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Gaussian Source Coding With Spherical Codes

Jon HamkinsMember, IEEEand Kenneth ZegeFellow, IEEE

Abstract—A fixed-rate shape-gain quantizer for the mem- of images and speech are better modeled as Laplacian distribu-
oryless Gaussian source is proposed. The shape quantizer istions [8], [9]). Furthermore, a known filtering technique tends
constructed from wrapped spherical codes that map a sphere {5 make memoryless sources appear Gaussian, which makes

packing in R*—* onto a sphere inR*, and the gain codebook is a . -, . - .
globally optimal scalar quantizer. A wrapped Leech lattice shape the system insensitive to errors in modeling the input [10]. The

quantizer is used to demonstrate a signal-to-quantization-noise Gaussian source is also easier mathematically to analyze com-
ratio within 1 dB of the distortion-rate function for rates above 1  pared to some other sources, because its distortion-rate func-
bit per sample, and an improvement over existing techniques of tion is known explicitly. In fact, the Gaussian is known to be
similar complexity. An asymptotic analysis of the tradeoff between  the most difficult source to compress, in a rate versus distortion
gain quantization and shape quantization is also given. : . ' . .
_ _ _ sense [11]. Finally, the Gaussian source has provided a histor-
_ Index Terms—bata compression, Gaussian source, lattice cod- jcal benchmark for measuring how close a practical quantizer
ing, vector quantization. can come to the theoretical performances predicted by Shannon
(2], [3], [6], [7], [10], [12]-[28].
|. INTRODUCTION Section Il gives properties of Gaussian source coding and

Section Il describes the construction and performance analysis

N important goal in source coding is to design quantizefs . proposed wrapped shape—gain VQ. It is shown how a

that have both reasonable implementation complexity aﬂ)céled—rate lattice quantizer can be transformed into a shape—gain

performance close to the distortion-rate function of a source

Scalar quantizers have low implementation complexity, butthgraptmer. An asymptotic analygls gives the optlr_nal high-res-
olution tradeoff between allocating rate to the gain and shape

distortion performance is usually much worse than the d'StorOantizers, and the indexing problem is discussed. Section IV

:fcnr;;?tiézr}gtr'Osr;u%?ur;\ézriilgt’cﬂxegé?]lt?;:;e(n\%hs)c osnlf;u;ts'vaeescribes a specific implementation of the proposed Gaussian
d q ' . cader using the 24-dimensional Leech lattice for the shape code-

generalized Lloyd algorithm (GLA) [1] perform well, but thelrbook. The performance is compared against other known quan-

creation, storage, and encoding complexities each grow EXB%%rs and the computational complexity and confidence inter-

nentially in both dimension and rate (also see [2], [3]). vals are determined. For a memoryless Gaussian source, this

A number of complexity constrained VQs have been pro_hape—gain qguantizer performs better than other quantizers in

posgd_ n an a@tempt to 'Mprove upon s_calar quantization Wh{ % literature at rates of 3 bits per sample or higher. Some exten-
retaining low implementation complexity (e.g., see [4]). Thig

. .___Sions are given in Section V.
paper makes use of two of these methods, lattice quantization 9

and shape—gain quantization, together with wrapped spherical
codes for channel coding [5]. Our proposed fixed-rate quan-
tizer does not have exponential complexity; in fact, the oper-Let X € R* be a random vector with independent compo-

Il. PRELIMINARIES

ating complexity grows linearly with the rate. nents drawn from amV (0, o) memoryless Gaussian source.
The quantizer presented in this paper is designed for a menitie probability density function (pdf) oX is
ryless Gaussian source. One reason for studying the memoryl?%s(y) _ (27r02)7k/2 eXp(_||Y||2/(2O_2)) for Y € RE.

Gaussian source is that it naturally arises in numerous applica-

B k. B . o
tions. For example, the prediction error signal in a differentiétl_et O = {Y € R" ”ZA = 1} be the unit sphere_ A d|men—
pulse-code modulation (DPCM) coder for moving pictures fONS: and lety = 2x*/*/I'(k/2) be the(k — 1)-dimensional

“ ” _ oo L u—1 —t
well-modeled as Gaussian [6]. Also, discrete Fourier transfolfintent (‘surface area”) di, wherel'(u) = [~ t* et dt

coefficients and holographic data can often be considered to/pdN€ usual gamma function. Also denote the beta function by
the output of a Gaussian source [7] (although some other aspétiy ©) = I'(W)I'(v)/I'(u + v). The following lemma gives
some properties of = || X]|.
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Fig. 2. Block diagram of shape—gain quantizer encoder.
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Fig. 1. Encoding using Sakrison’s quantizer.

Equation (1) is the generalized Rayleigh law [29] and (2)—(4)
follow by direct computation.

A consequence of Lemma 1 is that the meaw & approx-
imately o/ k — (1/2) for largek (by application of Stirling’s
formula), while the variance aof is bounded by-?/2 for all &

[30]. Thus, ask — oo, the normalized quantity/\/m has a
mean which tends to one and variance which tends to zero. This
is the so-called “sphere-hardening” effect [31], and implies that
for largek, the random vectoX /v/ko? is approximately uni-
formly distributed or2;, which provides motivation for map-
ping lattices fronR*~! to 2. The performance of lattice quan-
tizers for a uniform source in a region & ! (asymptoti- In the present paper, we describe a high-performance
cally optimal under Gersho’s conjecture [32]) can then be tranSaussian quantizer using shape—gain vector quantization. The
formed to the same performance for a uniform sourc@;in  shape quantizer is a wrapped spherical quantizer that can be

A k-dimensionaVQis a mapping): R* — R* whose range, effectively implemented and which also has excellent distortion
called acodebookjs finite. The elements of a codebook argperformance. No assumption is made thds asymptotically
called codevectorsA spherical VQ (SVQ) with radius is a large, and hence it is not assumed that the gain distortion in (5)
VQ whose codevectors each have Euclidean narfnearest is negligible. For example, wheiln= 25 ando? = 1, the gain
neighborquantizerq is a quantizer such that for everye R*,  distortion dominates the overall distortion performance at rates
no codevector is closer to than@Q(z). Therate of the VQ @  of three or higher.
is defined askR = (log, N)/k bits, whereN is the number A shape—gain V@ecomposes a source vecioiinto again
of codevectors of). For notational conveniencé(x) is often g = ||X]] andshapeS = X/g, which are quantized t9 and

Fig. 3. Encoding using the shape—gain quantizer.

replaced bys. S, respectively, and the output i = 45 (see Figs. 2 and 3).
A nearest neighbor spherical VQ satisfi@éc.X) = Q(X) As is common practice, we assume the quantized shape sat-
for all ¢ > 0. Sakrison [25] showed that if a nearest neighbasfies ||S|| = 1. An advantage of shape—gain VQ is that the

spherical VQ with radiu&[||.X||] is used to quantize a Gaussiarencoding and storage complexities grow with gwanof the
random vectorX, then the resulting mean-square error (MSEjain codebook size and shape codebook size, while the effective
distortion per dimension can be decomposed into shape and gaiiebook size is theroductof these quantities. Necessary op-
distortions as timality conditions are known for optimal shape—gain quantiza-

2 tion and these can be used to design locally optimal shape—gain
E U } VQs [4, p. 446]. However, such a design procedure yields un-

structured shape codebooks, which can become too large in

shape d‘i'stortion

X - X

X,-X

1

k
_1 1 + var[|| X||]/k (5) practice (we determine the optimal codebook sizes analytically
l“ — for high rates in Section IlI-C). In our example implementation,
the gain codebook has 15 or fewer codevectors for rates under
4, and the shape codebook can be implicitly computed and thus

does not need to be stored.

gain distortion

whereX,, = E[|| X||] - ﬁ (see Fig. 1).

The gain distortion term of (5) becomes negligiblekam-
creases and an effective quantizer foris an SVQ with ra-
dius E[||X||] for a source uniformly distributed d,. Using a
random coding argument, Sakrison described such a quantizeFhe proposed shape—gain VQ for Gaussian sources uses a
and showed that it approaches the distortion-rate function, utapped spherical code for the shape quantizer codebook. We
the complexity of his quantizer grows linearly with the codempose the constraint that the quantized dgaitepends only on
book size. the true gairy and the quantized shape vect®rdepends only

I1l. SHAPE-GAIN WRAPPEDSPHERICAL VQ
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Fig. 5. (a) The mapping of a poiX underh;. (b) The mapping of many
points undet:;. The lattice in the plane has similar structurefon

Fig. 4. €, is partitioned into annuli.

on the true shape vectdf, as shown in Fig. 2. This allows the
gain and shape quantizers to operate in parallel and indep
dently of each other, and it simplifies the analysis of the dis /
tortion. A small performance improvement can be realized t
allowing § andS to each depend on bothand$, which is dis- r/;//lfj‘“'
cussed in Section V. The rat& andR,, of the shape and gain i . ) SN
codebooks, respectively, are defined as the number of bits us e Q&'

to quantize the shape and gain per scalar componetiteR®. "\"é 0'% .“’ ‘

us, the number of bits used to quantize edch 1)-dimen- \\xp@. ‘o‘&,#
sional shape vector fsi?, and the number of bits used to quan- \ “\‘\‘\'{,\;‘ '@83@ ;
tize each scalar gain is®,. The choice of rate&, and R, is RS
discussed in Sections 11I-B and I1I-C.

We optimize the gain codebook with the Lloyd—Max algo
rithm [18], [33] using the gain pdf,(+) from (1) (no training
vectors are needed). Sincg,(r) is strictly log-concave,
the Lloyd—Max algorithm converges to globally optimum
gain codebook [34], [35]. The centroid condition implies tha
E[§]= E[g] and the MSE for the gain quantizeri¥g*|-E[§?%].

The shape codebook is generated by a wrapped spherfd@l6- A wrapped spherical VQ.
code whose construction is reviewed here (for more details see

[5]). Let A denote a sphere packing RF—' which has min- SO that, for exampleX” = (x4, ..., wx—1). For ?ﬁ?h define
imum distancel, and density\ . Thelatitudeof a pointX = @ One-to-one mappin; from A; to a subset oR"~" by

(z1, ..., 1) € Q is defined asin ! (x3), i.e., the angle sub- X ,

tended from the “equator” t& . Let hi(X) = 1 XLl = NI Xe = XD+ (6)

Thewrapped spherical V@odebookW 5 with respect to a
packingA is defined as

be a sequence of latitudes, whe¥e = [n/\/d) | anda; = Wy = U RTYH(AN {0}). (7)

m(+% — 3). Theith annulusfor 0 < i < IV, is defined as the set

—mf2=ap < <any=7/2

. An example of a wrapped spherical VQ R¥ is shown in
Ai=A{(zy, ..o, o) € Qi i Ssin™ o < g} Fig. 6, where the codevectors are the centers of the spherical

. . . ) ) caps. Table | describes the procedure for usig.
i.e., the points between consecutive latitudes (see Fig. 4). Let

(2)4 = max (0, z), and for eachlX = (1, ..., 2x) € A;let  A. Decomposition Into Shape and Gain Distortions

The distortion of the proposed Gaussian quantizer decom-
poses into gain and shape distortions in much the same way as
for Sakrison’s spherical VQ in (5). The gain distortion can be
i.e., the closest point t& that lies on the border betweel)_;  evaluated using numerical integration. The shape distortion can
and A, (see Fig. 5). Let prime notation denote the mappinge closely approximated and verified to be accurate by simula-
from R* to R*~! obtained by deletion of the last coordinatetions.

Xp =argmin{||X — Z||: Z = (21, ..., 21—1, sinoy) € U}
z
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TABLE |
ALGORITHMIC DESCRIPTION OF THEQUANTIZER W 5

1. Given k source samples, form the vector X € R,

2. Compute g = || X|| and S = X/g.

3. Use the gain codebook to quantize g as g.

4, Find i such that o; < sin™' z;, < 41, and compute A;(S).
5. Find the nearest neighbor 7;(S) to h;(S), in A\{0}.

6. Compute h7'(h;(.S)) to identify the quantized shape S.

7. Compute the index of ¢S and transmit.

The MSE per dimension iV, can be decomposed as signal-to-noise ratios (SNRs) for the gain quantizer, which we

1 2 will assume. It can be made more exact by estimating the error
=7 E {HX ) ‘ } term via high-resolution analysis using Bennett's integral, but
1 5 we will not need to do so here. Hendg, acts as a “shape dis-

= E (11X — 4S]12] + =5 [(X _48)T (QS _ gg)} tortion” (multiplied by the constangf[g?]).
1 ) In summary, the distortion dv , is
+%E{gs—gﬂ\} @) . o »
Dx>E[(g—3§ E“—“ 1
=D, +D.+ D, pEllo—ay]+o {S S (16)

whereD,, D., andD, denote the first, second, and third termsvhich partitions the distortion 6f , into shape and gain com-

of (8), respectively. Thus, ponents, as in [25]. The decomposition/fallows us to opti-
1 R 2 mize W, by separately optimizing the shape and gain compo-
D,=-E H <1 _ Q) X ] nents.
k g The gain distortion is given by
1

= E[(¢g-9)? 9) 1 ) 1=
e | I%IEEKQ—wﬂIE/‘@—mﬂYﬁde(N)
which is the per-dimension distortion due to the gain quantizer. 0
If 45 is known, thery, S, and.5 are each also known, so that whereg(r) is the gain quantization efand wheref, (r) is given

2 T SN in (1). This integral can be numerically evaluated once the gain
D. = % E [E [(‘X —45) (95 - 95) ‘ 95” quantizer has been designed.
2 oo T | - . A We estimate the shape distortiéh, use it in the design al-
= F [E [(X —35)"]45] (95 - 95)} gorithm, and validate its accuracy by the observed shape dis-
2 N1 a1 T n A tortion in the simulations foW 4. In all cases reported, the ap-
Tk E [E g —a)lgls (gS B gs)} (10) proximate computations of distortion agree with the simulated

= (11) results within 0.1 dB.
It follows from [30, Lemma 4.2] that iU, V € A; and
Ij_|hi(U) — hi(V)|| = O(dy), then

i (U) = hi(V)II?
. 1-0(Viy) < v st 09

12)

where (10) follows by the independencegadndg from S, and
(11) follows from the centroid condition of the gain quantize
Finally

S
[

Eﬁw‘b—ﬁ
L ) i.e., the mapping used W, nearly preserves distances. Thus,
} (13) forasymptotically highk,, the distortion E[||.S — S||?], of W4,
for S uniformly distributed ort,, is equal to the distortion of
2] (14) the underlying lattice quantizer with codeboaKor a uniform
source inR*~1, LetII be a Voronoi region of & — 1)-dimen-
) A2 sional latticeA such thad € II, and lefV’(A) denote the volume
=o°F {HS - SH } (15)  of I. The normalized second momentldf(or of the latticeA)
is

(El*l - E [<g—g_>2]) E [Hs _3

ol o -l

Q

ﬂfw‘ﬁ—ﬁ

where (12) follows from the independence $fand S from L y
g, (13) follows from the centroid condition df, and (15) fol- GA) = =L Jul1E11* it
lows from (3). The approximation in (14) is accurate for high V(A)”ﬁ
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TABLE I
OPTIMIZATION ALGORITHM FOR CONSTRUCTION OFW 5 AT RATE R

1. For rate allocation (Ry, R;), use (a)-(c) below to compute the distortion.

(a) Estimate the minimum distance of A which will produce a rate R, shape quantizer.
(b) Use the Lloyd-Max algorithm to optimize the rate R, gain scalar quantizer for fy(r).
(c) Estimate the distortion of W, using (17) and (19).

2. Identify the allocation (R,, R,) which minimizes the estimated distortion in step 1, using Brent’s
method [38].

3. Compute R, exactly using the theta function of A.

and the(k — 1)-dimensional vector MSE whef is used to  For a given paifR,, R, ), the gain codebook is optimized
quantize a uniform sourceneglecting overload distortion, isusing the Lloyd—Max algorithm with’, bits. Since each

the MSE in any Voronoi region, given by Voronoi cell corresponds to one lattice point, the number of
1 ) shape quantizer codevectors is closely approximated by the
W/ I1£11% dt = (k — DG(A)V(A)FT. (k — 1)-dimensional content of the sphesk, divided by the
II

volume of one Voronoi cell (recally(A) ~ V(h;(A)) [30]).
Thus, for finite R, the shape distortion is approximated by = That is, 2" ~ S, /V(A) and it was shown in [30] that

2

D, ~ 0% [Hs - Sm ~ (k- Da’ GV (M), (19) lim V(A)2" = S (21)

R,—o0

Thus, for a given shape rafe,, we scaleA before the shape
codebook is constructed such that the volume of the Voronoi
cell satisfied/ (A) = S 2~ *F- . After optimization is complete,
the actual number of codevectors is computed by evaluating
. =2 9 . |12 =2 the theta function. This more time-consuming step is avoided
Rllgloo D V(A)=r =0 RPEEOE {HS B SH } V(A= during the optimization step, which only uses estimates of the

=(k — 1)0’G(A). (20) codebook sizes.

The values (or close approximations)@fA) are given for the C. Theoretical Allocation of Shape and Gain Rates

best known lattices for the uniform source in [37, p. 61]. The Here we consider the theoretical tradeoff between allocating
shape distortion is affected by scalidg For example, dou- transmission rate to the gain quantizer and the shape quantizer.
bling the minimum distance of increased/(A) by a factor of |n order to facilitate analysis, we use high-resolution assump-
2%=*, while G(A) is invariant to scaling, and the shape distorions. For general shape—gain quantizers this is an unsolved
tion therefore increases by a factor of four. The total distortigitoblem. However, if i) the source is Gaussian, ii) the shape
D = D, + D; is estimated using (17) and (19). codebook is based on a lattice, and iii) the gain quantizer is in-
dependent of the shape quantizer, then it is possible to obtain a
high-resolution analytic solution. This may help to provide in-

Let R be the transmission rate of the shape—gain wrapptdtion about the more general case too.
SVQ and let the shape code rdtgand gain code ratg,, satisfy Since the transmission rafé, the shape quantizer rafe,,
R, + R, = R. The rateR, determined by (7) can be alteredand the gain quantizer rate, are related byR = R, + R,
by rescalingA so that more or fewer points are contained iwe can write the shape distortion and the high-resolution gain
W . We numerically determine the allocation of rdtdetween distortion as
R, and R, that minimizes the distortion of the wrapped SVQ, 2 —OR. (b
using thegdesign algorithm given in Table II. In the next section, ~ 2° ™ (k= Do’ GV (M7 & 270 (22)
we provide an analytical solution for large rates. Since the gain Do & Cy2 2k = O 27 M= 1) (23)
cpdebook size is an integer, the valuediyfare restricted 0@ \where (22) follows using (19) and where (23) holds for large
finite set and the optimal value &, can b,eff,ovnd exa.ctly.rgfrr;]ls R, from Bennett's integral [4], wittC;, andC,, constants that
IS In contrast to optimizations over an infinite set, in which a ; ;
iterative algorithm may not converge to precisely the optimgfg e;r;dae ?ue:(gie;n; g% ;]n;[}r%ih}l—r?ﬂgggrinle)thf %romgtfr:eract:nof

. . s E g1

value in bounded time.) intuitively reason that the asymptotic expressions far and

Moo and Neuhoff [36] showed that the minimum MSE for quantizing 4’¢ Must decay at the same rate. Equating the exponents
nonuniform unbounded source using a lattice, decays to zero asymptotically as

2—28+0008(1)) instead of the know@ —2#+°(1) decay rate using asymptot- 2R, <k k 1) =2k(R - R,)

For asymptotically largé?, and R, the first approximation in
(19) becomes tight by (13) becauB®(g — 9)?] — 0, and the
second becomes tight because— 0 in (18). Thus,

B. Experimental Allocation of Shape and Gain Rates

ically optimal quantizers.



HAMKINS AND ZEGER: GAUSSIAN SOURCE CODING WITH SPHERICAL CODES 2985

givesR, = (E-1)R, which gives an accurate first-order ap- 1 = M3 gy s

proximation of R,. Indeed, this follows the intuition that the 12k </0 |fo(r)] 7)

shape codebook based ofka— 1)-dimensional lattice and the 1 oo o 3
gain codebook based on a scalar quantity should have arate al- = w0 o5 </ pk=1)/3=r"/ (6o )dr>
location of approximately®(k — 1)/k and R/k, respectively, (k/2)(20%) 0

for the rate®, k-dimensional VQ. The exact optimal choice of 1 (30)
R, is given in the following theorem, where it is shown that =

D =~ A272% with the constantl identified and depending only I'(k/2)(202)"/26k:

on the vector dimensioh, the source variance?, and the nor- ' 2(“4)/6(302)(“2)/6 /.oo (/6,1 dt) 3 e

malized second momen#(A) of the latticeA. o

Theorem 1:Let k£ > 1, let X € R* be an uncorrelated _ 2 3513 (—ngQ) (32)
Gaussian vector with zero mean and component variances  * 8kI'(k/2)
R .
o? < 00, and letA be a lattice irR"~* with normalized second \yhere (29) follows from Bennett's integral [4]; (30) follows

momentG(A). SupposeX is quantized by &-dimensional using the density functiorf, of the gaing = || X]| from (1);

shape-gain VQ at ratd = R, + R, (whereR, and R, are (31) follows by substituting? = 602¢; and (32) follows from
the shape and gain quantizer rates) with independent sh?ﬁa p. 342, eq. 662].

and gain encoders and whose shape codebook is a wrappgfefine the quantity
spherical code constructed fran Then, the asymptotic decay

of the minimum mean-squared quantization efidis givenby ~ Cs = lm sg (33)
. k 1 91 i 1 5 2 ~112
2R __ el & — _ — — —
gim D2 =g (24) Jim <k (Bl - E[(g-9*) E|||s - 5
and is achieved by, = R andR, = R}, where : 22R3(ﬁ)) (34)
k—1 1 C 1 2 .
e T A A
1 k—1 C, 1 _ 27 ; = . 92RI(FE)
T - Tlog, [ =2 .~ =0 (k= 1G(A) lim V(A)F=T . 257 %=1 (36)
R (k)[}z - 10g2<0g k_l)} (26) (k=16 fim V()
onk/2 \ ToT =o?(k—1)GA)SF (37)
C, =o% (k- 1)G(A) <—> =21
I(k/2) = o2(k — HG(A) (27rk/2 / F(k/2)) (38)
gh/2r3 (h£2)
Cyp=02 —— 2062 where (34) follows from (13); (35) follows from (3) and

8KL'(k/2) limg .. E[(g— §)?] = 0; (36) follows from (20); (37) follows
Proof: Let D, andD,, be the distortions of the shape androm (21); and (38) follows froms;, = 27%/2/I'(k/2). Note
gain quantizers at ratds, and R, respectively. From (11) we that the limit in (33) exists by working backward from (37).

have Let
D= inf (D,+D,) 27) . <’f;1> log <% : L)
Rs, Ry = 22 —
R.+Ry=R 2k Cg k-1

and notice that the unique minimum value of the function

f(z) = C,27 2T 4 g 22k

and, therefore,

D22 = gpo2en(iin) 4 g po2her (28)
is achieved at = q, sincef is strictly convex and”(a) = 0.
where SupposeD, and D, are the distortions corresponding to
— — (k=L
aRzR:—<k‘1>R R, = (*4)R. Then
k D22R S (DS + Dg)22R

SR ID522R;("AT1)

= DSQQ(;J‘T'I)R.<+DH22k(R—RS)
gr =D, 22E-R)

— O+

Also, R} — oo andR — R} = Ry — 0o asR — oo, foroth- 55 p ., o Thus, D22 is bounded a®t — oo. In addition,
from 2. elthgd)s o (gm_j henceD). WOUld be bounded. away . andgr are bounded away from zero for sufficiently lage
from zero (i.e., not achieving the minimum MSE quantizationyp, ;s 4 is bounded. from (28), and hence fot> 2
Define the quantity ' . k , >
i ‘D22R — 0,27 20n(55) _ ¢ 92ken

C, = Rhm JRr :

7, I < sk — G| - 27200 4 |ggp — O - 22kex
_ I fllys
T 12k (29) —0 asR— o
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Since
082720,(1\,]‘7'1) + Og22ka < 05272111?,(&) +Cg22kaR
for all R, we have
D22k > D22R _ (CSZ_QGR(%) + Cg22kaR)
+ (052—2a(kl‘j) + Cg22ka) )
So for anye > 0, we haveD228 > €, 27 2¢(557) 4 ¢, 22ka — ¢
for sufficiently largeR. Thus,
liminf D2°% > C,272(=30) 4 ¢, 220, (39)
R—oo
On the other hand, suppoge, and D), are the distortions
corresponding tR; = (’“—;]‘)R + a. Then from (27)
D2?R < 2*R(D, 4+ D,) (40)
DS22RS(1\,"T'1)2—20,(,\,"T'1) + Dg22k(R7RS)22ak (41)

— 0,272 4 ¢ 2%k (42)
asR — oo. Thus,
limsup D2%F < C’s2_2“(ﬁ) + Cg22k“. (43)

R—oo

Combining (39) and (43) gives
lim D22R = 052720’(%) + Og22ka

R—oo
which is achieved byr: = (£2)R + a. Substituting the defi-
nition of a into C,272¢(+*1) 4,22+, R* = (1)R+a, and
R} = R — R}, gives (24)—(26), respectively.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 11, NOVEMBER 2002

thejth annulus of a shell, and It be the total number of points
in the shape codebook. Assuming all indexes stabt #telth
point within thejth annulus of theth gain shell is assigned to
the number

j—1
iP+> Po+l.

a=0

(44)

Both the encoder and decoder must compute this summation.
This can be made efficient by storing in memory the partial sum-
mationszfl;%J P, forj=20,1,..., N — 1. The memory re-
quired for this is equal to the total number of annuli in the code-
book, whichis generally not large. For example, in the codebook
W, of rate4, there are 36 total annuli.

IV. SIMULATIONS AND COMPARISONS
A. Confidence Intervals of the Simulations

The codeboolV 4, was optimized according to Table Il and
its performance was evaluated with 500 000 independent and
identically distributed (i.i.d.) Gaussian random samples blocked
into 20 000 25-dimensional vectors and encoded as in Table I.
The lattice encoding used the Leech lattice nearest neighbor
algorithm in [41]. The quality of the simulation results is ex-
pressed in terms of a 95% confidence interval. The simulation
run of 20 000 vectors was broken down into 20 blocks of 1000
vectors. For each block, the average distortion was determined.
Applying the central limit theorem to each block distortion and

Note that for largeR, the optimal allocation of transmissionusing the studentsdistribution, we calculated the 95% confi-
rate between the shape quantizer and the gain quantizer is frd@nce interval. For each simulation, these intervals were found

(26) approximatelyR} ~ (1 — )R andR; ~  R. This means
that the shape codebook should have aB6ut!) % codevectors

and the gain codebook should have at®tiscalar codepoints,

to be less than 0.03 dB.

B. Performance Comparisons

as intuition would indicate. This corresponds roughly to what Table 11l demonstrates that shape—gain VQ usig,,,
was observed in the experimental rate allocation optimizatiggerforms within 1 dB of the distortion-rate function for rates
In simulations, we observed that the optimal gain codebook ratethe range of 2—7 bits per sample. For this rangé,,,

was within 8% of this figure whe® > 3 and within 1% when
R > 5.

D. Index Assignment

outperforms many of the best quantizers in the literature,
including 256-state trellis-coded quantization (TCQ) [20],
two-dimensional four-state trellis- coded vector quantization
(TCVQ) [26], Fischer’s spherical vector quantization [14], and

In order to implement the shape—gain spherical quantizer, tHeyd—Max scalar quantization. With a large number of trellis
M = 2B quantizer codevectors must be uniquely identifiegiates, TCQ and TCVQ may perhaps outperform shape—gain
by binary strings of length R which are transmitted across theVQ UsingW ., ; however, the reports of results in the literature
channel. The assignment is accomplished in a similar mannefa¥e thus far been limited to trellises with 256 or fewer states
in [14] for the pyramid VQ for the Laplacian source. First, thecause the design complexity of TCQ and TCVQ is somewhat
number of codevectors in each annulus of the shape codeb8BRhibitive for larger trellises. Trellis-based scalar-vector
is counted using the theta function. We report on specific resuftgantization (TB-SVQ) [42] performs slightly better than
using the Leech latticd,,, for which theW,, codes need a Shape—gain VQ usin® ,, at a rate o, but not at a rate d}.
one-time computation of the first few hundred coefficients of the . )
theta function of the Leech lattice, which are stored and used@s Computational Complexity

needed.

The arithmetic functions needed to implement the quantizer

It is assumed that there is an efficient method for assigniage addition, multiplication, division, trigonometric functions,
indexes to the underlying lattice. This is the case with marsguare root, and comparison. To make a rough estimate of com-

lattices, including the Leech lattic, (e.g., see [40]).

putational complexity (which, of course, is machine dependent)

The codevectors of the wrapped spherical code are assigmeticount one operation for any arithmetic function.
to integers according to their quantized gain, annulus, and ordefn Table I, Step 1 requires no computation, and Step 2 re-
within their annulus, as follows. L&Y represent the number of quiresk multiplies,# — 1 additions, and one square root to cal-
annuli of the shape codebook. LEt be the number of points in culate the gain; ané divisions to calculate the shape. Step 3
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TABLE Il
COMPARISON OFVARIOUS QUANTIZATION SCHEMES FOR AMEMORYLESSGAUSSIAN SOURCE VALUES ARE LISTED AS SNRIN DECIBELS. BLANK ENTRIES
INDICATE THAT REFERENCEDWORK DOESNOT CONTAIN A RESULT. W 4, |S THE PROPOSEDSCHEME USING THE LEECH LATTICE AS A SHAPE CODEBOOK

Method Rate: | 1 2 3 4 5 6 7

Distortion-Rate function 6.02 | 12.04 | 18.06 | 24.08 | 30.10 | 36.12 | 42.14

Shape-gain VQ using Wy, 244 111.02 | 17.36 | 23.33 | 29.29 | 35.27 | 41.33

TB-SVQ (4 state) [42] 5.39 | 11.18 | 16.92

TB-SVQ (32 state) [42] 549 11.28 | 17.05

Wilson (128 state) [20,43] 547 | 10.87 | 16.78

TCQ (256 state) [20] 5.56 | 11.04 | 16.64

TCVQ (2D, 16 state) [26] 5.29 | 10.84 | 16.62 | 22.63

Entropy coded scalar quantizer [20,22] | 4.64 | 10.55 | 16.56 | 22.55 | 28.57 | 34.59 | 40.61

SVQ (estimated) [14] 4.49 | 10.51 | 16.53 | 22.55 | 28.57 | 34.59 | 40.61

GLA (kR=8) (simulation) 10.65 20.98

Z'S lattice [16] 10.07 | 15.52 | 21.00 | 26.16 | 32.07 | 37.68

Unrestricted polar Quantizer [44] 440 | 9.63

Lloyd-Max Scalar [18,22] 440 | 930 | 14.62 | 20.22 | 26.02 | 31.89 | 37.81

Uniform scalar [17] 440 | 9.25 | 14.27 | 19.38 | 24.57 | 29.83 | 35.13
requires one scalar quantization operation, which can be per- TABLE IV

COMPARISON OF COMPUTATIONAL COMPLEXITIES OF QUANTIZATION

formed by a binary search with at mdsk, comparisons. Step =
R K . e . HEMES FOR AMEMORYLESS GAUSSIAN SOURCE DATA FOR OTHER
4 requiredog, N < kR, comparisons to identify; one addi- METHODS ARE TAKEN FROM [20, TABLE XlI]. k = DIMENSION, R =
tional trigonometric function, one difference, one division, and RATE, S = NUMBER OF TRELLIS STATES
one multiplication to compute
P P Method Computations
_ . .1 _ ) .

152 = S| = 2sin((sin™" z) — @i)/2); Shape-gain VQ using Wj,, R+126
one trigonometric function to compuii€S.)'|| = cos(« ); one TCQ (doubled alphabet) [20] 3S+4R+4
difference to computd/(S.)'|| — ||St — S]|; one multiplica-
tion, one difference, and one square root to compjite| = TCQ (quadrupled alphabet) [20] 35+8R+38
/1 — z3;and one divisio_n anél—1 multiplications to compute Generalized Lloyd algorithm (GLA) [4] 9kR+1
hi(S). Thus, Step 4 requires no more thias kR, + 10 opera- — : : o
tions. Step 5 requires the number of steps in a nearest neighbc| Wilson’s stochastic trellis [44] S-2
algorithm for A. For the Leech lattice, the fastest known algo- | Pearlman’s stochastic trellis [3] (S +2)2R

rithm requires about 2955 operations on average [45]. Step €

requiresk — 1 squaringsf — 2 additions, and one square root

to determing|h; (.5)||; one difference and one division to detercoded quantization (TCQ). Table IV summarizes these com-

minel/([[(SL)'|| = ||7:(S)|]); £—1 multiplications to determine plexities.

the firstk — 1 coordinates of.; ' (/;(.S)); and one square, one

difference, and one square root to determine the last coordinate. \/ GENERALIZATIONS OF THE SHAPE-GAIN CODER

Thus, Step 6 require3k + 2 operations. Step 7 requires one )

multiplication and two additions to determine the index. Alto?: Non-Gaussian Sources

gether, this amounts to at most 4+ 7) + L + 15 arithmetic Inherent in the treatment thus far is that the source has a

operations, wherg is the dimensionf? is the rate, and. is the Gaussian distribution, for if the source is not Gaussian then the

computational complexity of the nearest neighbor algorithm bfgh-probability region may not be a sphere, but some other

A. Thus, per sample, the computational complexity is at masthape [46], and the wrapped SVQ cannot be effectively used.

R+7+(L+15)/k.FortheW ,,, the parameters ake= 25and This section presents a method to obtain the performance above

L = 2955, and the computational complexity is upper-boundefdr any memoryless source. The method consists of transform

by R + 119. coding the source. Typically, transform coding is done to re-
Thus, the computational complexity of shape—gain VQ usingove dependencies between consecutive samples of the source;

W 4 grows linearly with rate, and is comparable to that of trellidaere, it is used to change the distribution of the source, which
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may or may not already be i.i.d., to be roughly Gaussian attik gain, gains could be blocked together and vector-quantized,
i.i.d., so that wrapped SVQ may still be used. This same inta¥, if fixed-rate quantization is not required, entropy-coded.

ition was used in [10] to quantize an arbitrary source and obtadr, we may remove the assumption that the gain and shape
distortion performance that approximates that of a scalar quaiwdebooks operate independently. With a gain-dependent shape
tizer for a Gaussian source. Unlike the approach in [10], in thi®debook, there could be a different shape codebook associated
section the source is transformed in blocks, instead of using\iith each quantized gain value. With a shape-dependent gain

nite-impulse response (FIR) filters. codebook, we could choogeto minimize||.X — §$‘|| instead
Let Q(-) be the output of ang-dimensional VQ. Let of [|lg — g||-

X1 Xt Xk—1)m+1 VI. CONCLUSION

X = ; = U The wrapped spherical VQ for the memoryless Gaussian
Xm  Xom Xk source achieves distortions that are in many cases lower than
where X; € R has an arbitrary distribution. Lek,, be a other published results. The operating complexity of the
Hadamard matrix of ordem, i.e., anm x m matrix with +1 quantizer grows linearly with the rate, and for moderate rates is
and—1 entries only, such thatZ H,, = mI. Such matrices dominated by the complexity of the nearest neighbor algorithm
are known to exist when the order is any powerpand for of the underlying lattice. This complexity is comparable or
many other orders as wéllLet H,,, = (1//m)H,,. GivenX, slightly less than other efficient quantization techniques such
the VQ output isH ., Q(H,, X). f Y = H,,, X, Y =Q(Y),and as pyramid vector quantization of the Laplacian source [14],

e=Y -V, then it follows that TCQ [20], and TCVQ [26]. We note that sphere packings other
. e than lattices may be used to create the shape codebook. In this
X =H,Y case, more than one type of Voronoi cell results, and an average
=HL(Y +¢) over all the different Voronoi cells is necessary to compute the
=HT(H,X +e¢) MSE of the scaled packing.
=H'H,X +HLe
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