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On the Rate-Distortion Function of Random Vectors in the sense that
and Stationary Sources with Mixed Distributions Rx~(D) = lh(X”) — %log (2mweD) + o(1) (1)
n Z
Andras Gyrgy, Tanas Linder,Member, IEEE whereo(1) — 0 as D — 0 ([2]-[4]).
and Kenneth ZegelSenior Member, IEEE One important feature of the Shannon lower bound is that it

easily generalizes to stationary sources. ket {X;}72, be a real
stationary source and for eaghlet X™ denote the vector of the first

Abstract—The asymptotic (small distortion) behavior of the rate- 5 samples ofY. The rate-distortion function at’ is defined by
distortion function of an n-dimensional source vector with mixed distribu- .
tion is derived. The source distribution is a finite mixture of components Rx(D) = ,11111‘ Rx=(D) (2
such that under each component distribution a certain subset of the coor- o e _
dinates have a discrete distribution while the remaining coordinates have (the limit is known to always exist [1]). The quantiti®x (D)
a joint density. The expected number of coordinates with a joint density represents the minimum achievable rate in lossy codihgwith
is shown to equal the rate-distortion dimension of the source vector. distortionD (see, e.g., [5]). Lek™ = (X1,---,X,) have a density
f"soathe exact small distortion asymptotic behavior of the rate-distortion -, finite differential entropy:(X™) for all n, and assume that the
unction of a special but interesting class of stationary information sources . . ) . 1 Ry e g
is determined. differential entropy rate:(X') = lim, .o, -h(X™) is finite. Then

the generalized Shannon lower boufit] is
Rx(D) > h(X) — log (2meD) 3)

and just as in the finite-dimensional case, this lower bound becomes
asymptotically tight in the limit of small distortions ([3], [4])-

Consider a random vector™ = (;Xl"'"’X”) taking values in - o source distributions without a density the Shannon lower
the n-dimensional Euclidean spade™. The rate-distortion function ,,5,nd has no immediate extension. However, Rosenthal and Binia

[1] of X™ relative to the normalizesquared error(expected squared [g have demonstrated that the asymptotic behavior of the rate-
Euclidean distance) criterion is defined for &ll> 0 by distortion function (which for sources with a density is given by
Rxn(D) = inf l](Xn;yn) (1)) can still be determined for more general distributions. They
nTlLE|XP=Y"2<D N considered the case when the distribution 0¥ is a mixture of
where the infimum of the normalized mutual informatiora discrete and a continuous component with nonnegative weights
LI(X™;Y™) (computed in bits) is taken over all joint distributions1 — « and «, respectively, where the continuous component is

Index Terms—Quantization, rate distortion theory, source coding.

. INTRODUCTION

of X" andY" = (}3,---,Y,) such that concentrated on af-dimensional linear subspace #" and has
1 . R ] . a density with respect to the Lebesgue measure on that subspace.
S EIXT =Y = > E[(X, -Y)*] < D. Equivalently, we are given an-dimensional random vectak (")
=1 with a discrete distribution, and anothedimensional random vector
Except for a few special cases, closed-form analytic expressiogs2) which is obtained by applying an orthogonal transformation
for Rx» (D) are not known, and only upper and lower boundg, y’ — (X}, -+, X}.0,---,0), where theL-dimensional random
are available. Arguably, the most important of these bounds is tUSctor(X{,---,X’L) has a density. Let be a binary random variable

well-known Shannon lower bounfl]. For X having an absolutely yih gistribution P(v = 0) = 1 — a and P(v = 1) = o, and let
continuous distribution with densit and a finitedifferential entropy ,, pe independent O(X(l), X®), It is assumed thafk™ can be
WX = — / Fa)log f(x) da written in the form |
X"=(1-)X" +,x®, 4)
the Shannon lower bound states that ] ) ]
1 " 1 The main result of [6] shows that a@ — 0, the rate-distortion
Bx»(D) 2 ;h (X7) = 3 log (2meD) function of X™ with such a mixed distribution is given asymptotically
where the logarithm is base The right-hand side equalgy~ (D) if Py the expression

and only if X™ can be written as a sum of two independent random Ryn(D) = 1 H l-a (1) Q '

- . . X - =— 4+ —HX")+ —h(X
vectors, one of which has independent and identically distributed xn(D) n ) n ( ) n WX
(i.i.d.) Gaussian components with zero mean and varidhde more _ ol lo 2wenD +o(1) ®)
general cases, the Shannon lower bound is strictly lessRhan D) 2n 08 al :

for all D >0, but it becomes tight in the limit of small distortionswhereH(V) andH(X(l)) denote discrete entropies andX’) is

. . -
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of (4) with 0 < < 1. Thus in general (5) cannot be used to obtaiparameterx = P(Z;, = 1). The wide range of possible choices for

the asymptotic behavior d?x (D) for stationary and ergodic sourcesthe stationary binary proce$<’; } and the density’ makes it possible

with memory and mixed marginals, although such source models &weaccurately model the image characteristics. Then formula (7) can

of practical interest, for example, in lossy coding of sparse images [Be used to compare the performance of a practical coding scheme
In this correspondence, we propose a more general mixture modéh the ideal performance given by the rate-distortion function.

and provide an extension of (5) to this class of source distributions.

Our model has the advantage of allowing stationary and ergodic Il. SOURCES WITH MIXED DISTRIBUTION

information sources. We assume that the distributionXdf is a Let (X0 = (XO,..., X)), j = 1,--., N'} be a finite collec-

mixture of finitely many component distributions such that each n iy

. . : .~ “Mion of R™-valued random vectors such that eaXk’ hasd; coor-
component has a certain number of coordinates with a dlscr%te

distribution while the remaining coordinates have a joint densit};vInates which have discrete distribution, and= n —d; coordinates

More formally, let{X‘), j = 1,---, N} be a finite collection of hich have a joint density. More formally, let” = {af,---, a3, }
random n-vectors such that for each exactly d; coordinates of be a subset ofL,- -+, n} of sized; such thatay <az < --- <ag,
X have a discrete distribution (thi-dimensional vector formed and let

by these “discrete coordinates” is denot&@’’) and the remaining pi — {bd,--- ,sz} ={l.---.n}\ A7, Vo<bl < < bij
cj = n — d; coordinates have a joint density (thg-dimensional

vector formed by these “continuous coordinates” is dencféd). be the complement oft’ in {1,---,n}. We assume that thé,-

As explained in the next section, we can assume without loggnensional random vector
of generality thatX”) and X" do not have all their discrete o , ,

. . -, .. . - X — X(J_) o Y(J-) (8)
coordinates in the same positionsjif# j'. Let V be a random < PERRRREE: O
variable taking values ir{1.---. N'} which is independent of the ' 4
X0, Our m?((jgal forX™ assumes that * = X(: , thatis, ifV = j,  which is chosen from among the coordinatesXd by the index
thenX™ = X*/’. Note thatl” is a function of X" with probabilityl.  set 47, has a discrete distribution with a finite or countably infinite

Let h(X)| X)) denote the conditional differential entropy of thenymber of atoms, while the; dimensional random vector
continuous coordinates of *) given its discrete coordinates, and let

H(X) denote the entropy of the discrete coordinateXéf. Our O = <X(jf), e X@) 9)
main result, Theorem 1, shows that Bs— 0 " be;

1 & » has an absolutely continuous distribution with a density. We also
Rxn(D)=—H(V)+ — ZajH(X“)) allow d; = n (X has a discrete distribution) ant} = 0 (X
n e has ann-dimensional density).
& o Let the source vectak ™ have a distribution which is a mixture of
+ = 3 ah(XV)XD) the distributions of theY ) with nonnegative weights, - - -, ax
na ¥, a; = 1). This means that for any measuralieC IR"
A
— —log(2meD/A) + o(1) (6) N :
2 P(X"€B)=> a;P(XY € B). (10)
wherea; = P(V = j)andA = L YN «jc;. Note that the =1

n =1

quantity nA is the average number of “continuous coordinates” dEquivalently, we can define an index random variabletaking

X". Formula (6) proves thatA is also the so-called rate-distortionvalues in{1,---, N'}, which is independent of th& ") and has the

dimension of X" [8]. distribution P(V = j) = «;, for j =1---, N. If X" is defined by
To illustrate the application of this result to sources with memory, xm = x(V (11)

let 2 = {Z;}32, be an arbitrary binary stationary source. We -

construct another stationary sourde= {X;}{2; in the following (ie., if V = j, thenX" = X)) then X" has a distribution given

manner. IfZ; = 0, let X; have a fixed discrete distributiali, while  py (10).

if Zi =1, let X; have a densityf. We assume that the generating ithout loss of generality we will assume thatjif# j’, then
procedure is memoryless so that tkigare conditionally independent x () and X" do not have their discrete (and consequently their

given{Z;};2,. Then the procesfX; };=, is stationary. Note that the continuous) coordinates at the same positions, i.e.,
distribution of X™ does not have the binary mixture form of (4) if

n > 2. Thus (5) cannot be used to obtain the asymptotic behavior of AT A A (12)
Rxw (D) forn > 2 except when(Z;} is memoryless, in which case g yiherpise, by mixing the distributions &) and X" with
RXn_(D) = Rx%(D). On the othgr hand, for _alb‘, the distribution weightsa; /(a, +a,/) anda;s/(a; +a;r), one would obtain a new
of X_n has a mixture form for which (6) applies. As a consequenqfiription which, when assigned the weight+o;,, could replace
of this fact, Corollary 1 shows that a8 — 0 XU) and XU") in the definition of X". Therefore, we can assume

RX(D):H(Z)+(1—Q)H(P)—|—ah(f)—glog(QWED/Q)+O(1) that N < 2" since there ar@™ different possibilities for choosing
o ‘ 2 discrete coordinates.

™ In what follows we require thafX™ satisfy the following mild
where H(Z) = lim, LH(Z") is the entropy rate ofz, H(P) conditions.
and h(f) are the discrete and differential entropies Bfand f, a) All X have finite second moments:
respectively, andv = P_(Z,; =1). _ E|XY? < c. j=1,---,N.
The above construction can be used to model the formation of _
sparse images which have a large number of zero-valued pixels [7]b) For eacthJ)v, with j = 1,---, N, the conditional differential
In this case P is concentrated on the single value zero (i%6;,= 0 entropy(X| X)) is finite, and the entropy of the discrete

if Z = 0) and the fraction of nonzero pixels is controlled by the coordinatesH (X)) is finite.
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The next theorem is proved in Section llI.

Theorem 1: Assume X" is of the mixture form (11) such that

each component ) hasd, coordinates with a discrete distribution

andc; = n — d; coordinates with a joint density. Suppose k&”

satisfy a) and b). Then the asymptotic behavior of the rate-distortion
function of X" relative to the normalized squared error is given as

D — 0 by
1 1 & .
RXn(D) = —H(‘v) + — Z(}]H(X(]))
n n =
1 N
= (YD)
+ - Za_,h()s |X )
J=1
A , k
-5 log (2meD/A) + o(1) (13)
Wherei\ = :—7 Zj\;l ajc; andO(l) —~0asD — 0.

Remark: Kawabata and Dembo [8] defined thiate-distortion
dimensionof X" by

. nRxn» (D)
lim —————
D—0 —zlog(D)

provided the limit exists. The rate-distortion dimensionf with
ann-dimensional density is by (1). It is easy to see that X" has a

discrete distribution, its rate-distortion dimension is zero. The result
of Rosenthal and Binia in (5) demonstrates that if the continuous

component ofX™ has anL-dimensional density and weight, then
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to obtain that asD — 0
1 1 N
Ryn — - n - n_ n 1(/, )
xn(D)=—H(Z")+~ > PZ JH(XC)
zme{0,1}n
1 n___n (") v (z™)
+ = > P(Z" =X XY
277'6{0,1}”

- %log (27eD/a) + o(1) (14)

where

—_

Z P(Z" =2")e(z")

zme{0,1}n

LBz = Pz = 1)
n
since{Z,} is stationary. Moreover, by independence, we have
H(X©")y = d(z")H(P)
and
MXEDXCE) = ")
Since we also have

! > Pz =

znefo,1}n

n
Z

Yd(z")=1—-«

(14) can be simplified to
Rxn(D) = “H(Z") 4 (1= a)H(P) + ah(f)

- % log (2meD /) + o(1). (15)

its rate-distortion dimension is.L. Theorem 1 shows that for the 1o this, the following corollary of Theorem 1 is almost immediate.

mixed distributions we consider, the rate-distortion dimension is

. nRxn (D)
lim ————— =nA
5% “Tlog (D)

where nA PO
continuous coordinates df " is also the effective dimension of"

in the rate-distortion sense.

Example: One immediate application of Theorem 1 concerns
processes which are obtained by passing a binary stationary source

through a memoryless channel. L&t = {Z;};2, be an arbitrary
stationary source taking values if),1}, and consider a time-

invariant memoryless channel with binary input and real-valued

output. The output of the channel has a discrete distribuffoif

ajc;. Thus the expected number of the

Corollary 1: Let ¥ = {X}/L, be the stationary process of the
previous example and lelf (Z) = lim, - H(Z") be the entropy
rate of the generating binary stationary soute= {Z;}2,. Then
asD — 0

Rx(D) = H(Z)+ (1 — a)H(P) + ah(f)
- % log (2weD/a) + o(1).

Proof: Using more precise notation, (15) can be rewritten as

Rx»(D)

nlﬂ(z”) + (1= a)H(P) + ah(f)
- % log (2meD/a) + €(n, D) (16)

wheree(n, D) — 0 asD — 0 for all n. Since we do not claim that

the input is0, and an absolutely continuous distribution with density(,, 1) converges to zero uniformly for all, we cannot simply take

f if the input is1. We will assume thaf and P have finite variance
and thatH (P) and h(f) are finite.

Suppose the stationary proce¥s= {X;}{2, is generated as the
output of this channel if the input i§Z;}:2,. Fix n > 1. Since the

channel is memoryless,,---, X,, are conditionally independent

given Z". For z" € {0,1}", let X©*") be a randomn-vector
having distribution equal to the conditional distribution ®f" given
Z" = z",and letd(z") andc(z") denote the number @fs andl’s,
respectively, in the binary string”. Then the coordinateﬁ(f;n)
for which z; 0 form a d(z")-dimensional i.i.d. random vector
X" with a discrete marginal distributio®, and theX*") for
which z; = 1, form ac(z")-dimensional i.i.d. random vectox ")
with marginal densityf. It follows that X" has the type of mixture
distribution considered in Theorem 1 witf* componentsX *™)
indexed byz", where X©*™) has weightP(Z" = ="). Therefore,
we can apply Theorem 1 with' = Z" anda(z") = P(Z" = z")

the limit asn — oo of both sides of (16) to obtain the asymptotic
behavior of Rx (D) = lim,, Rx~ (D). Fortunately, it is known [9]
that

1 N
|[Rx»(D)— Rx(D)| < ﬁI(X S X0y Xo1,-00)

where Xy, X_1,--- are samples from the two-sided stationary ex-
tension of{X,}/-,. Therefore iflim, I(X";Xo,X 1,---) =0,
thenRx~ (D) converges ta?x (D) uniformly for all D. Since each
Z; is a function of X; with probability 1, and since theX; are
conditionally independent givefiZ; }, we have

I(}(“;Xon_l,"') :I(Z,l;Zo,Z_l,"').
Thus

lim lI(X";Xongl-/ ) =0

n n
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if Proof: For eachD >0, letY™ be a random-vector achieving
Rx~ (D) in the sense that

3 1 ", j—
1171;11 ;I(Z 7Z07Z—1-/"') _0 I()(n’yrn) — nRXn(D) and E”Xn _}anZ S D

which always holds because ti#& have a finite alphabet (see, e.g.Since E[|X"||* < oo, suchY™ always exists (see, e.g., [11]). Note
[5, Corollary 6.4.1]). that we have suppressed the dependende”obn D in the notation.

On the other hand, denoting It is readily seen that’ is a function ofX™ with probability 1 since
by (12) the distributions of th& ), for j = 1,---, N are mutually
R.(D) = EH(Zn) + (1= a)H(P) + ah(f) — % log (2meD/a) singular. This and the chain rule for mutual information imply
2 I(‘Xvn;}fn) — I(‘Xvn‘/‘/r;yrn)

n

and =I(V:Y") + (X" Y"|V)
[e , N
R(D)=H(Z)+ (L —«)H(P)+ ah(f) — 0 log (2rmeD /) —I(ViY") + Z(}'J[(X(]); Yy 7

=1
we obviously have thaR, (D) converges td?(D) uniformly for all ’

D asn — co. These two facts readily imply that whereY?) denotes a random-vector whose distribution is equal

to the conditional distribution o¥ ™ given V' = j. Lemma 3 given

lim (R/\’(D) + %log(QﬁeD/oz) —H(Z) in the Appendix implies that
n=e lim I(V;Y™) = H(V). (18)
—(1=a)H(P) - ah(f) ) =0 p—o
Next we will consider the terms in the sum in (17) individually.
which is equivalent to the claim of Corollary 1. O Recall (8) and (9) definingt”’ and X7, the discrete and the

) ] “continuous coordinates of ), respectively. By the chain rule we
Corollary 1 suggests a method that is near-optimal for encodipgye

{X;} with small distortion. SinceZ" is a function of X™ it can ). ) () 0U). 0D
: , " R - (XY, v0)y = (X0, X0,y

be losslessly encoded using approximat&lyZ™) bits. The binary ’ : 7 . .

vector Z" specifies the positions of the “discrete” and “continuous” = I(X("):, Y(")) +I(X"; Y(")IX(")). (19)

samples of X". Therefore, thed(Z") discrete samples can be L () ) ) v () () (7)1
. . ; Intr ingy") = (Y, ... Y'Y ndYV =Y, ..., Y/,

losslessly encoded using approximatelyZ™)H (P) bits and the troducing ( al 7 afi_) and ( by 7 b2, )

e(Z™) continuous samples can be encoded with overall squard first term of (19) is sandwiched as

distortion c(_Z”)D_/a us_ipg a vector quantize_r which _is optimal for H(XW) > 1( XD vy > (XD 7D > d,R ¢ 5y (p)

the ¢(Z™)-dimensional i.i.d. random vector with marginal densfty c

By (1), the vector quantizer will need approximately wherep = (1/d,)E| X =Y ||?, and whereR ¢ ;) (p) is the rate-
distortion function ofX"). Sinced; R, (0) = H(X) and the
c(Z™"(f) — (e(Z™)/2)1og (2meD /) rate-distortion function (relative to the squared error) of a discrete

random variable is continuous at zero (see, e.g., [11, Theorem 2.4]),
bits. The normalized expected squared error of this schen®, is the fact thatp — 0 asD — 0 implies
while for largen and smallD, the per-sample expected rate will be lim (X0 Y(”) _ H(X(”). (20)
close to D=0

For the second term in (19) we have

H(Z)+ (1 -a)H(P)+ ah(f) — (a/2)log (2meD/a). I(XD. YD) = o(XD)XD)) = o XDy D), X0

Intuition tells us, and Corollary 1 proves it formally, that this strategy > (XD XDy - p(XD 7))y (21)
is asymptotically optimal. > (X(j)|X(j)) _ %log (27eD;/c;)  (22)
. PROOES where D; = E||X© — Y@ |2, In (21), we used the fact that

The proof of Theorem 1 is given in two parts. First we show irc]:ondltlonlng reduces differential entropy, and (22) holds because

Lemma 1 that the right-hand side of (13) is an asymptotic lower bound  A(X"[Y) = (XY — Y7 0)) < p(XV - 7))
on Ry~ (D). Then a matching upper bound is proved in Lemma Z,q 1y a well-known result [12], the differential entropy of the
Our method of proof is based partially on [6], but with the hel;mensional random vectofZ = X — v ig upper-bounded
of techniques developed in [4] and [10], we have managed to giyg
simpler proofs of more general results. 9
MZ) < (c;/2)log 2meE||Z|"/c;)-

Note thath(X ) — Y@) is well defined and finite sincé (X))
and I(X;Y)) are finite.

In summary, (17)—(22) show that & — 0

nBRxn»(D)=I1(X";Y")

Lemma 1: AssumeX ™ is of the mixture form (11) and conditions
a) and b) hold. Let\ = L S = «;¢;. Then we have

n =1
liminf { Rxo (D) + ~log (2reD/A)
imin xn 7 og (2meD/!

N N N
> %H(V) + %ZQJH(X’(”) > H(V)+ Y oy HEXY) 43 a;n(X9 X))
2 o j=1 7=1
1 X o _ LN
+ - Zajh(X(])|X(J)). -3 Zaij' log (2meDj/cj) + o(1) (23)
1=

7j=1
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where (18) and (20) have been incorporated into a single i where (29) holds because!’) = X©). Recall that the differ-
which converges to zero a® — 0. Recall that we have defined ential entropy of a Gaussian random variable WithbvariamEeibs

A =21 Y% ajc;. Then Jensen’s inequality and the convexity of log (27es?) [12]. Therefore, the independence &f? and Z*)

the logarithm imply implies

1 X nA a0 D,
2 > ajejlog (2meD;/e;) < 5 log <2’T€Z oA T;)

7=1 Jj=1

XD 4+ ZO|XO XDy = p(z0) = %log(QTreD/A) (31)

where the last equality follows becaug&”’ hasc; coordinates with

< % log (2meD/A) (24) common varianceD /A. On the other hand, [13, Lemma 1] impltes
. ; T L 7D @y = (X FO
since ’1)1310 XY 4+ Z9 | X)) = (XY X)) (32)
N N
s e From (27)-(32) we can conclude that
1 > a;D; = 1 > o EIXY -y < p. (@N~32)
n j=1 T " Jj=1 ’

N N
IX™Y") =HV)+ Y aHXD) + > ah(XV[X )

Substitution of (24) into (23) completes the proof of the lemnia. =1 i=1
Lemma 2: AssumeX" is of the mixture form (11) and conditions _A log (2weD/A) + o(1)
a) and b) hold. Let\ = & 5= | a;c;. Then we have 2

n

whereA = L 3 ajc; ando(1) — 0 asD — 0. Since

=1
lim sup <RX77,(D) + %log (QTrCD/A)) ! 1
D—0 N R‘\'”(D) S _I(JYTI;'}/'IL)
Ly LS () "
< QH(" )+ > ZO“J'H(X ) the proof is complete. O
7=1

1 N iy .

4= Za’jh(l\’(J”X(])). (25) APPENDIX
"3 Lemma 3: SupposeX™ is of the mixture form (11) and let

Proof: For eachj € {1,---,N} define then-dimensional {Y:. 172, be a sequence of-dimensional random vectors such that

random vecto” /) by settingt ") = X andy') = X 4 70, lim E||X" - Y| = 0. (33)
where Z\) is a ¢,-dimensional i.i.d. Gaussian random vector with Fmee

zero mean and variandg/A. It is assumed thaZ’) is independent Then

of X and the index random variablé. In other words,Y ) is
obtained by adding independent Gaussian noise of variance to
the continuous coordinates &f’). Let Y* be the mixture of these
distributions, i.e., defin@™ = Y(¥). The expected squared error
of Y" is

A’lim I(V:Y,) = H(V).
Proof: From (12) we have thal” is function of X" with

probability 1. Therefore,

N , - I(V,X")y=H(V).
Z a,],E”X(J) _ Y(J) ”2

j=1

1 n n(2
CE|X" -y =

S| =

On the other hand, singé”, Y},) converges in distribution toV, X™)
by (33), the lower semicontinuity of the mutual information (see [11,

N . .
_ 1 ZajEHX‘“) ROl Lemma 2.2]) implies that
A liminf 7(V.Yi) > I(V.X") = H(V).
N e
1 D
== Za,'cj-x =D (26) SinceI(V,Y:) < H(V), the lemma is proved. O
j=1

and, therefore, by definitio? x~ (D) < %I(X"; Y™). In a similar ACKNOWLEDGMENT
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Il. THE MAXIMA OF GAUSSIAN NOISE
The D|s-tr|but|o-ns of Local Extrema of Since the noisex(t) and its first two derivatives all have
Gaussian Noise and of Its Envelope mean 0 and variancesE{z*} = o¢%, E{i*} = 47%p%¢?, and
E{#*} = 16a*M,0?, and covarianceE{z+} = E{#i#} = 0 and
Nelson M. Blachmantife Fellow, IEEE E{z#} = —4n%0?, and they are jointly normal, their joint pdf is
z2 &2 (i44n2p2x)?
. —— . eXp (_F - 8r2p2s2 - 327402(1\/[47{)4)>

Abstract—Crameér and Leadbetter’s result for the distribution of the plo, &, %) = @)

local maxima of stationary Gaussian noise is studied and plotted. Its (27m)9/2pa3 /My — p*

derivation is used for finding the distributions of the local maxima

and minima of the envelope of narrowband Gaussian noise. These |t will be convenient to let

distributions, too, are studied and plotted, including the limiting cases

of very wide and narrow noise spectra. ma A, L — p4

Index Terms—Distributions of local envelope extrema, distributions of
local extrema, wide- and narrowband Gaussian noise. denote the amount by whichl, exceeds its least possible valpk

for a givenp, which it has when the spectrum eft) is concentrated
entirely on the frequency, andx(t) is sinusoidal with a Rayleigh-

I INTRODUCTION distributed amplitude.

Local maxima of the envelope of Gaussian noise can, for exampleThe noisex(¢) will pass through a maximum during the time
be mistaken for pulsed signals and can adversely affect synchronizgfgerval (¢, t + dt) if, at timet, & > 0 and is sufficiently negative to
They can also interfere destructively with an FM signal to prodquﬁng # down to zero within timelt, i.e., if # < 0 and0 < & — & dt.
“clicks” in a receiver's output. Hence, it can be useful to knovpuring this d¢ in the neighborhood of a maximum, will change

the distribution of such maxima and of the minima that appegy a second-order infinitesimal(|#| d¢*), which can be neglected
between successive maxima. Cimand Leadbetter [1] have foundin comparison withdz, and so the maximum will lie in the interval

the distribution of the local maxima of wideband Gaussian noisgy, » + d.) with a probability given by multiplying (2) bylz and
—& dt and integrating over all negativie Settingé = 0 in p(«, &, #)
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