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Gaussian Source Coding With Spherical Codes
Jon Hamkins, Member, IEEE,and Kenneth Zeger, Fellow, IEEE

Abstract—A fixed-rate shape–gain quantizer for the mem-
oryless Gaussian source is proposed. The shape quantizer is
constructed from wrapped spherical codes that map a sphere
packing in 1 onto a sphere in , and the gain codebook is a
globally optimal scalar quantizer. A wrapped Leech lattice shape
quantizer is used to demonstrate a signal-to-quantization-noise
ratio within 1 dB of the distortion-rate function for rates above 1
bit per sample, and an improvement over existing techniques of
similar complexity. An asymptotic analysis of the tradeoff between
gain quantization and shape quantization is also given.

Index Terms—Data compression, Gaussian source, lattice cod-
ing, vector quantization.

I. INTRODUCTION

A N important goal in source coding is to design quantizers
that have both reasonable implementation complexity and

performance close to the distortion-rate function of a source.
Scalar quantizers have low implementation complexity, but their
distortion performance is usually much worse than the distor-
tion-rate function. Conversely, fixed-block-length constructive
techniques for structured vector quantizers (VQs), such as the
generalized Lloyd algorithm (GLA) [1] perform well, but their
creation, storage, and encoding complexities each grow expo-
nentially in both dimension and rate (also see [2], [3]).

A number of complexity constrained VQs have been pro-
posed in an attempt to improve upon scalar quantization while
retaining low implementation complexity (e.g., see [4]). This
paper makes use of two of these methods, lattice quantization
and shape–gain quantization, together with wrapped spherical
codes for channel coding [5]. Our proposed fixed-rate quan-
tizer does not have exponential complexity; in fact, the oper-
ating complexity grows linearly with the rate.

The quantizer presented in this paper is designed for a memo-
ryless Gaussian source. One reason for studying the memoryless
Gaussian source is that it naturally arises in numerous applica-
tions. For example, the prediction error signal in a differential
pulse-code modulation (DPCM) coder for moving pictures is
well-modeled as Gaussian [6]. Also, discrete Fourier transform
coefficients and holographic data can often be considered to be
the output of a Gaussian source [7] (although some other aspects
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of images and speech are better modeled as Laplacian distribu-
tions [8], [9]). Furthermore, a known filtering technique tends
to make memoryless sources appear Gaussian, which makes
the system insensitive to errors in modeling the input [10]. The
Gaussian source is also easier mathematically to analyze com-
pared to some other sources, because its distortion-rate func-
tion is known explicitly. In fact, the Gaussian is known to be
the most difficult source to compress, in a rate versus distortion
sense [11]. Finally, the Gaussian source has provided a histor-
ical benchmark for measuring how close a practical quantizer
can come to the theoretical performances predicted by Shannon
[2], [3], [6], [7], [10], [12]–[28].

Section II gives properties of Gaussian source coding and
Section III describes the construction and performance analysis
of the proposed wrapped shape–gain VQ. It is shown how a
fixed-rate lattice quantizer can be transformed into a shape–gain
quantizer. An asymptotic analysis gives the optimal high-res-
olution tradeoff between allocating rate to the gain and shape
quantizers, and the indexing problem is discussed. Section IV
describes a specific implementation of the proposed Gaussian
coder using the 24-dimensional Leech lattice for the shape code-
book. The performance is compared against other known quan-
tizers and the computational complexity and confidence inter-
vals are determined. For a memoryless Gaussian source, this
shape–gain quantizer performs better than other quantizers in
the literature at rates of 3 bits per sample or higher. Some exten-
sions are given in Section V.

II. PRELIMINARIES

Let be a random vector with independent compo-
nents drawn from an memoryless Gaussian source.
The probability density function (pdf) of is

for

Let : be the unit sphere in dimen-
sions, and let be the -dimensional
content (“surface area”) of , where
is the usual gamma function. Also denote the beta function by

. The following lemma gives
some properties of .

Lemma 1:

pdf: (1)

mean: (2)

second moment: (3)

variance: (4)
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Fig. 1. Encoding using Sakrison’s quantizer.

Equation (1) is the generalized Rayleigh law [29] and (2)–(4)
follow by direct computation.

A consequence of Lemma 1 is that the mean ofis approx-
imately for large (by application of Stirling’s
formula), while the variance of is bounded by for all
[30]. Thus, as , the normalized quantity has a
mean which tends to one and variance which tends to zero. This
is the so-called “sphere-hardening” effect [31], and implies that
for large , the random vector is approximately uni-
formly distributed on , which provides motivation for map-
ping lattices from to . The performance of lattice quan-
tizers for a uniform source in a region of (asymptoti-
cally optimal under Gersho’s conjecture [32]) can then be trans-
formed to the same performance for a uniform source in.

A -dimensionalVQ is a mapping : whose range,
called acodebook,is finite. The elements of a codebook are
called codevectors. A spherical VQ (SVQ) with radius is a
VQ whose codevectors each have Euclidean norm. A nearest
neighborquantizer is a quantizer such that for every ,
no codevector is closer to than . Therate of the VQ
is defined as bits, where is the number
of codevectors of . For notational convenience, is often
replaced by .

A nearest neighbor spherical VQ satisfies
for all . Sakrison [25] showed that if a nearest neighbor
spherical VQ with radius is used to quantize a Gaussian
random vector , then the resulting mean-square error (MSE)
distortion per dimension can be decomposed into shape and gain
distortions as

(5)

where (see Fig. 1).
The gain distortion term of (5) becomes negligible asin-

creases and an effective quantizer foris an SVQ with ra-
dius for a source uniformly distributed on . Using a
random coding argument, Sakrison described such a quantizer
and showed that it approaches the distortion-rate function, but
the complexity of his quantizer grows linearly with the code-
book size.

Fig. 2. Block diagram of shape–gain quantizer encoder.

Fig. 3. Encoding using the shape–gain quantizer.

In the present paper, we describe a high-performance
Gaussian quantizer using shape–gain vector quantization. The
shape quantizer is a wrapped spherical quantizer that can be
effectively implemented and which also has excellent distortion
performance. No assumption is made thatis asymptotically
large, and hence it is not assumed that the gain distortion in (5)
is negligible. For example, when and , the gain
distortion dominates the overall distortion performance at rates
of three or higher.

A shape–gain VQdecomposes a source vectorinto again
andshape , which are quantized to and

, respectively, and the output is (see Figs. 2 and 3).
As is common practice, we assume the quantized shape sat-
isfies . An advantage of shape–gain VQ is that the
encoding and storage complexities grow with thesumof the
gain codebook size and shape codebook size, while the effective
codebook size is theproductof these quantities. Necessary op-
timality conditions are known for optimal shape–gain quantiza-
tion and these can be used to design locally optimal shape–gain
VQs [4, p. 446]. However, such a design procedure yields un-
structured shape codebooks, which can become too large in
practice (we determine the optimal codebook sizes analytically
for high rates in Section III-C). In our example implementation,
the gain codebook has 15 or fewer codevectors for rates under
, and the shape codebook can be implicitly computed and thus

does not need to be stored.

III. SHAPE–GAIN WRAPPEDSPHERICAL VQ

The proposed shape–gain VQ for Gaussian sources uses a
wrapped spherical code for the shape quantizer codebook. We
impose the constraint that the quantized gaindepends only on
the true gain and the quantized shape vectordepends only
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Fig. 4. 
 is partitioned into annuli.

on the true shape vector, as shown in Fig. 2. This allows the
gain and shape quantizers to operate in parallel and indepen-
dently of each other, and it simplifies the analysis of the dis-
tortion. A small performance improvement can be realized by
allowing and to each depend on bothand , which is dis-
cussed in Section V. The rates and of the shape and gain
codebooks, respectively, are defined as the number of bits used
to quantize the shape and gain per scalar component of .
Thus, the number of bits used to quantize each -dimen-
sional shape vector is and the number of bits used to quan-
tize each scalar gain is . The choice of rates and is
discussed in Sections III-B and III-C.

We optimize the gain codebook with the Lloyd–Max algo-
rithm [18], [33] using the gain pdf from (1) (no training
vectors are needed). Since is strictly log-concave,
the Lloyd–Max algorithm converges to aglobally optimum
gain codebook [34], [35]. The centroid condition implies that

and the MSE for the gain quantizer is .
The shape codebook is generated by a wrapped spherical

code whose construction is reviewed here (for more details see
[5]). Let denote a sphere packing in which has min-
imum distance and density . Thelatitudeof a point

is defined as , i.e., the angle sub-
tended from the “equator” to . Let

be a sequence of latitudes, where and
. The th annulus, for , is defined as the set

i.e., the points between consecutive latitudes (see Fig. 4). Let
, and for each let

i.e., the closest point to that lies on the border between
and (see Fig. 5). Let prime notation denote the mapping
from to obtained by deletion of the last coordinate,

(a) (b)

Fig. 5. (a) The mapping of a pointX underh . (b) The mapping of many
points underh . The lattice in the plane has similar structure on
 .

Fig. 6. A wrapped spherical VQ.

so that, for example, . For each , define
a one-to-one mapping from to a subset of by

(6)

Thewrapped spherical VQcodebook with respect to a
packing is defined as

(7)

An example of a wrapped spherical VQ in is shown in
Fig. 6, where the codevectors are the centers of the spherical
caps. Table I describes the procedure for using.

A. Decomposition Into Shape and Gain Distortions

The distortion of the proposed Gaussian quantizer decom-
poses into gain and shape distortions in much the same way as
for Sakrison’s spherical VQ in (5). The gain distortion can be
evaluated using numerical integration. The shape distortion can
be closely approximated and verified to be accurate by simula-
tions.
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TABLE I
ALGORITHMIC DESCRIPTION OF THEQUANTIZERW

The MSE per dimension of can be decomposed as

(8)

where , , and denote the first, second, and third terms
of (8), respectively. Thus,

(9)

which is the per-dimension distortion due to the gain quantizer.
If is known, then , , and are each also known, so that

(10)

(11)

where (10) follows by the independence ofand from , and
(11) follows from the centroid condition of the gain quantizer.
Finally

(12)

(13)

(14)

(15)

where (12) follows from the independence ofand from
, (13) follows from the centroid condition of, and (15) fol-

lows from (3). The approximation in (14) is accurate for high

signal-to-noise ratios (SNRs) for the gain quantizer, which we
will assume. It can be made more exact by estimating the error
term via high-resolution analysis using Bennett’s integral, but
we will not need to do so here. Hence, acts as a “shape dis-
tortion” (multiplied by the constant ).

In summary, the distortion of is

(16)

which partitions the distortion of into shape and gain com-
ponents, as in [25]. The decomposition ofallows us to opti-
mize by separately optimizing the shape and gain compo-
nents.

The gain distortion is given by

(17)

where is the gain quantization ofand where is given
in (1). This integral can be numerically evaluated once the gain
quantizer has been designed.

We estimate the shape distortion , use it in the design al-
gorithm, and validate its accuracy by the observed shape dis-
tortion in the simulations for . In all cases reported, the ap-
proximate computations of distortion agree with the simulated
results within 0.1 dB.

It follows from [30, Lemma 4.2] that if and
, then

(18)

i.e., the mapping used in nearly preserves distances. Thus,
for asymptotically high , the distortion, , of ,
for uniformly distributed on , is equal to the distortion of
the underlying lattice quantizer with codebookfor a uniform
source in . Let be a Voronoi region of a -dimen-
sional lattice such that , and let denote the volume
of . The normalized second moment of(or of the lattice )
is
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TABLE II
OPTIMIZATION ALGORITHM FOR CONSTRUCTION OFW AT RATE R

and the -dimensional vector MSE when is used to
quantize a uniform source,1 neglecting overload distortion, is
the MSE in any Voronoi region, given by

Thus, for finite , the shape distortion is approximated by

(19)

For asymptotically large and , the first approximation in
(19) becomes tight by (13) because , and the
second becomes tight because in (18). Thus,

(20)

The values (or close approximations) of are given for the
best known lattices for the uniform source in [37, p. 61]. The
shape distortion is affected by scaling. For example, dou-
bling the minimum distance of increases by a factor of

, while is invariant to scaling, and the shape distor-
tion therefore increases by a factor of four. The total distortion

is estimated using (17) and (19).

B. Experimental Allocation of Shape and Gain Rates

Let be the transmission rate of the shape–gain wrapped
SVQ and let the shape code rateand gain code rate satisfy

. The rate determined by (7) can be altered
by rescaling so that more or fewer points are contained in

. We numerically determine the allocation of ratebetween
and that minimizes the distortion of the wrapped SVQ,

using the design algorithm given in Table II. In the next section,
we provide an analytical solution for large rates. Since the gain
codebook size is an integer, the values ofare restricted to a
finite set and the optimal value of can be found exactly. (This
is in contrast to optimizations over an infinite set, in which an
iterative algorithm may not converge to precisely the optimal
value in bounded time.)

1Moo and Neuhoff [36] showed that the minimum MSE for quantizing a
nonuniform unbounded source using a lattice, decays to zero asymptotically as
2 instead of the known2 decay rate using asymptot-
ically optimal quantizers.

For a given pair , the gain codebook is optimized
using the Lloyd–Max algorithm with bits. Since each
Voronoi cell corresponds to one lattice point, the number of
shape quantizer codevectors is closely approximated by the

-dimensional content of the sphere divided by the
volume of one Voronoi cell (recall, [30]).
That is, and it was shown in [30] that

(21)

Thus, for a given shape rate , we scale before the shape
codebook is constructed such that the volume of the Voronoi
cell satisfies . After optimization is complete,
the actual number of codevectors is computed by evaluating
the theta function. This more time-consuming step is avoided
during the optimization step, which only uses estimates of the
codebook sizes.

C. Theoretical Allocation of Shape and Gain Rates

Here we consider the theoretical tradeoff between allocating
transmission rate to the gain quantizer and the shape quantizer.
In order to facilitate analysis, we use high-resolution assump-
tions. For general shape–gain quantizers this is an unsolved
problem. However, if i) the source is Gaussian, ii) the shape
codebook is based on a lattice, and iii) the gain quantizer is in-
dependent of the shape quantizer, then it is possible to obtain a
high-resolution analytic solution. This may help to provide in-
tuition about the more general case too.

Since the transmission rate, the shape quantizer rate ,
and the gain quantizer rate are related by ,
we can write the shape distortion and the high-resolution gain
distortion as

(22)

(23)

where (22) follows using (19) and where (23) holds for large
from Bennett’s integral [4], with and constants that

are independent of and . To determine the growth rate of
as a function of that minimizes , one can

intuitively reason that the asymptotic expressions forand
must decay at the same rate. Equating the exponents
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gives , which gives an accurate first-order ap-
proximation of . Indeed, this follows the intuition that the
shape codebook based on a -dimensional lattice and the
gain codebook based on a scalar quantity should have a rate al-
location of approximately and , respectively,
for the rate- , -dimensional VQ. The exact optimal choice of

is given in the following theorem, where it is shown that
, with the constant identified and depending only

on the vector dimension, the source variance , and the nor-
malized second moment of the lattice .

Theorem 1: Let , let be an uncorrelated
Gaussian vector with zero mean and component variances

, and let be a lattice in with normalized second
moment . Suppose is quantized by a -dimensional
shape–gain VQ at rate (where and are
the shape and gain quantizer rates) with independent shape
and gain encoders and whose shape codebook is a wrapped
spherical code constructed from. Then, the asymptotic decay
of the minimum mean-squared quantization erroris given by

(24)

and is achieved by and , where

(25)

(26)

Proof: Let and be the distortions of the shape and
gain quantizers at rates and , respectively. From (11) we
have

(27)

and, therefore,

(28)

where

Also, and as , for oth-
erwise either or (and hence ) would be bounded away
from zero (i.e., not achieving the minimum MSE quantization).
Define the quantity

(29)

(30)

(31)

(32)

where (29) follows from Bennett’s integral [4]; (30) follows
using the density function of the gain from (1);
(31) follows by substituting ; and (32) follows from
[39, p. 342, eq. 662].

Define the quantity

(33)

(34)

(35)

(36)

(37)

(38)

where (34) follows from (13); (35) follows from (3) and
; (36) follows from (20); (37) follows

from (21); and (38) follows from . Note
that the limit in (33) exists by working backward from (37).

Let

and notice that the unique minimum value of the function

is achieved at , since is strictly convex and .
Suppose and are the distortions corresponding to

. Then

as . Thus, is bounded as . In addition,
and are bounded away from zero for sufficiently large.

Thus, is bounded, from (28), and hence for

as
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Since

for all , we have

So for any , we have
for sufficiently large . Thus,

(39)

On the other hand, suppose and are the distortions
corresponding to . Then from (27)

(40)

(41)

(42)

as . Thus,

(43)

Combining (39) and (43) gives

which is achieved by . Substituting the defi-
nition of into , , and

, gives (24)–(26), respectively.

Note that for large , the optimal allocation of transmission
rate between the shape quantizer and the gain quantizer is from
(26) approximately and . This means
that the shape codebook should have about codevectors
and the gain codebook should have aboutscalar codepoints,
as intuition would indicate. This corresponds roughly to what
was observed in the experimental rate allocation optimization.
In simulations, we observed that the optimal gain codebook rate
was within 8% of this figure when and within 1% when

.

D. Index Assignment

In order to implement the shape–gain spherical quantizer, the
quantizer codevectors must be uniquely identified

by binary strings of length which are transmitted across the
channel. The assignment is accomplished in a similar manner as
in [14] for the pyramid VQ for the Laplacian source. First, the
number of codevectors in each annulus of the shape codebook
is counted using the theta function. We report on specific results
using the Leech lattice , for which the codes need a
one-time computation of the first few hundred coefficients of the
theta function of the Leech lattice, which are stored and used as
needed.

It is assumed that there is an efficient method for assigning
indexes to the underlying lattice. This is the case with many
lattices, including the Leech lattice (e.g., see [40]).

The codevectors of the wrapped spherical code are assigned
to integers according to their quantized gain, annulus, and order
within their annulus, as follows. Let represent the number of
annuli of the shape codebook. Let be the number of points in

the th annulus of a shell, and letbe the total number of points
in the shape codebook. Assuming all indexes start at, the th
point within the th annulus of theth gain shell is assigned to
the number

(44)

Both the encoder and decoder must compute this summation.
This can be made efficient by storing in memory the partial sum-
mations , for . The memory re-
quired for this is equal to the total number of annuli in the code-
book, which is generally not large. For example, in the codebook

of rate , there are 36 total annuli.

IV. SIMULATIONS AND COMPARISONS

A. Confidence Intervals of the Simulations

The codebook was optimized according to Table II and
its performance was evaluated with 500 000 independent and
identically distributed (i.i.d.) Gaussian random samples blocked
into 20 000 25-dimensional vectors and encoded as in Table I.
The lattice encoding used the Leech lattice nearest neighbor
algorithm in [41]. The quality of the simulation results is ex-
pressed in terms of a 95% confidence interval. The simulation
run of 20 000 vectors was broken down into 20 blocks of 1000
vectors. For each block, the average distortion was determined.
Applying the central limit theorem to each block distortion and
using the students-distribution, we calculated the 95% confi-
dence interval. For each simulation, these intervals were found
to be less than 0.03 dB.

B. Performance Comparisons

Table III demonstrates that shape–gain VQ using
performs within 1 dB of the distortion-rate function for rates
in the range of 2–7 bits per sample. For this range,
outperforms many of the best quantizers in the literature,
including 256-state trellis-coded quantization (TCQ) [20],
two-dimensional four-state trellis- coded vector quantization
(TCVQ) [26], Fischer’s spherical vector quantization [14], and
Lloyd–Max scalar quantization. With a large number of trellis
states, TCQ and TCVQ may perhaps outperform shape–gain
VQ using ; however, the reports of results in the literature
have thus far been limited to trellises with 256 or fewer states
because the design complexity of TCQ and TCVQ is somewhat
prohibitive for larger trellises. Trellis-based scalar-vector
quantization (TB-SVQ) [42] performs slightly better than
shape–gain VQ using at a rate of , but not at a rate of.

C. Computational Complexity

The arithmetic functions needed to implement the quantizer
are addition, multiplication, division, trigonometric functions,
square root, and comparison. To make a rough estimate of com-
putational complexity (which, of course, is machine dependent)
we count one operation for any arithmetic function.

In Table I, Step 1 requires no computation, and Step 2 re-
quires multiplies, additions, and one square root to cal-
culate the gain; and divisions to calculate the shape. Step 3
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TABLE III
COMPARISON OFVARIOUS QUANTIZATION SCHEMES FOR AMEMORYLESSGAUSSIAN SOURCE. VALUES ARE LISTED AS SNRIN DECIBELS. BLANK ENTRIES

INDICATE THAT REFERENCEDWORK DOESNOT CONTAIN A RESULT.W IS THEPROPOSEDSCHEME USING THELEECHLATTICE AS A SHAPE CODEBOOK

requires one scalar quantization operation, which can be per-
formed by a binary search with at most comparisons. Step
4 requires comparisons to identify; one addi-
tional trigonometric function, one difference, one division, and
one multiplication to compute

one trigonometric function to compute ; one
difference to compute ; one multiplica-
tion, one difference, and one square root to compute

; and one division and multiplications to compute
. Thus, Step 4 requires no more than opera-

tions. Step 5 requires the number of steps in a nearest neighbor
algorithm for . For the Leech lattice, the fastest known algo-
rithm requires about 2955 operations on average [45]. Step 6
requires squarings, additions, and one square root
to determine ; one difference and one division to deter-
mine ; multiplications to determine
the first coordinates of ; and one square, one
difference, and one square root to determine the last coordinate.
Thus, Step 6 requires operations. Step 7 requires one
multiplication and two additions to determine the index. Alto-
gether, this amounts to at most arithmetic
operations, where is the dimension, is the rate, and is the
computational complexity of the nearest neighbor algorithm of

. Thus, per sample, the computational complexity is at most
. For the , the parameters are and

, and the computational complexity is upper-bounded
by .

Thus, the computational complexity of shape–gain VQ using
grows linearly with rate, and is comparable to that of trellis-

TABLE IV
COMPARISON OFCOMPUTATIONAL COMPLEXITIES OF QUANTIZATION

SCHEMES FOR AMEMORYLESSGAUSSIAN SOURCE. DATA FOR OTHER

METHODSARE TAKEN FROM [20, TABLE XII]. k = DIMENSION, R =
RATE, S = NUMBER OF TRELLIS STATES

coded quantization (TCQ). Table IV summarizes these com-
plexities.

V. GENERALIZATIONS OF THESHAPE–GAIN CODER

A. Non-Gaussian Sources

Inherent in the treatment thus far is that the source has a
Gaussian distribution, for if the source is not Gaussian then the
high-probability region may not be a sphere, but some other
shape [46], and the wrapped SVQ cannot be effectively used.
This section presents a method to obtain the performance above
for any memoryless source. The method consists of transform
coding the source. Typically, transform coding is done to re-
move dependencies between consecutive samples of the source;
here, it is used to change the distribution of the source, which
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may or may not already be i.i.d., to be roughly Gaussian and
i.i.d., so that wrapped SVQ may still be used. This same intu-
ition was used in [10] to quantize an arbitrary source and obtain
distortion performance that approximates that of a scalar quan-
tizer for a Gaussian source. Unlike the approach in [10], in this
section the source is transformed in blocks, instead of using fi-
nite-impulse response (FIR) filters.

Let be the output of any-dimensional VQ. Let

...
...

...

where has an arbitrary distribution. Let be a
Hadamard matrix of order , i.e., an matrix with
and entries only, such that . Such matrices
are known to exist when the order is any power of, and for
many other orders as well.2 Let . Given ,
the VQ output is . If , , and

, then it follows that

The end-to-end distortion of this system is

Thus, the end-to-end distortion of the system is equal to the
distortion due to the quantization of the intermediary signal

alone. Most importantly, the Hadamard transform modifies
the distribution of the input to the VQ. A row of is a

-vector, each component of which is the sum ofdifferent
samples (or their negation) from ; hence, as , the
probability distribution of each component ofapproaches the
Gaussian distribution, by the central limit theorem. Thus, the in-
ternal -dimensional quantizer may be optimized with respect
to the Gaussian distribution, even ifis fixed and small.

B. Other Generalizations

There are several other improvements for this shape–gain
quantizer. For example, instead of using a scalar quantizer for

2Paley’s theorem (1933) [47] guarantees that Hadamard matrices exist for
orders equal ton = 2 (p + 1), for all positive integerse andm, and every
odd primep (also forp = 0 whene � 2). The orders for which Hadamard
matrices exist include every multiple of4 up to268, and all powers of2. It is
an open question as to whether they exist for orders equal to all multiples of4.

the gain, gains could be blocked together and vector-quantized,
or, if fixed-rate quantization is not required, entropy-coded.
Or, we may remove the assumption that the gain and shape
codebooks operate independently. With a gain-dependent shape
codebook, there could be a different shape codebook associated
with each quantized gain value. With a shape-dependent gain
codebook, we could chooseto minimize instead
of .

VI. CONCLUSION

The wrapped spherical VQ for the memoryless Gaussian
source achieves distortions that are in many cases lower than
other published results. The operating complexity of the
quantizer grows linearly with the rate, and for moderate rates is
dominated by the complexity of the nearest neighbor algorithm
of the underlying lattice. This complexity is comparable or
slightly less than other efficient quantization techniques such
as pyramid vector quantization of the Laplacian source [14],
TCQ [20], and TCVQ [26]. We note that sphere packings other
than lattices may be used to create the shape codebook. In this
case, more than one type of Voronoi cell results, and an average
over all the different Voronoi cells is necessary to compute the
MSE of the scaled packing.
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