (i 2)0p(i)+1), sin (i + 3)05)+i))}, 1F 4 Od(dS) the distance between the corresponding codepoints

wheref,,, = 2sin™! (d/2r,(m)), j € {0, -+, [27/6;] — 1}, X = (wl, T,
andi € {0, ---, N}.
The laminated spherical code construction ensures thgiq
each(k — 1)-dimensional code has minimum distant¢eThe
sequence{r;} must be defined such that codepoints from vy — (yl Y
different shells are at least distandefrom each other. This ’ ’
constraint is analogous to the separation of layers\pf,
in Ax_1, except that here we have the added complicatiomCy,(k, d) is at leastd (see Fig. 6). That is;; is chosen such
that each layer (i.e.(k — 1)-dimensional spherical code) isthat || X’ — Y'|| > d.
projected ontoSj. Let 6 be the distance fror” to the hole associated wit.
The radiusr; is recursively chosen as small as possibldote thatC; ;(k—1, d/r,—1)) andCyy(k—1, d/r,)) each
and yet large enough so that the points at radiugre at have codepoints with angular separatthnThus the distance
least distanced from the points at radius;_;, after the fromY to its associated hole is_; /r,(;_1) times greater than
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the distance from a point ifi,(;) to its associated hole. Henceradiusr;_;. This is equivalent to taking = 0 in the solution
. above (i.e., wherYX is directed radially outward), and gives
Ti—1Ck—20
62 ———— (6)

Ts(i—1) 2 2

v _v — g2 _Z

where the inequality comes from the fact that ,d is less i = “—1<1 5 ) +dy/(1 71—1)<1 1 ) 12)
than or equal to the distance from a point@f;(k — 1, d)

to its associated hole. Therefore,is chosen such that While (11) ensures that the minimum distance between
&2 <|| X' =Y 7) codepoints in a pair of adjacent shells is no more than
= it does not insure this condition for codepoints in nonadjacent

2 2 X ) ) .
=(r— /72 _ &2 52 N2 _ . ]1— ,2) ' shells. It is possible that (11) would result in codepoints from
<7 " ) + +< " i shell; and shell; +;_; which are closer thad. Let X', Y7,
(8) andZ’, respectively, be the projections &f, Y, andZ shown

_ _ in Fig. 6, ontoSy. ThenY’, X’ € Cr(k, d). If || Z/ = X'|| < d,
Rearranging terms gives then (11) is not used, in which casgis set to the value which

roduceg|Z’ — X’|| = d and from (12) gives
Ja-rpa-m<i-@p-rfi -2 @ P | | 12) g

hich ing both sid d solving th dratic f d? d?
\;\Z g:iveuspon squaring both sides and solving the quadratic fof _ Tty <1 - ?> +d\/(1 —7’22_11\'_1)(1 -7/ (13)

d? 5 5 5 ) d* 5 In summary, ther;’s may be determined by the algorithm
<1_5> yria=? +\/(1_”—1)<d -7 ) at the bottom of this page.
1-42 '

(10)

T 2

The negative solution for the quadratic equation is smaller thBn Ex@mple of a Laminated Spherical Code

r;—1 and is omitted. Taking the derivative of the right-hand We now illustrate the construction of a laminated spherical

side of (10) with respect té reveals that it is a decreasingcode fork = 3 and d = 0.3, using the formal definition.

function of &6 when é is the range for which (10) producesFirst, the radii {r;} are determined. Since i, lattice

a real value. Thus using (6) and settingas in (11) (at the points in one layer differ in the second coordinate from

bottom of this page) ensures thak’ — Y”|| > d. lattice points two layers away, we halg = 2. In Aq,
The recursion for; in (11) is used only whelt” belongs to holes are a distanck/2 from two lattice points, and, hence,

the same annulus as. If r;_; is the radius of the outermostc; = % andn; = 2. An iteration of the algorithm above

shell in an annulus, then is defined such that every point ongives (rg, ---, rx) = (0, 0.3, 0.569, 0.752, 0.872, 0.978),

r;Sk—1 is at least a distancéfrom every point on the circle of (s(0), ---, s(5)) = (0, 1, 2, 2, 2, 5), and(g(0), ---, g(3)) =

2 2 2 N 2
ric1| 1— d— 1-— M +d (1 _ 7‘1‘2—1) 1— d_ _ [ Ti-1Ck—2
2 Ts(i—1) 4 Ts(i—1)

" <7’i—16k—2d>2 D
1 — | ==
Ts(i—1)

70 :=0;
1= 1;
Ts() = T1:= d;
while 7; < /1 —d?/4{

1:=14+1,

if |7_1d=2/*] # |max (r(i, 1), r(i — lx_1, 0))d=2/¥]

then 7,y == r; == 7(4, 0); /* begin new annulu$/

elser; := max (r(¢, 1), 7(i — lx—1, 0)); /* regular solutior* /

}

N:=1-1;
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L] e & o & o e o o * ©® ® & & @& o o e o & o L] '[::3:

® & & & ¢ o 9 & * o O

e o o 0.0 e s o 0 0 Ci(/f—l, d/rs(i)):cg(2)+1(2, 0.527)

TSSOSO = f(Ci(2, 0.527))
. _ { H(L(X)) |
(@ I (LN

X € f(Ci(2, 0.527))}.

If Y e A, thenD(Y); =Y, D(Y)> =Y +(1, 0),
and so

n(Y) = HDX )1, DY) + (0, \J1- ¢}, )
=Y +(1/2, V3/2).

Let

X = (cos (0.5335), sin (0.5335)) € C2(2, 0.527).

Thenwy(X) = (4, 0), and hence

L(X)={wg (4, 0), wy ' ( +1, 0)}
= {(cos(0.533j), sin (0.5334)),
(cos (0.533(5+1)), sin (0.533(j+1)) }.

From this, we obtain,

H(L(X))/[[H (LX)
= (c0s (0.533(j + 1/2)), sin (0.533(j + 1/2))).

In the next shell, we use the fact that (X) =
(541/2, v/3/2). Letting X range over,(2, 0.527)
gives

Cz(/f - 1, d/Ts(i))
= {(c0s(0.533(j +1/2)),sin (0.533(5 + 1/2))):
0< <10},

1 =4

©

Fig. 7. A finite subset ofAs. (b) C.(3, 0.3), before projection. (c) Ci(k -b d/Ts(i)) - Cg(2)+2(2’ 0'527)
I Az (3, 0.3), : Fony Eon. .
Cr.(3, 0.3) after projection. = {(COS (0.033J), Sin (0.033J)). 0<5< 10}.

. . . . i=5 A lus begi it . . Th
(0, 1, 2, 5). Next, we determine the two-dimensional spherical b= new annulus begins wittly(s) o(2, 0.307). Thus

codes to be projected onts. 6; = 2 sin=! (0.307/2) = 0.308

1 =0: Ci(/f -1, d/Ts(i)) = 60(2, OO) = Cg(0)+0(2, OO) =

Co(2, ) = {1, 0)}. and
i=1. Ci(k —.17 d/Ts(.i)) = Cg(1)+0(27‘ 1) =C(2,1) = Cilk — 1, dfry)
{(cos (jm/3), sin (j7/3)): 0 < j < 5} — {(cos (0.308;), sin (0.3087)): 0 < j < 19}.
i =2 Ci(k—1,d/ryu)) = Cy2)40(2, 0.527). Thus@; =
2 5in™1(0.527/2) = 0.533, andC;(k—1, d/ry(;)) = The resulting cod€ (3, 0.3) is defined using (2) and has

{(cos (0.5335), sin (0.5335)): 0 < j < 10}. six shells. The shells contain 1, 6, 11, 11, 11, and 20 points,
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TABLE |
THREEDIMENSIONAL CODE SizES AT VARIOUS MINIMUM DISTANCES
d Coxeter laminated wrapped apple-peeling
upper bound code Cy, code C&? code C4

1071 1450 1294 1070 1236
102 145,103 134,422 130,682 125,504
1077 | 1.45x 107 | 1.43x 107 | 1.40 x 107 1.26 x 107
1074 1.45 x 10° 1.45 x 10° | 1.44 x 10%* 1.26 x 10°
1075 | 1.45x 10T | 1.45x 1011 | 1.45 x 1017* | 1.26 x 101!

* estimated

TABLE I

Four-DIMENSIONAL CODE SiZES AT VARIOUS MINIMUM DISTANCES
THE CoxeTER UPPERBOUND IS NOT ASYMPTOTICALLY TIGHT: USING
THE BEST KNOWN UPPERBOUND ON PACKING DENSITY IN THREE
DIMENSIONS AND OBSERVATION 1 OF [1], AN AsympTOTIC UPPER BOUND
OF 2.79 x 103"+! |s AcHIEVED, FOR d = 10~" AND LARGE n
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d Coxeter laminated wrapped apple-peeling
upper bound code Cy, code C{,\VS code C4
101 29,364 16,976 17,198 22,740
1072 | 294 x 107 231 x 107 | 2.31 x 107" 2.28 x 107
1073 | 294 x 1010 1 2,59 x 1010 | 2.59 x 100* | 2.28 x 1010
1071 294 %107 272x 10 | 2.72 x 107 | 2.28 x 105
1078 | 2.94 x 100 | 2.77 x 1010 | 2.77 x 1076* | 2.28 x 108

3

estimated

respectively, and thus the entire code has 120 points. The
unprojected two-dimensional codes are shown in Fig. 7(b).
The spherical caps of the final codg(3, 0.3) are shown in

Fig. 7(c). Asd approache®, the advantage of the laminating
technigue becomes more apparent. We compare the apple-
peeling spherical codé* (3, 0.05) to the laminated spherical
codeCr(3, 0.05) in Fig. 8.

There are some improvements that may be made to the
general construction. First, there may be points on the sphere
that are not within distance of any codepoint, and thus these
points may be added to the codebook. For example, on shells
3 and 4 ofCr(3, 0.3), it appears that an extra codepoint may
be added without reducing the minimum distance. Also, we
may modify the widths of the annuli, which would alter the
number of shells that may be fit on the sphere, as well as their
placement. The annulus width used above W& ~ 0.448.

If the annulus width is set to zero instead, the apple-peeling
code results. When the annulus widtl®i§, a code of sizé28

may be obtained. In fact, each annulus width can be optimized
separately.

C. Asymptotic Density of the Laminated Spherical Code
Let A¢, (k, d) be the density o€ (k, d), let

Ac, (k) =limsup A¢, (k, d)
d—0

and letA,, be the density of the sphere packing with sphergsy. 8. Comparison of apple-peeling, laminated, and wrapped spherical

of radius 1/2 and centers in\;. Within an annulus, layers of codes. To obtain the spherical codes, the points shown in the circles are pro-
P . . . ie¢ted straight out of the page onto the surface of a sphere. (a) Apple-peeling
shells are stacked similarly to layers of lattices in a Iammat%eg?deCA(& 0.05) has 4764 codepoints. (b) Laminated co@g(3, 0.05)

lattice. Theorem 1 establishes tmEL (k) is asymptotically has 5244 codepoints. (c) Wrapped caiqkf(& 0.05) constructed from the
equal to the density of the sphere packing generatef;hy. hexagonal lattice has 4802 codepoints.
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Fig. 9. Comparison of three-dimensional spherical codes.

Theorem 1: The density of ak-dimensional laminated code known, and convergence to the upper bound is apparent
spherical codeCr,(k, d) with minimum distanced is no asd — 0.

more thanO(d'/*) less than the density of thék — 1)- Fig, 10 shows density versus compared to other codes

dimensional laminated lattica;_;, for all &k < 49. That is, in IR*. The qualitative performance is the same as for three

Ac, (b, d) = Ay, _, — O(dY/). dimensions, although the convergence of the density to its
Proof. See the Appendix. asymptotic value is slower. Still, fod < 0.5, the laminated

Corollary 1 follows from [1, Observation 1], Theorem 1spherical code outperforms spherical codes derived from shells
’ ' of lattices Zy, A4, and Dy, or concatenated MPSK. Note that

dimensions. It also establishes the fact that the Fejetn T he Coxeter upper bound is not asymptotically tight, since the

upper bound in [1, Observation 1] is asymptotically tight. Pound A < 0.7784 [7] is tighter. _

Corollary 1: The three-dimensional laminated spherical F19- 11 ghogvs code size versds for various code con-
codesCy(3, d) are asymptotically optimal as the minimurrFtrUCt'OnS inR". Here, the laminated spherical cofg(8, d)
distanced decreases to zero. is slower to converge towards the upper bound. The wrapped

Fig. 9 shows the laminated spherical code density vetfsusspherical code, presented in [1], outperforms most of the other
It includes unstructured codes found by a computer progréifdes for minimum distances less than abut
of Hardin and Sloane [2]. This program has produced many of m

the best known codes. For some larger code sizes, we obtained ) )
codes using a simulating annealing approach which slightlyA neéw technique was presented that constructs laminated

improves upon [5]. This method produces good codes, wrRherical codes in dimensions up4® The three-dimensional

its computational complexity limits the code size that can daminated spherical codes are asymptotically optimal, in the
constructed. Spherical codes can also be generated from sH&fse that the ratio of the minimum distance of the constructed
of lattices (e.g., [3], [6]). Fig. 9 shows the best codedRii code to the upper bound given in [8] approaches one as the
generated among the first 1000 point-centered shells of thigmber of codepoints increases. This proves the upper bound
face-centered cubic ang lattices, whose minimum distanceds tight, asymptotically, and that previous lower bounds are
were obtained exactly. Fig. 9 also shows spherical codeet asymptotically optimal. The codes generated also compare
formed from concatenations aff-ary Phase-Shift Keying favorably to other codes, for a wide variety of minimum
(MPSK) and Binary Phase-Shift Keying (BPSK) codes. Fafistances. Good asymptotic performance is also achieved in
d < 0.7, the laminated spherical cod&.(3, d) outperforms higher dimensions, where ttiedimensional laminated spheri-
known codes derived from shells of lattices, and is comparatdal code density approaches the densitjpf;. The question

to the apple-peeling code. Fdr< 0.02, C(3, d) is the best of whether asymptotic density of thedimensional laminated

and the fact that\, is the densest possible packing in tw

. CONCLUSIONS
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spherical code is optimal is equivalent to the question pfevious spherical codes. Similarly, the density of a wrapped

whether theA;_; is the densest sphere packing.

spherical code with respect to a packingapproaches the

Both wrapped spherical codes and laminated spherical codessity of A, and hence, any densest lattidegives rise to
presented in [1] improve upon the asymptotic performance afh asymptotically optimal spherical code. The wrapped codes
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are not restricted to laminated lattices; any lattice or packi#gso,
in IR*~! may be used to construct/adimensional wrapped 5%
J d?  CG_aTiiy \/ Cr—2i—1

code. 1— 2 — i —
The comparison of the nonasymptotic performance reveal 4 7’5@

that both the wrapped and laminated spherical codes perform -

better than other constructions, i.e., have larger code sizes for - 1= 3 (18)

a given minimum distance. In three and four dimensions, the 4<1 _ Ck_27’i—1>

laminated spherical codes perform better than the wrapped
codes. In higher dimensions, the advantages of wrapped spher-
ical codes become more apparent: the wrapped codes are
easier to construct than laminated spherical codes because an
explicit mapping is specified instead of a recursive one, an
the decoding algorithm reduces to a decoding algorithm f

S -0 (19
s(4)
ere we have used the fact that

the underlying lattice, a well-studied problem. GooTi 1 _ 5 |Ts() 4 q2/k 2

For nonasymptotic spherical codes, an important question in 2 <o o (20)
channel decoding and quantization is how to find the nearest 5(7) s(0)
codepoint to an arbitrary point iR*. The laminated spherical =i _,[1 4+ O(d/"))? (21)
codes can be decoded recursively dflog |Cy|) time. A =2 _, + O(d!/*) (22)

detailed decoding algorithm can be found in [9].
which is bounded away from for sufficiently smalld because

APPENDIX c3_, < 3% for k < 49 [3]. Similarly,

PROOF OF THEOREM 1 r2_ d?

2
Use induction on the dimensioh. The claim holds for °6)
k =2, sinceA¢, (2, d) > 1— (d/2r) and Ay, = 1. Now and thus (11) can be rewritten as shown in (24)—(28) at the

supposek > 3 and let top of the following page. Hence, the left-hand and right-hand

sides of (16) differ byO(d?). This gives
J={i: d/* <ri<1-d"* wherer; is determined by (13)

w (%1—7 Ly )rf:f’w(d?) (29)

= O(d2(1 + d(Q/k)—(l/k))Q) _ O(dQ) (23)

For each: € J, the densityAr, of gap7; of Cr shall be =824, /1 - % O(d**=1/ky  (30)
computed. Thék — 1)-dimensional content (surface area) of Ts0)
Liis <t 1-a_, 31)
1—1’.2_1 . .
A(T,) = / A1 (1= 22)3=3/2 g (15) where (31) holds for sufficiently smadl. From [1, eq. (11)]
vi=r Alc(k, 8/2)) = Vim1(d/2)* 11 - O(d)  (32)

The integrand in (15) is monotonically nonincreasingzin and thus the number of codepoints in each of shel
and hence Ci—1(k = 1,d/ryy) and shellC;(k — 1,d/ry)) is

d
2 2\ ,k=3 _ A
<\/1 r2 \/1 ”)”_1 Ac, <k 1, TS@)) Ap_1

A(T‘) Ny = ) d (33)
T k 3 « —
< A <\/1—7 —\/1—7 ) (16) A<c<k 1, sin <275(L)>>>
d

Using (11), we shall remove the occurrences;oh (16). First, Ac, <k -1 o ) " Ap-1
(11) will be put into an asymptotic form. In the following, > 20 y— (34)
constants encompassed by thenotation donot depend oni. \7A < d )

k—2 -
Sincer; > @*/* for all i € J, ryq) > d/* — d?/* = Q(d*/*), 2r5(0)
and so ~ Ag, (k =1, 0(d*V/*) 4y (35)

d k—2
2 2
(D () )
*®) where (34) holds for sufficiently small, by (32). The density
<1_ _> \/1_ O(d2(1=(1/k)) of spherical caps inZ; is as shown in (36)-(40) on the
following page, where (39) follows by induction dn The
=1 — O(d?*k—D/ky, (17) density in (40) applies for ali € J, i.e., all i determined
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7 2
ri1(1— O(@®E=D/F)) 4, /1 -2 <, /1 % - O(d2)>
_ 3(9)
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"o - 0(®) (24)
ChaTi-1 2(k—1)/k
=ris1+d Q=721 2 |- O(d2k=1)/k) (25)
5(4)
and
o\ 1/2
Ch_aTi1
T—r2=|1=[rig+d|@Q—r2 )| 1= F=2Z0=L) _ O(a2-2)/k) (26)
T
s(2)
2 2 1/2
. Crp—2"i1
2”_1d\/% O(d2(k—1)/k)
=y - + ; (27)
1—7;
1- 7;2‘2—1 i—1
2 GaTi1 2(k—1)/k
=y 1=riy—rimady[1 - T +0(d ) (28)
Ny Alcelk, 6/2))
Ag = =TS (36)
Ac, (k =1, 0(d*=V/*)) . 45 4
CL( ( y k—)z k—1 'Vk—l(d/Q)k_l . (1 _ O(dQ))
Vi—2 <2 - )
> Ts(4) (37)
- At 21—,
- (k=1)/k\\V/,
—Selton O Mo o @)
2Vk_2 1 - Cz_Q
Ap, Vi
_ Ag—2 Vk—1 (1 _ O(dl/k)) _ O(dl/k) (39)
2Vk_2 1- Cz_Q
Ap_,Vio
Ap_2 Vk—1 —O(dl/k) (40)

2Vk_2 1-— Cz_Q

by (11) that are not in a wasted region. Now we repeat tlaad

(44)

J=i—lp_1+1

Then from (13)

=l _1

i—lp_1

(45)

argument forr; determined by (13). Let /1 _ 2
J'={i: d*/* <r; <1—=d**, wherer; is determined by (13)
(41) = \/1 — 7‘1‘2—11\»_1 — 27—, _,dy/1— 7;2‘2—11\»_1 + O(d?)
If J' # ¢, leti € J' and let
_ N _ rigd O(d2)
rR= |J T (42) =y1-riius (1 2 ti T2
— 2

T = 7’i—lk_1 + dq / 1- 7‘1‘2—11\»—1 - O(dQ), (43)

1= 7, =i, dE O(dFR=1/ky, (46)
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lk—1Ns(iy Alc(k, 0/2))
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_ 51
An A(R;) D
Ac, (k =1, O(d®=D/k)Y . Ay 4
lk—1 c. ( d k_)z 2| Vie(d/2)R - (1= O(d?))
)
> L) (52)
- Ap_yrE 2 d(1 £ 0(dV))
Ac, (k= 1, O(d®=D/FY) . Ay ‘ 4
b= L O P ot | iy (1 0@ )
)
> "5() (53)
Ap_yri 2 dy1-cE_,
App_y V-1 ‘
> 2 — O(d*'*) (54)
2¢/1 =G _yViea
From (16), withr;_, replaced byr;,_;, _,, we obtain _ <w> (59)
Ax
<\/1_7z l—1 \/ ) i— lk L Apys Vi1 O(d/'*
d< (1= - i) Pl A,

Ak 1
Again the left-hand and right-hand sides differ®@yd?). Thus

<«/1—u . F)Z,HJFOCF) (48)

Ak 1
=rt2_ d+O(d®RV/k) (49)
<rE2 d(1£0(dV*)). (50)

The density of spherical caps i; is as shown in (51)-(54) Thus,Ac, (k, d) > Ax, _,

at the top of this page, where (53) follows from
lye1 21/
and (54) follows from (37)—(40).

2
1=¢iy

where (59) follows from (55). Since layers dfi,_; within
Ay are separated by a distance,gfl — cz_l and each lattice
point is distancel from an adjacent point, we have

Ay = AAk Vi(3) Ap Vi
Vie(3)F /1= 2Vk Wil-a_;
(61)
— O(d'/¥). O
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Since (40) and (54) are independentipthe density ofl’
can be bounded as

Apy_y V-1
2V

Sincer; —r;_1 < d, for all j, the(k—1)-dimensional content
of any buffer zone is bounded above Hy,_;d. The number
of buffer zones in this region is no more thapi—2/*], where

buffer zones with both positive and negatikth coordinates
are included. Hence, the totgt — 1)-dimensional content of
B = U;B; is bounded as

Ar > — O(d'%), (55)

Vi- Choa

A(B) < 2A5_1d[d~¥*] = O(d*—2/F) (56)
and A(W) = O(dY/*). Thus
Ae, (h, d) > 224D (57)
k
Ap, Vi1

= = — O(d/*)

2Vk_21 /11— 62—2
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