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Abstract

Downsampling an image results in the loss of image information that cannot be recovered with upsampling. We

demonstrate that the particular combination of downsampling and upsampling methods used can significantly impact

the reconstructed image quality, and then we propose a technique to identify patterns associated with different

downsampling methods in order to select the appropriate upsampling mechanism. The technique has low complexity

and achieves high accuracy over a wide range of images.

r 2003 Published by Elsevier B.V.
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1. Introduction

Digital imagery can be viewed on various

different display sizes, depending on the electronic

device being used (e.g. computer monitor, laptop

computer screen, PDA, cell phone, etc.). Similarly,

digital cameras offer a wide range of image

resolutions, yielding images of various different

sizes.

The choice of display size is typically determined

by some constraint on the device, such as its size,

price, quality, etc. Often small display sizes are

used on devices with limited amounts of on-board

memory. If a large amount of memory is available,

a full resolution image can be stored and locally

subsampled for viewing on the given screen size.

However, if the on-board memory is tightly limited

this may not be a feasible option. In such a case,

typically the device could either store the appro-

priate resolution image or only some portions of

the original.

A lower resolution image can be obtained by

manipulating the image in the spatial domain. A

comparison of some of these techniques for image

resampling is given in [12]. When transmitted over

limited bandwidth communication channels,

images are often compressed to conserve re-

sources.

Image compression algorithms need to allow

flexibility in choosing a decompression resolution.

This property is called ‘‘spatial scalability’’. With

spatial scalability different devices can decode

different resolution versions of the same image

without having to encode the same image to
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several different decoding resolutions. Both the

original JPEG standard and the more recent

standard, JPEG2000, have built-in modes for

spatial scalability.

Once a lower resolution image is decoded, a

display device typically does not have access to the

full resolution image any more. If the user wants to

resend the image to a different receiver whose

device is capable of displaying the image at a

higher resolution, the image needs to be up-

sampled at the receiver to make full use of the

display’s capabilities.

A challenging task in image upsampling is to

best preserve the sharpness of the edges in the

image. Traditional spline-based methods [7,10,13]

result in sharper edge reconstruction when com-

pared with linear filtering approaches. Yang and

Nguyen [14] proposed interpolated Mth band

filters for image size conversion and achieve some

improved image quality. Edge-directed methods

[1,8] seek to identify edges at a subpixel level in the

downsampled image and avoid their smoothing in

the resizing operation. Atkins et al. gave two

methods [3,4] that aimed to locally find an

appropriate filter for the scaling of each pixel.

Both methods require training for the classifier

and the selection of each filter’s parameters, but

they differ in the particular classification technique

used.

All of the above techniques process an image in

the spatial domain. A transform domain approach

was taken by Chang et al. [5]. Their solution is

based on the evolution of the local minima and

maxima in the different frequency bands of the

wavelet transformed image. These local extrema

corresponding to edges in the spatial domain are

used to estimate the high frequency coefficients

that are lost in the downsampling process.

Dugad and Ahuja [6] introduced an image

resizing method using the discrete cosine trans-

form (DCT) that showed improved image quality

when compared with bilinear spatial domain

interpolation. They also found that this method

performs well on images that were downsampled

using bilinear interpolation. Mukherjee and Mitra

[11] presented a modification of this technique

based on subband DCT [9] and extended Dugad

and Ahuja’s method to color images.

In this paper, we confirm that the performance

of the upsampling process depends on the parti-

cular upsampling method as well as the down-

sampling method used to obtain the lower

resolution image. We propose a method that

estimates the type of downsampling method used

by looking for ‘‘signatures’’ of different techniques

in the downsampled image. Using this type-

estimate we choose a specific upsampling method

that results in improved image quality. In many

cases the different upsampling methods result in

seemingly similar images, but these images may

differ by 1–8:5 dB when compared with the

original image. The differences usually occur in

the reconstruction of the image edges which can be

visually significant if the upsampled image is

subject to further image processing or edge

detection-based image analysis.

Section 2 demonstrates the importance of using

the appropriate upsampling method for a given

downsampled image. Section 3 describes our

proposed method. Simulation results are shown

in Section 4 and we conclude in Section 5.

2. Subsampling dependent upsampling

Subsampling followed by upsampling is an

inherently lossy process, so that the resulting

image will differ from the original. The informa-

tion lost in downsampling cannot in general be

fully recovered. With a correct choice of an

upsampling method, one can avoid introducing

further distortion into the reconstruction process.

In order to demonstrate that different combina-

tions of downsampling and upsampling techniques

yield different results we used the following

experiment. A set of test images was downsampled

to one fourth of the images’ original sizes (i.e. each

dimension was divided in half) and then resampled

to the original resolution. The following three

methods were used for subsampling:

* Bilinear: the subsampled value is the average of

the four corresponding intensity values.
* DCT: for each 8� 8 block in the original image,

a DCT is performed. Using only the top left

4� 4 block of DCT coefficients in each 8� 8
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block, a 4� 4 inverse DCT is performed (see [6]

for more details).
* Wavelet: a single level wavelet transform is

performed using 9-7 filters [2]. The appropri-

ately scaled LL band gives the subsampled

image.

Similarly, the upsampling methods in the experi-

ment are the following:

* Bilinear: The upsampling inserts zeros between

every two samples of the downsampled image

and performs a bilinear interpolation.
* DCT: The image is processed in 4� 4 blocks,

with the DCT performed on each block. The

4� 4 DCT blocks are then placed in the upper

left corner of an 8� 8 block of all zeros and the

inverse DCT is performed on the 8� 8 blocks

(see [6]).
* wavelet: The image to be upsampled is taken

(with appropriate scaling) to be the LL band of

a single level wavelet transform with all high

frequency bands set to zero, and the inverse

wavelet transform is performed using 9-7 filters.

The tables in Appendix A indicate that the

particular subsampling-upsampling combination

can have a significant quantitative effect on the

PSNR of the reconstructed image. Depending on

the image and the combinations, the difference

between the worse and best can be up to 8:5 dB!

It is also clear that bilinear interpolation-based

upsampling is never optimal. DCT-based upsam-

pling is preferred for images that result from DCT-

based or bilinear subsampling. DCT-based upsam-

pling outperforms bilinear upsampling in the high-

frequency areas of the images. Bilinear upsampling

is a simple averaging operation, and it cannot

recover high-frequency information. DCT-based

upsampling however can preserve some high-

frequency content due to its implementation, as

described above.

Wavelet upsampling performs best for images

obtained with wavelet-based downsampling. This

particular combination achieved the best overall

PSNR for 84% of the test images. Any combina-

tion of wavelet-based and bilinear or DCT-based

operation yields poor performance due to the

filters not being matched to each other.

The PSNR results are important in applications

where the image is further subjected to some

processing or if it is used for differential coding.

For human observers, the visual image quality is

important. Fig. 1 shows a comparison between the

reconstructed Lena images. The downsampling

method is the same (wavelet-based), and the

difference is in the upsampling: wavelet-based

versus DCT-based. Even though wavelet-based

Fig. 1. Reconstructed Lena image with wavelet-based downsampling and (a) wavelet-based upsampling ð35:25 dBÞ; (b) DCT-based

upsampling ð30:19 dBÞ:
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upsampling results in an image that is 5:06 dB

better than the DCT-based image, the differences

are visually very small.

Fig. 2 shows where the two images differ. It was

obtained by rescaling the difference image between

images (a) and (b) in Fig. 1. Pixels that are medium

gray indicate where the two images are identical;

darker and lighter pixels show where they differ.

The differences occur around the edges, while the

smooth areas are reconstructed the same.

3. Proposed algorithm

The different subsampling techniques yield

slightly different images at lower resolution. Most

of the differences concentrate around the edge

regions of these images. All three techniques

discussed here can be thought of as a filtering

followed by decimation. Fig. 3 shows the 1-D filter

response to the step edge (0 to 1, and 1 to 0

transitions) profiles before decimation for the

bilinear, DCT, and wavelet methods. In the

bilinear and wavelet cases the filters are given. In

the DCT case the filter response was compiled

from the subsampled version of two step edges

that are shifted one position with respect to each

other. (Note that in the DCT case the response

also slightly varies depending on the location of

the edge within the boundaries of the 8� 8

blocks.)

These figures indicate that the edge response of

the bilinear and DCT cases are similar in slope,

being close to a smooth linear transition. The

wavelet response trails below the linear slope in the

case of the rising edge, while it goes above the

linear slope in the case of the falling edge.

In the downsampled image only half of these

edge points are present. Depending on the location

of an edge in the image, it is represented by either

the odd or the even samples of these transitions.

These samples of the profiles are characteristic of

the particular downsampling operation. Here we

propose an algorithm that tries to locate these step

edge responses in a downsampled image as

indicators of the subsampling technique used.

In our proposed method we use blocks formed

from the odd and even samples of the profiles

shown in Fig. 3 as ‘‘signatures’’ of the down-

sampling technique. As these profiles are char-

acteristic of the downsampling method, the

signatures are image independent. They identify

the subsampling method in the downsampled

image. In the case of a vertical step edge, identical

rows of the samples of the profiles form the block,

while for horizontal step edges these samples are

placed in the columns. Since a feature in an image

is considered an edge if its length spans several

pixels, the number of these identical columns or

rows should be greater than one. However, very

few real life images have long vertical or horizontal

step edges. Thus in practical cases the blocks

should be kept relatively small in order to find

reliable matches. We found that a block size of

4� 4 presents a good trade-off between these two

constraints.

A signature set of a downsampling method

contains a total of eight signatures: the odd

samples and the even samples of the rising and

falling step edge responses for both vertical and

horizontal edges.

As noted in Section 2, DCT-based upsampling is

preferred for both bilinear and DCT-based down-

sampling. The step edge response of the two cases

Fig. 2. The rescaled difference of images Fig. 1 (a) and (b).

Medium gray levels indicate where the two are identical. The

differences are the dark and bright colored areas.
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are very similar, thus they can be represented by

the same signature set. The signatures derived

from the step edge response of the wavelet-based

downsampling form the other signature set. These

two sets are used for all images to try to identify

the downsampling technique.

For each image to be upsampled, the algorithm

computes the correlation coefficient between 4� 4

blocks of the image and the blocks of each

signature set. The correlation coefficient between

blocks B1 and B2 is

CðB1;B2Þ ¼
CovðB1;B2Þ

sB1
sB2

;

where Covð:Þ is the covariance and s is the

variance (the expectations are taken over the

sample distribution of the blocks).

For each image block, the signature block with

the highest correlation from each signature set

gives the step edge response that ‘‘looks’’ most like

the image block. This highest correlation is

recorded for each image block and each signature

set.

After the correlation values have been computed

for all blocks in an image, the technique counts the

number of blocks where the correlation coefficient

is above a given threshold for each signature set.

The downsampling technique whose signature set

found more image blocks whose correlation

coefficient is above the threshold will be declared

as the subsampling method used for that image.

Based on this assessment, the upsampling techni-

que can be appropriately chosen.

4. Simulation results

Our proposed method was tested using 47

images. The images vary in size and content. They

include natural indoors and outdoors images,

close-up head images, synthetic images, satellite

pictures, video scenes, and texture images.

In order to evaluate the accuracy of our

technique, each image was downsampled by a

factor of four using all three methods and the

correlation-based matching technique was applied

to each outcome. To speed up the computation,

the correlation was only computed for blocks

where the variance was above a given threshold

indicating the possible presence of an edge. In

these experiments a match is declared for a block

(i.e. it is included in the count for the given

signature set) if the correlation exceeds 0.992. This

choice was motivated by our experiments and also

ensures that only very strong matches are selected.

Table 2 in Appendix B lists for each image the

counts of the number of 4� 4 image blocks which

had maximum correlation coefficient over 0.992

with signature blocks of the bilinear/DCT signa-

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

Pixel location

1 2 3 4 5 6 7 8 9

Pixel location

M
a
g
n
it
u
d
e

−0.5

0

0.5

1

1.5

M
a
g
n
it
u
d
e

Bilinear
DCT
Wavelet

Bilinear
DCT
Wavelet

(a) (b)

Fig. 3. Edge response of the bilinear, DCT, and wavelet ‘‘filtering’’ for (a) a rising step edge, (b) a falling step edge. These curves

indicate the edge profiles. The values are only given at the pixel locations.
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ture set (first number of each field) and the wavelet

signature set (second number). For the bilinear

and DCT cases a good identification is given if the

first number is greater, i.e. more blocks of the

image ‘‘looked like’’ step edge patterns of DCT/

bilinear subsampling than those of wavelet-based

subsampling. For the wavelet case it should be the

reverse. In the case of a tie the decision is made for

the wavelet method. The name of the images for

which all three cases have been successfully

identified is set in bold in Table 2.

As can be seen in that table, the number of

matches at this level of fidelity varies greatly. For

some images it is in the thousands (mostly

synthetic images that contain more clear step edge

patterns) while for others no match can be found

at all.

The particular pattern choices yielded an overall

accuracy of 66% for correctly identifying all three

downsampling methods. The wavelet method was

correctly found in 70% of all cases, the bilinear in

89%, and for the DCT case the method had an

accuracy percentage of 91%.

5. Conclusion

In this paper we showed that the image quality

after upsampling depends on both the down-

sampling method used to get the lower resolution

image and the upsampling technique. We intro-

duced a correlation-based technique for the

identification of the subsampling method. Using

an edge pattern, our method was able to accurately

identify the downsampling method in 66% of the

images used for all three downsampling techni-

ques.

In future research more varied patterns can be

used as well as investigating other differences in

the edge regions of the downsampled images for

improved accuracy.

Appendix A

Results of different upsampling and downsam-

pling combinations are given in Table 1.

Table 1

PSNR (dB) comparison of different downsampling–upsampling

combinations

Image Method Bilinear DCT Wavelet

Bilinear 24.356 26.196 24.035

Aerial DCT 23.999 26.809 23.887

Wavelet 22.535 23.695 26.619

Bilinear 28.503 29.289 27.662

Aerial2 DCT 28.123 29.794 27.635

Wavelet 26.621 27.313 30.122

Bilinear 33.56 34.147 32.899

Apc DCT 33.189 34.617 32.826

Wavelet 32.024 32.583 34.808

Bilinear 25.489 25.931 24.596

Aqua DCT 25.112 26.391 24.554

Wavelet 23.817 24.295 26.557

Bilinear 23.74 24.01 22.86

Baboon DCT 23.33 24.49 22.84

Wavelet 22.19 22.58 24.50

Bilinear 29.431 30.975 28.839

Balloon DCT 29.134 31.459 28.743

Wavelet 27.416 28.435 31.983

Bilinear 25.413 25.173 24.178

Barbara DCT 24.955 25.657 24.272

Wavelet 23.721 23.899 25.849

Bilinear 27.427 28.369 26.256

Beach DCT 27.073 28.86 26.194

Wavelet 25.22 25.907 29.206

Bilinear 25.67 26.48 24.84

Bridge DCT 25.31 26.97 24.81

Wavelet 23.85 24.56 27.19

Bilinear 18.415 18.985 17.627

Bwall DCT 18.057 19.456 17.641

Wavelet 16.799 17.406 19.618

Bilinear 25.486 26.275 24.31

Camera DCT 25.141 26.763 24.287

Wavelet 23.444 24.094 26.954

Bilinear 30.756 32.986 30.654

Coral DCT 30.434 33.593 30.528

Wavelet 28.914 30.354 33.973

Bilinear 29.643 32.668 28.751

Crowd DCT 29.36 33.307 28.561

Wavelet 27.017 28.41 34.019
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Table 1 (continued)

Image Method Bilinear DCT Wavelet

Bilinear 33.683 33.685 30.312

Dna DCT 33.329 34.058 30.375

Wavelet 30.655 30.889 33.282

Bilinear 31.765 32.964 31.19

Elaine DCT 31.47 33.387 31.131

Wavelet 30.122 31.044 33.502

Bilinear 29.959 30.801 29.148

Fence DCT 29.611 31.264 29.084

Wavelet 28.171 28.863 31.484

Bilinear 27.551 32.469 27.133

Finger DCT 27.281 33.435 26.841

Wavelet 25.024 27.015 33.599

Bilinear 26.52 28.415 25.989

Front DCT 26.254 29.001 25.965

Wavelet 24.376 25.567 29.615

Bilinear 30.37 31.351 29.414

Goldhill DCT 29.988 31.885 29.373

Wavelet 28.384 29.172 32.096

Bilinear 37.39 38.86 37.01

Gray21 DCT 37.53 39.08 37.19

Wavelet 35.87 36.79 39.59

Bilinear 23.951 24.935 23.244

House2 DCT 23.586 25.438 23.282

Wavelet 22.148 23.054 25.675

Bilinear 27.66 29.73 27.36

Lake DCT 27.32 30.33 27.30

Wavelet 25.72 27.10 30.75

Bilinear 26.869 27.129 26.085

Landsat DCT 26.501 27.558 26.087

Wavelet 25.478 25.898 27.635

Bilinear 24.98 25.23 24.09

Lax DCT 24.60 25.68 24.08

Wavelet 23.44 23.83 25.84

Bilinear 31.54 34.08 30.51

Lena DCT 31.24 34.70 30.31

Wavelet 28.97 30.19 35.25

Bilinear 32.709 35.143 32.53

Linespr DCT 32.401 35.753 32.403

Wavelet 30.692 32.159 36.316

Bilinear 29.57 31.02 28.71

Table 1 (continued)

Image Method Bilinear DCT Wavelet

Man DCT 29.23 31.54 28.60

Wavelet 27.45 28.38 31.89

Bilinear 36.23 39.81 35.94

Meter DCT 35.96 40.57 35.71

Wavelet 33.87 35.58 41.06

Bilinear 30.897 31.49 30.539

Moon DCT 30.533 31.95 30.51

Wavelet 29.529 30.159 32.265

Bilinear 30.01 31.797 29.035

Pentagon DCT 29.682 32.344 28.889

Wavelet 27.644 28.652 32.871

Bilinear 31.242 33.213 31.008

Peppers DCT 30.895 33.827 31.013

Wavelet 29.425 30.847 34.139

Bilinear 29.67 32.21 29.33

Plane DCT 29.31 32.94 29.08

Wavelet 27.71 29.05 32.16

Bilinear 29.85 30.61 27.94

Plants DCT 29.46 30.97 27.88

Wavelet 27.33 27.82 31.15

Bilinear 19.56 21.11 18.78

Res Chart DCT 19.34 21.37 18.74

Wavelet 17.54 18.58 21.60

Bilinear 12.866 14.78 14.093

Ruler DCT 12.669 15.087 14.167

Wavelet 12.608 14.922 14.308

Bilinear 33.18 35.72 33.37

Splash DCT 32.80 36.50 33.50

Wavelet 31.47 33.38 36.41

Bilinear 25.501 27.156 24.672

Sthelens DCT 25.165 27.702 24.547

Wavelet 23.312 24.33 28.127

Bilinear 17.151 18.554 15.198

Straw DCT 16.831 19.081 15.058

Wavelet 14.193 14.884 19.528

Bilinear 34.852 35.274 33.406

Swimmer DCT 34.535 35.461 33.478

Wavelet 32.683 33.233 35.963

Bilinear 24.793 24.922 23.924

Tajmahal DCT 24.411 25.353 23.96

Wavelet 23.369 23.733 25.541
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Appendix B

Simulation results are given in Table 2.
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