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Almost All Complete Binary Prefix Codes nizable, since the probability of not observing the string tends to zero
Have a Self-Synchronizing String as the number of observations increases without bound.
Gilbert [10] studied certain variable-length synchronizable codes
Christopher F. Freiling, Douglas S. Jungreis, where all codewords had common prefixes, and variable-length codes

Francgois ThébergéMember, IEEEand Kenneth ZegeFellow, IEEE  were studied in [11]. Wei and Sholtz [29] showed that fixed-length
codes are statistically synchronizable if and only if they have a

- ] ] self-synchronizing string, as well as some other characterizations.
Abstract—The probability that a complete binary prefix code has a self- ~454c6|lj Gargano, and Vaccaro [2] proved that a variable-length code
synchronizing string approaches one, as the number of codewords tends to . N T . . .
infinity. is statistically synchronizable if and only if it has a self-synchronizing
string. They also gave an algorithm that determines whether a code
has a self-synchronizing string. It is known that if the all-zeros and
all-ones words of a complete prefix code have relatively prime lengths,
then the code has a self-synchronizing string [1]. Even [7] gave an
|. INTRODUCTION algorithm for determining whether finite automata are synchronizable
. . and showed how the algorithm can be applied to variable-length codes.
Variable-length binary codes have been frequently used for commul . g . PP . ng
apocelliet al. [3] gave an algorithm for constructing prefix codes

nications since Huffman'’s important paper on constructing minIMu, self-synchronizing strings such that the average length of the

average Ie_ngth codes [13]. Qne _dra\_/vback of variable-length code%é%e is close to optimal. They also provided a method for constructing
the potential loss of synchronization in the presence of channel ermalSe codes with a self-svnchronizing codeword and whose rate
However, many variable-length codes seem to possess a “self-sync é%hndancy is low. 4 9

nIZlﬁtlO:rti?;[ﬁgfr%rtk;?)trzzts\/;k:;eargléelzzviaf::%?etgttﬁrergséxists a cert inFerguson and Rabinowitz [8] found sufficient conditions for the exis-
binarp strin r;ot necessarily a codewgord which automatically res hce or nonexistence of self-synchronizing strings for Huffman codes

y 9( 1y .) Y TESYRS many classes of source probabilities, but required the synchronizing
chronizes the code. That is, if a transmitted sequence of bits is ¢

) . frings to be Huffman codewords. They also examined the problem of
rupted by one or more bit errors, then as soon as the receiver by rando 9 y P

o . ; |n'aing, for a given set of codeword lengths, a Huffman code with the
chance correctly detects a self-synchronizing string, the receiver ¢

. ; . . Hdrtest possible self-synchronizing codeword. Escott and Perkins [6
continue properly parsing the bit sequence into codewords. Most com- POSs| y 'zIng W ins [6]

monly used binary prefix codes, including Huffman codes, are “co ave an algorithm for finding such codes suggested in [8], but only

3{, : yp ” aing t . ' [T a shortest self-synchronizing codeword exists whose length is one
plete,” in the sense that the vertices in their decoding trees are eit ﬁrlonger than the shortest Huffman codeword length. Rudner [25]
leaves or have two children. An open question has been to charactegl !

which prefix codes and which complete prefix codes have a self-synh%gwEd how to generate a Huffman code with a shortest synchronizing

2 : . sequence for certain cases when the minimum codeword length is less
chronizing string. In this correspondence, we prove that almost all co

lete prefix codes have a self-svnchronizing strin fRan five. Montgomery and Abrahams [20] showed how to construct
P P . Y 9 9. ariable-length codes with a self-synchronizing string, whose average
When variable-length codes are used for transmission, we say that ., .
ength is close to that of a Huffman code.

synchronizatioris achieved when the receiver can determine the first Other work in these areas can be found in [11], [12], [15]-[17], [19]
symbol of some codeword with certainty. Thgnchronization delay [21]_[23] [26]-[28], [30] ' ' ' '
gl , , .

is the number of code symbols which must be observed by the
ceiver before synchronization is achieved. The synchronization delay
is a random variable depending on the source statistics and the code. A Il. COMPLETE PREFIX CODES

binary code istatistically synchronizablié the synchronization delay A prefix codes a set’ C {0, 1}* with the property that no element

is finite with probability one. A string is self-synchronizing if by ob-of ¢ is a prefix of any other element 6f The elements of are called

serving it, the receiver can achieve synchronizati@ome codes have codewordsA prefix code iscompleté if for everyu € {0, 1}*, the

self-synchronizing strings and some codes do not. Clearly, if a cogliging «0 is a prefix of some codeword if and only il is a prefix

has a self-synchronizing string then the code is statistically synchig-some codeword. Huffman codes are examples of complete prefix

codes. Given a finite sed with the same cardinality a5, anencoder
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A binary treeis a finite directed acyclic graph such that every node
has out-degree zero or two, one node (calleddbénodeand denoted
r)hasin-degree zero, and all other nodes have in-degree one. Whenever
an edge leads from one node to another, these nodes are referred to,
respectively, as thparentandchild. The edges leading from a parent
to its children are labeled)® and “1,” and the corresponding children
are called the)-child and 1-child. A leafis a node with no children.

A nonleaf node is calledthternal. A branchis a path from the root to

a leaf, and each branch is identified with the sequence of zeros and
ones that label this path. In particular, thero branchis the branch Fig.1. Binary tree example of complete prefix code with a self-synchronizing
associated with the all-zeros codeword. Each node of a tree is identifiihg.

with the label of the path to the node from the root. In particular, the
root node is identified with the empty string.

A complete prefix code can be conveniently represented by the §__rve thatthelr!ternal nodes afdor( < i < 5andl0’ for0 < i.S 2. .
e string 1" brings all but one of these to the root, the exception being

nary tree whose branches are its codewords. To decode a binary “©7 bri h o Th ing 017 bri bothl and th
guence, one places a pointer at the root, and proceeds through théhgﬂ rings the roottal. The string rings bothl and the root

sequence. For eadhbit, the pointer is moved to it8-child, and for fo the root, so 101" brings every internal node to the root

eachl-bit the pointer is moved to its-child. Whenever the pointer  Example 111.3: The complete prefix codes represented by the binary

reaches a leaf, the symbol it that is represented by that leaf’s pathirees in Fig. 2 do not have self-synchronizing strings. This is because

is output, and the pointer is reset to the root. every path from the root to itself has even length, whereas each tree
Asimple but useful fact is that for every nodén a binary tree, there contains nodes which can only get to leaf nodes by paths of odd length.

exists a nonnegative integesuch that:0* is the root node, whe@" ) .
is the string oft: zeros. This is because we can traverse down a binary-6t @ be acollection of binary codes and fébe some property that

tree fromv along0-children, eventually hitting a leaf node. each such code may or may not have. For each positive intefr
«(n) be the number of codes i@ with » codewords that have property

P, and let3(n) be the number of codes i with n codewords. We say
thatalmost all codes i@ have propertyP if lim,, —oc a(n)/3(n) =
Ill. SELF-SYNCHRONIZING STRINGS 1. The main result of this correspondence is the following theorem.

Recall that in the decoding procedure, we keep a pointer to a node jrf "€orem l1l.4: Aimost all complete prefix codes have a self-syn-
the tree; for each bit of data, we move the pointer from a node to off8ronizing string.
of its children, and when we reach a leaf, we move the pointer back torhe following general lemma about self-synchronizing strings will
the root. In this way, any string of data-bits moves the pointer from opg seful in later sections.

node to another. We define this formally.
Lemma III.5: If every internal node on the zero branch of a bi-

Definition 11l.1: Let = denote the-long stringbs. ..., b, Where  nary tree coelesces with the root, then the tree has a self-synchronizing
eachb; € {0, 1}. For internal nodes andv in a binary tree, we say gfring,
that = bringsu to v if either: Proof: For any stringz, let N, denote the set of nodessuch

e n = 1, v is theb,-child of u; that » brings some node te. Selectz so that|N.| is minimal. If

« n = 1, v is the root, and thé, -child of v is a leaf: |N:| = 1, then there is a self-synchronizing string. Assume then that

|N.| > 2. Letv andw be any two nodes oV ,. For sufficiently large
_ ) _ ~m/, the string)™ will bring both+ andw to nodes on the zero-branch.
If w is a leaf node then we say brings « to the root viaw if  Therefore, some string™ will bring v to the root, while bringingy

e n > 1,by bringsu to a nodew, andb., ..., b, bringsw to v.

b1, ..., bn—1 bringsu to a node whosé, -child isw. In this circum- o a node)’. By assumption, there is a stringthat coalesce8’ with
stance, when there is no ambiguity, we may for convenience say tha! root. Hence, we have a string= 20™y such tha{N.| < |N,]|,
z bringsu to w. which is a contradiction. U

Itis clear that for any string and any internal nodethere is exactly  To exploit this lemma, it is useful to view a binary tree via the
one internal node such that bringsu to v. A string is a concatenation f-forest consisting of the union of trees attached to (and including) the

of codewords if and only if it brings the root to itself. 1-child of each of thé: internal nodes of the zero branch.
In the decoding procedure, the location of the pointer depends on the

entire set of bits that have been decoded; however, knowing the most

recently decoded bits provides some information about the location of IV. TREE COUNTING

the pointer. In particular, there are certain strings that bring multiple

nodes to one node. We say a stringoalesces: and v if it brings u A k-forest is an ordered collection éfdisjoint binary trees. In this

andv to the same node. We say two nodeandv coalescef there section, some results dnforests are presented that will be used in later

exists some string that coalesces them. proofs. For positive integers andk < n, letG(n, k) be the number
Astringz € {0, 1}* isself-synchronizingpr a complete prefix code of k-forests that have leaves.

if it brings every internal node to the root. Therefore, if we are decoding Denote the:th Catalan numbeby C',. The following properties are

a data stream and we have just decoded a self-synchronizing strisawn [24]:

then the pointer is back at the root, regardless of what bits preceded thi) C — G(n, 1)

self-synchronizing string. et K

n

_ 1 2n
Example Ill.2: The complete prefix code represented by the binary 2) Cn = 53 (")
tree in Fig. 1 hast01” as a self-synchronizing string. To see this, ob- 3) C,, = CoCr—1 + Ci1Crha + -+ 4+ C,,—1Ch.
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Fig. 2. Binary tree examples of complete prefix codes without self-synchronizing strings.

The quantityC\,—1 is the number of binary trees containingleaf Lemma IV.2: Forallk > 1
nodes, or equivalently, the number of complete prefix codes with Gn—l.k—-1) k-1

codewords. We now derive the values and limiting valuesfor, %). lim =
n—oo G(n,} ]{7) Zk

Lemma IV.1: G(n, k) = £ (*"*71). . G, k+1) k41
Proof: Suppose the first of the trees is an isolated node. Then ,}EEO G(n, k) = ok
there are: — 1 remaining leaves antl— 1 remaining components, so
the number of such-forests isG(n — 1, k — 1). Suppose instead that Proof: It follows from Lemma IV.1 that
the first of thek trees inotan isolated node, so the root of the first tree
has children: andb. We can now attach any treesdpto b, and to the Gn—1Lk—-1) __ n(k-1)
remainingk — 1 roots subject to the condition that these- 1 trees G(n, k) k(2n =k —1)

have a total of: leaves. The number of ways to do this is the numbénd
Gn, k+1) (E4+1)(n—k)

of (k + 1)-forests withn leaves, i.e.G(n, k + 1). Hence, i =
( ) ( ) G(n, k) E2n—k—1)

G, k) =Gn - 1L k=1 +G(n k+1) @ from which the lemma follows. O

or equivalently, replacing with £ — 1
V. PROOF OF THEMAIN THEOREM

G(n, k)=Gn, k=1)=G(n -1,k -2). 2 For binary treess and7’, we use the notatiofi < T to indicate that

) ) ) S is a subtree of” and has the same root node. For any binaryree

We now prove the lemma by induction énGi(n, 1) is the number |et £(T) denote the set of leaves Bt Given a binary tre& and a set

of binary trees withn leaves, so L C £(S), we defineT (S, L, n) to be the set ofi-leaf binary trees
T suchthatS < T andL C £(T). WhenS andZ are understood, we
G(n, 1) = Cuy = 1 (2" _12>_ will use L' to denote the complement afin £(S), i.e., £(S)\ L.
n n —

LemmaV.1:|7 (S, L, n)| = G(n — |L], |L']).

G(n. 2) is the number of ordered pairs of binary trees with a total of Proof: Eachtreer7'(S, L, n) consists ofy plus a tree attached

n leaves. We can count these pairs by assuming the two trees half @ Subset of the nodes &f. Thus, there is a one-to-one correspon-
leaves and: — i leaves, respectively, and then summing avéhus, dence between the elements©fS, L, n) and the set of all forests

using the properties of the Catalan numbers with |L'| components and — |L| leaves. O

It is possible to select a binary tr&@ uniformly at random from

G(n, 2) =CoCrna+ CiCrg + -+ CruaCo T(S, L, n) via a sequence of observations and outcomes. Each obser-
=Ch1 vation consists of selecting a node known to b&'inand seeing if it
St =2\ 2(2m-3 ) has children inl". Each step of this process reveals partial knowledge
“a\n=-1) a\ln=-1/) aboutT'. . .
Thus, for a tre” and one of its nodes, define anoutcometo be
This establishes the two initial cases. The induction step follo/&& Mapping
from (2) 1, if v e £(T)
o(v, T) = ) N (4)
o k)_k—1<2n—k> ~ k—2<2n—k—1> 0, ifvgL(T)
no\n-1 n—1 n=2 When a node’ is used in this way, it will be called asbservation
E—1 I —k—1 o —k—1 For a sequence of observations and outcomés, oo),
= n—9 n—1 (vi,01)y «.vy (Vm—1, 01m—1) We say that the binary tre@& sat-
isfiessuch a sequencedfv;, T') = o, for eachi. For any tree§” and
_k=2(2n—-Fk-1 S < T,andany € £(S)\L(T), let S denote the tree obtained by
n—1 n—2 adjoining toS the two children (iril") of » and the two corresponding

edges fromv.
n—k+1(2n-Fk-1 k—=1(2n—k—-1
= n(n—1) n—?2 + n n—1 Theorem V.2: For everyS, L, andv € L', the following hold:

) {T€T(S, L, n)o(v, T)=1}=T(S, LU{v}, n);

1(2n—-k -1 k—1(2n—k -1 . , , (v)
~n n—1 + n n—1 i) {Te€T(S, Lyn)o(e, T)y=0} =T(5", L, n).

Proof:
k <2n k- 1>. 0 i) Supposel’ € 7(S, L, n) ando(v, T') = 1. ThenT contains

T n—1 S and hase leaves. Also, every node df is a leaf of T as isv, so
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every node ofL U {v} is aleaf ofT". Thus,I" € 7(S, LU {v}, n).
Conversely, ifT € T(S, L U {v}, n), thenT containsS and has:
leaves. Also, every node dfis a leaf ofT’, asisv, soT € 7(S, L, n)
ando(v, T') = 1.

ii) SupposeT’ € 7(S, L, n) ando(v, T) = 0. ThenT hasn
leaves, and every node éf is a leaf of 7. Also, T' containsS and
the children ofv, hence,$(), soT € T(S), L, n). Conversely, if <.
T € T(5", L, n), thenT hasn nodes, and every node &fis a leaf )
of T'. Also, T contains$‘”, soT containsS, ando(v. T) = 0. Hence,
T eT(S, L,n)ando(v, T)=0. 0

We now give a brief outline of the remainder of this section. We
begin by considering, for some fixdd only those binary trees that
have(' as a leaf. In Theorem V.3, we construct a specific sequence
observations and outcomes that guarantees the existence of a string
coalesces some fixel with the root. We also give a lower bound on
the probability that a binary tree satisfies this sequence of outcome
In Theorem V.6, we combine many such sequences to show that fu
almost all binary trees, there is a string that coalestesith the root.
This will immediately imply Theorem V.8, that if a binary tree his
as a leaf there is almost surely a self-synchronizing string. Finally, in
Theorem V.10, we show that we can drop the condition@h&ta leaf. If v, € L andT satisfies the sequence

Fig. 3. Proof illustration, whem, € L, andw bringsr to a.

Theorem V.3:Let 7, I, andn be positive integers. Le be a bi-
nary tree and lef. C £(S) such that)' € L. Assumen > |L|+ (v1, 0), (v2, 0), ..., (04, 0), (vy41, 1)
|L'|4+1 and? > i. Then there exists € {0, 1}*, a nonnegative in-
tegery <1, and a nonempty sequence of observations and outcomgs,, ¢ L’ andT satisfies the sequence
(vo, 1), (v1, 0), ..., (vy, 0), (v441, 1) suchthat coalesce8’ with
the root in every tred” € 7 (S, L, n) that satisfies this sequence. Fur-
thermore, ifT" is selected uniformly at random frofh(S, L, n), and
P is the probability thaf” satisfies this sequence, then

(7)01 1)* (’”1:\ 0)'\ (’”2:\ O)~ R (7)71 0)'\ (7')7+17 1)

then the string™*(#: *+7) coalesces andb in T In both casesy; is

G(n—|L| -2, |L'| +1—-2) aleaf of " andv; is v steps away from a leaf by following-children.
P> . - . Thus, if T satisfies the sequence
GO — [LI.IZ'D ' g
Proof: The main idea of the proof if as follows. First, we find a (vo, 1), (v1, 0), (v2, 0), ..., (v5, 0), (vy41, 1)

stringw which brings the root andl’ to nodes: andb (not necessarily

respectively), and such thaf and0*, respectively, bringt andb to  then the stringg = w072+ coalesces and0’. This is illus-
leavess andv; of S. We guarantee that at least one of these two leaveated in Fig. 3.

of Sis not aleaf off". Then we show how to construct a sequend&of  We now derive the bound for the probability that a randomly chosen
which coalesces andb in T, provided!” satisfies a certain sequencetree in7 (S, L, n) satisfies this sequence. The probabiltythat tree

of observations and outcomes. The specific observations and outcomasatisfies the observations and outcomes is the ratio of the number of
are chosen to synchronize the paths thahdb follow via a sequence possibilities fofT” before the observations to the number of possibilities
of 0s, allowing them to loop around the zero branch as many timester the observations.

as needed. Finally, we show that the fraction of treeg {15, L, n) Define

that satisfy such observations and outcomes is lower-bounded as in the

statement of the theorem.

r So =5
Define the set ’ (v;)
S;=8", forj=1,...,v+1
o [ o C_ "
B = {u: u is anode ofS andu0* € L' for somek > 0} Ly =LU{vo, vjsi}, forj=0,.... 7. ®)

. / 1 > Y : 1 ~ i
andletl’ € 7(S, L, n). Letw be any shortest string that brings eithe|lf vo € L', thenL;, (i.e., L(S;)\L,) is the union ofL’ and thel-chil

; ? y s i I s
the rootr or 0’ to a node in3 (note that3 may contain leaves of but dren ofvi, v2, ..., vy minus{vo, v1}. Therefore, by Lemma V.1
not the root)w brings one of or0° to some: € B and brings the other
to some nodé. Neithera norb is the root, but they could be leaves. |T(S5, Ly, n)| = G(n = |L, ], |LY))
Observe thab must be inS, for otherwise the path thinduced byw =Gn—|L| =2, ||+~ -2).
would pass through a node Id C B, violating the minimal length of
w. Now let ) _ _ ) ; If vo € L, thenL! is the union ofL’ and thel-children of
* vo = b0” whereg is the smallest integer such th@’ € £(S); 1, Vs ..., v, Minus{v, }. Therefore, by Lemma V.1
» v1 = a0” wherea is the smallest integer such that* € L';
e v€{1,2,...1} suchthaty = (8 — «) mod [; |7(S,, Ly, n)| =G(n — |L,|, |LC,|)
* v;11 be the O-child ok; in T, fori > 1. =G(n—|L| =1, |L'|+~-1).
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The pair(S., L) represents the partial knowledge of the tree after  Proof: We will show by induction that for alk > 1 and suffi-
the given sequence of observations and outcomes. The probability ttiently largen
T satisfies the observations and outcomes is

[7(Sy, Ly, 1)
|7(S, L, n)| This expression convergest@sk grows, for fixed, so the result will

follow. Equation (6) holds in the cage = 1 by Corollary V.5. Now
assume (6) is true for all < &' (wherek’ > 1). Let

P(the root and)’ coalesce irf’) > 1 — (1 —27""%*.  (6)
P =

From (1), the numerator is smaller in the case whene L', and
from (2), is smallest when is as large as possible, namejy= [. By

Lemma V.1, the denominator is Vit1 = {(vo, 1), (v1, 0), (v2, 0), ..., (vy, 0), (vog1, 1)}

|7(S, L, n)| = G(n —

be a sequence of observations and outcomes as guaranteed by Theorem
V.3. In particular, ifT satisfiesV.,, then0® and the root coalesce in
U 7. Define the prefixes ot as

In Theorem V.3, we gave a sequence of observations and outcomes

This achieves the lower bound in the theorem.

that guarantee that a particular node coalesces with the root. We also *1 =0 ’
gave a lower bound for the probability of these outcomes. We nextshow  Vj ={(vo. 00), ..., (vj, 0;)},  forj=0,....v+1
that for largen, this lower bound converges to a positive value. where
Lemma V.4: For alll > 2, k, andm 00 =041 =1
. Gln— k=2 m+1—2) Ry 0; =0, forj=1,..., 1.
nee G(n—k, m) DefineS; andL; forj =1, ..., v asin (5), and define the events
- n! =5 —_ I .
Proof: Letn’ =n —kand let F; ={T € T(S, L, n): T satisfiesV;_1 U {(v;, 1 — 0;)}}
! _ ¢ _
P(n) = G(n GZI[ ,m +1 2). forj =0, ..., v+ 1. Thatis,F} is the event thal’ satisfies the first
(n', m) j observations and outcomes, but not thie+ 1)** in the sequence
ThenP(n) can be written as a telescoping product V,+1. Let H denote the event thdt does not satisfy’, .. ThenH is
a disjoint union of events, namely
G(n' — 1 m—1) G(n' =1, m+i) 1
P(n) = : '
(n) G(n', <HO G —Lm+i—1) H=|J F.

Gn' =2, m+1-2)
Gn' — 1L, m+1-1)

Let U; denote the event that the root aifddo not coalesce iff". If U;
Asn — oo, the limits of the fractions in this product are given byPccUrs: therl” € H. Thus,

Lemma IV.2. Thus, P(U,))=P(Te H,U))

-1 41
. m—1 m41i m4+1-2 ~
lim P(n) = = P(TeF;,U;
i () 2m <11:—[o 2(m +1i — 1)) 2(m+1—1) JZ:; (T €F;, U)
_ 1 <M) =P(T € R)P(T:|T € T(S", L, )
2042 m
-
1 .
> 5rya- O -I-ZIP(TEF]')P(UATE T(S;—1, Lj—1, n))
=
+P(T € Fyp)PU; |T € T(Sy41, LU{wo}, 7
Note that Lemma V.4 implies in particular, that i1 ( ) P (S {vo}. m)) - (7)
/ 5—1—3\k'
Gn—k=2,m+1-2) i3 <ZP(T€F1)(1_2 ) (8)
; > 2 j=0
G(n—k,m) ,
=P(T e H)(1-27"7%)*
for sufficiently largen. An immediate consequence of Theorem V.3 1 2,,,3)k1+1 9
and Lemma V.4 is the following corollary. <(1- ©)

Corollary V.5: Leti and! > i be positive integers, le§ be a bi- where (7) follows from Theorem V.2 assuming all conditioning events
nary tree, and lel. C £(S) such thah' € L. If T is selected from are nonempty (it € L then P(T € Fy) = 0 and (7) trivially

7(S, L, n) uniformly at random, then for sufficiently large follows), (8) follows from the induction hypothesis (which applies to
‘ ‘ any fixedS and L in the statement of Theorem V.6), and (9) follows
P(the root and)’ do not coalesce iff") < 1 — 2713, from Corollary V.5 (sinceH C 7(S, L, n)). O

Lemma V.7:For alll > 1, if S is the binary tree corresponding to
Theorem V.6:Let: and! > i be positive integers, le§ be a bi- the code{0'} U {0°1: 0 < i <1—1} andL = {0'},thenT (S, L, n)
nary tree, and leL C £(S) such thap’ € L. If T is selected from is the set of:-leaf trees containing the codewadtl
7(S, L, n) uniformly at random, then Proof: Supposel is ann-leaf binary tree. I’ is a leaf ofT,
) thenT” must containS, andL C £(T'). ThereforeI € 7(S, L, n).
lim P(the root and)* coalesce i) = 1. Conversely, ifl" € T(S, L, n), thenT has0' as a leaf. O

n— 00
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Theorem V.8:For alll > 1, if T is selected uniformly at random
from the set ofr-leaf binary trees that ha¥® as a leaf, then

lim P(T has a self-synchronizing string= 1.

n—oo

Proof: By Lemma V.7, it is equivalent to say th@tis selected
uniformly at random fron¥ (S, L, n), whereS and L are as defined
in the statement of that lemma. LBt denote the event that and the
root coalesce iff’. Clearly, P(E,) = 1 since the empty string° is
the root. By Theorem V.6, fab < i < [, limy, . P(E;) = 1. Forall
1 > 1, it follows that
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( lim (Ln,l) ( lim bn,l)

e

(by Theorem V.8 and Lemma W9
=1.

M

[l
=

Theorem V.10 immediately implies Theorem 111.4.
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By Lemmal lll.5, the eventy N £y N ---N E;—; implies thatl’ has a
self-synchronizing string. a

We have proved the main result, Theorem 1l1.4, in the special case[1]
that0’ is a leaf ofT . In order to deduce the main result from this special [2]
case, we need the following lemma.

Lemma V.9:If T is ann-leaf binary tree selected uniformly at (3]

random, then
I [4]
2 (5]

(6]

lim\P(Ol € L) =

Proof: The total number of.-leaf binary trees i§#(n, 1). LetS
andZ be defined as in the statement of Lemma V.7. By that lemma, the
number ofn-leaf binary trees that hawé as a leafi$7 (S, L, n)|. By .
Lemma V.1 7]

|T(S, L, n)| = G(n—|L|, |L'|) = G(n—1,1). 8l

Thus, [0l
I G -1,1) [10]
PO e L(T)) = G 1) o
By Lemma IV.1, this is equal to (2]
I-n-(n=1)---(n=1) [13]
2n—=2)-2n=3)---2n—=1-2)"
[14]
We then take the limit as — ~c. O [15]
Theorem V.10: Almost all n-leaf binary trees have a self-synchro-
nizing string. [16]
Proof: Let ¢, be the probability that am-leaf binary treeT’,

chosen uniformly at random, has a self-synchronizing string/ For  [17]

n, define the quantities
. NI [18]

an,1 = P(T has a self-synchronizing string” € £(T))
b1 =P(0' € L(T)) (19]
and forn < 1, leta, ; = b, ; = 0 (0' € £(T) is impossible in that  [20]
case). Therefore,
- [21]
lim ¢, = lim Zan,xbn,z
- =1 [22]
> Z limnanvlbn’/ 23]
=1 ‘

(by Fatou's lemma since, ,:, b,,; > 0)
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Based on the good performance of the LDPC codes and the practi-
cally feasible belief propagation decoding, we may expect that LDPC
codes are good candidates for practical lossy source coding. However,
it is known that belief propagation decoding does not work well in
lossy source coding because the noise level of the test channel in lossy

A Coding Theorem for Lossy Data Compression source coding is much larger than that of usual channels used in prac-
by LDPC Codes tical error correction. Nevertheless, it is still worth to clarify if the
LDPC codes can attain the rate-distortion function asymptotically be-
Yuko Matsunaga and Hirosuke Yamamoléember, IEEE cause some cleverly modified version of belief propagation decoding

or an entirely new decoding algorithm may be devised exploiting the

Abstract—In this correspondence, low-density parity-check (LDPC) sparsity of parity-check matrix in the future.
codes are applied to lossy source coding and we study how the asymptotic In this correspondence, we treat LDPC codes on MacKay's en-

performance of MacKay’s LDPC codes depends on the sparsity of the Se€mble [3] for the binary i.i.d. source withr{x = 1} = 0.5, and we
parity-check matrices in the source coding of the binary independent and consider the relation between the sparsity of parity-check matrices and

identically distributed (i.i.d.) source with Pr{@ = 1} = 0.5.Inthe the asymptotic performance in LDPC codes. Furthermore, we show

sequel, itis shown that an LDPC code with column weighO(log n) for  y,4; tor code lengtin, an LDPC code with column weiglt?(log 1)

code lengthn can attain the rate-distortion function asymptotically. ) ] . . . =
can attain the rate-distortion function asymptotically.

Index Terms—Lossy data compression, low-density parity-check (LDPC)  The correspondence is organized as follows. Section Il is devoted to

codes, rate-distortion function. some preliminaries of the rate-distortion theory and the lossy source

coding by LDPC codes. The main coding theorem is also described
|. INTRODUCTION in Sgction II, but the prqof is give_n in Section II_I. It is also shown in

Section Il how the sparsity of parity-check matrices affects the perfor-

Recently, low-density parity-check (LDPC) codes, which were ofigyance of LDPC codes in the lossy source coding.
inally discovered by Gallager [1], [2] in 1962, have been studied ac-

tively because of their very good performance in error correction. It
was shown by many researchers [3]-[8] that LDPC codes can attain
high performance near the Shannon limit by iterative decoding with Let sourceX be a binary i.i.d. source which takes valuesiin=
belief propagation [9], [10]. Furthermore, MacKay [3] and Miller and0, 1} with ¢ = Pr{w = 1}. The distortion between single letters is
Burshtein [11] proved that the LDPC codes can asymptotically achieveasured by the Hamming distortion defined by

Il. LossyDATA CoMPRESSION BYLDPC CoDES

channel capacity. 0 TR
On the other hand, it is well known that channel coding can be con- du(x, &) { 1’ if o £ 3
sidered as the dual problem of lossy source coding in rate-distortion ’ A
theory [12], and a good error-correcting code can be used for effind the distortion betweenbit sequencése = =1, a2, - - -, x. and
cient lossy data compression. Csiszar and Kérner [13] showed thatghe 3, #,, .-, 2% is measured by the averaged single-letter distor-
tion as follows:
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