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On the Rate-Distortion Function of Random Vectors
and Stationary Sources with Mixed Distributions
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and Kenneth Zeger,Senior Member, IEEE

Abstract—The asymptotic (small distortion) behavior of the rate-
distortion function of an n-dimensional source vector with mixed distribu-
tion is derived. The source distribution is a finite mixture of components
such that under each component distribution a certain subset of the coor-
dinates have a discrete distribution while the remaining coordinates have
a joint density. The expected number of coordinates with a joint density
is shown to equal the rate-distortion dimension of the source vector.
Also, the exact small distortion asymptotic behavior of the rate-distortion
function of a special but interesting class of stationary information sources
is determined.

Index Terms—Quantization, rate distortion theory, source coding.

I. INTRODUCTION

Consider a random vectorXn = (X1; � � � ; Xn) taking values in
then-dimensional Euclidean spaceIRn: The rate-distortion function
[1] of Xn relative to the normalizedsquared error(expected squared
Euclidean distance) criterion is defined for allD> 0 by

RX (D) = inf
n EEEkX �Y k �D

1

n
I(Xn;Y n)

where the infimum of the normalized mutual information
1

n
I(Xn;Y n) (computed in bits) is taken over all joint distributions

of Xn andY n = (Y1; � � � ; Yn) such that

1

n
EEEkXn � Y

nk2 =
1

n

n

i=1

EEE[(Xi � Yi)
2] � D:

Except for a few special cases, closed-form analytic expressions
for RX (D) are not known, and only upper and lower bounds
are available. Arguably, the most important of these bounds is the
well-known Shannon lower bound[1]. For Xn having an absolutely
continuous distribution with densityf and a finitedifferential entropy

h(Xn) = � f(x) log f(x) dx

the Shannon lower bound states that

RX (D) �
1

n
h(Xn)�

1

2
log (2�eD)

where the logarithm is base2. The right-hand side equalsRX (D) if
and only ifXn can be written as a sum of two independent random
vectors, one of which has independent and identically distributed
(i.i.d.) Gaussian components with zero mean and varianceD: In more
general cases, the Shannon lower bound is strictly less thanRX (D)
for all D> 0, but it becomes tight in the limit of small distortions
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in the sense that

RX (D) =
1

n
h(Xn)�

1

2
log (2�eD) + o(1) (1)

whereo(1) ! 0 asD ! 0 ([2]–[4]).
One important feature of the Shannon lower bound is that it

easily generalizes to stationary sources. LetX = fXig
1
i=1 be a real

stationary source and for eachn, letXn denote the vector of the first
n samples ofX : The rate-distortion function ofX is defined by

RX (D) = lim
n!1

RX (D) (2)

(the limit is known to always exist [1]). The quantityRX (D)

represents the minimum achievable rate in lossy codingX with
distortionD (see, e.g., [5]). LetXn = (X1; � � � ; Xn) have a density
and finite differential entropyh(Xn) for all n, and assume that the
differential entropy rateh(X ) = limn!1

1

n
h(Xn) is finite. Then

the generalized Shannon lower bound[1] is

RX (D) � h(X )� 1

2
log (2�eD) (3)

and just as in the finite-dimensional case, this lower bound becomes
asymptotically tight in the limit of small distortions ([3], [4]).

For source distributions without a density the Shannon lower
bound has no immediate extension. However, Rosenthal and Binia
[6] have demonstrated that the asymptotic behavior of the rate-
distortion function (which for sources with a density is given by
(1)) can still be determined for more general distributions. They
considered the case when the distribution ofXn is a mixture of
a discrete and a continuous component with nonnegative weights
1 � � and �, respectively, where the continuous component is
concentrated on anL-dimensional linear subspace ofIRn and has
a density with respect to the Lebesgue measure on that subspace.
Equivalently, we are given ann-dimensional random vectorX(1)

with a discrete distribution, and anothern-dimensional random vector
X(2) which is obtained by applying an orthogonal transformation
to X 0 = (X 0

1; � � � ; X
0

L; 0; � � � ; 0); where theL-dimensional random
vector(X 0

1; � � � ; X
0

L) has a density. Let� be a binary random variable
with distributionPPP (� = 0) = 1 � � andPPP (� = 1) = �, and let
� be independent of(X(1); X(2)): It is assumed thatXn can be
written in the form

Xn = (1� �)X(1) + �X(2): (4)

The main result of [6] shows that asD ! 0, the rate-distortion
function ofXn with such a mixed distribution is given asymptotically
by the expression

RX (D) =
1

n
H(�) +

1� �

n
H(X(1)) +

�

n
h(X 0)

�
�L

2n
log

2�enD

�L
+ o(1) (5)

whereH(�) andH(X(1)) denote discrete entropies andh(X 0) is
the differential entropy ofX 0: We note here that Rosenthal and
Binia made an error in the derivation (see [6, eq. (27)]) and, in fact,
arrived at an incorrect formula instead of the correct expression (5).
Their asymptotic expression exceeds (5) by the nonnegative constant
(�L=2n) log (1=�):

Although the mixture model Rosenthal and Binia considered can be
very useful for modeling memoryless signals encountered in certain
practical situations, its use in modeling information sources with
memory and mixed marginals is rather limited. In particular, it is
easy to see that a sourcefXig

1

i=1 cannot be ergodic if, for alln, the
samplesXn = (X1; � � � ; Xn) have a mixture distribution in the form
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of (4) with 0<�< 1: Thus in general (5) cannot be used to obtain
the asymptotic behavior ofRX (D) for stationary and ergodic sources
with memory and mixed marginals, although such source models are
of practical interest, for example, in lossy coding of sparse images [7].

In this correspondence, we propose a more general mixture model
and provide an extension of (5) to this class of source distributions.
Our model has the advantage of allowing stationary and ergodic
information sources. We assume that the distribution ofXn is a
mixture of finitely many component distributions such that each
component has a certain number of coordinates with a discrete
distribution while the remaining coordinates have a joint density.
More formally, let fX(j); j = 1; � � � ; Ng be a finite collection of
randomn-vectors such that for eachj exactly dj coordinates of
X(j) have a discrete distribution (thedj-dimensional vector formed
by these “discrete coordinates” is denotedX̂(j)) and the remaining
cj = n � dj coordinates have a joint density (thecj-dimensional
vector formed by these “continuous coordinates” is denoted~X(j)).
As explained in the next section, we can assume without loss
of generality thatX(j) and X(j ) do not have all their discrete
coordinates in the same positions ifj 6= j0: Let V be a random
variable taking values inf1; � � � ; Ng which is independent of the
X(j): Our model forXn assumes thatXn = X(V ), that is, ifV = j,
thenXn = X(j): Note thatV is a function ofXn with probability1.

Let h( ~X(j)jX̂(j)) denote the conditional differential entropy of the
continuous coordinates ofX(j) given its discrete coordinates, and let
H(X̂(j)) denote the entropy of the discrete coordinates ofX(j): Our
main result, Theorem 1, shows that asD ! 0

RX (D) =
1

n
H(V ) +

1

n

N

j=1

�jH(X̂(j))

+
1

n

N

j=1

�jh( ~X
(j)jX̂(j))

�
�

2
log (2�eD=�)+ o(1) (6)

where�j = PPP (V = j) and � = 1
n

N

j=1 �jcj : Note that the
quantity n� is the average number of “continuous coordinates” of
Xn: Formula (6) proves thatn� is also the so-called rate-distortion
dimension ofXn [8].

To illustrate the application of this result to sources with memory,
let Z = fZig

1

i=1 be an arbitrary binary stationary source. We
construct another stationary sourceX = fXig

1

i=1 in the following
manner. IfZi = 0, letXi have a fixed discrete distributionP , while
if Zi = 1, let Xi have a densityf: We assume that the generating
procedure is memoryless so that theXi are conditionally independent
givenfZig1i=1: Then the processfXig

1

i=1 is stationary. Note that the
distribution ofXn does not have the binary mixture form of (4) if
n � 2: Thus (5) cannot be used to obtain the asymptotic behavior of
RX (D) for n � 2 except whenfZig is memoryless, in which case
RX (D) = RX (D): On the other hand, for alln, the distribution
of Xn has a mixture form for which (6) applies. As a consequence
of this fact, Corollary 1 shows that asD ! 0

RX (D)=H(Z)+(1��)H(P)+�h(f)�
�

2
log (2�eD=�)+o(1)

(7)

where H(Z) = limn
1
n
H(Zn) is the entropy rate ofZ, H(P )

and h(f) are the discrete and differential entropies ofP and f ,
respectively, and� = PPP (Zi = 1):

The above construction can be used to model the formation of
sparse images which have a large number of zero-valued pixels [7].
In this case,P is concentrated on the single value zero (i.e.,Xi = 0
if Z = 0) and the fraction of nonzero pixels is controlled by the

parameter� = PPP (Zi = 1): The wide range of possible choices for
the stationary binary processfZig and the densityf makes it possible
to accurately model the image characteristics. Then formula (7) can
be used to compare the performance of a practical coding scheme
with the ideal performance given by the rate-distortion function.

II. SOURCES WITH MIXED DISTRIBUTION

Let fX(j) = (X
(j)
1 ; � � � ; X

(j)
n ); j = 1; � � � ; Ng be a finite collec-

tion of IRn-valued random vectors such that eachX(j) hasdj coor-
dinates which have discrete distribution, andcj = n�dj coordinates
which have a joint density. More formally, letAj = faj1; � � � ; a

j

d g

be a subset off1; � � � ; ng of sizedj such thataj1<aj2< � � � <ajd ;

and let

Bj = fbj1; � � � ; b
j
c g = f1; � � � ; ng nAj ; bj1<bj2< � � � <bjc

be the complement ofAj in f1; � � � ; ng: We assume that thedj-
dimensional random vector

X̂(j) = X
(j)

a
; � � � ; X

(j)

a
(8)

which is chosen from among the coordinates ofX(j) by the index
setAj , has a discrete distribution with a finite or countably infinite
number of atoms, while thecj dimensional random vector

~X(j) = X
(j)

b
; � � � ; X

(j)

b
(9)

has an absolutely continuous distribution with a density. We also
allow dj = n (X(j) has a discrete distribution) anddj = 0 (X(j)

has ann-dimensional density).
Let the source vectorXn have a distribution which is a mixture of

the distributions of theX(j) with nonnegative weights�1; � � � ; �N
(�N

j=1 �j = 1): This means that for any measurableB � IRn

PPP (Xn 2 B) =

N

j=1

�jPPP (X
(j) 2 B): (10)

Equivalently, we can define an index random variableV taking
values inf1; � � � ; Ng; which is independent of theX(j) and has the
distributionPPP (V = j) = �j ; for j = 1 � � � ; N: If Xn is defined by

Xn = X(V ) (11)

(i.e., if V = j; thenXn = X(j)) thenXn has a distribution given
by (10).

Without loss of generality we will assume that ifj 6= j0, then
X(j) andX(j ) do not have their discrete (and consequently their
continuous) coordinates at the same positions, i.e.,

Aj 6= Aj if j 6= j0: (12)

For otherwise, by mixing the distributions ofX(j) andX(j ) with
weights�j=(�j +�j ) and�j =(�j +�j ), one would obtain a new
distribution which, when assigned the weight�j+�j , could replace
X(j) andX(j ) in the definition ofXn: Therefore, we can assume
that N � 2n since there are2n different possibilities for choosing
discrete coordinates.

In what follows we require thatXn satisfy the following mild
conditions.

a) All X(j) have finite second moments:

EEEkX(j)k2<1; j = 1; � � � ; N:

b) For eachX(j); with j = 1; � � � ; N; the conditional differential
entropyh( ~X(j)jX̂(j)) is finite, and the entropy of the discrete
coordinatesH(X̂(j)) is finite.
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The next theorem is proved in Section III.

Theorem 1: AssumeXn is of the mixture form (11) such that
each componentX(j) hasdj coordinates with a discrete distribution
andcj = n� dj coordinates with a joint density. Suppose theX(j)

satisfy a) and b). Then the asymptotic behavior of the rate-distortion
function ofXn relative to the normalized squared error is given as
D ! 0 by

RX (D) =
1

n
H(V ) +

1

n

N

j=1

�jH(X̂(j))

+
1

n

N

j=1

�jh( ~X
(j)jX̂(j))

�
�

2
log (2�eD=�)+ o(1) (13)

where� = 1
n

N

j=1 �jcj ando(1) ! 0 asD ! 0:

Remark: Kawabata and Dembo [8] defined therate-distortion
dimensionof Xn by

lim
D!0

nRX (D)

� 1
2
log (D)

provided the limit exists. The rate-distortion dimension ofXn with
ann-dimensional density isn by (1). It is easy to see that ifXn has a
discrete distribution, its rate-distortion dimension is zero. The result
of Rosenthal and Binia in (5) demonstrates that if the continuous
component ofXn has anL-dimensional density and weight�, then
its rate-distortion dimension is�L: Theorem 1 shows that for the
mixed distributions we consider, the rate-distortion dimension is

lim
D!0

nRX (D)

� 1
2 log (D)

= n�

where n� = N

j=1 �jcj : Thus the expected number of the
continuous coordinates ofXn is also the effective dimension ofXn

in the rate-distortion sense.

Example: One immediate application of Theorem 1 concerns
processes which are obtained by passing a binary stationary source
through a memoryless channel. LetZ = fZig

1
i=1 be an arbitrary

stationary source taking values inf0; 1g, and consider a time-
invariant memoryless channel with binary input and real-valued
output. The output of the channel has a discrete distributionP if
the input is0, and an absolutely continuous distribution with density
f if the input is1. We will assume thatf andP have finite variance
and thatH(P ) and h(f) are finite.

Suppose the stationary processX = fXig
1
i=1 is generated as the

output of this channel if the input isfZig1i=1: Fix n � 1: Since the
channel is memoryless,X1; � � � ; Xn are conditionally independent
given Zn: For zn 2 f0; 1gn, let X(z ) be a randomn-vector
having distribution equal to the conditional distribution ofXn given
Zn = zn, and letd(zn) andc(zn) denote the number of0’s and1’s,
respectively, in the binary stringzn: Then the coordinatesX(z )

i

for which zi = 0 form a d(zn)-dimensional i.i.d. random vector
X̂(z ) with a discrete marginal distributionP , and theX(z )

i for
which zi = 1, form a c(zn)-dimensional i.i.d. random vector~X(z )

with marginal densityf: It follows thatXn has the type of mixture
distribution considered in Theorem 1 with2n componentsX(z )

indexed byzn, whereX(z ) has weightPPP (Zn = zn): Therefore,
we can apply Theorem 1 withV = Zn and�(zn) = PPP (Zn = zn)

to obtain that asD ! 0

RX (D) =
1

n
H(Zn) +

1

n
z 2f0;1g

PPP (Zn = zn)H(X̂(z ))

+
1

n
z 2f0;1g

PPP (Zn = zn)h( ~X(z )jX̂(z ))

�
�

2
log (2�eD=�) + o(1) (14)

where

� =
1

n
z 2f0;1g

PPP (Zn = zn)c(zn)

=
1

n
EEE[c(Zn)] = PPP (Zi = 1)

sincefZig is stationary. Moreover, by independence, we have

H(X̂(z )) = d(zn)H(P)

and

h( ~X(z )jX̂(z )) = c(zn)h(f):

Since we also have

1

n
z 2f0;1g

PPP (Zn = zn)d(zn) = 1� �

(14) can be simplified to

RX (D) =
1

n
H(Zn) + (1� �)H(P ) + �h(f)

�
�

2
log (2�eD=�) + o(1): (15)

From this, the following corollary of Theorem 1 is almost immediate.

Corollary 1: Let X = fXgni=1 be the stationary process of the
previous example and letH(Z) = limn

1
n
H(Zn) be the entropy

rate of the generating binary stationary sourceZ = fZig
1
i=1: Then

as D ! 0

RX (D) = H(Z) + (1� �)H(P ) + �h(f)

�
�

2
log (2�eD=�) + o(1):

Proof: Using more precise notation, (15) can be rewritten as

RX (D) =
1

n
H(Zn) + (1� �)H(P ) + �h(f)

�
�

2
log (2�eD=�) + �(n;D) (16)

where�(n;D)! 0 asD! 0 for all n: Since we do not claim that
�(n;D) converges to zero uniformly for alln, we cannot simply take
the limit asn ! 1 of both sides of (16) to obtain the asymptotic
behavior ofRX (D) = limn RX (D): Fortunately, it is known [9]
that

jRX (D)�RX (D)j �
1

n
I(Xn;X0; X�1; � � �)

whereX0; X�1; � � � are samples from the two-sided stationary ex-
tension offXig

n
i=1: Therefore iflimn

1
n
I(Xn;X0; X�1; � � �) = 0;

thenRX (D) converges toRX (D) uniformly for all D: Since each
Zi is a function ofXi with probability 1, and since theXi are
conditionally independent givenfZig, we have

I(Xn;X0; X�1; � � �) = I(Zn;Z0; Z�1; � � �):

Thus

lim
n

1

n
I(Xn;X0; X�1; � � �) = 0
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if

lim
n

1

n
I(Zn;Z0; Z�1; � � �) = 0

which always holds because theZi have a finite alphabet (see, e.g.,
[5, Corollary 6.4.1]).

On the other hand, denoting

Rn(D) =
1

n
H(Zn) + (1� �)H(P ) + �h(f)�

�

2
log (2�eD=�)

and

R(D) = H(Z) + (1� �)H(P ) + �h(f)�
�

2
log (2�eD=�)

we obviously have thatRn(D) converges toR(D) uniformly for all
D asn ! 1: These two facts readily imply that

lim
D!0

RX (D) +
�

2
log (2�eD=�)�H(Z)

� (1� �)H(P )� �h(f) = 0

which is equivalent to the claim of Corollary 1.

Corollary 1 suggests a method that is near-optimal for encoding
fXig with small distortion. SinceZn is a function ofXn it can
be losslessly encoded using approximatelyH(Zn) bits. The binary
vectorZn specifies the positions of the “discrete” and “continuous”
samples ofXn: Therefore, thed(Zn) discrete samples can be
losslessly encoded using approximatelyd(Zn)H(P) bits and the
c(Zn) continuous samples can be encoded with overall squared
distortion c(Zn)D=� using a vector quantizer which is optimal for
the c(Zn)-dimensional i.i.d. random vector with marginal densityf:
By (1), the vector quantizer will need approximately

c(Zn)h(f)� (c(Zn)=2) log (2�eD=�)

bits. The normalized expected squared error of this scheme isD,
while for largen and smallD, the per-sample expected rate will be
close to

H(Z) + (1� �)H(P ) + �h(f)� (�=2) log (2�eD=�):

Intuition tells us, and Corollary 1 proves it formally, that this strategy
is asymptotically optimal.

III. PROOFS

The proof of Theorem 1 is given in two parts. First we show in
Lemma 1 that the right-hand side of (13) is an asymptotic lower bound
on RX (D): Then a matching upper bound is proved in Lemma 2.
Our method of proof is based partially on [6], but with the help
of techniques developed in [4] and [10], we have managed to give
simpler proofs of more general results.

Lemma 1: AssumeXn is of the mixture form (11) and conditions
a) and b) hold. Let� = 1

n

N

j=1 �jcj : Then we have

lim inf
D!0

RX (D) +
�

2
log (2�eD=�)

�
1

n
H(V ) +

1

n

N

j=1

�jH(X̂(j))

+
1

n

N

j=1

�jh( ~X
(j)jX̂(j)):

Proof: For eachD> 0; let Y n be a randomn-vector achieving
RX (D) in the sense that

I(Xn; Y n) = nRX (D) and EEEkXn � Y nk2 � D:

SinceEEEkXnk2<1; suchY n always exists (see, e.g., [11]). Note
that we have suppressed the dependence ofY n onD in the notation.
It is readily seen thatV is a function ofXn with probability1 since
by (12) the distributions of theX(j); for j = 1; � � � ; N are mutually
singular. This and the chain rule for mutual information imply

I(Xn;Y n) = I(Xn; V ;Y n)

= I(V ;Y n) + I(Xn;Y njV )

= I(V ;Y n) +

N

j=1

�jI(X
(j); Y (j)) (17)

whereY (j) denotes a randomn-vector whose distribution is equal
to the conditional distribution ofY n given V = j: Lemma 3 given
in the Appendix implies that

lim
D!0

I(V ;Y n) = H(V ): (18)

Next we will consider the terms in the sum in (17) individually.
Recall (8) and (9) definingX̂(j) and ~X(j), the discrete and the
continuous coordinates ofX(j), respectively. By the chain rule we
have

I(X(j); Y (j)) = I(X̂(j); ~X(j); Y (j))

= I(X̂(j); Y (j)) + I( ~X(j); Y (j)jX̂(j)): (19)

IntroducingŶ (j) = (Y
(j)

a
; � � � ; Y

(j)

a
) and ~Y (j) = (Y

(j)

b
; � � � ; Y

(j)

b
);

the first term of (19) is sandwiched as

H(X̂(j)) � I(X̂(j); Y (j)) � I(X̂(j); Ŷ (j)) � djRX̂ (�)

where� = (1=dj)EEEkX̂
(j)� Ŷ (j)k2, and whereRX̂ (�) is the rate-

distortion function ofX̂(j): SincedjRX̂ (0) = H(X̂(j)) and the
rate-distortion function (relative to the squared error) of a discrete
random variable is continuous at zero (see, e.g., [11, Theorem 2.4]),
the fact that� ! 0 asD ! 0 implies

lim
D!0

I(X̂(j); Y (j)) = H(X̂(j)): (20)

For the second term in (19) we have

I( ~X(j); Y (j)jX̂(j)) = h( ~X(j)jX̂(j))� h( ~X(j)jY (j); X̂(j))

� h( ~X(j)jX̂(j))� h( ~X(j)j ~Y (j)) (21)

� h( ~X(j)jX̂(j))�
cj
2
log (2�eDj=cj) (22)

where Dj = EEEk ~X(j) � ~Y (j)k2: In (21), we used the fact that
conditioning reduces differential entropy, and (22) holds because

h( ~X(j)j ~Y (j)) = h( ~X(j) � ~Y (j)j ~Y (j)) � h( ~X(j) � ~Y (j))

and by a well-known result [12], the differential entropy of thecj-
dimensional random vectorZ = ~X(j) � ~Y (j) is upper-bounded
as

h(Z) � (cj=2) log (2�eEEEkZk
2=cj):

Note thath( ~X(j) � ~Y (j)) is well defined and finite sinceh( ~X(j))
and I( ~X(j); ~Y (j)) are finite.

In summary, (17)–(22) show that asD ! 0

nRX (D) = I(Xn;Y n)

� H(V ) +

N

j=1

�jH(X̂(j)) +

N

j=1

�jh( ~X
(j)jX̂(j))

�
1

2

N

j=1

�jcj log (2�eDj=cj) + o(1) (23)
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where (18) and (20) have been incorporated into a single termo(1)
which converges to zero asD ! 0: Recall that we have defined
� = 1

n

N

j=1 �jcj : Then Jensen’s inequality and the convexity of
the logarithm imply

1

2

N

j=1

�jcj log (2�eDj=cj) �
n�

2
log 2�e

N

j=1

�jcj
n�

Dj

cj

�
n�

2
log (2�eD=�) (24)

since

1

n

N

j=1

�jDj =
1

n

N

j=1

�jEEEk ~X(j) � ~Y (j)k2 � D:

Substitution of (24) into (23) completes the proof of the lemma.

Lemma 2: AssumeXn is of the mixture form (11) and conditions
a) and b) hold. Let� = 1

n

N

j=1 �jcj : Then we have

lim sup
D!0

RX (D) +
�

2
log (2�eD=�)

�
1

n
H(V ) +

1

n

N

j=1

�jH(X̂(j))

+
1

n

N

j=1

�jh( ~X
(j)jX̂(j)): (25)

Proof: For eachj 2 f1; � � � ; Ng define then-dimensional
random vectorY (j) by settingŶ (j) = X̂(j) and ~Y (j) = ~X(j)+Z(j);
whereZ(j) is a cj-dimensional i.i.d. Gaussian random vector with
zero mean and varianceD=�: It is assumed thatZ(j) is independent
of X(j) and the index random variableV: In other words,Y (j) is
obtained by adding independent Gaussian noise of varianceD=� to
the continuous coordinates ofX(j): Let Y n be the mixture of these
distributions, i.e., defineY n = Y (V ): The expected squared error
of Y n is

1

n
EEEkXn � Y nk2 =

1

n

N

j=1

�jEEEkX
(j) � Y (j)k2

=
1

n

N

j=1

�jEEEk ~X
(j) � ~Y (j)k2

=
1

n

N

j=1

�jcj
D

�
= D (26)

and, therefore, by definition,RX (D) � 1
n
I(Xn; Y n): In a similar

manner as in (17), we obtain

I(Xn;Y n) = I(V ;Y n) +

N

j=1

�jI(X
(j); Y (j)) (27)

where by (26) and Lemma 3 we have

lim
D!0

I(V ;Y n) = H(V ): (28)

Using the chain rule we can write

I(X(j); Y (j)) = I(X̂(j); ~X(j); Ŷ (j); ~Y (j))

= I(X̂(j); Ŷ (j); ~Y (j)) + I( ~X(j); Ŷ (j); ~Y (j)jX̂(j))

= H(X̂(j)) + I( ~X(j); ~Y (j)jX̂(j)) (29)

= H(X̂(j)) + h( ~Y (j)jX̂(j))� h( ~Y (j)jX̂(j); ~X(j))

= H(X̂(j)) + h( ~X(j) + Z(j)jX̂(j))

� h( ~X(j) + Z(j)jX̂(j); ~X(j)) (30)

where (29) holds becausêY (j) = X̂(j): Recall that the differ-
ential entropy of a Gaussian random variable with variance�2 is
1
2
log (2�e�2) [12]. Therefore, the independence ofX(j) andZ(j)

implies

h( ~X(j) + Z(j)jX̂(j); ~X(j)) = h(Z(j)) =
cj
2
log (2�eD=�) (31)

where the last equality follows becauseZ(j) hascj coordinates with
common varianceD=�: On the other hand, [13, Lemma 1] implies1

lim
D!0

h( ~X(j) + Z(j)jX̂(j)) = h( ~X(j)jX̂(j)): (32)

From (27)–(32) we can conclude that

I(Xn;Y n) = H(V ) +

N

j=1

�jH(X̂(j)) +

N

j=1

�jh( ~X
(j)jX̂(j))

�
�

2
log (2�eD=�)+ o(1)

where� = 1
n

N

j=1 �jcj ando(1) ! 0 asD ! 0: Since

RX (D) �
1

n
I(Xn;Y n)

the proof is complete.

APPENDIX

Lemma 3: SupposeXn is of the mixture form (11) and let
fYkg

1

k=1 be a sequence ofn-dimensional random vectors such that

lim
k!1

EEEkXn � Ykk
2 = 0: (33)

Then

lim
k!1

I(V ; Yk) = H(V ):

Proof: From (12) we have thatV is function of Xn with
probability 1. Therefore,

I(V;Xn) = H(V ):

On the other hand, since(V; Yk) converges in distribution to(V;Xn)
by (33), the lower semicontinuity of the mutual information (see [11,
Lemma 2.2]) implies that

lim inf
k!1

I(V; Yk) � I(V;Xn) = H(V ):

SinceI(V; Yk) � H(V ), the lemma is proved.
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The Distributions of Local Extrema of
Gaussian Noise and of Its Envelope

Nelson M. Blachman,Life Fellow, IEEE

Abstract—Cramér and Leadbetter’s result for the distribution of the
local maxima of stationary Gaussian noise is studied and plotted. Its
derivation is used for finding the distributions of the local maxima
and minima of the envelope of narrowband Gaussian noise. These
distributions, too, are studied and plotted, including the limiting cases
of very wide and narrow noise spectra.

Index Terms—Distributions of local envelope extrema, distributions of
local extrema, wide- and narrowband Gaussian noise.

I. INTRODUCTION

Local maxima of the envelope of Gaussian noise can, for example,
be mistaken for pulsed signals and can adversely affect synchronizers.
They can also interfere destructively with an FM signal to produce
“clicks” in a receiver’s output. Hence, it can be useful to know
the distribution of such maxima and of the minima that appear
between successive maxima. Cramér and Leadbetter [1] have found
the distribution of the local maxima of wideband Gaussian noise,
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whose derivation will serve as an introduction and aid to the solution
of the more complicated envelope-extremum problem.

S. O. Rice used the joint probability density function (pdf) of the
value x and the derivative_x of zero-mean Gaussian noise having
power spectral densityS(f), variance�2 = 1

0
S(f) df , and mean-

squared spectral width�2 = 1

0
f2S(f)df=�2 to discover that� is

the expected number of downward zero-crossings per second of the
noise [2, eq. (3.3-11)]. From this result it follows that

p
M4=� (1)

is the expected number of local maxima (and of minima) ofx(t)
per second, whereM4 =

1

0
f4S(f)df=�2 is the normalized fourth

spectral moment. Here, Rice’s method is slightly extended to yield
the probability distributions of these local extrema. In Section II the
joint pdf of x, _x, and�x at the same instant is utilized for this purpose.

Section IV deals with the distribution of the local extrema of the
envelope of narrowband Gaussian noise whose spectrum is symmetric
about the frequencyF . It uses trivariate pdf’s of the foregoing sort
for the “in-phase” and “quadrature” components of the noise, which
are converted to polar form. Plots of the distributions are presented
in Sections II and IV.

Section III presents an alternative derivation that illuminates the
results of Section II, and Section V discusses its extension to the case
of the envelope of narrowband Gaussian noise. Finally, Section VI
presents results concerning the total rate of occurrence of envelope
extrema.

II. THE MAXIMA OF GAUSSIAN NOISE

Since the noisex(t) and its first two derivatives all have
mean 0 and variancesEfx2g = �2, Ef _x2g = 4�2�2�2, and
Ef�x2g = 16�4M4�

2, and covariancesEfx _xg = Ef _x�xg = 0 and
Efx�xg = �4�2�2, and they are jointly normal, their joint pdf is

p(x; _x; �x) =
exp � x

2�
� _x

8� � �
� (�x+4� � x)

32� � (M �� )

(2�)9=2��3 M4 � �4
: (2)

It will be convenient to let

m4
�
= M4 � �4

denote the amount by whichM4 exceeds its least possible value�4,
for a given�, which it has when the spectrum ofx(t) is concentrated
entirely on the frequency�, andx(t) is sinusoidal with a Rayleigh-
distributed amplitude.

The noisex(t) will pass through a maximum during the time
interval(t; t+ dt) if, at time t, _x > 0 and�x is sufficiently negative to
bring _x down to zero within timedt, i.e., if �x < 0 and0 < _x� �x dt.
During this dt in the neighborhood of a maximum,x will change
by a second-order infinitesimalO(j�xj dt2), which can be neglected
in comparison withdx, and so the maximum will lie in the interval
(x; x + dx) with a probability given by multiplying (2) bydx and
��x dt and integrating over all negative�x. Setting _x = 0 in p(x; _x; �x)
because the lower end of the_x increment��x dt is at _x = 0, we thus
see that the probability of a maximum betweenx andx+ dx during
the time interval(t; t + dt) is

dt dx
0

�1

(��x) p(x; 0; �x) d�x:
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