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1 Introduction reduce the complexity of this operation the matching is
egenerally limited to a smaller window. In previous works,
this window size was some predetermined, fixed value. Be-
pcause of the nature of the true disparity in images, such a
predetermined value does not tend to work well across a
wide range of images.

In this paper, we propose an efficient method for deter-
mining an estimate for the window size to be used with
disparity estimation. This estimate is independent of the
ctual disparity estimation technique used and it reflects the
nderlying characteristics of the stereo image pair. We also
show how the choice of window size affects the coding rate
of the disparity vector field for both fixed rate and variable
rate encoding. Our simulation results show that a proper
search window size for disparity estimation can improve

The left and right views differ only in small areas of the  ;qqing efficiency by up to 1.81 dB over using some prede-
scene, and independent coding of the two images does Notarmined value.

take advantage of this inherent dependency. A wavelet-  gection 2 gives a detailed description of disparity esti-
based method was presented in Ref. 1 that potentially de-mation. The effect of the search window size is analyzed in
scribes all wavelet coefficients of one image, but only a gec 3. Our method for window size estimation based on
subset of the coefficients of the other image. More sophis- examining the correlation between the shifted image pairs

ticated schemes use disparity estimation, a technique simi-is given in Sec. 4. Simulation results follow in Sec. 5 and
lar to motion estimation for video coding. Disparity estima- e conclude with Sec. 6.

tion aims at finding the displacement of an object between
the left and right images. Unlike in motion estimation, the
displacement between the two images is restricted to a
well-defined direction for all parts of the image. Block- . . ) ) )
matching-based methods were used in Refs. 2 and 3 andBecause of different perspectives in stereo imagery, a point
further reduction of complexity was achieved with hierar- in an object will be mapped to different coordinates in the
chical matching in Refs. 4, 5, and 6 and by matching using left and right images. Letx,y;) and (,,y;) denote the
selective sample decimation in Ref. 7. To improve the coordinates of an object point in the left and right images,
matching performance of these techniques, others proposedespectively. The disparity is the difference between these
more complex algorithms for disparity estimation, such as vectors,d=(x,—x,,y,—y,). We assume the cameras are
the use of overlapped blocRsthe combination of block  placed in parallel, so that,—y,=0, and the disparity is
matching with subspace projectidf’ rate-distortion limited to the horizontal direction. Ldi denote the separa-
optimization!! déynamic programming? and generalized tion between the two camerdghe focal length, and the
block matching: depth of the objector the distance of the object from the
To find the best match for any given block one must camerg, as shown in Fig. 1. If all of these parameters are
search over all blocks of the corresponding image pair. To known, one can compute the disparity of each objett as

Stereoscopic image pairs represent a view of the sam
scene from two slightly different positions. When the two
images are presented to the respective eye, the human o
server perceives the depth in the scene as in three dimen
sions. One can obtain stereo pairs by taking pictures with
two cameras that are placed in parallel 2 to 3 in. apart. A
typical scenario is shown in Fig. 1.

Stereo images play an important part in applications
such as remote sensing, surveillance, telemedicine, anoﬁ
computer vision. Stereo pairs present twice the amount of
data to be stored or transmitted when compared with regu-
lar images, so efficient compression methods are required
to reduce transmission delay and storage requirements.

2 Disparity-Based Stereo Image Coding
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Fig. 1 Stereo camera system.

d|= b 1
d=~ (D
This equation agrees with the intuition that objects closer to
the camera will exhibit larger disparity than objects farther
away.

To exploit the dependency between the left and right

proximate values for each pixel of the image. Since this
process would be quite complex if performed for each pixel
individually, it is usually carried out for groups of pixels
instead. One such grouping is the usekofl nonoverlap-
ping blocks.

Let D denote a distortion measure between image blocks
and letl[i,i’,j,j'] denote a (' —i)X(j"—j) block with
upper left coordinatesi(j) and lower right coordinates
(i",j"). Then the disparity estimate for a block with upper
left coordinates i(,j), assuming only horizontal displace-
ment, is defined as

aij(W)
— argmirD[ | pred i +K,j,j +1). e + cLi+k+0,j.j +1)],
dsw
3]

where w is the disparity window size within which the

images most compression schemes use a conditional codesearch is performed.

structure, as depicted in Fig. 2. One image of the pair
serves as a reference imalgg and the other g, is pre-

The quantityd;; (w) is the horizontal amount by which a
kX1 block in one image must be shifted to most closely

dicted from the reference image. The encoder describes tOmatch in similarity a giverkx| block in another image.

the decoder the reference image, the residual infage
the difference of the predicted image and its estimnbig

The two most often used similarity measures in block
matching are the maximum absolute difference and the

At the decoder, the reconstructed reference imgageand

the decoded disparity vector field are used by the disparity

compensation process to arrive at the estinigtg of the
predicted image. The reconstructed predicted imaggis
obtained by adding the reconstructed difference image

to I ,eq- Most earlier methods used a discrete cosine trans-

form (DCT)-based encoding for both the reference image

and the residual image. Recently, progressive, wavelet-

based techniques have been introdd¢etf to replace the
DCT-based encoding, and Perkihshowed that in general
the conditional coder structure is suboptimal in the rate-
distortion sense.

If the parameters in Eq.l) are known ahead of time,
then, in principle, for each pixel one could compute the
disparity and use that in the prediction. Unfortunately these
parameters are seldom available at the time of the encod
ing. Using disparity estimation, one could try to obtain ap-

I ref Image Image I ref
encoder decoder
Lairg | Image L Image | laify Lred
encoder decoder =
fref I pred
Disparity Disparity
L +
Iprsd Estimation|— Compens.
{dij(w)}
{dis(w)} | pvr | | | bwr
encoder ' decoder

Fig. 2 Stereo image coding system based on a conditional coder
structure. The left side of the dashed line is the encoder and the
right side is the decoder.
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becomes

i+k j+lI

dij(w)y=argminy, X [lyedmn)—l(m+d,n1% (3)

dsw M=i n=j

where I (m,n) is the pixel intensity value at coordinate
(m,n).

For any positive numbew, define the disparity vector
field (DVF) of an XXY image to be the matrix of integers

{dij(w)}

where G<is=X—1, 0<j<VY-—1, andi andj are divisible
by k and |, respectively. The DVF is sent to the decoder,

_usually DPCM encoded, and followed by adaptive arith-

metic coding.
The reconstructed predicted image depends on the qual-

ity of the reconstructed reference imagg, the DVF, and
the reconstructed difference imadgys. The image pre-

dicted from the reconstructed reference image using the
DVF can be written as

Ipred: I predT L g »

WhereTpred depends oriref and{aij (w)}. A
Then given the compressed reference imbgeof size
XXY, the predicted image estimate is

~Ipred:{iref[i +aij(W)yi +aij(W)+ K,j,j+17:

O<is=X—-1,0<j<Y-1K|il|j}

and the disparity estimation distortion is defined as
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Dprecﬁ{dij(W)}Jref):|||pred—|preo||2 If 'ghe vymdovy size is smaller t.han t.he true d|_spar|ty of
certain objects in an image, the disparity estimation process
-3 ~ 9 cannot provide the best prediction, and the rate-distortion
T [Tored M,N) =l pred M,N) ] performance can be improved by increasmdOn the other
' hand, if the window size is significantly larger than the

The total rate is the sum of the rates of coding the ref- disparity of the objects in the image, their encoding may
erence image, the disparity vector field, and the residual "ot be the most efficient. Even with DPCM coding fol-

image, namely, lowed by arithmetic coding for the DVF, too large a win-
dow size and thus too large a potential maximal value
Rr=Rrer+ Rove+ Ryi - would dilute the probability model and thus yield a subop-

timal coding rate.
The distortion is defined as the average of the distortions ~ In Ref. 24 the authors showed that using adaptive arith-
of the two images: metic coding, the description lengkhof a source of alpha-
bet sizen is

D= (Dyest Dpred)lzz (” lrer—1 ref“2+ ” I pred— I pre(“z)lz-

The overall rate-distortion performance depends on the rateR=log,
allocation betweemR s, Rpye, andRyi .

In practice, without the DVF no real stereo effect can be
achieved. It is often assumed that the minimum coding rate wherek is the number of alphabet symbols that occur in the
is at leastRpyr and that the DVF is encoded first, leaving stream to be compressed],is the number of occurrences
the rate allocation to the reference and difference imagesof symboli, andt is the total length of the stream. In the
for the remaining available rate. The most widely used case of DVF codingt equals the number of disparity vec-
technique for the encoding of the DVF is differential tors andk is the number of distinct displacement values. If
pulse code modulationDPCM) followed by entropy only arithmetic coding is used, them=w, and if it is
coding®"12161819Entropy coding alone is employed in  coupled with DPCM coding, then=2w+ 1.

Refs. 14 and 20, and fixed length coding in Ref. 10. Our | et d*  denote the maximum true disparity of any ob-

analysis focuses on these methods. ject in the image andRpyr(dy..,) the description length

Using an embedded coding method, as proposed in Ref'using an ideal disparity estimator. If one chooses a disparity
14, the rate allocation can be performed automatically with- . :

out computationally complex optimization. window size larger thad},,,, then the change in rate from
Eq. (4) is

-3 (n+i)

K
IT_ ¢!

, 4

3 Disparity Window Size

L o . , ARpye=Rpve(W) — Rpve(dia)
Most disparity estimation algorithms use a predetermined,

fixed maximum search window sizg. For example, the H{;é(nWJri)/H!‘;lc{!
following window sizes or ranges of window sizes were =|092Ht,1 S T ol 5
used: 15 in Ref. 21, 63 in Refs. 18 and 22:8,...,48 in i—o(n* +D/I !

Ref. 10,{—30,...,30 in Ref. 6,{—63,...,63 in Refs. 7 and

23, and some fixed unspecified values were used in Refs.wheren* andn,, are the number of possible input symbols
11, 12, 14, and 20. Many of these choices reflect that dis- to the arithmetic coding using window size df andw,
parity estimation was modeled after motion estimation. As respectivelyk’ =Kk, i.e., the new disparity values found by

noted, the disparity of each object is inversely proportional jncreasing the window size fromi*, . to w are added after
to its distance from the camera. A predetermined, fixed the initial k found using a window size af*,_,; andc; and

window size may not work well for any image. , :
The best disparity estimate is a function of the window Ci represent the occurrence of the same symbol, obtained
size as given in Eq(3). It is nondecreasing imv, since using a search window size df,,, andw, respectively. For

searching over a larger area can only improve the displace-k<i<k’, ¢;=0 and for someé<k, ¢/ can become zero.

ment estimate; i.e., iW;<w,, thend;;(w;)=<d;;(w,) for For such cases, we adopt the usual convention thal Oh

all blocks in the image. Then, the disparity estimation dis- EQ. (5).

tortion is nonincreasing iw, i.e., Note, if k' =k, the increase in disparity window size
_ _ . ~ ~ . does not affect the DVF and one can just transigjf, to
Dpred 1dij(W2) 1, e <D pred1dij (W) }, 1 er) i wyswy, the decoder and incur only a small overhead penalty for

choosing too large a disparity window size. Unfortunately,
since searching for the best match over a larger area carbecause of photometric variations and occlusion, the dis-
only improve the outcome. parity estimation process often finds false matches for a

The DVF must be transmitted to the decoder for the block beyond the true disparity of the object.

reconstruction of the predicted image. The transmission  Sincew=d},,,, let w=d*_+A, andn,=n*+A,. To
rate Rpyr is @ nondecreasing function of the disparity show that the rate does increase with increasing window
search window sizev. It is most obvious in the case of size it suffices to show that the argument of the logarithm
fixed-length encoding where lgg bits are used to transmit  in Eq. (5) is greater than 1.

a disparity value. We have
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Table 1 Effect of disparity window size choice on predicted image
peak SNR (PSNR) alone, where L or R indicates whether the left or
right image was predicted using the uncompressed version of the
other image, and the rate is the sum of the rate of the DVF (coded
using DPCM and arithmetic coding) and the difference image.

Rate PSNR(64)  PSNR(Wqp)
Image LorR (bpp) Wy (dB) (dB)
“Room” L 0.1 10 30.51 31.53
“Room” R 0.1 10 32.39 32.70
“Closeup” L 0.2 171 24.03 25.49
“Closeup” R 0.2 262 23.95 25.71
“Outdoors” L 0.2 434 21.74 21.82
“Outdoors” R 0.2 386 21.77 21.85
- . t—1 .
H§:g(nw+|)_H n*+A,+i . A, |\ ©
MZi(n*+i) i=o n*+i n*+t—1)’
and
k k'
1_[i=lcil _ c;!
k' L ’
1
= [(c/+1)..c] [ ———
ici>c/ irci<c/ (ci+1)...c

> [] (ci’+1)°i‘°i' 11 (1/ci’)°i/‘Ci
irci>c/

irci<c/

= (Cr,nin,* + 1)Ei:cl>°./(ciici')( 1/Cr,nax,w)2i:°l<°i,(ci’ e

’
z"i:ci>ci'(ci7Ci )
min,%

| mnx , )

Crnaxw

cl. . +1

! !

where  Cpin, =MiNiq>c'G s Craxy=MaX<c'Cl, and
2i:(:i>ci’(ci - Ci/) :Ei:ci<ci’(ci, —Cj).
Thus Egs(6) and(7) imply that

Table 2 Effect of disparity window size choice on overall image
quality, where L or R indicates whether the left or right image was
predicted using the compressed version of the other image, and the
rate is the sum of the rate of the DVF (coded using DPCM and
arithmetic coding), the difference image, and the reference image.

Rate PSNR(64)  PSNR(Wop)
Image LorR (bpp) Wy (dB) (dB)
“Room” L 0.2 10 27.45 27.93
“Room” R 0.2 10 27.93 28.02
“Closeup” L 0.4 177 29.48 30.33
“Closeup” R 0.4 273 29.27 30.22
“Outdoors” L 0.4 91 23.18 23.20
“Outdoors” R 0.4 97 23.16 23.17
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®

Fig. 3 Original images of the (a) and (b) “Room,” (c) and (d)
“Closeup,” and (e) and (f) “Outdoors” stereo pairs.

Iy, +i)/1TK ¢/t
T2 3(n* +)/TTE ¢!

g+ DT !

; )
I3 (n* +)ITE ¢/t
Sie> ’(C‘_C',)
An t Cr/'nin,*+1 ig>c i
> 1+ n*+t—1) v . (9)
max,w

In practice, the changes in the occurrence count are
around one or two and the number of all changes is typi-
cally less than 1 or 2% of all disparity vectors.

The first term on the right-hand side of HE) is always
greater than 1. The second term is approximately 1 if arith-
metic coding is used without DPCM, or when DPCM and
arithmetic coding are used, but all the displacement vectors
found using the larger window size create new difference
values.

For DPCM followed by arithmetic coding the ratio
(Cmingx T D/emaxw can be less than 1 if the new displace-
ment values create differences that existed for window size
d*. In that case, the lower bound in E®) is not useful in
bounding the ratio in Eq(8).

For this case, we evaluated the actual value of this ratio
for 23 test images in the following experiment. For each
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76

always be larger than 1. While this observation is not al-
ways guaranteed, for practical purposes we assume

74+

I 23y +i)/ITK. ¢! _
I3 (n* +i)/TTE_ !

66

for both DPCM/arithmetic coding and plain arithmetic cod-
| ing of the disparity vector field.
—~ The choice of the optimal window size is image depen-

m 1 dent. Sinced} ., is generally unavailable at the time the

images are compressed, it is necessary to be able to find a

845

62

0o o 1e0 om0 a0 w0 am a0 500 good maximum in real time without having to perform an
disparity window size . . . .
P exhaustive search. Using predetermined, fixed values does
Fig. 4 Distortion Dy as a function of maximum window size w for not work well over a wide range of Images, as IS shown in
the “Closeup” stereo image pair at an overall bit rate of 0.4 bpp. Tables 1 and 2. These results were obtained for the follow-

ing three images: the 25&56 synthetic “Room” stereo
image pair, and the 640480 “Outdoors” and “Closeup”

. - . . . image pairs(Fig. 3). The disparity estimation and the en-
stereo image pair, first fche optimal .wmd.ow suglé was cod?ng pare thg same as inpRefY 15, where the DVF was
estimated using exhaustive search disparity estimation W'thencoded using DPCM followed by ad’aptive arithmetic cod-

a window size equal to half the image size. Thifnwas ing. The optimal window size was determined using an

chosen as the largest displacement value that was used fopyhaystive search. It is optimal given the encoding mecha-
at least 1% of all blocks. Given the valuesdf, the ratio  npism and the target bit rate. The choice of a predetermined
in Eq. (8) was computed using=d* +1, w=d* +5, w window size of 64 displacement values was motivated by
=d* +10, w=d* +50, andw=d* +100. For all images  previous results in the literature using that value. The

and for all window size choices the ratio was observed to PSNR for the predicted image alofieable J) is defined as

Table 3 Comparison of predetermined, optimal, and approximated disparity window size choices on the predicted right image quality at 0.2 bpp
using the left image as a reference image, where the rate is the sum of the rate of the DVF (coded using DPCM and arithmetic coding) and the
difference image.

Image Size Wopt We PSNR(Wop) (dB) PSNR(w.) (dB) PSNR(64) (dB) PSNR(200) (dB)
“Toys” 212x134 12 32 30.14 29.36 28.98 28.79
“Fruit” 512512 503 32 34.67 34.26 34.04 33.66
“Whgarden” 250X 250 29 24 25.98 25.89 25.70 25.46
“Cart” 250X 250 69 64 30.94 30.88 30.88 30.35
“Parts” 512X512 456 264 35.40 33.91 33.43 33.68
“Rubik” 512x512 4 40 42.44 41.89 41.86 41.77
“Arch” 512x512 4 24 42.55 41.39 40.35 40.53
“Room” 256X 256 10 16 35.73 35.68 35.55 35.15
“Closeup” 640x480 262 128 25.71 25.53 23.95 25.49
“Outdoors” 640x480 386 120 21.85 21.80 21.77 21.81
“Oldbridge” 320%192 317 24 25.55 25.48 25.40 25.27
“Ball” 512512 510 24 4353 41.99 41.39 41.49
“Booklr” 250X 250 6 40 34.46 33.32 32.96 32.55
“Plants” 512400 112 120 30.29 30.27 25.78 30.14
“Cart-alt” 250X 250 57 40 32.20 32.10 32.05 31.66
“Bottle” 320%240 17 48 27.53 27.24 27.09 26.65
“Apple” 512x512 504 192 26.09 25.39 25.49 25.39
“Manege” 720x288 31 72 26.77 26.50 26.54 26.07
“Book” 512x512 4 88 37.45 35.50 35.67 35.18
“Aqua’” 360288 251 72 26.04 25.52 25.47 25.88
“Sphere” 256X 256 252 80 33.17 32.61 30.17 32.97
“Tunel” 720%288 509 48 27.31 25.58 25.64 26.46
“Fjord” 233X 256 4 120 28.60 28.35 27.93 28.54
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Table 4 Comparison of predetermined, optimal, and approximated disparity window size choices on overall image quality at 0.4 bpp using the
left image as a reference image, where the rate is the sum of the rate of the DVF (coded using DPCM and arithmetic coding), the difference

image, and the reference image.

Image Size Wopt we PSNR(Wop) (dB) PSNR(w,) (dB) PSNR(64) (dB) PSNR(200) (dB)
“Toys” 212x134 12 32 33.76 33.14 32.77 32.77
“Fruit” 512512 5 32 38.19 37.92 37.77 37.59
“Whgarden” 250250 33 24 28.08 28.02 27.96 27.90
“Cart” 250250 70 64 35.11 35.10 35.10 34.76
“Parts” 512x512 456 264 39.62 39.01 38.92 38.95
“Rubik” 512x512 5 40 46.89 46.66 46.64 46.54
“Arch” 512x512 4 24 45.16 44.75 44.71 44.70
“Room” 256256 1 16 33.54 33.52 33.46 33.28
“Closeup” 640x480 273 128 30.22 30.18 29.27 30.13
“Outdoors” 640x480 97 120 23.17 23.17 23.16 23.16
“Oldbridge” 320%192 1 24 26.80 26.76 26.70 26.64
“Ball” 512x512 506 24 45.34 44.99 44.81 44.73
“Booklr” 250250 5 40 37.85 37.24 37.07 36.82
“Plants” 512X400 109 120 33.87 33.84 32.03 33.77
“Cart-alt” 250250 25 40 36.40 36.32 36.21 36.05
“Bottle” 320%240 18 48 26.26 26.18 26.12 25.95
“Apple” 512x512 504 192 27.54 27.22 27.30 27.23
“Manege” 720%288 31 72 28.18 28.09 28.11 27.97
“Book” 512512 4 88 42.34 41.33 41.44 41.08
“Aqua” 360288 266 72 26.02 25.80 25.78 25.95
“Sphere” 256256 243 80 32.99 32.81 31.98 32.93
“Tunel” 720288 510 48 28.85 28.13 28.13 28.48
“Fjord” 233256 4 120 30.16 29.80 29.68 29.86

255
PSNR=10log,

) 10
ODpred ( )
and for the stereo image pdifable 2 as
PSNR=101 258 11
=10logg=—"——75-
glO(Dref+ I:)pred)/2

The notation PSNRY) in the tables refers to the PSNR
obtained using a maximum window sizdn the disparity
estimation process.

These results indicate that using the optimal window

Here we propose a heuristic approach that yields good
results for many different stereo image pairs.

In Ref. 3, the authors use correlation measurements be-
tween the shifted left and right images of the stereo pair to
determine a global disparity vector. The maximum of the
correlation is assumed at the “average” disparity of the
image. While using just a single value for the entire image
is not the optimal strategy, it still gives an indication of the
typical disparity values to be found in the image pair.

We use a similar strategy based on the correlation coef-
ficient between two images:

size is always better than using a predetermined one. In thec(I L) = couly,lz)

case of the “Closeup” and “Room” images the improve-
ment ranges between 0.31 and 1.76 dB for the predicted
image alone, and 0.09 and 0.95 dB for the stereo image
pair. Note that with the “Room” stereo pair, the optimal
window size is smaller than the predetermined value, while
with the “Closeup” image it is larger.

4 Determining Disparity Window Size

Conducting a full search over all possible disparity search
window size values is a time-consuming process. It is also
analytically difficult since the disparity and the resulting

0'|1(7'|2

wherel, andl, are images given by their intensity values,
and cov.) is the covariancéhe expectations are taken over
the sample distribution of the image#\s one image is
shifted with respect to the other, columns at the leading end
of the shifting move out of the image and columns on the
trailing end must be filled. We propose to fill those using a
mirroring of the columns at the trailing end. This is a natu-
ral extension of the disparity estimation process. In dispar-
ity estimation, one tries to find matching blocks along the

distortion are image dependent. Even quick search methodssame horizontal direction for each block. However, at the

are difficult to implement because the distortion at a given
target rate is not a monotone, concave, or convex function
of the disparity window size, as revealed in Fig. 4.

6 Optical Engineering, Vol. 42 No. 11, November 2003

far edge of the matching, that direction points outside the
image at which point the estimation will look for matches
in the reverse direction.
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This is a computationally complex process since the cor- References

relation is determined for each disparity value. We perform
the correlation computation on a subsampled version of the
images instead. For computational simplicity, the subsam-
pling is carried out as a succession of averaging. Using
images subsampled by 8 in each direction reduces the com-
putational cost by a factor of 64. Lé&lg(d) denote the
correlation value for shifd when the images subsampled
by 8 in each direction are used. Once these correlation val- %
ues are obtained, the algorithm finds the maximum value,
Cg max—Max;Cg(d). Let d denote the value after which the
correlation drops beloVCg /2, that is,Cg(d)=Cg a2, 3.
but Cg(d+1)<Cgmaf/2. The window size is chosen as
wc=28d, the displacement corresponding doin the full
resolution image. The particular choice of the factor of 1/2 4
as the cutoff value was motivated by experiments that in-
dicated good approximation of the optimal disparity win- 5,
dow size given the DVF encoding method and the target
rate.

This results in a less accurate estimate of the window
size as it is quantized to the subsampling factor, but it en-
ables a faster computation. 7.

1.

6.

5 Simulation Results 8.

We tested our proposed method over a large set of test
images. The PSNR is computed as defined in Ef®.and 9.
(11). Tables 3 and 4 show the results using the correlation-
based estimation for maximum window size. Two different
scenarios of predetermined window sizes are shown as
well. The correlation-based approximation works very well,
especially when compared with predetermined window
sizes. Neither of the predetermined values show a clear
advantage over the other predetermined value, indicating

that one fixed choice does not work for all images. Our 12.

proposed technique vyields the best performance on most
images and gets as close as 0.02 dB to the best achievablgs
result for the given DVF coding technique.

When compared with a scheme with a predetermined

window size, this method increases complexity due to the 14

correlation computation. This increase is far less than per-

forming a full-search disparity compensation and encoding 1s.

of the DVF and the residual image to find the true optimum
value.

17.

6 Conclusion

We presented a technique that estimates the optimal choice'®
for the disparity estimation search window size. It can be 19

combined with any particular disparity estimation algo-

rithm. The performance improvement due to an adaptive 20-

choice of search window is up to 1.81 dB. While it leads to

some increase in computation complexity, our proposed 1.

method is still computationally less complex than trying to
find the optimal window size using an exhaustive search.
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