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Abstract—We consider the progressive transmission of a lossy
source across a power constrained Gaussian channel using binary
phase-shift keying modulation. Under the theoretical assumptions
of infinite bandwidth, arbitrarily complex channel coding, and
lossless transmission, we derive the optimal channel code rate
and the optimal energy allocation per transmitted bit. Under
the practical assumptions of a low complexity class of algebraic
channel codes and progressive image coding, we numerically
optimize the choice of channel code rate and the energy per bit
allocation. This model provides an additional degree of freedom
with respect to previously proposed schemes, and can achieve a
higher performance for sources such as images. It also allows one
to control bandwidth expansion or reduction.

Index Terms—Image compression, source and channel coding.

I. INTRODUCTION

SHANNON’S “separation principle” ensures that trans-
mission of a source across a discrete memoryless channel

can asymptotically achieve the minimum possible distortion
by independently choosing the source and channel coders.
However, this theoretical result assumes unbounded delay and
computational complexity. In practice, finite delay and com-
plexity constraints motivate the search for source and channel
codes which efficiently trade off the available transmission rate
between source coding and channel coding.

Under high resolution assumptions, an optimum tradeoff be-
tween fixed-delay source coding and block channel coding was
derived in [1] for the binary symmetric channel (BSC) and as-
sumes the use of error correcting codes achieving exponentially
small probability of error in terms of block length. Such codes
are known to exist [10] but it is not known how to efficiently
find and use them.

The “cost” of using a discrete-amplitude channel is gen-
erally described in terms of the transmission rate, measured
in channel uses per source symbol. In contrast, the “cost”
of using a power constrained channel, such as the additive
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white Gaussian noise (AWGN) channel, is often described
by the average energy transmitted per source symbol. For a
given modulation signal constellation, the number of signal
constellation points transmitted per source symbol is a design
parameter (determined off-line) that can be chosen to optimize
the end-to-end quantization error of the system. The number of
constellation points sent per source symbol is referred to as the
transmission rate(equivalently we could describe the source
and channel transmission rates per unit time).

For a power constrained channel, if one chooses a higher
transmission rate, then on average there is less energy trans-
mitted per constellation point, and a larger probability of
error for each received constellation point results. The benefit,
however, of a higher transmission rate is that more bits are
available to code each source symbol and to provide error
control coding. A given transmission rate implies a particular
number of bits transmitted per source symbol. These bits are
the output generated by sending source coding bits through
a channel coder. An important problem is how to effectively
allocate these bits between coding the source and providing
protection against channel errors. This allocation is character-
ized by the choice of a channel code rate. The channel code
rate determines what fraction of the transmission rate is for
source coding and what fraction is for channel coding. There
is thus a tradeoff between modulation, source coding, and
channel coding. In this letter, we examine these components
by jointly optimizing the transmission rate and the channel
code rate for certain classes of source and channel coders. This
model provides an additional degree of freedom with respect
to previously proposed schemes, and can achieve a higher
performance for sources such as images.

We consider two cases which are based upon progressively
transmitting a lossy source across a power constrained Gaussian
channel using binary phase-shift keying (BPSK) modulation.
First, we mathematically analyze a theoretical case where the
assumptions include infinite bandwidth, arbitrarily complex
channel coding, and lossless transmission. Secondly, we
experimentally analyze a practical case where the assumptions
include a low complexity class of algebraic channel codes and
progressive image coding. In the first case we rigorously derive
the optimal channel code rate and the optimal energy allocation
per transmitted bit. In the second case we numerically optimize
the choice of channel code rate and the energy per bit allocation.

In Section II, we establish in Proposition 1 the theoretically
achievable minimum distortion by calculating the largest reli-
able source rate that can be transmitted using Shannon-optimal
channel codes and unlimited computational complexity, delay,
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and memory. The proof of Proposition 1 relies on Theorem 1,
which proves that the capacity of the channel considered is a
concave function of the energy per transmitted bit. Theorem 1
is an interesting result in its own right and to the best of our
knowledge, has not previously been published.

In Section III, motivated by potential applications of image
coding over noisy channels, we consider systems satisfying the
following general conditions: 1) the source coder is progressive;
2) the channel decoder can detect decoding errors with high
probability; 3) source decoding terminates at the first detected
channel decoding error; and 4) the channel is power constrained.
Condition1means thatan imagecanbe incrementallydecodedas
morebits correctlyarriveat the receiver.Condition 2 is a property
of many concatenated channel codes and is easy to achieve in
practical systems. It allows the receiver to know when it cannot
correctly decode received bits (and thus declare an erasure).
Condition 3 is a byproduct of certain efficient image coders, such
as Said and Pearlman’s “Set Partitioning In Hierarchical Trees”
(SPIHT) scheme [4]. Condition 4 is a classical communication
theory assumption [9, p. 288]. No bandwidth assumption is
made. This applies to unrestricted bandwidth channel models
such as those used in deep space communications systems and
also to constrained bandwidth channel models.

As an example, we examine a generalization of the image
coding scheme of [2] from a discrete memoryless channel to
a Gaussian channel. For a given power constrained Gaussian
channel, we consider the optimum allocation of energy per bit
for a BPSK transmitter when the performance is measured by
end-to-end average quantizer distortion. We give a numerical
optimization procedure that assumes a practical source coder
and channel code family are used. Our experimental results
demonstrate quantitatively how much one can improve system
performance by carefully selecting the transmitted energy per
bit and the channel code rate as a function of the given power
constraint. Furthermore, it is showed how this optimization
procedure can be used in the tradeoff between performance and
bandwidth requirements.

II. SOURCE AND CHANNEL CODING WITH A POWER

CONSTRAINT

Suppose that the quality of a sampled and encoded analog
source is characterized by a distortion function in terms
of a source coding rate (measured in bits per source sample).
The quantity , for example, typically measures for a par-
ticular image coder the mean-squared quantization error of a
decompressed image in terms of the number of bits per pixel
(bpp) present in the compressed version of the image. Suppose
a channel code with rate acts on the output bits from the
source encoder. The resulting bit stream is transmitted across
an AWGN channel, whose noise has zero-mean and variance

, using a BPSK modulator with decoding performed by a
hard-limiter on the received sampled values. Suppose the BPSK
modulator emits a sequence of constellation points satisfying a
fixed power constraint , measured in units of energy per source
sample. (It is a “power” constraint because the number of source
samples per unit time is constant, and thus the amount of energy
per unit time is constrained.) Then ifconstellation signals per

source sample are transmitted over the channel, the average en-
ergy per transmitted signal satisfies

This channel model is referred to as apower constrained BSC.
The number of bits per source sample available for source
coding is

and the probability of error for a transmitted channel bit is

(1)

where

The crossover probability of the resulting discrete BSC is
and the capacity is

(2)

where is the binary entropy function, defined by

Shannon’s channel coding theorem [10] shows that for a fixed
, if then on average information bits per

source sample can be transmitted with arbitrarily small proba-
bility of error, and Shannon’s separation principle shows that
the distortion can be achieved. Shannon’s theorem guar-
antees the achievability of the theoretically maximum reliable
transmission rate, although it assumes unboundedly long block
lengths.

In [2], the following related problem for image transmission
is considered.

Given a fixed transmission rate and channel code
blocklength for transmission over a BSC with crossover
probability , what is the lowest possible distortion achiev-
able at the receiver?
If the BSC model in [2] is induced from hard-limited BPSK

on a power-constrained AWGN channel, then the ratio
is determined by the BSC crossover probability. For a fixed
noise level on a given Gaussian channel, the energyper
BPSK transmitted channel signal is then determined by. We
denote the resulting value of by which can be computed
from

(3)

and the power constraint is implicitly defined by

(4)

In contrast, in the present letter, we fix the power constraint
and allow to vary, so that the transmission rate becomes

. Consequently, for each channel
code considered, the energy per bit is optimized instead of
being taken as a given. The model of [2] corresponds to the case
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.Thecaseof canviewedasadegradationof the
channel toallowtheuseofamorepowerfulchannelcode,andcon-
versely for . The image coding scheme in [2] terminates
source coding when uncorrectable errors are detected. With high
probability, therefore, the distortion for the system in [2] is
where is theamountof ratethatsuccessfully is transmittedprior
to the firstdetectedchanneldecodingerror.Thisdistortion ismin-
imized when the rate is maximized. The following proposition
characterizes the largest possible rate, where the maximization
is taken over all energy per bit allocations. A related and less
rigorous result is given in [5].

Proposition 1: The maximum achievable source coding rate
with arbitrarily small probability of channel decoding error on
a power constrained BSC is

(5)

Proof: We seek

(6)

where the last equality follows from Shannon’s channel coding
theorem [10]. In the Appendix, it is shown that is a con-
cave function of , so that for all

(7)

or equivalently . Thus,
is monotonic decreasing and hence its supremum occurs in the
limit as . Applying l’Hospital’s rule, we obtain

(8)

Proposition 1 and its proof suggest that it is generally a good
idea to transmit as little energy as possible per bit, by trans-
mitting as many bits per second as possible, each with a high
probability of error. This is because the energy per bit (propor-
tional to the inverse of the number of bits per second trans-
mitted) that achieves (5) is the one achieving the supremum
in (6), which is shown in the Appendix to occur in the limit

. Then, channel coding improves the overall effective
probability of error on the channel. In other words, it is better to
transmit many low quality bits per second with strong channel
coding and use a only small fraction as information bits, than
to send fewer but more reliable bits per second. This statement
is valid only when a sufficiently large bandwidth and a suffi-
ciently large decoding complexity are available in conjunction
with a sufficiently long source symbol length. On the other hand,
whenever one of these parameters is restricted, a different solu-
tion may arise, as demonstrated in Section III for progressive
image coding with BPSK tranmission over an AWGN channel.

The optimal solution given by Proposition 1 applies to infi-
nite bandwidth channels. When there exists a finite bandwidth

constraint with no intersymbol interference the minimization of
is achieved by the minimum value of for which the

bandwidth constraint is satisfied. Importantly, if the optimum
tradeoff is achieved when , then a bandwidth reduction
can be obtained. With intersymbol interference the computation
of becomes more complicated and the general problem of
maximizing is difficult to analyze.

III. SOURCE-CHANNEL TRADEOFF FORPROGRESSIVE

IMAGE CODING

Specific implementable source coders and channel coders
are chosen to illustrate the distortion minimization over various
channel code rates and energy per bit allocations. The source
coder chosen is the wavelet-based SPIHT image coder, which
gives excellent data compression with a progressively trans-
mitted bitstream. The channel codes considered are a family of
BCH codes, whose performance is analytically tractable and
for which small block lengths can be used.

Suppose an image is to be transmitted under a power con-
straint (energy per pixel) over an AWGN channel with noise
variance and modeled as a BSC using hard-limited BPSK
modulation system. We address the following problem:

For an AWGN channel with noise power and power
constraint , determine from a family of channel codes the
code of rate and the averageenergy per transmitted
BPSK signal that jointly minimize the expected distortion

of a transmitted image,where .
In the following, we study this problem using the progressive

image coder of [4]. Once a channel decoding error has occurred,
source decoding stops. We restrict attention to the mean squared
error (MSE) distortion function, and note that the MSE is a
random variable with respect to the the statistics of the channel.
For a given AWGN channel with average power constraint,
we attempt to trade off source coding and channel coding to min-
imize the expected MSE of a transmitted image using a block
channel code of fixed length. We assume the Said-Pearlman
wavelet-based image compressor is used in conjunction with
an BCH channel code of length, dimension , and
minimum Hamming distance [6]. We use BCH codes since
they allow a tight error performance analysis by means of their
known weight distributions. Also, efficient algebraic decoders
for BCH codes have been devised.

For an image of size pixels transmitted at a rate
bpp, the number of blocks of source coding bits that

are encoded by the code is

(9)

Setting , the corresponding block error proba-
bility after decoding is bounded as

(10)

with equality if only the errors of weight strictly less than
are corrected (which is assumed in the following) [6]. The
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average MSE (averaged over both source and channel statistics),
expressed as a function of and , is

(11)

where represents the distortion of the image compressed
at a rate of bpp with no channel noise. In (11), the quantity

corresponds to the distortion achieved when the
source decoder stops decoding afterblocks due to the first
channel decoder error at the -th block.

For a fixed channel codeword blocklength, the smallest pos-
sible positive channel code rate is . But as we have

and . So for sufficiently small
we have . This implies that the block error proba-
bility as . This in turn implies that

(12)

Also, for a given channel code of rate, we have as
so that

(13)

Hence, the minimum value of is achieved for some
nonzero choice of . We seek the value of that achieves the
minimum . Define

For each code in the family considered with
, the value providing the minimum MSE value

is determined. The corresponding source code rate is
. Finally, the channel code of rate

that minimizes the MSE is chosen, and the minimum MSE is

(14)

In the approach of [2], the channel code chosen corresponds to
the MSE

(15)

Note that if a bandwidth constraint is imposed on the channel,
then only values which satisfy this bandwidth constraint have
to be considered in (11).

The family of channel codes considered in Fig. 1 is the set of
all binary primitive BCH codes with blocklength (see
[6, p. 584]). This family consists of 20 codes with ,
8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, 113, 120,
126, 127. Thepeak signal-to-noise ratio(PSNR) is defined as

(16)

Fig. 1 plots the end-to-end PSNR of the transmitted image as a
function of the ratio . It has a fixed value for , ,
and , and shows a family of curves, one curve for each value

Fig. 1. PSNR values [computed from (16) using (10)] for coding512� 512
Lena image and transmitting with BPSK across a power constrained Gaussian
channel quantized to two levels and using(n; k) BCH codes withn = 127
andk = 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, 113 (read from left to
right near the bottom). The ’+’ symbols indicate the PSNR obtained using the
method in [2] for this family of codes (i.e.,E = E ). The ’�’ symbols indicate
experimentally computed values of PSNR (k = 64 andk = 71). p(E ) =
10 andR = 1 bpp.

of (or equivalently for each channel code rate ).
The quantity allows one to deduce the value of
from (3). For each , the quantity is then calculated
using (1). When , the transmission rate is by defini-
tion bpp, and for other values of the transmission
rate is calculated using from (1) and (4).
Each such curve gives the end-to-end theoretically predicted
image coder performance measured in PSNR, as a function of
the quantity . The PSNR is calculated for each
using (9) and (10) with equality, (11), and (16). With respect
to the approach of [2] (represented by ’’ in Fig. 1), it can be
seen that an improved SNR (up to 1 dB) can be achieved at the
expense of a bandwidth expansion, while maintaining the same
power constraint. Although the optimum PSNR value 40.38 dB
achieved for results in 85% bandwidth expan-
sion, bandwidth expansion and PSNR can be traded based on
our optimization. In fact, this tradeoff can result in a bandwidth
reduction: for , a PSNR value of 38.6 dB can
be achieved in conjunction with about 25% bandwidth reduc-
tion for this channel. Similar results for other values of and

have been reported in [7]. In some cases, the optimiza-
tion proposed in this letter was achieved in conjunction with a
bandwidth reduction.

The proposed method can be extended to other modulation
techniques and to coded modulation if bandwidth is constrained.
We also verified that this approach can be extended to soft de-
cision decoding of the channel code after replacing (10) by the
conventional union upper bound based on the weight distribu-
tion of the code considered.

APPENDIX

The proof of the concavity of with respect to is
unexpectedly long. We first present three lemmas.
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Fig. 2. The setsA, B, C, D, E, F used in the proof of Lemma 2.

Lemma 1: [8] For

(17)

Lemma 2: For

(18)

Proof: The proof is analogous to [9, p. 123, Problem
2–26]. Define the set function by

for each Lebesgue measurable setin the plane. Also, let
and define the sets

and

and

and

Since we have [see Fig. 2(a) and (b)]

It is easy to see that and
. Since , it follows that [see

Fig. 2(b) and (c)]

or equivalently by taking

(19)

Since we have [see Fig. 2(b) and (d)]

using the circular symmetry of the functionabout the origin.
Taking completes the proof.

In the following lemma, “sgn” represents the function

if
if
if
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Lemma 3: If and are nonnegative functions such that
is differentiable, , and for all

(20)

then for all

(21)

Proof: Let inf . If ,
then we are done, so assumeis finite. Since is continuous,
we must have . Also, since is continuous, there
exists such that for all . But

implies that in the interval .
Since , this implies in the interval

, which contradicts the original assumption about this
interval.

Theorem 1: The capacity is a concave function of the
energy per bit .

Proof: The capacity of the BSC can be written as

(22)

where is the binary entropy function, defined by

After some algebra, we obtain for

(23)

(24)

Lemma 1 implies that

(25)

so that for

(26)

Define with
( is continuous by l’Hospital). We compute

(27)

Lemma 2 gives

(28)

with . As a result, after applying Lemma 3
to (27), we obtain

(29)

It follows that

(30)

where the second inequality follows from Lemma 2. Finally, the
function e is nonpositive for
as and e for . It
follows from (24) and (30) that whenever

. On the other hand, if we let ,
then becomes e , which
holds for or equivalently . Using

we see that also holds
whenever . Since , the proof is
completed based on (26).
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