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Abstract. Disparity estimation plays a crucial role in many stereo image
compression techniques. To reduce computational complexity most
methods limit the estimation search area to a limited window. The per-
formance of the disparity estimation depends on the choice of the limited
search window. Most techniques use a predetermined value for the win-
dow size, which is not optimal over a wide range of images. We show
how the choice of the window size affects the performance of the stereo
image compression algorithm and propose a method to obtain a better
search window size. Our simulation results indicate an improvement of
up to 1.81 dB over rigid window size selection and with performance very
close to the optimal selection. © 2003 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1614808]
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1 Introduction

Stereoscopic image pairs represent a view of the s
scene from two slightly different positions. When the tw
images are presented to the respective eye, the human
server perceives the depth in the scene as in three dim
sions. One can obtain stereo pairs by taking pictures w
two cameras that are placed in parallel 2 to 3 in. apar
typical scenario is shown in Fig. 1.

Stereo images play an important part in applicatio
such as remote sensing, surveillance, telemedicine,
computer vision. Stereo pairs present twice the amoun
data to be stored or transmitted when compared with re
lar images, so efficient compression methods are requ
to reduce transmission delay and storage requirements

The left and right views differ only in small areas of th
scene, and independent coding of the two images does
take advantage of this inherent dependency. A wave
based method was presented in Ref. 1 that potentially
scribes all wavelet coefficients of one image, but only
subset of the coefficients of the other image. More sop
ticated schemes use disparity estimation, a technique s
lar to motion estimation for video coding. Disparity estim
tion aims at finding the displacement of an object betwe
the left and right images. Unlike in motion estimation, t
displacement between the two images is restricted t
well-defined direction for all parts of the image. Bloc
matching-based methods were used in Refs. 2 and 3
further reduction of complexity was achieved with hiera
chical matching in Refs. 4, 5, and 6 and by matching us
selective sample decimation in Ref. 7. To improve t
matching performance of these techniques, others prop
more complex algorithms for disparity estimation, such
the use of overlapped blocks,8 the combination of block
matching with subspace projection,9,10 rate-distortion
optimization,11 dynamic programming,12 and generalized
block matching.13

To find the best match for any given block one mu
search over all blocks of the corresponding image pair.
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reduce the complexity of this operation the matching
generally limited to a smaller window. In previous work
this window size was some predetermined, fixed value.
cause of the nature of the true disparity in images, suc
predetermined value does not tend to work well acros
wide range of images.

In this paper, we propose an efficient method for det
mining an estimate for the window size to be used w
disparity estimation. This estimate is independent of
actual disparity estimation technique used and it reflects
underlying characteristics of the stereo image pair. We a
show how the choice of window size affects the coding r
of the disparity vector field for both fixed rate and variab
rate encoding. Our simulation results show that a pro
search window size for disparity estimation can impro
coding efficiency by up to 1.81 dB over using some pred
termined value.

Section 2 gives a detailed description of disparity es
mation. The effect of the search window size is analyzed
Sec. 3. Our method for window size estimation based
examining the correlation between the shifted image p
is given in Sec. 4. Simulation results follow in Sec. 5 a
we conclude with Sec. 6.

2 Disparity-Based Stereo Image Coding

Because of different perspectives in stereo imagery, a p
in an object will be mapped to different coordinates in t
left and right images. Let (xl ,yl) and (xr ,yr) denote the
coordinates of an object point in the left and right imag
respectively. The disparity is the difference between th
vectors,d5(xl2xr ,yl2yr). We assume the cameras a
placed in parallel, so thatyl2yr50, and the disparity is
limited to the horizontal direction. Letb denote the separa
tion between the two cameras,f the focal length, andZ the
depth of the object~or the distance of the object from th
camera!, as shown in Fig. 1. If all of these parameters a
known, one can compute the disparity of each object a2
1© 2003 Society of Photo-Optical Instrumentation Engineers
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Frajka and Zeger: Disparity estimation window size
udu5
b f

Z
. ~1!

This equation agrees with the intuition that objects close
the camera will exhibit larger disparity than objects farth
away.

To exploit the dependency between the left and ri
images most compression schemes use a conditional c
structure, as depicted in Fig. 2. One image of the p
serves as a reference imageI ref and the other,I pred, is pre-
dicted from the reference image. The encoder describe
the decoder the reference image, the residual image~i.e.,
the difference of the predicted image and its estimate! I diff
and the disparity vectors used to obtain the estimate im
At the decoder, the reconstructed reference imageÎ ref and
the decoded disparity vector field are used by the dispa
compensation process to arrive at the estimateĨ pred of the
predicted image. The reconstructed predicted imageÎ pred is
obtained by adding the reconstructed difference imageÎ diff

to Ĩ pred. Most earlier methods used a discrete cosine tra
form ~DCT!-based encoding for both the reference ima
and the residual image. Recently, progressive, wave
based techniques have been introduced14–16 to replace the
DCT-based encoding, and Perkins17 showed that in genera
the conditional coder structure is suboptimal in the ra
distortion sense.

If the parameters in Eq.~1! are known ahead of time
then, in principle, for each pixel one could compute t
disparity and use that in the prediction. Unfortunately the
parameters are seldom available at the time of the en
ing. Using disparity estimation, one could try to obtain a

Fig. 1 Stereo camera system.

Fig. 2 Stereo image coding system based on a conditional coder
structure. The left side of the dashed line is the encoder and the
right side is the decoder.
2 Optical Engineering, Vol. 42 No. 11, November 2003
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proximate values for each pixel of the image. Since t
process would be quite complex if performed for each pi
individually, it is usually carried out for groups of pixel
instead. One such grouping is the use ofk3 l nonoverlap-
ping blocks.

Let D denote a distortion measure between image blo
and let I @ i ,i 8, j , j 8# denote a (i 82 i )3( j 82 j ) block with
upper left coordinates (i , j ) and lower right coordinates
( i 8, j 8). Then the disparity estimate for a block with upp
left coordinates (i , j ), assuming only horizontal displace
ment, is defined as

d̃i j ~w!

5argmin
d<w

D@ I pred~ i,i 1k, j , j 1 l !,I ref~ i 1d,i 1k1d, j , j 1 l !#,

~2!

where w is the disparity window size within which the
search is performed.

The quantityd̃i j (w) is the horizontal amount by which
k3 l block in one image must be shifted to most close
match in similarity a givenk3 l block in another image.
The two most often used similarity measures in blo
matching are the maximum absolute difference and
mean-squared error. Using the mean-squared error, Eq~2!
becomes

d̃i j ~w!5argmin
d<w

(
m5 i

i 1k

(
n5 j

j 1 l

@ I pred~m,n!2I ref~m1d,n!#2, ~3!

where I (m,n) is the pixel intensity value at coordinat
(m,n).

For any positive numberw, define the disparity vecto
field ~DVF! of an X3Y image to be the matrix of integer

$d̃i j ~w!%

where 0< i<X21, 0< j <Y21, and i and j are divisible
by k and l, respectively. The DVF is sent to the decod
usually DPCM encoded, and followed by adaptive ari
metic coding.

The reconstructed predicted image depends on the q
ity of the reconstructed reference imageÎ ref , the DVF, and
the reconstructed difference imageÎ diff . The image pre-
dicted from the reconstructed reference image using
DVF can be written as

Î pred5 Ĩ pred1 Î diff ,

where Ĩ pred depends onÎ ref and$d̃i j (w)%.
Then given the compressed reference imageÎ ref of size

X3Y, the predicted image estimate is

Ĩ pred5$ Î ref@ i 1d̃i j ~w!,i 1d̃i j ~w!1k, j , j 1 l #:

0< i<X21,0< j <Y21,ku i ,l u j %

and the disparity estimation distortion is defined as
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D̃pred~$d̃i j ~w!%, Î ref!5i I pred2 Ĩ predi2

5(
m,n

@ I pred~m,n!2 Ĩ pred~m,n!#2.

The total rate is the sum of the rates of coding the r
erence image, the disparity vector field, and the resid
image, namely,

RT5Rref1RDVF1Rdiff .

The distortion is defined as the average of the distorti
of the two images:

DT5~D ref1Dpred!/25~ i I ref2 Î refi21i I pred2 Î predi2!/2.

The overall rate-distortion performance depends on the
allocation betweenRref , RDVF , andRdiff .

In practice, without the DVF no real stereo effect can
achieved. It is often assumed that the minimum coding r
is at leastRDVF and that the DVF is encoded first, leavin
the rate allocation to the reference and difference ima
for the remaining available rate. The most widely us
technique for the encoding of the DVF is differenti
pulse code modulation~DPCM! followed by entropy
coding.6,7,12,16,18,19Entropy coding alone is employed i
Refs. 14 and 20, and fixed length coding in Ref. 10. O
analysis focuses on these methods.

Using an embedded coding method, as proposed in
14, the rate allocation can be performed automatically w
out computationally complex optimization.

3 Disparity Window Size

Most disparity estimation algorithms use a predetermin
fixed maximum search window sizew. For example, the
following window sizes or ranges of window sizes we
used: 15 in Ref. 21, 63 in Refs. 18 and 22,$28,...,48% in
Ref. 10,$230,...,30% in Ref. 6, $263,...,63% in Refs. 7 and
23, and some fixed unspecified values were used in R
11, 12, 14, and 20. Many of these choices reflect that
parity estimation was modeled after motion estimation.
noted, the disparity of each object is inversely proportio
to its distance from the camera. A predetermined, fix
window size may not work well for any image.

The best disparity estimate is a function of the windo
size as given in Eq.~3!. It is nondecreasing inw, since
searching over a larger area can only improve the displa
ment estimate; i.e., ifw1,w2 , then d̃i j (w1)<d̃i j (w2) for
all blocks in the image. Then, the disparity estimation d
tortion is nonincreasing inw, i.e.,

D̃pred~$d̃i j ~w2!%, Î ref!<D̃pred~$d̃i j ~w1!%, Î ref! if w1<w2 ,

since searching for the best match over a larger area
only improve the outcome.

The DVF must be transmitted to the decoder for t
reconstruction of the predicted image. The transmiss
rate RDVF is a nondecreasing function of the dispar
search window sizew. It is most obvious in the case o
fixed-length encoding where log2w bits are used to transm
a disparity value.
l

.

.

-

n

If the window size is smaller than the true disparity
certain objects in an image, the disparity estimation proc
cannot provide the best prediction, and the rate-distort
performance can be improved by increasingw. On the other
hand, if the window size is significantly larger than th
disparity of the objects in the image, their encoding m
not be the most efficient. Even with DPCM coding fo
lowed by arithmetic coding for the DVF, too large a win
dow size and thus too large a potential maximal va
would dilute the probability model and thus yield a subo
timal coding rate.

In Ref. 24 the authors showed that using adaptive ar
metic coding, the description lengthR of a source of alpha-
bet sizen is

R5 log2FP i 50
t21~n1 i !

P i 51
k ci !

G , ~4!

wherek is the number of alphabet symbols that occur in t
stream to be compressed,ci is the number of occurrence
of symbol i, and t is the total length of the stream. In th
case of DVF coding,t equals the number of disparity vec
tors andk is the number of distinct displacement values.
only arithmetic coding is used, thenn5w, and if it is
coupled with DPCM coding, thenn52w11.

Let dmax* denote the maximum true disparity of any o
ject in the image andRDVF(dmax* ) the description length
using an ideal disparity estimator. If one chooses a dispa
window size larger thandmax* , then the change in rate from
Eq. ~4! is

DRDVF5RDVF~w!2RDVF~dmax* !

5 log2

P i 50
t21~nw1 i !/P i 51

k8 ci8!

P i 50
t21~n* 1 i !/P i 51

k ci !
, ~5!

wheren* andnw are the number of possible input symbo
to the arithmetic coding using window size ofd* and w,
respectively;k8>k, i.e., the new disparity values found b
increasing the window size fromdmax* to w are added after
the initial k found using a window size ofdmax* ; andci and
ci8 represent the occurrence of the same symbol, obta
using a search window size ofdmax* andw, respectively. For
k, i<k8, ci50 and for somei<k, ci8 can become zero
For such cases, we adopt the usual convention that 0!51 in
Eq. ~5!.

Note, if k85k, the increase in disparity window siz
does not affect the DVF and one can just transmitdmax to
the decoder and incur only a small overhead penalty
choosing too large a disparity window size. Unfortunate
because of photometric variations and occlusion, the
parity estimation process often finds false matches fo
block beyond the true disparity of the object.

Sincew>dmax* , let w5dmax* 1Dw andnw5n* 1Dn . To
show that the rate does increase with increasing wind
size it suffices to show that the argument of the logarit
in Eq. ~5! is greater than 1.

We have
3Optical Engineering, Vol. 42 No. 11, November 2003
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P i 50
t21~nw1 i !

P i 50
t21~n* 1 i !

5)
i 50

t21
n* 1Dn1 i

n* 1 i
.S 11

Dn

n* 1t21D t

, ~6!

and

P i 51
k ci !

P i 51
k8 ci8!

5)
i 51

k8 ci !

ci8!

5 )
i :ci.ci8

@~ci811!...ci # )
i :ci,ci8

1

~ci11!...ci8

. )
i :ci.ci8

~ci811!ci2ci8 )
i :ci,ci8

~1/ci8!ci82ci

.~cmin,*
8 11!( i :ci.ci8

~ci2ci8!~1/cmax,w8 !( i :ci,ci8
~ci82ci !

5S cmin,*
8 11

cmax,w8
D ( i :ci.ci8

~ci2ci8!

, ~7!

where cmin,*
8 5mini:ci.c

i8
ci8 , cmax,w8 5maxi:ci,c

i8
ci8 , and

( i :ci.c
i8
(ci2ci8)5( i :ci,c

i8
(ci82ci).

Thus Eqs.~6! and ~7! imply that

Table 1 Effect of disparity window size choice on predicted image
peak SNR (PSNR) alone, where L or R indicates whether the left or
right image was predicted using the uncompressed version of the
other image, and the rate is the sum of the rate of the DVF (coded
using DPCM and arithmetic coding) and the difference image.

Image L or R
Rate
(bpp) wopt

PSNR(64)
(dB)

PSNR(wopt)
(dB)

‘‘Room’’ L 0.1 10 30.51 31.53

‘‘Room’’ R 0.1 10 32.39 32.70

‘‘Closeup’’ L 0.2 171 24.03 25.49

‘‘Closeup’’ R 0.2 262 23.95 25.71

‘‘Outdoors’’ L 0.2 434 21.74 21.82

‘‘Outdoors’’ R 0.2 386 21.77 21.85

Table 2 Effect of disparity window size choice on overall image
quality, where L or R indicates whether the left or right image was
predicted using the compressed version of the other image, and the
rate is the sum of the rate of the DVF (coded using DPCM and
arithmetic coding), the difference image, and the reference image.

Image L or R
Rate
(bpp) wopt

PSNR(64)
(dB)

PSNR(wopt)
(dB)

‘‘Room’’ L 0.2 10 27.45 27.93

‘‘Room’’ R 0.2 10 27.93 28.02

‘‘Closeup’’ L 0.4 177 29.48 30.33

‘‘Closeup’’ R 0.4 273 29.27 30.22

‘‘Outdoors’’ L 0.4 91 23.18 23.20

‘‘Outdoors’’ R 0.4 97 23.16 23.17
4 Optical Engineering, Vol. 42 No. 11, November 2003
P i 50
t21~nw1 i !/P i 51

k8 ci8!

P i 50
t21~n* 1 i !/P i 51

k ci !

5
P i 50

t21~nw1 i !P i 51
k ci !

P i 50
t21~n* 1 i !P i 51

k8 ci8!
~8!

.S 11
Dn

n* 1t21D tS cmin,*
8 11

cmax,w8
D ( i :ci.ci8

~ci2ci8!

. ~9!

In practice, the changes in the occurrence count
around one or two and the number of all changes is ty
cally less than 1 or 2% of all disparity vectors.

The first term on the right-hand side of Eq.~9! is always
greater than 1. The second term is approximately 1 if ar
metic coding is used without DPCM, or when DPCM an
arithmetic coding are used, but all the displacement vec
found using the larger window size create new differen
values.

For DPCM followed by arithmetic coding the rati
(cmin,*

8 11)/cmax,w8 can be less than 1 if the new displac
ment values create differences that existed for window s
d* . In that case, the lower bound in Eq.~9! is not useful in
bounding the ratio in Eq.~8!.

For this case, we evaluated the actual value of this ra
for 23 test images in the following experiment. For ea

Fig. 3 Original images of the (a) and (b) ‘‘Room,’’ (c) and (d)
‘‘Closeup,’’ and (e) and (f) ‘‘Outdoors’’ stereo pairs.
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Frajka and Zeger: Disparity estimation window size
stereo image pair, first the optimal window sized* was
estimated using exhaustive search disparity estimation
a window size equal to half the image size. Thend* was
chosen as the largest displacement value that was use
at least 1% of all blocks. Given the values ofd* , the ratio
in Eq. ~8! was computed usingw5d* 11, w5d* 15, w
5d* 110, w5d* 150, andw5d* 1100. For all images
and for all window size choices the ratio was observed

Fig. 4 Distortion DT as a function of maximum window size w for
the ‘‘Closeup’’ stereo image pair at an overall bit rate of 0.4 bpp.
r

always be larger than 1. While this observation is not
ways guaranteed, for practical purposes we assume

P i 50
t21~nw1 i !/P i 51

k8 ci8!

P i 50
t21~n* 1 i !/P i 51

k ci !
>1

for both DPCM/arithmetic coding and plain arithmetic co
ing of the disparity vector field.

The choice of the optimal window size is image depe
dent. Sincedmax* is generally unavailable at the time th
images are compressed, it is necessary to be able to fi
good maximum in real time without having to perform a
exhaustive search. Using predetermined, fixed values d
not work well over a wide range of images, as is shown
Tables 1 and 2. These results were obtained for the follo
ing three images: the 2563256 synthetic ‘‘Room’’ stereo
image pair, and the 6403480 ‘‘Outdoors’’ and ‘‘Closeup’’
image pairs~Fig. 3!. The disparity estimation and the en
coding are the same as in Ref. 15, where the DVF w
encoded using DPCM followed by adaptive arithmetic co
ing. The optimal window size was determined using
exhaustive search. It is optimal given the encoding mec
nism and the target bit rate. The choice of a predetermi
window size of 64 displacement values was motivated
previous results in the literature using that value. T
PSNR for the predicted image alone~Table 1! is defined as
Table 3 Comparison of predetermined, optimal, and approximated disparity window size choices on the predicted right image quality at 0.2 bpp
using the left image as a reference image, where the rate is the sum of the rate of the DVF (coded using DPCM and arithmetic coding) and the
difference image.

Image Size wopt wC PSNR(wopt) (dB) PSNR(wC) (dB) PSNR(64) (dB) PSNR(200) (dB)

‘‘Toys’’ 2123134 12 32 30.14 29.36 28.98 28.79

‘‘Fruit’’ 5123512 503 32 34.67 34.26 34.04 33.66

‘‘Whgarden’’ 2503250 29 24 25.98 25.89 25.70 25.46

‘‘Cart’’ 2503250 69 64 30.94 30.88 30.88 30.35

‘‘Parts’’ 5123512 456 264 35.40 33.91 33.43 33.68

‘‘Rubik’’ 5123512 4 40 42.44 41.89 41.86 41.77

‘‘Arch’’ 5123512 4 24 42.55 41.39 40.35 40.53

‘‘Room’’ 2563256 10 16 35.73 35.68 35.55 35.15

‘‘Closeup’’ 6403480 262 128 25.71 25.53 23.95 25.49

‘‘Outdoors’’ 6403480 386 120 21.85 21.80 21.77 21.81

‘‘Oldbridge’’ 3203192 317 24 25.55 25.48 25.40 25.27

‘‘Ball’’ 5123512 510 24 43.53 41.99 41.39 41.49

‘‘Booklr’’ 2503250 6 40 34.46 33.32 32.96 32.55

‘‘Plants’’ 5123400 112 120 30.29 30.27 25.78 30.14

‘‘Cart-alt’’ 2503250 57 40 32.20 32.10 32.05 31.66

‘‘Bottle’’ 3203240 17 48 27.53 27.24 27.09 26.65

‘‘Apple’’ 5123512 504 192 26.09 25.39 25.49 25.39

‘‘Manege’’ 7203288 31 72 26.77 26.50 26.54 26.07

‘‘Book’’ 5123512 4 88 37.45 35.50 35.67 35.18

‘‘Aqua’’ 3603288 251 72 26.04 25.52 25.47 25.88

‘‘Sphere’’ 2563256 252 80 33.17 32.61 30.17 32.97

‘‘Tunel’’ 7203288 509 48 27.31 25.58 25.64 26.46

‘‘Fjord’’ 2333256 4 120 28.60 28.35 27.93 28.54
5Optical Engineering, Vol. 42 No. 11, November 2003
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Table 4 Comparison of predetermined, optimal, and approximated disparity window size choices on overall image quality at 0.4 bpp using the
left image as a reference image, where the rate is the sum of the rate of the DVF (coded using DPCM and arithmetic coding), the difference
image, and the reference image.

Image Size wopt wC PSNR(wopt) (dB) PSNR(wC) (dB) PSNR(64) (dB) PSNR(200) (dB)

‘‘Toys’’ 2123134 12 32 33.76 33.14 32.77 32.77

‘‘Fruit’’ 5123512 5 32 38.19 37.92 37.77 37.59

‘‘Whgarden’’ 2503250 33 24 28.08 28.02 27.96 27.90

‘‘Cart’’ 2503250 70 64 35.11 35.10 35.10 34.76

‘‘Parts’’ 5123512 456 264 39.62 39.01 38.92 38.95

‘‘Rubik’’ 5123512 5 40 46.89 46.66 46.64 46.54

‘‘Arch’’ 5123512 4 24 45.16 44.75 44.71 44.70

‘‘Room’’ 2563256 11 16 33.54 33.52 33.46 33.28

‘‘Closeup’’ 6403480 273 128 30.22 30.18 29.27 30.13

‘‘Outdoors’’ 6403480 97 120 23.17 23.17 23.16 23.16

‘‘Oldbridge’’ 3203192 11 24 26.80 26.76 26.70 26.64

‘‘Ball’’ 5123512 506 24 45.34 44.99 44.81 44.73

‘‘Booklr’’ 2503250 5 40 37.85 37.24 37.07 36.82

‘‘Plants’’ 5123400 109 120 33.87 33.84 32.03 33.77

‘‘Cart-alt’’ 2503250 25 40 36.40 36.32 36.21 36.05

‘‘Bottle’’ 3203240 18 48 26.26 26.18 26.12 25.95

‘‘Apple’’ 5123512 504 192 27.54 27.22 27.30 27.23

‘‘Manege’’ 7203288 31 72 28.18 28.09 28.11 27.97

‘‘Book’’ 5123512 4 88 42.34 41.33 41.44 41.08

‘‘Aqua’’ 3603288 266 72 26.02 25.80 25.78 25.95

‘‘Sphere’’ 2563256 243 80 32.99 32.81 31.98 32.93

‘‘Tunel’’ 7203288 510 48 28.85 28.13 28.13 28.48

‘‘Fjord’’ 2333256 4 120 30.16 29.80 29.68 29.86
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PSNR510 log10

2552

Dpred
, ~10!

and for the stereo image pair~Table 2! as

PSNR510 log10

2552

~D ref1Dpred!/2
. ~11!

The notation PSNR(x) in the tables refers to the PSN
obtained using a maximum window sizex in the disparity
estimation process.

These results indicate that using the optimal wind
size is always better than using a predetermined one. In
case of the ‘‘Closeup’’ and ‘‘Room’’ images the improve
ment ranges between 0.31 and 1.76 dB for the predic
image alone, and 0.09 and 0.95 dB for the stereo im
pair. Note that with the ‘‘Room’’ stereo pair, the optim
window size is smaller than the predetermined value, wh
with the ‘‘Closeup’’ image it is larger.

4 Determining Disparity Window Size

Conducting a full search over all possible disparity sea
window size values is a time-consuming process. It is a
analytically difficult since the disparity and the resultin
distortion are image dependent. Even quick search meth
are difficult to implement because the distortion at a giv
target rate is not a monotone, concave, or convex func
of the disparity window size, as revealed in Fig. 4.
6 Optical Engineering, Vol. 42 No. 11, November 2003
e

s

Here we propose a heuristic approach that yields g
results for many different stereo image pairs.

In Ref. 3, the authors use correlation measurements
tween the shifted left and right images of the stereo pai
determine a global disparity vector. The maximum of t
correlation is assumed at the ‘‘average’’ disparity of t
image. While using just a single value for the entire ima
is not the optimal strategy, it still gives an indication of th
typical disparity values to be found in the image pair.

We use a similar strategy based on the correlation co
ficient between two images:

C~ I 1 ,I 2!5
cov~ I 1 ,I 2!

s I 1
s I 2

,

whereI 1 and I 2 are images given by their intensity value
and cov~.! is the covariance~the expectations are taken ov
the sample distribution of the images!. As one image is
shifted with respect to the other, columns at the leading
of the shifting move out of the image and columns on t
trailing end must be filled. We propose to fill those using
mirroring of the columns at the trailing end. This is a nat
ral extension of the disparity estimation process. In disp
ity estimation, one tries to find matching blocks along t
same horizontal direction for each block. However, at
far edge of the matching, that direction points outside
image at which point the estimation will look for matche
in the reverse direction.
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Frajka and Zeger: Disparity estimation window size
This is a computationally complex process since the c
relation is determined for each disparity value. We perfo
the correlation computation on a subsampled version of
images instead. For computational simplicity, the subsa
pling is carried out as a succession of averaging. Us
images subsampled by 8 in each direction reduces the c
putational cost by a factor of 64. LetC8(d) denote the
correlation value for shiftd when the images subsample
by 8 in each direction are used. Once these correlation
ues are obtained, the algorithm finds the maximum va
C8,max5maxdC8(d). Let d denote the value after which th
correlation drops belowC8,max/2, that is,C8(d)>C8,max/2,
but C8(d11),C8,max/2. The window size is chosen a
wC58d, the displacement corresponding tod in the full
resolution image. The particular choice of the factor of 1
as the cutoff value was motivated by experiments that
dicated good approximation of the optimal disparity wi
dow size given the DVF encoding method and the tar
rate.

This results in a less accurate estimate of the wind
size as it is quantized to the subsampling factor, but it
ables a faster computation.

5 Simulation Results

We tested our proposed method over a large set of
images. The PSNR is computed as defined in Eqs.~10! and
~11!. Tables 3 and 4 show the results using the correlati
based estimation for maximum window size. Two differe
scenarios of predetermined window sizes are shown
well. The correlation-based approximation works very we
especially when compared with predetermined wind
sizes. Neither of the predetermined values show a c
advantage over the other predetermined value, indica
that one fixed choice does not work for all images. O
proposed technique yields the best performance on m
images and gets as close as 0.02 dB to the best achiev
result for the given DVF coding technique.

When compared with a scheme with a predetermin
window size, this method increases complexity due to
correlation computation. This increase is far less than p
forming a full-search disparity compensation and encod
of the DVF and the residual image to find the true optimu
value.

6 Conclusion

We presented a technique that estimates the optimal ch
for the disparity estimation search window size. It can
combined with any particular disparity estimation alg
rithm. The performance improvement due to an adap
choice of search window is up to 1.81 dB. While it leads
some increase in computation complexity, our propo
method is still computationally less complex than trying
find the optimal window size using an exhaustive searc
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