
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2219

Almost All Complete Binary Prefix Codes
Have a Self-Synchronizing String

Christopher F. Freiling, Douglas S. Jungreis,
François Théberge, Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract—The probability that a complete binary prefix code has a self-
synchronizing string approaches one, as the number of codewords tends to
infinity.

Index Terms—Channel noise, source coding, synchronization, variable
length codes.

I. INTRODUCTION

Variable-length binary codes have been frequently used for commu-
nications since Huffman’s important paper on constructing minimum
average length codes [13]. One drawback of variable-length codes is
the potential loss of synchronization in the presence of channel errors.
However, many variable-length codes seem to possess a “self-synchro-
nization” property that lets them recover from bit errors.

In particular, for some variable-length codes there exists a certain
binary string (not necessarily a codeword) which automatically resyn-
chronizes the code. That is, if a transmitted sequence of bits is cor-
rupted by one or more bit errors, then as soon as the receiver by random
chance correctly detects a self-synchronizing string, the receiver can
continue properly parsing the bit sequence into codewords. Most com-
monly used binary prefix codes, including Huffman codes, are “com-
plete,” in the sense that the vertices in their decoding trees are either
leaves or have two children. An open question has been to characterize
which prefix codes and which complete prefix codes have a self-syn-
chronizing string. In this correspondence, we prove that almost all com-
plete prefix codes have a self-synchronizing string.

When variable-length codes are used for transmission, we say that
synchronizationis achieved when the receiver can determine the first
symbol of some codeword with certainty. Thesynchronization delay
is the number of code symbols which must be observed by the re-
ceiver before synchronization is achieved. The synchronization delay
is a random variable depending on the source statistics and the code. A
binary code isstatistically synchronizableif the synchronization delay
is finite with probability one. A string is self-synchronizing if by ob-
serving it, the receiver can achieve synchronization.1 Some codes have
self-synchronizing strings and some codes do not. Clearly, if a code
has a self-synchronizing string then the code is statistically synchro-

Manuscript received February 6, 2002; revised May 3, 2003. This work was
supported by the Institute for Defense Analyses and the National Science Foun-
dation. The material in this correspondence was presented at the IEEE Interna-
tional Symposium on Information Theory, Yokohama, Japan, June 2003.

C. F. Freiling is with the Department of Mathematics, California State Uni-
versity, San Bernardino, CA 92407-2397 USA (e-mail: cfreilin@csusb.edu).

D. S. Jungreis is with the Center for Communications Research, San Diego,
CA 92121-1969 USA (e-mail: jungreis@ccrwest.org).

F. Théberge is with the Communications Security Establishment, CSE/DND,
Terminal, Ottawa, ON K1G 3Z4, Canada (e-mail: theberge@ieee.org).

K. Zeger is with the Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail:
zeger@ucsd.edu).

Communicated by M. Weinberger, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2003.815803

1In the literature, such a string has also been called a “synchronizing se-
quence” and a “universal synchronizing sequence.” A code containing such a
string has been called “completely self-synchronizing,” “ergodic,” and “syn-
chronizing.”

nizable, since the probability of not observing the string tends to zero
as the number of observations increases without bound.

Gilbert [10] studied certain variable-length synchronizable codes
where all codewords had common prefixes, and variable-length codes
were studied in [11]. Wei and Sholtz [29] showed that fixed-length
codes are statistically synchronizable if and only if they have a
self-synchronizing string, as well as some other characterizations.
Capocelli, Gargano, and Vaccaro [2] proved that a variable-length code
is statistically synchronizable if and only if it has a self-synchronizing
string. They also gave an algorithm that determines whether a code
has a self-synchronizing string. It is known that if the all-zeros and
all-ones words of a complete prefix code have relatively prime lengths,
then the code has a self-synchronizing string [1]. Even [7] gave an
algorithm for determining whether finite automata are synchronizable
and showed how the algorithm can be applied to variable-length codes.
Capocelliet al. [3] gave an algorithm for constructing prefix codes
with self-synchronizing strings such that the average length of the
code is close to optimal. They also provided a method for constructing
prefix codes with a self-synchronizing codeword and whose rate
redundancy is low.

Ferguson and Rabinowitz [8] found sufficient conditions for the exis-
tence or nonexistence of self-synchronizing strings for Huffman codes
for many classes of source probabilities, but required the synchronizing
strings to be Huffman codewords. They also examined the problem of
finding, for a given set of codeword lengths, a Huffman code with the
shortest possible self-synchronizing codeword. Escott and Perkins [6]
gave an algorithm for finding such codes suggested in [8], but only
if a shortest self-synchronizing codeword exists whose length is one
bit longer than the shortest Huffman codeword length. Rudner [25]
showed how to generate a Huffman code with a shortest synchronizing
sequence for certain cases when the minimum codeword length is less
than five. Montgomery and Abrahams [20] showed how to construct
variable-length codes with a self-synchronizing string, whose average
length is close to that of a Huffman code.

Other work in these areas can be found in [11], [12], [15]–[17], [19],
[21]–[23], [26]–[28], [30].

II. COMPLETE PREFIX CODES

A prefix codeis a setC � f0; 1g� with the property that no element
of C is a prefix of any other element ofC. The elements ofC are called
codewords. A prefix code iscomplete2 if for every u 2 f0; 1g�, the
stringu0 is a prefix of some codeword if and only ifu1 is a prefix
of some codeword. Huffman codes are examples of complete prefix
codes. Given a finite setA with the same cardinality asC, anencoder
is any one-to-one mappingf : A� ! C� with the properties thatf
maps the empty string to the empty string,f(A) � C, andf(uv) =
f(u)f(v) for all u; v 2 A�. Thus, a prefix code converts a sequence
of symbols fromA into a sequence of bits by replacing each symbol
s 2 A by the codewordf(s).

Each encoder has an inverse, called adecoder.Prefix codes are at-
tractive for communications because they have easily implementable
encoders and decoders. Encoding is a table lookup operation. Decoding
(i.e., parsing) a binary string involves scanning from left to right and
inserting a comma each time a codeword is seen.

2There is some variation in terminology in the literature for this concept. For
example, Gallager [9, p. 54] and Cover and Thomas [4, p. 111] use “complete,”
whereas Knuth [14, p. 713] uses “extended,” McEliece [18, p. 249] uses “full,”
Csiszár and Körner [5, p. 72] use “saturated,” and Gilbert and Moore [11, p.
942] use “exhaustive,” and Berstel and Perrin [1, p. 98] use “maximal.” In fact,
there is quite a bit of closely related literature on synchronization in the fields
of automata theory and finitely presented monoids (e.g., see [1]).

0018-9448/03$17.00 © 2003 IEEE

2220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

A binary treeis a finite directed acyclic graph such that every node
has out-degree zero or two, one node (called theroot nodeand denoted
r) has in-degree zero, and all other nodes have in-degree one. Whenever
an edge leads from one node to another, these nodes are referred to,
respectively, as theparentandchild. The edges leading from a parent
to its children are labeled “0” and “1,” and the corresponding children
are called the0-child and1-child. A leaf is a node with no children.
A nonleaf node is calledinternal. A branchis a path from the root to
a leaf, and each branch is identified with the sequence of zeros and
ones that label this path. In particular, thezero branchis the branch
associated with the all-zeros codeword. Each node of a tree is identified
with the label of the path to the node from the root. In particular, the
root node is identified with the empty string.

A complete prefix code can be conveniently represented by the bi-
nary tree whose branches are its codewords. To decode a binary se-
quence, one places a pointer at the root, and proceeds through the bit
sequence. For each0-bit, the pointer is moved to its0-child, and for
each1-bit the pointer is moved to its1-child. Whenever the pointer
reaches a leaf, the symbol inA that is represented by that leaf’s path
is output, and the pointer is reset to the root.

A simple but useful fact is that for every nodev in a binary tree, there
exists a nonnegative integerk such thatv0k is the root node, where0k

is the string ofk zeros. This is because we can traverse down a binary
tree fromv along0-children, eventually hitting a leaf node.

III. SELF-SYNCHRONIZING STRINGS

Recall that in the decoding procedure, we keep a pointer to a node in
the tree; for each bit of data, we move the pointer from a node to one
of its children, and when we reach a leaf, we move the pointer back to
the root. In this way, any string of data-bits moves the pointer from one
node to another. We define this formally.

Definition III.1: Let z denote then-long stringb1; . . . ; bn where
eachbi 2 f0; 1g. For internal nodesu andv in a binary tree, we say
thatz bringsu to v if either:

• n = 1, v is theb1-child of u;

• n = 1, v is the root, and theb1-child of u is a leaf;

• n > 1, b1 bringsu to a nodew, andb2; . . . ; bn bringsw to v.

If w is a leaf node then we sayz brings u to the root viaw if
b1; . . . ; bn�1 bringsu to a node whosebn-child isw. In this circum-
stance, when there is no ambiguity, we may for convenience say that
z bringsu to w.

It is clear that for any stringz and any internal nodeu there is exactly
one internal nodev such thatz bringsu tov. A string is a concatenation
of codewords if and only if it brings the root to itself.

In the decoding procedure, the location of the pointer depends on the
entire set of bits that have been decoded; however, knowing the most
recently decoded bits provides some information about the location of
the pointer. In particular, there are certain strings that bring multiple
nodes to one node. We say a stringz coalescesu andv if it brings u
andv to the same node. We say two nodesu andv coalesceif there
exists some string that coalesces them.

A stringz 2 f0; 1g� isself-synchronizingfor a complete prefix code
if it brings every internal node to the root. Therefore, if we are decoding
a data stream and we have just decoded a self-synchronizing string,
then the pointer is back at the root, regardless of what bits preceded the
self-synchronizing string.

Example III.2: The complete prefix code represented by the binary
tree in Fig. 1 has “101” as a self-synchronizing string. To see this, ob-

Fig. 1. Binary tree example of complete prefix code with a self-synchronizing
string.

serve that the internal nodes are0i for 0 � i � 5 and10i for 0 � i � 2.
The string “1” brings all but one of these to the root, the exception being
that “1” brings the root to1. The string “01” brings both1 and the root
to the root, so “101” brings every internal node to the root.

Example III.3: The complete prefix codes represented by the binary
trees in Fig. 2 do not have self-synchronizing strings. This is because
every path from the root to itself has even length, whereas each tree
contains nodes which can only get to leaf nodes by paths of odd length.

LetQ be a collection of binary codes and letP be some property that
each such code may or may not have. For each positive integern let
�(n) be the number of codes inQwith n codewords that have property
P , and let�(n) be the number of codes inQwith n codewords. We say
thatalmost all codes inQ have propertyP if limn!1 �(n)=�(n) =
1. The main result of this correspondence is the following theorem.

Theorem III.4: Almost all complete prefix codes have a self-syn-
chronizing string.

The following general lemma about self-synchronizing strings will
be useful in later sections.

Lemma III.5: If every internal node on the zero branch of a bi-
nary tree coelesces with the root, then the tree has a self-synchronizing
string.

Proof: For any stringx, let Nx denote the set of nodesv such
that x brings some node tov. Selectx so thatjNxj is minimal. If
jNxj = 1, then there is a self-synchronizing string. Assume then that
jNxj � 2. Let v andw be any two nodes ofNx. For sufficiently large
m0, the string0m will bring bothv andw to nodes on the zero-branch.
Therefore, some string0m will bring v to the root, while bringingw
to a node0i. By assumption, there is a stringy that coalesces0i with
the root. Hence, we have a stringz = x0my such thatjNzj < jNxj,
which is a contradiction.

To exploit this lemma, it is useful to view a binary tree via the
k-forest consisting of the union of trees attached to (and including) the
1-child of each of thek internal nodes of the zero branch.

IV. TREE COUNTING

A k-forest is an ordered collection ofk disjoint binary trees. In this
section, some results onk-forests are presented that will be used in later
proofs. For positive integersn andk � n, letG(n; k) be the number
of k-forests that haven leaves.

Denote thenth Catalan numberbyCn. The following properties are
known [24]:

1) Cn�1 = G(n; 1)

2) Cn = 1

n+1

2n

n

3) Cn = C0Cn�1 + C1Cn�2 + � � � + Cn�1C0.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2221

Fig. 2. Binary tree examples of complete prefix codes without self-synchronizing strings.

The quantityCn�1 is the number of binary trees containingn leaf
nodes, or equivalently, the number of complete prefix codes withn
codewords. We now derive the values and limiting values forG(n; k).

Lemma IV.1: G(n; k) = k

n

2n�k�1
n�1

.
Proof: Suppose the first of thek trees is an isolated node. Then

there aren� 1 remaining leaves andk� 1 remaining components, so
the number of suchk-forests isG(n� 1; k� 1). Suppose instead that
the first of thek trees isnotan isolated node, so the root of the first tree
has childrena andb. We can now attach any trees toa, to b, and to the
remainingk � 1 roots subject to the condition that thesek + 1 trees
have a total ofn leaves. The number of ways to do this is the number
of (k + 1)-forests withn leaves, i.e.,G(n; k + 1). Hence,

G(n; k) = G(n� 1; k � 1) +G(n; k + 1) (1)

or equivalently, replacingk with k � 1

G(n; k) = G(n; k � 1)�G(n� 1; k � 2): (2)

We now prove the lemma by induction onk. G(n; 1) is the number
of binary trees withn leaves, so

G(n; 1) = Cn�1 =
1

n

2n� 2

n� 1
:

G(n; 2) is the number of ordered pairs of binary trees with a total of
n leaves. We can count these pairs by assuming the two trees havei
leaves andn � i leaves, respectively, and then summing overi. Thus,
using the properties of the Catalan numbers

G(n; 2) =C0Cn�2 + C1Cn�3 + � � �+ Cn�2C0

=Cn�1

=
1

n

2n� 2

n� 1
=

2

n

2n� 3

n� 1
: (3)

This establishes the two initial cases. The induction step follows
from (2)

G(n; k) =
k � 1

n

2n� k

n� 1
�

k � 2

n� 1

2n� k � 1

n� 2

=
k � 1

n

2n� k � 1

n� 2
+

2n� k � 1

n� 1

�
k � 2

n� 1

2n� k � 1

n� 2

=
n� k + 1

n(n� 1)

2n� k � 1

n� 2
+

k � 1

n

2n� k � 1

n� 1

=
1

n

2n� k � 1

n� 1
+

k � 1

n

2n� k � 1

n� 1

=
k

n

2n� k � 1

n� 1
:

Lemma IV.2: For all k > 1

lim
n!1

G(n� 1; k � 1)

G(n; k)
=
k � 1

2k

lim
n!1

G(n; k + 1)

G(n; k)
=
k + 1

2k
:

Proof: It follows from Lemma IV.1 that

G(n� 1; k � 1)

G(n; k)
=

n(k � 1)

k(2n� k � 1)

and
G(n; k + 1)

G(n; k)
=

(k + 1)(n� k)

k(2n� k � 1)

from which the lemma follows.

V. PROOF OF THEMAIN THEOREM

For binary treesS andT , we use the notationS � T to indicate that
S is a subtree ofT and has the same root node. For any binary treeT ,
letL(T) denote the set of leaves ofT . Given a binary treeS and a set
L � L(S), we defineT (S; L; n) to be the set ofn-leaf binary trees
T such thatS � T andL � L(T). WhenS andL are understood, we
will useL0 to denote the complement ofL in L(S), i.e.,L(S) n L.

Lemma V.1: jT (S; L; n)j = G(n� jLj; jL0j).
Proof: Each tree inT (S; L; n) consists ofS plus a tree attached

to a subset of the nodes ofL0. Thus, there is a one-to-one correspon-
dence between the elements ofT (S; L; n) and the set of all forests
with jL0j components andn� jLj leaves.

It is possible to select a binary treeT uniformly at random from
T (S; L; n) via a sequence of observations and outcomes. Each obser-
vation consists of selecting a node known to be inT , and seeing if it
has children inT . Each step of this process reveals partial knowledge
aboutT .

Thus, for a treeT and one of its nodesv, define anoutcometo be
the mapping

o(v; T) =
1; if v 2 L(T)

0; if v =2 L(T):
(4)

When a nodev is used in this way, it will be called anobservation.
For a sequence of observations and outcomes,(v0; o0);

(v1; o1); . . . ; (vm�1; om�1) we say that the binary treeT sat-
isfiessuch a sequence ifo(vi; T) = oi for eachi. For any treesT and
S � T , and anyv 2 L(S)nL(T), letS(v) denote the tree obtained by
adjoining toS the two children (inT) of v and the two corresponding
edges fromv.

Theorem V.2:For everyS, L, andv 2 L0, the following hold:

i) fT 2 T (S; L; n): o(v; T) = 1g = T (S; L [fvg; n);

ii) fT 2 T (S; L; n): o(v; T) = 0g = T (S(v); L; n).

Proof:
i) SupposeT 2 T (S; L; n) ando(v; T) = 1. ThenT contains

S and hasn leaves. Also, every node ofL is a leaf ofT as isv, so

2222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

every node ofL [fvg is a leaf ofT . Thus,T 2 T (S; L [fvg; n).
Conversely, ifT 2 T (S; L [fvg; n), thenT containsS and hasn
leaves. Also, every node ofL is a leaf ofT , as isv, soT 2 T (S; L; n)
ando(v; T) = 1.

ii) SupposeT 2 T (S; L; n) and o(v; T) = 0. ThenT hasn
leaves, and every node ofL is a leaf ofT . Also, T containsS and
the children ofv, hence,S(v), soT 2 T (S(v); L; n). Conversely, if
T 2 T (S(v); L; n), thenT hasn nodes, and every node ofL is a leaf
of T . Also,T containsS(v), soT containsS, ando(v; T) = 0. Hence,
T 2 T (S; L; n) ando(v; T) = 0.

We now give a brief outline of the remainder of this section. We
begin by considering, for some fixedl, only those binary trees that
have0l as a leaf. In Theorem V.3, we construct a specific sequence of
observations and outcomes that guarantees the existence of a string that
coalesces some fixed0i with the root. We also give a lower bound on
the probability that a binary tree satisfies this sequence of outcomes.
In Theorem V.6, we combine many such sequences to show that for
almost all binary trees, there is a string that coalesces0i with the root.
This will immediately imply Theorem V.8, that if a binary tree has0l

as a leaf there is almost surely a self-synchronizing string. Finally, in
Theorem V.10, we show that we can drop the condition that0l is a leaf.

Theorem V.3:Let i, l, andn be positive integers. LetS be a bi-
nary tree and letL L(S) such that0l 2 L. Assumen > jLj+
jL0j+ l and l > i. Then there existsz 2 f0; 1g�, a nonnegative in-
teger � l, and a nonempty sequence of observations and outcomes
(v0; 1); (v1; 0); . . . ; (v ; 0); (v+1; 1) such thatz coalesces0i with
the root in every treeT 2T (S; L; n) that satisfies this sequence. Fur-
thermore, ifT is selected uniformly at random fromT (S; L; n), and
P is the probability thatT satisfies this sequence, then

P �
G(n� jLj � 2; jL0j + l� 2)

G(n� jLj; jL0j)
:

Proof: The main idea of the proof if as follows. First, we find a
stringw which brings the root and0i to nodesa andb (not necessarily
respectively), and such that0� and0�, respectively, bringa andb to
leavesv0 andv1 of S. We guarantee that at least one of these two leaves
of S is not a leaf ofT . Then we show how to construct a sequence of0s
which coalescesa andb in T , providedT satisfies a certain sequence
of observations and outcomes. The specific observations and outcomes
are chosen to synchronize the paths thata andb follow via a sequence
of 0s, allowing them to loop around the zero branch as many times
as needed. Finally, we show that the fraction of trees inT (S; L; n)
that satisfy such observations and outcomes is lower-bounded as in the
statement of the theorem.

Define the set

B = fu: u is a node ofS andu0k 2 L
0 for somek � 0g

and letT 2 T (S; L; n). Letw be any shortest string that brings either
the rootr or 0i to a node inB (note thatB may contain leaves ofT but
not the root).w brings one ofr or0i to somea 2 B and brings the other
to some nodeb. Neithera nor b is the root, but they could be leaves.
Observe thatb must be inS, for otherwise the path tob induced byw
would pass through a node inL0 � B, violating the minimal length of
w. Now let

• v0 = b0� where� is the smallest integer such thatb0� 2 L(S);

• v1 = a0� where� is the smallest integer such thata0� 2 L0;

• 2 f1; 2; . . . lg such that � (� � �) mod l;

• vi+1 be the 0-child ofvi in T , for i � 1.

Fig. 3. Proof illustration, whenv 2 L, andw bringsr to a.

If v0 2 L andT satisfies the sequence

(v1; 0); (v2; 0); . . . ; (v ; 0); (v+1; 1)

or v0 2 L0 andT satisfies the sequence

(v0; 1); (v1; 0); (v2; 0); . . . ; (v ; 0); (v+1; 1)

then the string0max(�;�+) coalescesa andb in T . In both cases,v0 is
a leaf ofT andv1 is steps away from a leaf by following0-children.
Thus, ifT satisfies the sequence

(v0; 1); (v1; 0); (v2; 0); . . . ; (v ; 0); (v+1; 1)

then the stringz = w0max(�;�+) coalescesr and0i. This is illus-
trated in Fig. 3.

We now derive the bound for the probability that a randomly chosen
tree inT (S; L; n) satisfies this sequence. The probabilityP that tree
T satisfies the observations and outcomes is the ratio of the number of
possibilities forT before the observations to the number of possibilities
after the observations.

Define

S0 =S

Sj =S
(v)

j�1 ; for j = 1; . . . ; + 1

Lj =L [fv0; vj+1g; for j = 0; . . . ; : (5)

If v0 2 L0, thenL0

 (i.e.,L(S)nL) is the union ofL0 and the1-chil-
dren ofv1; v2; . . . ; v minusfv0; v1g. Therefore, by Lemma V.1

jT (S ; L ; n)j =G(n� jL j; jL
0

 j)

=G(n� jLj � 2; jL0j + � 2):

If v0 2 L, then L0

 is the union ofL0 and the1-children of
v1; v2; . . . ; v minusfv1g. Therefore, by Lemma V.1

jT (S ; L ; n)j =G(n� jL j; jL
0

 j)

=G(n� jLj � 1; jL0j + � 1):

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2223

The pair(S ; L) represents the partial knowledge of the tree after
the given sequence of observations and outcomes. The probability that
T satisfies the observations and outcomes is

P =
jT (S ; L ; n)j

jT (S; L; n)j
:

From (1), the numerator is smaller in the case whenv0 2 L0, and
from (2), is smallest when is as large as possible, namely, = l. By
Lemma V.1, the denominator is

jT (S; L; n)j = G(n� jLj; jL0j):

This achieves the lower bound in the theorem.

In Theorem V.3, we gave a sequence of observations and outcomes
that guarantee that a particular node coalesces with the root. We also
gave a lower bound for the probability of these outcomes. We next show
that for largen, this lower bound converges to a positive value.

Lemma V.4: For all l � 2, k, andm

lim
n!1

G(n� k � 2; m+ l� 2)

G(n� k; m)
� 2�l�2

:

Proof: Let n0 = n � k and let

P (n) =
G(n0 � 2; m+ l� 2)

G(n0; m)
:

ThenP (n) can be written as a telescoping product

P (n) =
G(n0 � 1; m� 1)

G(n0; m)

l�1

i=0

G(n0 � 1; m+ i)

G(n0 � 1; m+ i� 1)

�
G(n0 � 2; m+ l� 2)

G(n0 � 1; m+ l� 1)
:

As n ! 1, the limits of the fractions in this product are given by
Lemma IV.2. Thus,

lim
n!1

P (n) =
m� 1

2m

l�1

i=0

m+ i

2(m+ i� 1)

m+ l� 2

2(m+ l� 1)

=
1

2l+2
�

m+ l� 2

m

�
1

2l+2
:

Note that Lemma V.4 implies in particular, that

G(n� k � 2; m+ l� 2)

G(n� k; m)
> 2�l�3

for sufficiently largen. An immediate consequence of Theorem V.3
and Lemma V.4 is the following corollary.

Corollary V.5: Let i andl > i be positive integers, letS be a bi-
nary tree, and letL L(S) such that0l 2 L. If T is selected from
T (S; L; n) uniformly at random, then for sufficiently largen

PPP (the root and0i do not coalesce inT) < 1� 2�l�3
:

Theorem V.6:Let i and l > i be positive integers, letS be a bi-
nary tree, and letL L(S) such that0l 2 L. If T is selected from
T (S; L; n) uniformly at random, then

lim
n!1

PPP (the root and0i coalesce inT) = 1:

Proof: We will show by induction that for allk � 1 and suffi-
ciently largen

PPP (the root and0i coalesce inT) > 1� (1� 2�l�3)k: (6)

This expression converges to1 ask grows, for fixedl, so the result will
follow. Equation (6) holds in the casek = 1 by Corollary V.5. Now
assume (6) is true for allk � k0 (wherek0 � 1). Let

V+1 = f(v0; 1); (v1; 0); (v2; 0); . . . ; (v ; 0); (v+1; 1)g

be a sequence of observations and outcomes as guaranteed by Theorem
V.3. In particular, ifT satisfiesV+1 then0i and the root coalesce in
T . Define the prefixes ofV+1 as

V�1 = ;

Vj = f(v0; o0); . . . ; (vj ; oj)g; for j = 0; . . . ; + 1

where

o0 = o+1 = 1

oj =0; for j = 1; . . . ; :

DefineSj andLj for j = 1; . . . ; as in (5), and define the events

Fj = fT 2 T (S; L; n): T satisfiesVj�1 [f(vj ; 1� oj)gg

for j = 0; . . . ; + 1. That is,Fj is the event thatT satisfies the first
j observations and outcomes, but not the(j + 1)st in the sequence
V+1. LetH denote the event thatT does not satisfyV+1. ThenH is
a disjoint union of events, namely

H =

+1

j=0

Fj :

LetUi denote the event that the root and0i do not coalesce inT . If Ui

occurs, thenT 2 H . Thus,

P (Ui) =P (T 2 H; Ui)

=

+1

j=0

P (T 2 Fj ; Ui)

=P (T 2 F0)P (Ui jT 2 T S
(v)

; L; n)

+

j=1

P (T 2 Fj)P (Ui jT 2 T (Sj�1; Lj�1; n))

+ P (T 2 F+1)P (Ui j T 2 T (S+1; L [fv0g; n)) (7)

<

+1

j=0

P (T 2 Fj)(1� 2�l�3)k (8)

=P (T 2 H)(1� 2�l�3)k

< (1� 2�l�3)k +1 (9)

where (7) follows from Theorem V.2 assuming all conditioning events
are nonempty (ifv0 2 L thenP (T 2 F0) = 0 and (7) trivially
follows), (8) follows from the induction hypothesis (which applies to
any fixedS andL in the statement of Theorem V.6), and (9) follows
from Corollary V.5 (sinceH � T (S; L; n)).

Lemma V.7: For all l � 1, if S is the binary tree corresponding to
the codef0lg[f0i1: 0 � i � l�1g andL = f0lg, thenT (S; L; n)
is the set ofn-leaf trees containing the codeword0l.

Proof: SupposeT is ann-leaf binary tree. If0l is a leaf ofT ,
thenT must containS, andL � L(T). Therefore,T 2 T (S; L; n).
Conversely, ifT 2 T (S; L; n), thenT has0l as a leaf.

2224 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

Theorem V.8:For all l � 1, if T is selected uniformly at random
from the set ofn-leaf binary trees that have0l as a leaf, then

lim
n!1

PPP (T has a self-synchronizing string) = 1:

Proof: By Lemma V.7, it is equivalent to say thatT is selected
uniformly at random fromT (S; L; n), whereS andL are as defined
in the statement of that lemma. LetEi denote the event that0i and the
root coalesce inT . Clearly,P (E0) = 1 since the empty string00 is
the root. By Theorem V.6, for0 < i < l, limn!1 PPP (Ei) = 1. For all
l � 1, it follows that

lim
n!1

PPP (E0 \E1 \ � � � \ El�1) = 1:

By Lemma III.5, the eventE0 \E1 \ � � � \El�1 implies thatT has a
self-synchronizing string.

We have proved the main result, Theorem III.4, in the special case
that0l is a leaf ofT . In order to deduce the main result from this special
case, we need the following lemma.

Lemma V.9: If T is an n-leaf binary tree selected uniformly at
random, then

lim
n!1

P (0l 2 L(T)) =
l

2l+1
:

Proof: The total number ofn-leaf binary trees isG(n; 1). LetS
andL be defined as in the statement of Lemma V.7. By that lemma, the
number ofn-leaf binary trees that have0l as a leaf isjT (S; L; n)j. By
Lemma V.1

jT (S; L; n)j = G(n� jLj; jL0j) = G(n� 1; l):

Thus,

P (0l 2 L(T)) =
G(n� 1; l)

G(n; 1)
:

By Lemma IV.1, this is equal to

l � n � (n� 1) � � � (n� l)

(2n� 2) � (2n� 3) � � � (2n� l� 2)
:

We then take the limit asn!1.

Theorem V.10:Almost alln-leaf binary trees have a self-synchro-
nizing string.

Proof: Let qn be the probability that ann-leaf binary treeT ,
chosen uniformly at random, has a self-synchronizing string. Forl <

n, define the quantities

an; l =PPP (T has a self-synchronizing stringj 0l 2 L(T))

bn; l =PPP (0l 2 L(T))

and forn � l, let an; l = bn; l = 0 (0l 2 L(T) is impossible in that
case). Therefore,

lim
n!1

qn = lim
n!1

1

l=1

an; lbn; l

�

1

l=1

lim
n!1

an; lbn; l

(by Fatou's lemma sincean; l; bn; l � 0)

=

1

l=1

lim
n!1

an; l lim
n!1

bn; l

=

1

l=1

(1)
l

2l+1

(by Theorem V.8 and Lemma V.9)

= 1:

Theorem V.10 immediately implies Theorem III.4.

ACKNOWLEDGMENT

The authors wish to thank Al Hales for many helpful comments,
and Gadiel Seroussi for pointing out Knuth’s use of the terminology
“extended tree.”

REFERENCES

[1] J. Berstel and D. Perrin,Theory of Codes. New York: Academic, 1985.
[2] R. M. Capocelli, L. Gargano, and U. Vaccaro, “On the characterization of

statistically synchronizable variable-length codes,”IEEE Trans. Inform.
Theory, vol. 34, pp. 817–825, July 1988.

[3] R. M. Capocelli, A. A. De Santis, L. Gargano, and U. Vaccaro, “On the
construction of statistically synchronizable codes,”IEEE Trans. Inform.
Theory, vol. 38, pp. 407–414, Mar. 1992.

[4] T. M. Cover and J. A. Thomas,Introduction to Information
Theory. New York: Wiley, 1991.

[5] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Dis-
crete Memoryless Systems. New York: Academic, 1981.

[6] A. E. Escott and S. Perkins, “Binary Huffman equivalent codes with a
short synchronizing codeword,”IEEE Trans. Inform. Theory, vol. 44,
pp. 346–351, Jan. 1998.

[7] S. Even, “Test for synchronizability of finite automata and variable
length codes,”IEEE Trans. Inform. Theory, vol. IT-10, pp. 185–189,
July 1964.

[8] T. J. Ferguson and J. H. Rabinowitz, “Self-synchronizing Huffman
codes,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 687–693, July
1984.

[9] R. Gallager,Information Theory and Reliable Communication. Engle-
wood Cliffs, NJ: Prentice-Hall, 1968.

[10] E. N. Gilbert, “Synchronization of binary messages,”Proc. IRE, vol. 48,
pp. 470–477, Sept. 1960.

[11] E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,”Bell
Syst. Tech. J., vol. 38, pp. 933–967, July 1959.

[12] S. W. Golomb and B. Gordon, “Codes with bounded synchronization
delay,” Inform. Contr., vol. 8, pp. 355–372, 1965.

[13] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, pp. 1098–1101, Sept. 1952.

[14] D. E. Knuth,The Art of Computer Programming. Reading, MA: Ad-
dison-Wesley, 1973, vol. 3.

[15] W.-M. Lam and R. Kulkarni, “Extended synchronizing codewords for
binary prefix codes,”IEEE Trans. Inform. Theory, vol. 42, pp. 984–987,
May 1996.

[16] V. I. Levenshtein, “Certain properties of code systems,”Soviet
Phys.–Dokl., vol. 6, no. 6, pp. 858–860, 1962.

[17] J. C. Maxted and J. P. Robinson, “Error recovery for variable length
codes,” IEEE Trans. Inform. Theory, vol. IT-31, pp. 794–801, Nov.
1985.

[18] R. McEliece,The Theory of Information and Coding. Reading, MA:
Addison-Wesley, 1977.

[19] M. E. Monaco and J. M. Lawler, “Corrections and additions to “error
recovery for variable-length codes”,”IEEE Trans. Inform. Theory, vol.
IT-33, pp. 454–456, May 1987.

[20] B. L. Montgomery and J. Abrahams, “Synchronization of binary source
codes,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 849–854, Nov.
1986.

[21] H. Morita, A. J. van Wijngaarden, and A. J. Han Vinck, “On the con-
struction of maximal prefix-synchronized codes,”IEEE Trans. Inform.
Theory, vol. 42, pp. 2158–2166, Nov. 1996.

[22] P. G. Neumann, “Efficient error-limiting variable length codes,”IRE
Trans. Inform. Theory, vol. IT-8, pp. 292–304, July 1962.

[23] M. Rahman and S. Misbahuddin, “Effects of a binary symmetric channel
on the synchronization recovery of variable length codes,”Comput. J.,
vol. 32, pp. 246–251, 1989.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2225

[24] K. H. Rosen, Ed.,Handbook of Discrete and Combinatorial Mathe-
matics. Boca Raton, FL: CRC, 2000.

[25] B. Rudner, “Construction of minimum-redundancy codes with an op-
timum synchronization property,”IEEE Trans. Information Theory, vol.
IT-17, pp. 478–487, July 1971.

[26] P. F. Swaszek and P. DiCicco, “More on the error recovery for vari-
able-length codes,”IEEE Trans. Inform. Theory, vol. 41, pp. 2064–2071,
Nov. 1995.

[27] Y. Takishima, M. Wada, and H. Murakami, “Error states and synchro-
nization recovery for variable length codes,”IEEE Trans. Commun., vol.
42, pp. 783–792, Feb. 1994.

[28] M. R. Titchener, “The synchronizaation of variable-length codes,”IEEE
Trans. Inform. Theory, vol. 43, pp. 683–691, Mar. 1997.

[29] V. K. W. Wei and R. A. Scholtz, “On the characterization of statisti-
cally synchronizable codes,”IEEE Trans. Inform. Theory, vol. IT-26,
pp. 733–735, Nov. 1980.

[30] G. Zhou and Z. Zhang, “Synchronization receovery of variable-length
codes,”IEEE Trans. Inform. Theory, vol. 48, pp. 219–227, Jan. 2002.

A Coding Theorem for Lossy Data Compression
by LDPC Codes

Yuko Matsunaga and Hirosuke Yamamoto, Member, IEEE

Abstract—In this correspondence, low-density parity-check (LDPC)
codes are applied to lossy source coding and we study how the asymptotic
performance of MacKay’s LDPC codes depends on the sparsity of the
parity-check matrices in the source coding of the binary independent and
identically distributed (i.i.d.) source with Pr = 1 = 0 5. In the
sequel, it is shown that an LDPC code with column weight (log) for
code length can attain the rate-distortion function asymptotically.

Index Terms—Lossy data compression, low-density parity-check (LDPC)
codes, rate-distortion function.

I. INTRODUCTION

Recently, low-density parity-check (LDPC) codes, which were orig-
inally discovered by Gallager [1], [2] in 1962, have been studied ac-
tively because of their very good performance in error correction. It
was shown by many researchers [3]–[8] that LDPC codes can attain
high performance near the Shannon limit by iterative decoding with
belief propagation [9], [10]. Furthermore, MacKay [3] and Miller and
Burshtein [11] proved that the LDPC codes can asymptotically achieve
channel capacity.

On the other hand, it is well known that channel coding can be con-
sidered as the dual problem of lossy source coding in rate-distortion
theory [12], and a good error-correcting code can be used for effi-
cient lossy data compression. Csiszár and Körner [13] showed that the

Manuscript received November 21, 2002; revised May 13, 2003. The work of
H. Yamamoto was supported in part by JSPS under Grant-in-Aid for Scientific
Research 14550347. The material in this correspondence was presented at the
IEEE International Symposium on Information Theory, Lausanne, Switzerland,
June/July 2002.

Y. Matsunaga is with Internet Systems Research Laboratories, NEC Corpo-
ration, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki, Kanagawa, 216-8555, Japan
(e-mail: y-matsunaga@da.jp.nec.com).

H. Yamamoto is with the Department of Mathematical Informatics, Univer-
sity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan (e-mail: Hi-
rosuke@ieee.org).

Communicated by R. Koetter, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.815805

rate-distortion function can be achieved by an error-correcting code
that can attain error probabilityPe = 1 � � with rate close to the
rate-distortion function for any sufficiently small fixed� > 0. However,
for LDPC codes or other practical error-correcting codes, the existence
of such codes is not obvious, and hence we have to prove the existence
if we want to use such codes for lossy data compression. Actually, for
example, Goblick [14] and Berger [15] showed that a general linear
error-correcting code can attain the rate-distortion function asymptoti-
cally for a binary independent and identically distributed (i.i.d.) source
withPrfx = 1g = 0:5. Furthermore, Viterbi and Omura [16] proved a
lossy source coding theorem for i.i.d. sources by using trellis codes with
Viterbi decoding. However, nopractically goodlossy source coding
scheme has been found because the encoding methods used in the lossy
source coding schemes are not practical in the sense of memory and
time complexity.

Based on the good performance of the LDPC codes and the practi-
cally feasible belief propagation decoding, we may expect that LDPC
codes are good candidates for practical lossy source coding. However,
it is known that belief propagation decoding does not work well in
lossy source coding because the noise level of the test channel in lossy
source coding is much larger than that of usual channels used in prac-
tical error correction. Nevertheless, it is still worth to clarify if the
LDPC codes can attain the rate-distortion function asymptotically be-
cause some cleverly modified version of belief propagation decoding
or an entirely new decoding algorithm may be devised exploiting the
sparsity of parity-check matrix in the future.

In this correspondence, we treat LDPC codes on MacKay’s en-
semble [3] for the binary i.i.d. source withPrfx = 1g = 0:5, and we
consider the relation between the sparsity of parity-check matrices and
the asymptotic performance in LDPC codes. Furthermore, we show
that for code lengthn, an LDPC code with column weightO(logn)
can attain the rate-distortion function asymptotically.

The correspondence is organized as follows. Section II is devoted to
some preliminaries of the rate-distortion theory and the lossy source
coding by LDPC codes. The main coding theorem is also described
in Section II, but the proof is given in Section III. It is also shown in
Section III how the sparsity of parity-check matrices affects the perfor-
mance of LDPC codes in the lossy source coding.

II. L OSSYDATA COMPRESSION BYLDPC CODES

Let sourceX be a binary i.i.d. source which takes values inX =
f0; 1g with q = Prfx = 1g. The distortion between single letters is
measured by the Hamming distortion defined by

dH(x; x̂) =
0; if x = x̂

1; if x 6= x̂

and the distortion betweenn-bit sequences1 xxx = x1; x2; � � � ; x
T

n and
x̂xx = x̂1; x̂2; � � � ; x̂

T

n is measured by the averaged single-letter distor-
tion as follows:

d(xxx; x̂xx) =
1

n

n

i=1

dH(xi; x̂i):

Then the rate-distortion functionR(D) of the binary i.i.d. source is
given by

R(D) = min
X̂: E[d (X; X̂)]�D

I(X; X̂)

=h(q)� h(D); 0 � D � q � 0:5

1In this correspondence, a bold-faced letter represents a column vector and
stands for transposition of a vector or a matrix

0018-9448/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

