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Abstract. One main focus of research in stereo image coding has been
disparity estimation, a technique used to reduce the coding rate by tak-
ing advantage of the redundancy in a stereo image pair. Significantly
less effort has been put into the coding of the residual image. These
images display characteristics that are different from that of natural im-
ages. We propose a new method for the coding of residual images that
takes into account the properties of residual images. Particular attention
is paid to the effects of occlusion and the correlation properties of re-
sidual images that result from block-based disparity estimation. The em-
bedded, progressive nature of our coder enables one to stop decoding at
any time. We demonstrate that it is possible to achieve good results with
a computationally simple method. © 2003 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1526492]
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1 Introduction

Human depth perception in part relies on the difference in
the images the left and right eyes send to the brain. By
presenting the appropriate image of a stereo pair to the left
and right eyes, the viewer perceives scenes in three dimen-
sions instead of as a 2-D image. Such binocular visua in-
formation is useful in many fields, such as telepresence
style video conferencing, telemedicine, remote sensing, and
computer vision.

These applications require the storage or transmission of
the stereo pair. Since the images seen with the left and right
eye differ only in small areas, techniques that try to exploit
the dependency can yield better performance than indepen-
dent coding of the image pair.

Most successful techniques rely on disparity compensa-
tion to achieve good performance. Disparity compensation
is similar to motion compensation for video compression. It
can be carried out in the spatial domain,*™® or in the trans-
form domain.® Disparity compensation can be a computa-
tionally complex process. In Ref. 7, a wavelet-transform-
based method is used for stereo image coding that does not
rely on disparity compensation. While this technique is
simpler, it sacrifices compression performance for reduced
complexity.

Many of the preceding papers use discrete cosine trans-
form (DCT)-based coding of the images, which uses a rate
alocation method to divide the available bandwidth be-
tween the two images. For each target bit rate, a new opti-
mization must be performed to find the optimal balance.
Embedded coding techniques based on the wavelet
transform®® provide improved performance for still images
when compared with DCT-based methods. An embedded
bit stream can be truncated at any point to obtain the best
reconstruction for the given bit rate. An embedded stereo
image coding scheme is proposed in Ref. 10 that achieves
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good performance without having to use rate allocation.

With disparity compensation, one image is used as a
reference image, and the other is predicted using the refer-
ence image. The gain over independent coding comes from
compressing the residual image that is obtained as the dif-
ference of the original and predicted images. Little atten-
tion has been paid to the coding of the residual image.
Moellenhoff and Maier™ examined the properties of
disparity-compensated residua images and proposed some
DCT and wavelet techniques for their improved encoding.

In this paper, we propose a progressive coding technique
for the compression of stereo images. The emphasis of our
work is on the coding of the residua image. These images
exhibit properties different from natural images. Our cod-
ing techniques make use of these differences. We show that
the correlation across block boundaries in the residual im-
age is diminished, suggesting that the coding of these
blocks individually might be preferable. We propose to use
transforms that take into account the correlation properties
of the residual image as well as the block-based nature of
the disparity estimator used in our coder. Occluded blocks
are often difficult to estimate. Residuals of occluded blocks
therefore are different from blocks that are well matched by
the disparity estimation (DE) process. In our technique, we
treat these two types of blocks differently. The image trans-
form we propose uses a DCT on the blocks that are well
matched by DE and Haar filtering on the occluded blocks,
resulting in a mixed image transform. Multigrid
embedding®® (MGE) is used as the embedded image coder.
It provides similar performance as zerotree-based tech-
niques with increased flexibility. While the components of
our proposed method are of low complexity, they yield
some significant improvements over other methods in the
coding of stereo images.
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Fig. 1 Original images of the (a) and (b) “Room,” (c) and (d) “Aqua,” and (e) and (f) “Outdoors” stereo
pairs.

The outline of the paper is as follows. Section 2 gives an
overview of stereo image coding. Our contribution is in
Sec. 3, with experimental results provided in Sec. 4. Fi-
nally, the conclusion is given in Sec. 5.

2 Stereo Image Coding

Stereoscopic image pairs represent a view of the same
scene from two dlightly different positions. When the im-
ages are presented to the respective eye, the human ob-
server perceives the depth in the scene as in three dimen-
sions. One can obtain stereo pairs by taking pictures with
two cameras that are placed in paralel 2 to 3 in. apart.
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Figure 1 shows the original images of three different stereo
pairs. The synthetic ‘*“Room™ image represents such appli-
cations as video games or virtua reality, while the two
natural scenes provide different distance scenarios, which
exhibit different disparity properties. The left and right im-
ages of the **“Room’ pair differ mainly in the left edge of
the left image where a piece of the wall is visible that
cannot be found in the right image. Certain areas of the
floor tile are differently covered by the cone and ball in
these images. In the ““Aqua’ pair, the differences occur at
the left and right edges of the images as well as around the
rock in the middle. Because of the larger distance between
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Fig. 2 Stereo image encoder based on disparity estimation.

the objects and the camera of the *“Outdoors” pair, they
exhibit the smallest differences, mostly around the image
edges.

Because of the different perspective, the same point in
the object will be mapped to different coordinates in the left
and right images. Let (x;,y,) and (X, ,y,) denote the coor-
dinates of an object point in the left and right images, re-
spectively. The disparity is the difference between these
coordinates, d=(x,— X, ,Y,—Y,). If the cameras are placed
in parallel, then y,—y,=0, and the disparity is limited to
the horizontal direction. One image of the pair serves as a
reference image | ¢ and the other I ;o is disparity estimated
with respect to the reference image. A block diagram of a
typical encoder using DE is shown in Fig. 2. This structure
is often referred to as CONCOD (CONditiona CODer).
Perkins in Ref. 13 shows that in general this structure is
suboptimal in the rate-distortion sense.

The disparity of each object in the image depends on the
distance between the object and the camera lenses. Objects
closer to the lens display larger disparity. As most natural
images are composed of objects at different distances from
the camera lens no single disparity value could be used to
describe the difference between the left and right images
(see Refs. 14 and 15 for more details.) The disparity esti-
mation process must determine the correct displacement for
each image pixel. Since this process would be quite com-
plex if done for each pixel individualy, it is usually carried
out for groups of pixels instead. The simplest such group-
ing is the use of kX k nonoverlapping blocks. Block sizes
using k=8 or k=16 provide a good trade-off between ac-
curacy of the estimation and the number of bits necessary
to encode the disparity vector d for each block.

The search for the matching block is carried out in a
limited search window. Given the reference image, the op-
timal match could be any kXk block of the image. This
exhaustive search is computationally complex. From the
parallel camera axis assumption one can restrict the search
to horizontal displacements only. (A small vertical displace-
ment can also be allowed to compensate for the inaccuracy
of practical camera systems.) From the camera setup it is
clear that the disparity for objects in the left image with
respect to the right image is positive and vice versa. This
observation helps further limit the scope of the search.

Other techniques aimed at reducing the computatlonal
cost of full search DE include dynamic programming,® hi-
erarchica DE (Ref 4), and adaptive directional, limited-
search algorithms.?

The estimation process works well for blocks that are
present in both images. However, occlusion may result if
certain image information is present only in one of the im-
ages. Occlusion can happen for two main reasons. finite
viewing area and depth discontinuity. Finite viewing area
occurs on the left side of the left image and the right side of
the right image where each eye can see objects that the
other eye cannot. Depth discontinuity is due to overlapping
objects in the image; certain portions can be hidden from
one eye on which the other eye has direct sight.

Another cause of mismatch is photometric variations.
This phenomenon is due the variation of the reflected light
that reaches the left and right lenses. A simple, global so-
[ution to this problem is histogram modification, as pro-
posed in Ref. 16.

At the price of increased complexity, severa methods
were proposed that try to improve DE for both occluson
and photometric variations: subspace projection,’ sequen-
tial orthogonal subspace updating,*® and overlapped block
DE (Ref. 19).

The disparity vectors are usualy losslessly transmitted
using differential pulse code modulation (DPCM) followed
by arithmetic coding.?’ Tzovaras and Strintzis®* proposed a
rate-distortion framework for the encoding of the disparity
vector field, all owi ng some distortion in the transmission of
the displacement vectors.

Given the disparity estimate of the image, the residual
| e IS formed by subtracting the estimate from the original.
This residual and the reference image are then encoded.
Many proposed techniques use DCT-based block-coding
methods for the encoding of both images. They also require
a bit allocation mechanism to determine the coding rate of
each image. (This bit alocation is carried out in addition to
the bit allocation between the DCT-transformed blocks of
each image.) For each target bit rate, a separate optimiza-
tionisused to determine the appropriate bit allocation. Woo
and Ortega?® perform a blockwise-dependent optimization
instead of independent optimization for the reference and
residual images to improve the coding performance.

Embedded image coders can be terminated at any bit
rate and still yield their best reconstruction to that rate with-
out a priori optimization. Zerotree-style technlqu&c such as
the embedded zerotree wavelet (EZW) by Shapiro,® or set
partitioni ng in hierarchical trees (SPIHT) by Said and
Pearlman® offer excellent compression performance for still
|mage£ These zerotree techniques are extended to stereo
|mages by Boulgouris and Strintzis.*® The bit plane coding
is performed on both the residual and reference image at
the same time, guaranteeing that the most significant infor-
mation for both images is sent before the less significant
information.

The decoding of stereo images is straightforward. Both
the residual and reference image are reconstructed. Using
the DE information and the reconstructed reference image,
the decoder can recover the other image of the stereo pair.

3 Residual Image Coding

The goal of this paper is to make stereo image coding more
efficient by improving the coding of the residua image.
The DE we chose is rather simple, but even with such a
simple disparity estimator our proposed coding technique
has very good performance.
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Fig. 3 (a) Estimate of left image with right image as reference and (b) estimate of the right image with

left image as reference.

3.1 Image Coding Method

Embedded coding yields good performance coupled with
simplicity of coding due to not having to perform any bit
alocation procedure. MGE by Lan and Tewfik'? uses a
quadtree structure instead of the zerotrees of EZW or
SPIHT. It uses the same bit plane coding, starting from the
most significant bits of the transform domain image down
to the least significant. For each bit plane, the quadtree
structure is used to identify the significant coefficients, i.e.,
those whose most significant bit is found on that bit plane.
The “sorting” pass identifies the coefficients that become
significant on the current bit plane, while the * refinement”
pass refines those coefficients that have previously become
significant. Their results demonstrated that this technique
outperforms the zerotree-based methods on images with
significant high-frequency content. As residual images con-
tain edges and other high-frequency information MGE is a
natural candidate for their encoding.

The way we use MGE for stereo image compression is
similar to that in Ref. 10. For each bit plane, first the sort-
ing and refinement pass are executed for the reference im-
age and then for the residual image. The highest magnitude
coefficient is usually smaller for the residual image than for
the reference image.

3.2 Occlusion

As noted in Sec. 2, there are two kinds of occlusion that
may occur in DE. A finite viewing area can be overcome in
certain cases. If a one-directional search is used (as sug-
gested by the observation on the direction of the displace-
ment in Sec. 2), that method could run out of image pixels
at the edge of the image where it would also have difficulty
finding the corresponding block in the reference image. If,
however, we alow the search to continue in the other di-
rection, it may find blocks similar to the one to be esti-
mated. This can be seen in Fig. 3, where the estimate of the
left image on the left edge clearly displays some occlusion
error, while the right edge of the right image looks almost
identical to the original.
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The residual image of those blocks that are occluded
because of depth discontinuity display different character-
istics from the other parts of the image. As noted in Ref. 23,
the occluded blocks are more correlated. We propose to
detect such blocks, and code them differently from the rest
of the residual image blocks for improved efficiency.

3.3 Image Transform

Moellenhoff and Maier's analysis® indicates that residual
images show significantly different characteristics from
natural images. Residual images mainly contain edges and
other high-frequency information. The correlation between
neighboring pixels is smaler as well. This suggests that
transforms that work well for natural images may not be as
effective for residua images.

In wavelet transform coding, one of the most widely
used filters is the 9-7 filter by Antonioni et al.?* It is pre-
ferred for its regularity and smoothing properties. With the
image pixels less correlated in residual images shorter fil-
ters can better capture the local changes. For this reason we
propose the use of Haar filters. These 2-tap filters take the
average (low pass) and difference (high-pass) of two neigh-
boring pixels. As our experimental results show, the use of
Haar filters improves performance.

DE uses kX k size blocks to find the best estimates for
the image. There is no reason to expect neighboring blocks
to exhibit similar residual properties. For one block, the
algorithm can find a relatively good match, while its neigh-
bor could be harder to predict from the reference image.

Moellenhoff’s results indicate that the pixels of the re-
sidual image are less correlated than those of the original
image. But they do not reveal much about the local corre-
lation of pixels, namely, across the kX k block boundaries.
We investigate 1-pixel correlation on a more local scale in
both horizontal and vertical directions. Instead of gathering
these statistics for the whole image, we look only at the
correlation between all pixels in the n’th column/row and
its immediate neighbor in the (n+ 1)’ th column or row of
all kxk blocks for the case of horizontal or vertical corre-
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Table 1 Comparison of 1-pixel horizontal correlation for pixels in a given column of an 8 X8 block of
the right image of the “Room” and “Aqua” stereo image pairs.

1 2 3 4 5 6 7 8
“Room” original 0.93 0.94 0.96 0.96 0.97 0.95 0.94 0.94
“Room” residual 0.27 0.38 0.41 0.45 0.44 0.31 0.33 0.03
“Aqua” original 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.89
“Aqua” residual 0.24 0.25 0.22 0.23 0.25 0.23 0.26 0.12

lation, respectively. Note that the correlation between the
k’th and (k+ 1)’ th columns/rows gives the correlation just
across the boundary between two neighboring blocks. Table
1 shows the 1-pixel correlation in the horizontal direction
for the right image and its residual using blocks of size
8% 8. (Thetrends are similar for vertical correlation and the
left image as well.) It can be seen in Table 1 that the 1-pixel
correlation drops significantly at the block boundary (col-
umn 8) in the residual image, supporting our assumption
that different blocks exhibit different properties in the re-
sidual image.

Based on this observation we focus on block-based
transforms that can better capture the differences between
the blocks than a global transform, such as the wavelet
transform that sweeps across the block boundaries. The
DCT in practice is performed on kX k blocks. Its perfor-
mance is diminished by the JPEG encoding method. How-
ever, if the DCT coefficients are regrouped into a wavelet
decomposition style subband structure, as proposed in Ref.
25, and are encoded using an embedded coder, the perfor-
mance approaches that of wavelet based methods. [This
method is referred to as embedded zerotree DCT
(EZDCT).]

None of the proposed image transforms so far take into
account the effect of occlusion. For an occluded block, the
best match can still be a very distorted one. In those cases,
not using the estimate for the given block at all could be the
best strategy. This is similar to coding an | block in the
H.263 video compression algorithm. For each block, the
estimator should decide if the best match is good enough. If
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not, the given block is left intact. This process creates a
mixed residual image, with some parts having mostly edges
and high-frequency information, and other parts blocks
from the original image. For residual blocks that contain
significant high-frequency information, a uniform band par-
titioning (such as with DCT) works better than octave-band
signal decomposition (see Ref. 26), while octave-band de-
composition is desirable in blocks of the original image.
Note that the Haar transform uses only two neighboring
pixels to compute the low- and high-frequency coefficients,
then moves on to the next pair. If the block size k is even,
then starting at the left edge of the block, the Haar trans-
form can be performed without having to include pixels
from outside the block for the computation of Haar wavel et
coefficients for all pixelsin the block. Furthermore, this can
be repeated up to |log,k| levels without affecting coeffi-
cients from outside the kX k block. Here we propose to use
amixed image transform. This transform consists of a Haar
transform of three levels for occluded blocks and DCT for
others with the DCT coefficients regrouped into the wavel et
subbands to line up with the Haar-transformed coefficients.

4 Experimental Results

In our simulations we used the 256x 256 ‘‘Room” stereo
image pair, and the Y component of the color stereo image
pairs “Aqua’ (360x288) and ‘““Outdoors’ (640X 480)
shown in Fig. 1. The reference image was transformed us-
ing the 9-7 filters. For DE, a simple scheme was used with

20 2 2 2 2 2 2 2 2 2
02 025 03 035 04 045 05 055 06 065 07
rate (bpp)

Fig. 4 Comparison of independent coding, JPEG-style coding, OBDC, and mixed transform coding for
the left image residual (with reference image JPEG-coded with quality factor 75) for (a) the “Room,”

and (b) the “Aqua” images.
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Fig. 5 Comparison of 9-7 wavelet transform, Haar transform,
EZDCT-style, and mixed transform coding for the left image of the
“Room” stereo pair.

a 64-pixel horizontal search window. Occlusion detection
consisted of looking for blocks where the estimation error
was above a given threshold.

We present our results both visually and in terms of peak
signal-to-noise ratio (PSNR). For stereo images, the PSNR
is computed using the average of the mean squared error
(MSE) of the reconstructed left and right images,

PSNR= 101 255°
=% \eE TMSE )2

First we compare different methods for the coding of the
disparity estimated |eft image for the **Room” and ** Aqua’
pairs. The reference image is the JPEG coded (quality fac-
tor 75) right image. (This is chosen to be able to compare
the results with previously published work.'®) The bit rate
figures include the coding of the disparity vector field. In
the case of the mixed transform, for each block an extra bit
is encoded using context-based arithmetic coding to signal
if that block is considered as occluded. (In the case of in-
dependent coding, it is not necessary to encode any dispar-
ity information.) The PSNR is computed using the MSE for

" mixed transiorm ——
Independent JPEG -------
lepend hea |

02 03 04 0s 06 07
rate (bpp)

Fig. 6 Comparison of independent coding, JPEG-style image cod-
ing, wavelet transform, and mixed transform coding for the left im-
age of the “Outdoors” stereo pair.
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a b c

Fig. 7 Occluded area of left image; (a) original, (b) compressed with
the Haar transform at 0.15 bpp, and (c) compressed with the mixed
transform at 0.15 bpp.

the left image alone. The JPEG-style coder in our compari-
son uses quantization tables from the MPEG predicted
frame coder.

Figure 4 compares independent coding, JPEG-style cod-
ing, overlapped block disparity compensation'® (OBDC),
and mixed transform coding. Mixed transform coding sig-
nificantly outperforms both independent and JPEG-style
coding with a gain of about 3 dB over the JPEG-style en-
coding. It also performs as well or better than OBDC cod-
ing, which uses a computationally more complex disparity
estimator.

Figure 5 shows the effect of different coding techniques
of the residual image and compares their performance. As

PSNR (d8)

IR R E R EEEEEEER N

os os 1 12 ”
rate (bpp)
Fig. 8 Comparison of proposed method with the embedded stereo

coding scheme from Boulgouris and its improved version for the full
“Room” stereo pair.
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C

Fig. 9 (a) and (b) Original “Room” image pair and (c) and (d) mixed transform compressed version of

the “Room” image at 0.5 bpp.

can be seen, the 9-7 wavelet filters perform poorest on the
residual image, followed by Haar filtering, EZDCT-style
coding, and mixed transform coding. The differences range
from 0.5to 1 dB for different bit rates between the pairsin
the preceding ranking.

A similar comparison is given for the ** Outdoors’ image
pair in Fig. 6. These images contain less occluded areas and
the natural images are also harder to predict using such a
simple disparity estimator. Using our mixed transform still
produces up to 0.2 dB improvement over wavelet coding of
the residual image. While the results for these two images
improve the performance of DCT-based techniques they
still fall short of the performance of individual wavelet cod-
ing of these images by about 0.2 dB.

Figure 7 demonstrates the effectiveness of the mixed
transform. Occlusion in the left image occurs around its | eft
edge. Figure 7(a) shows the origina image, Fig. 7(b) shows
the result compressed using the Haar-transform, and Fig.
7(c) the outcome after using the mixed transform. The wall
area is more uniform in Fig. 7(c) because the mixed coder
better preserved the occluded block.

For images that do not contain significant occluded in-
formation, the performance of the mixed transform coder is
almost identical to that of the EZDCT-style coder.

Next we compare our proposed method and the results
from Ref. 10 for the ““Room™ pair. Good residual image
performance alone does not guarantee overall good perfor-
mance when the entire stereo image is concerned in an
embedded coding scenario. Recall that the decoder uses the
compressed reference image to recreate the estimate for the
other image. If the coding of the residual image takes away
bits from the coding of the reference image the overall
result may not be as good as the coding of the residual
image would suggest.

Figure 8 demonstrates this comparison. In this case the
left image is chosen as the reference image. 1n the compari-
son, ‘‘Boulgouris2” refers to new results (received from the
authors of Ref. 10) obtained by an improved version of the
origina embedded stereo coder. It uses a more sophisti-
cated disparity estimator and better wavelet filters. Our pro-
posed method outperforms this improved algorithm as well
by 0.70 to 2.3 dB.

The original “Room” stereo image pair and its mixed
transform compressed version at 0.5 bpp is presented in
Fig. 9. At this rate, there is little noticeable distortion be-
tween the original and the compressed images. To fully
evaluate the effect of compression on stereo perception one
would need a stereo viewer to fuse these images.
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5 Conclusion

This work focused on the coding of the residual image in a
stereo image compression scenario. Our method specifi-
caly addresses the issue of the image transform and the
handling of the occluded blocks in the residual image. We
showed that by individually coding the blocks of the re-
sidual image corresponding to the DE process we can take
advantage of the correlation properties of residua images.
Occlusion is handled by foregoing estimation for those
blocks whose prediction is very distorted. Using an embed-
ded encoding scheme enables the encoding to be stopped at
any given rate without having to perform bit allocation.
While the encoding is computationally simple, our simula-
tions show improvements over previously published re-
sults.

In future research, this work can be extended to investi-
gating the properties of residual images that result from
more sophisticated DE techniques and applying some of the
proposed methods to improve their coding, especially for
the case of natural images.
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