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Quantizers With Uniform Decoders and
Channel-Optimized Encoders

Benjamin Farber and Kenneth Zeger, Fellow, IEEE

Abstract—Scalar quantizers with uniform decoders and
channel-optimized encoders are studied for a uniform source
on [0 1] and binary symmetric channels. Two families of affine
index assignments are considered: the complemented natural code
(CNC), introduced here, and the natural binary code (NBC). It is
shown that the NBC never induces empty cells in the quantizer
encoder, whereas the CNC can. Nevertheless, we show that the
asymptotic distributions of quantizer encoder cells for the NBC
and the CNC are equal and are uniform over a proper subset of
the source’s support region. Empty cells act as a form of implicit
channel coding. An effective channel code rate associated with a
quantizer designed for a noisy channel is defined and computed
for the codes studied. By explicitly showing that the mean-squared
error (MSE) of the CNC can be strictly smaller than that of
the NBC, we also demonstrate that the NBC is suboptimal for a
large range of transmission rates and bit error probabilities. This
contrasts with the known optimality of the NBC when either both
the encoder and decoder are not channel optimized, or when only
the decoder is channel optimized.

Index Terms—Data compression, index assignment, quantiza-
tion, source channel coding.

I. INTRODUCTION

ONE approach to improving the performance of a quan-
tizer that transmits across a noisy channel is to design the

quantizer’s encoder and/or decoder to specifically take into ac-
count the statistics of the transmission channel. Necessary opti-
mality conditions for such channel-optimized encoders and de-
coders were given, for example, in [2], [11], [12]. Alternatively,
an explicit error control code can be cascaded with the quan-
tizer, at the expense of added transmission rate. Additionally,
the choice of index assignment in mapping source codewords
to channel codewords can increase the performance of a quanti-
zation system with a noisy channel. Examples of index assign-
ments include the natural binary code (NBC), the folded binary
code, and the Gray code.

Ideally, one seeks a complete theoretical understanding of the
structure and performance of a quantizer that transmits across
a noisy channel, and whose encoder and decoder are channel
optimized. Unfortunately, other than the optimality conditions
given in [11], virtually no other analytical results are known
regarding such quantizers. Quantizer design and performance
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with index assignments for general encoders and decoders (i.e.,
not necessarily channel optimized) was considered in [7], [16].
Experimentally, it was observed in [4], [5] that quantizers with
both channel-optimized encoders and decoders can have empty
cells, which serve as a form of implicit channel coding. Some
theoretical results are known, however, when the quantizer has
no channel optimization, or when only the quantizer decoder is
channel optimized.

For uniform scalar quantizers with neither channel-optimized
encoders nor decoders and with no explicit error control coding,
formulas for the mean-squared error with uniform sources were
given in [8], [9] for the NBC, the Gray code, and for randomly
chosen index assignments on a binary symmetric channel. They
also asserted (without a published proof) the optimality of the
NBC for the binary symmetric channel. Crimmins et al. [1]
proved the optimality of the NBC as asserted in [8], [9], and
McLaughlin, Neuhoff, and Ashley [15] generalized this result
to uniform vector quantizers. Various other analytical results on
index assignments without channel-optimized encoders or de-
coders have been given in [10], [13], [14].

Quantizers with uniform encoders and channel-optimized
decoders on binary symmetric channels were studied in [3].
For such quantizers, exact descriptions of the decoders were
computed, and the asymptotic distributions of codepoints were
determined for various index assignments. Distortions were
calculated and compared to those of quantizers without channel
optimization. The proof in [15] of the optimality of the NBC
for quantizers with no channel optimization was extended in
[3] to show that the NBC is also optimal for quantizers with
uniform encoders and channel-optimized decoders.

In the present paper, we examine quantizers with uniform de-
coders and channel-optimized encoders operating over binary
symmetric channels. In particular, we investigate a previously
studied index assignment, namely, the NBC. In addition, we in-
troduce a new affine index assignment which we call the com-
plemented natural code (CNC) and which turns out to have a
number of interesting properties. We specifically analyze the
entropy of the encoder output in such quantizers, the high-res-
olution distribution of their encoding cells (i.e., the cell density
function), and the mean-squared errors (MSEs) the quantizers
achieve. We calculate a quantity we call the “effective channel
code rate,” which describes implicit channel coding, viewed in
terms of the entropy of the encoder output. We also show that the
NBC optimality results of [1], [3], [15] do not extend to quan-
tizers with uniform decoders and channel-optimized encoders.
In fact, the CNC is shown to perform better than the NBC.

Our main results for quantizers with uniform decoders and
channel-optimized encoders are the following. For a uniform
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source on and a binary symmetric channel with bit error
probability , we compute the effective channel
code rates and cell densities for the NBC and CNC. It is shown
that the NBC index assignment never induces empty cells
(Corollary III.2), and the cell density function generated by the
NBC is the same as the point density function for quantizers
with uniform encoders and channel-optimized decoders with
the NBC (Theorem III.4). In contrast, it is shown that the CNC
can induce many empty cells (Corollary IV.3). However, the
cell density functions generated by the CNC and the NBC are
both uniform over the same interval (Theorem IV.5). We also
show that the cell density function generated by the CNC is the
same as the point density function for quantizers with uniform
encoders and channel-optimized decoders with both the CNC
and the NBC (Theorem IV.6). Then we extend a result in [8] by
computing the MSE resulting from the NBC (Theorem V.3). As
a comparison, we state the previously known MSE formula for
channel unoptimized encoders with the NBC (Theorem V.2).
Finally, we show that the NBC is suboptimal for quantizers
with uniform decoders and channel-optimized encoders for
many bit error probabilities (Theorem V.6).

We restrict attention in this paper to a uniform source on .
However, it will be apparent that the results can be generalized
to any bounded interval on the real line.

The paper is organized as follows. Section II gives defini-
tions and notation. Sections III and IV, respectively, give results
for the NBC and CNC. Section V gives distortion analysis.
Appendices I–IV contain the proofs of all lemmas and of
selected theorems as well as various lemma statements.

II. PRELIMINARIES

For any set of reals, let denote its closure. If is an
interval, let denote its length. Let denote the empty set.
Throughout this paper, “ ” will mean logarithm base two.

A rate quantizer on is a mapping

Throughout this paper, all quantizers will be on the interval
and we will assume . The real-valued quantities
are called codepoints and the set is
called a codebook. For a noiseless channel, the quantizer is
the composition of a quantizer encoder and a quantizer decoder.
These are, respectively, mappings

such that for all . On a discrete, memoryless,
noisy channel a quantizer is a composition of the quantizer en-
coder, the channel, and the quantizer decoder.

Without channel noise it is known that for an optimal quan-
tizer, the encoder is a surjective mapping. However, in the
presence of channel noise, it is possible that in an optimal quan-
tizer the range of may contain fewer than points.

For each , the th encoding cell is the set

If we say is an empty cell.
A quantizer with empty cells can be thought of as implicitly

using channel coding to protect against channel noise. For ex-
ample, if one half of the cells of a quantizer were empty, and
the other half all had equal sizes, this could be thought of as ef-
fectively using one bit of error protection. More generally, the
cascade of a rate quantizer having equal size cells with
an block channel code can equivalently be viewed as a
rate quantizer with cells, of which are nonempty. That
is, for any input lying in one of the nonempty cells, the -bit
index produced by the original quantizer encoder is expanded to

bits, which is then used for transmission. A quantizer can also
introduce redundancy by making some encoding cells smaller
than others. This reduces the entropy of the encoder output while
maintaining the same transmission rate. To quantify the amount
of natural error protection embedded in quantizers designed for
noisy channels, we define the effective channel code rate of a
quantizer as

where is a real-valued source random variable and denotes
the Shannon entropy. Then

In particular, the effective channel code rate of a rate quantizer,
having no empty cells, cascaded with an block channel
code (viewed as a rate quantizer) is at most , i.e., the rate
of the channel code. For such a cascaded system, if denotes
the rate of the block channel code and if cell sizes are equal, then

In this paper, we compute the effective channel code rates of
certain quantizers that cannot be decomposed as cascades of
(lower transmission rate) quantizers with block channel codes.

A quantizer encoder is said to be uniform if for each , the th
cell satisfies

We say the quantizer decoder is uniform, if for each , the th
codepoint satisfies

The nearest neighbor cells of a rate quantizer are the sets

for . A quantizer’s encoder is said to satisfy the
nearest neighbor condition if for each
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That is, its encoding cells are the nearest neighbor cells together
with some boundary points (which can be assigned arbitrarily).

For given , , and real-valued source random variable ,
the centroid of the th cell of the quantizer is the conditional
mean

The quantizer decoder is said to satisfy the centroid condition if
the codepoints satisfy

for all . A quantizer is uniform if both the encoder and decoder
are uniform. It is known that if a quantizer minimizes the MSE
for a given source and a noiseless channel, then it satisfies the
nearest neighbor and centroid conditions [6]. In particular, if the
source is uniform, then a uniform quantizer satisfies the nearest
neighbor and centroid conditions.

For a rate quantizer, an index assignment is a permuta-
tion of the set . Let denote the set of all
such permutations. For a noisy channel, a random variable

is quantized by transmitting the index
across the channel, receiving index from the channel, and then
decoding the codepoint

The MSE is defined as

(1)

The random index is a function of the source random variable
, the randomness in the channel, and the deterministic func-

tions and .
Assume a binary symmetric channel with bit error probability

. Throughout this paper we use the notation

Denote the probability that index was received, given that
index was sent, by

for , where is the Hamming distance be-
tween -bit binary words and . Let denote the proba-
bility that index was sent, given that index was received.

For a given source , channel , index assignment ,
and quantizer encoder, the quantizer decoder is said to satisfy
the weighted centroid condition if the codepoints satisfy

For a given source , channel , index assignment ,
and quantizer decoder, the quantizer encoder is said to satisfy
the weighted nearest neighbor condition if the encoding cells
satisfy

(2)

where

For a given quantizer encoder and index assignment, we say
the quantizer has a channel-optimized decoder if it satisfies the
weighted centroid condition. Similarly, for a given quantizer de-
coder and index assignment, we say the quantizer has a channel-
optimized encoder if it satisfies the weighted nearest neighbor
condition. It is known that a minimum MSE quantizer for a
noisy channel must have both a channel-optimized encoder and
decoder [11].

Lemma II.1: A quantizer with a uniform decoder and
channel-optimized encoder satisfies, for all

(3)

where

(4)

(5)

Lemma II.1 implies that each is a (possibly empty)
interval. Therefore, in this paper, when we describe quantizer
encoding cells it suffices to describe their closures.

For any set , denote the indicator function of by

for
for .

For a given quantizer encoder, let

These are the indices of nonempty cells.
For each and each index assignment , define the

function

by

For a sequence (for ) of index assign-
ments, if there exists a measurable function such that
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for almost all and

then we say is a cell density function with respect to .
For each and each index assignment , define the

function

by

For a sequence (for ) of index assign-
ments, if there exists a measurable function such that

for almost all and

then we say is a point density function with respect to .
The integrals and give the asymptotic fraction of

encoding cells and decoder codepoints, respectively, that appear
in the interval as .

Let a decoder-optimized uniform quantizer (DOUQ) denote a
rate quantizer with a uniform encoder on and a channel-
optimized decoder, along with a uniform source on , and
a binary symmetric channel with bit error probability . When
considering DOUQs, we impose the following monotonicity
constraint on the quantizer encoder in order to be able to unam-
biguously refer to particular index assignments: For all

, if , then . In other words, the en-
coding cells are labeled from left to right.

Let an encoder-optimized uniform quantizer (EOUQ) denote
a rate quantizer with a uniform decoder and a channel-
optimized encoder, along with a uniform source on , and
a binary symmetric channel with bit error probability . When
considering EOUQs, we impose the following monotonicity
constraint on the quantizer decoder in order to be able to unam-
biguously refer to particular index assignments: For any
and , if , then .
In other words, the codepoints are labeled in increasing order.

An alternative approach would be to view the quantizer en-
coder as the composition and the quantizer decoder as
the composition , by relaxing the monotonicity assump-
tions made above. This would remove the role of index assign-
ments from the study of quantizers for noisy channels. However,
we retain these encoder and decoder decompositions, as a con-
venient way to isolate the effects of index assignments, given
known quantizer encoders and decoders.

Let a channel unoptimized uniform quantizer denote a rate
uniform quantizer on , along with a uniform source on

, and a binary symmetric channel with bit error proba-
bility .

III. NBC INDEX ASSIGNMENT

For each , the NBC is the index assignment defined by

for

Theorem III.1: An EOUQ with the NBC index assignment
has encoding cells given by

for
for
for .

Proof: The encoding cells satisfy (3) in Lemma II.1, with

(6)

(7)

where (6) follows from Lemma II.2 and (7) follows from (6) and
Lemma II.3. Thus,

(8)

From (6), we have that if and only if , and
if and only if . Therefore, (3) can be rewritten

as

and

(9)

By (8), the quantity

is increasing in both and . Hence, if , then
(taking in (9)) if and only if

Similarly, if , then (taking in (9))
if and only if

(10)

A consequence of the preceding theorem is that the NBC pro-
duces no empty cells when the weighted nearest neighbor con-
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Fig. 1. Plot of the encoding cells of rate 3 EOUQs with the CNC and NBC
index assignments and a bit error rate 0:05.

Fig. 2. Plot of the encoding cells of rate 3 EOUQs with the CNC and NBC
index assignments and a bit error rate 0:25.

dition is used together with uniformly spaced codepoints.
This fact is stated as the following result.

Corollary III.2: For all and for all , an EOUQ
with the NBC index assignment has no empty cells.

Figs. 1 and 2 illustrate the encoding cells of a rate EOUQ
with the NBC index assignment for bit error rates and ,
respectively. Fig. 3 plots the encoding cell boundaries of a rate

EOUQ with the NBC index assignment as a function of bit
error rate.

Theorem III.3: An EOUQ with the NBC index assignment
has an effective channel code rate given by

Proof: The definition of implies

From Theorem III.1

for
for
for .

Therefore,

As , the effective channel code rate given by
Theorem III.3 converges to . Fig. 5 plots the quantity
from Theorem III.3 for rate .

The following theorem shows that the cell density function
for a sequence of EOUQs with the NBC is the same as the point
density function found in [3] for a sequence of DOUQs with the
NBC.

Theorem III.4: A sequence of EOUQs with the NBC index
assignment has a cell density function given by

for
else.

Proof: From Theorem III.1

for
for
for .

Therefore, since by Corollary III.2

for
for or

for
for or

as

IV. CNC INDEX ASSIGNMENT

Let the CNC be the index assignment defined by
for
for
and even
for
and odd .

Note that the CNC is a linear index assignment,1 since

where is an -bit binary word, is the identity
matrix with an additional in the upper right-hand corner,
and arithmetic is performed modulo in the product . The
CNC is closely related to the NBC. However, it induces very
different encoding cell boundaries for EOUQs, as shown by
Theorem IV.2.

Lemma IV.1: For each , the polynomial

restricted to has a unique root . The polynomial
is negative if and only if . Furthermore, is monotonic
decreasing and

The quantity defined in Lemma IV.1 will be frequently
referenced throughout the remainder of the paper. plays an
important role as a threshold value for the bit error probability of
a binary symmetric channel, beyond which the encoding regions

1Affine index assignments were studied in [13]. The NBC and Gray code are
linear, and the folded binary code is affine.
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Fig. 3. Plot of the encoding cells boundaries of a rate 3 EOUQ with the NBC index assignment as a function of bit error rate.

and empty cells of an EOUQ with the CNC index assignment
change in behavior. It can be shown, using the general solution
to a cubic, that

where

Theorem IV.2: The encoding cells of an EOUQ with the CNC
index assignment are given as follows.

If and , or if and , then
we have the equation at the bottom of the page. If and

, then

for
for
for
for .

If and , we have the equation at the bottom
of the following page.

Corollary IV.3: For an EOUQ with the CNC index assign-
ment, the number of nonempty cells is

for
for
for .

If , then the indices of the empty cells are

even

odd

If , then the indices of the empty cells
are

even

odd

Figs. 1 and 2 illustrate the encoding cells of a rate EOUQ
with the CNC index assignment for bit error rates and ,
respectively. Fig. 4 plots the encoding cell boundaries of a rate

EOUQ with the CNC index assignment as a function of bit
error rate.

for

for odd

for even

for

for

for odd

for even

for .
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Fig. 4. Plot of the encoding cells boundaries of a rate 3 EOUQ with the CNC index assignment as a function of bit error rate.

Theorem IV.4: An EOUQ with the CNC index assignment
has an effective channel code rate given as follows. Let be
the binary entropy function and let

If and , then

If and , then .

If and , then

If and , then

If and , then

As , the effective channel code rate given by The-
orem IV.4 converges to , for all . Fig. 5 plots
the quantity from Theorem IV.4 for rate .

Corollary IV.3 shows that given a bit error probability ,
for sufficiently large, an EOUQ with the CNC has half the
number of nonempty encoding cells as one with the NBC. The
following theorem shows that despite this fact, for a sequence
of EOUQs, the CNC and the NBC induce the same cell density
function (via Theorem III.4).

Theorem IV.5: A sequence of EOUQs with the CNC index
assignment has a cell density function given by

for
else.

for and

for

for odd

for

for

for even

for

for and

else.
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Fig. 5. Plot of the effective channel code rate r of EOUQs with the NBC and the CNC index assignments for rate n = 4. The horizontal axis is the bit error
probability � of a binary symmetric channel. Also shown for comparison is the channel’s capacity 1�H(�).

Proof: For each and sufficiently large

and, therefore, by Corollary IV.3, the indices of the nonempty
cells are

odd

even

As grows, the encoding cells in Theorem IV.2 corre-
sponding to do not affect the cell density
function. At the same time, the right endpoint of the encoding
cell in Theorem IV.2 corresponding to converges to and
the left endpoint of the encoding cell in Theorem IV.2 corre-
sponding to converges to . All other encoding
cells have length . Hence, in the limit as they
uniformly partition the interval .

For completeness, we derive the point density function of a
DOUQ with the CNC. Analogous to the NBC, the cell density
function in Theorem IV.5 is equal to the point density function
for a sequence of DOUQs with the CNC.

Theorem IV.6: A sequence of DOUQs with the CNC index
assignment has a point density function given by

for
else.

Proof: From [3], the codepoints of a DOUQ with the CNC
index assignment satisfy

for even
for odd

(11)

where (11) follows from Lemma III.3. Thus,

for odd
for even

which implies the codepoints are uniformly distributed in the
limit as . Since

as , and

as , the point density function is uniform on .

V. DISTORTION ANALYSIS

Let denote the end-to-end MSE of an EOUQ with
index assignment . Recall that

For , define the quantities

( and are defined when the and , respec-
tively, exist). Also, define

and are the indices of cells immediately to the right
and left, respectively, of the cell with index ; is the set of
indices of nonempty cells that do not contain ; and is the
index of the nonempty cell containing .

Lemma V.1: The MSE of a EOUQ with index assignment
is
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The next two theorems give the MSEs for the NBC with
a channel unoptimized uniform quantizer and with an EOUQ.
Theorem V.2 was stated in [8] (see, e.g., [13] for a proof). The
results are given as a function of the quantizer rate and the
channel bit error probability . Let denote the end-to-end
MSE of a channel unoptimized uniform quantizer with index
assignment .

With no channel noise, the MSE is . If a quantizer
with the NBC is designed for a noiseless channel but used on
a noisy channel, then Theorem V.2 shows that (for large )
roughly is added to the MSE. If a quantizer with the NBC
and a channel-optimized encoder is used on a noisy channel,
then Theorem V.3 shows that (for large ) the MSE is reduced
by roughly from the channel unoptimized case.

Theorem V.2: The MSE of a channel unoptimized uniform
quantizer with the NBC index assignment is

Theorem V.3: The MSE of an EOUQ with the NBC index
assignment is

Proof: For the NBC

and Theorem III.1 and Corollary III.2 imply that

Hence, Lemma V.1 gives

(12)

(13)

(14)

where the last three terms in (12) follow from Lemma II.3,
Lemma II.2, as well as (6) and (10), respectively; and where
(14) follows from (13) after some arithmetic.

Let denote the end-to-end MSE of a DOUQ with index
assignment . For a given and , an index assignment

is said to be optimal for an EOUQ if for all

and is said to be optimal for a DOUQ if for all

In [3], it was shown that for all and all , the NBC is optimal
for a DOUQ. Theorems V.2 and V.3 show that with the NBC,
the reduction in MSE obtained by using a channel-optimized
quantizer encoder instead of one obeying the nearest neighbor
condition is

The next two theorems show, however, that the NBC is not op-
timal for an EOUQ for all and all .

Theorem V.4: The MSE of an EOUQ with the CNC index
assignment is

for
for

for

where
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Fig. 6. Plot of the difference in MSE achieved by EOUQs with the NBC index assignment and CNC index assignment for rate n = 3. The horizontal axis is the
bit error probability � of a binary symmetric channel. The quantity �̂ from Lemma V.5 is also shown.

Lemma V.5: On the interval , the polynomial

has exactly one root , and if and only if .
Furthermore

when .

Note that

as , for any . Hence, the bound on can be
strengthened to

for arbitrarily small and sufficiently large . Thus,

for asymptotically large .
The following theorem shows that the quantity defined in

Lemma V.5 is a threshold value for the bit error probability of a
binary symmetric channel, beyond which the MSE of an EOUQ
with the CNC index assignment is smaller than with the NBC,
for . Lemma V.5 then implies that the NBC is suboptimal
for a large range of transmission rates and bit error probabilities
(i.e., for all and satisfying

where as ). In particular, for every , the
CNC index assignment eventually outperforms the NBC for a
large enough transmission rate. Fig. 6 plots the quantity

as a function of for rate .

Theorem V.6: if and only if and
.

Some intuition for why EOUQs with the CNC achieve lower
MSEs than those with the NBC can be gained by examining
the index generated by the CNC. For every and for
sufficiently large, we have

which, by Corollary IV.3, implies the indices of the nonempty
cells in an EOUQ with the CNC are

odd

even

Corresponding to such nonempty cells, the encoder transmits
(by the definition of CNC) only the odd integers .
Hence, the encoder of an EOUQ with the CNC emulates the en-
coder of a rate EOUQ with the NBC, and then adds an
extra bit (carrying no information) before transmission over the
channel. Since the CNC uses longer codewords than the NBC,
the CNC codewords are exposed to fewer channel errors on av-
erage, while being penalized with a lower level of quantizer res-
olution. This tradeoff makes the CNC superior to the NBC, ex-
cept for very small bit error rates.
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APPENDIX I
LEMMAS AND PROOFS FOR SECTION II

Lemma I.1: For any index assignment and for

Proof of Lemma I.1: It follows immediately since index
assignments are permutations.

Proof of Lemma II.1: Let and be two distinct integers
between and . Then the inequality in (2) can be rewritten
as

Since is bijective and , cancellation of
terms gives

or equivalently

APPENDIX II
LEMMAS AND PROOFS FOR SECTION III

The following lemma is easy to prove and is used in the proofs
of Lemmas II.2 and II.3.

Lemma II.1:

for (B1)

for (B2)

for

and (B3)

for (B4)

Lemma II.2: If , then

(B5)

Proof of Lemma II.2: We use induction on . The case of
is true since

Now assume (B5) is true for and consider two cases for .
If , then using (B1) and (B2) to express

in terms of and simplifying with Lemma I.1
gives

(B6)

where (B6) follows from the induction hypothesis.
If , then using (B3) and (B4) to express

in terms of and simplifying with Lemma I.1
gives

(B7)

where (B7) follows from the induction hypothesis.

Lemma II.3: If , then

(B8)

Proof of Lemma II.3: We use induction on . The case of
is true since
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which satisfies the right-hand side of (B8). Now assume (B8) is
true for and consider two cases for .

If , then using (B1) and (B2) to express
in terms of and simplifying with Lemma I.1

gives

(B9)

where (B9) follows from the induction hypothesis and
Lemma II.2.

If , then using (B3) and (B4) to express
in terms of and simplifying with Lemma I.1

gives

(B10)

where (B10) follows from the induction hypothesis and
Lemma II.2.

APPENDIX III
LEMMAS AND PROOFS FOR SECTION IV

The following two lemmas are used in the proofs of
Lemmas III.3 and III.5. Let

Lemma III.1:

for

or (C1)

for

and even (C2)

for

and odd (C3)

for

and even (C4)

for

and odd (C5)

Proof of Lemma III.1: It follows from the definition of the
CNC.

Lemma III.2: If , then

for even
for odd

(C6)

for even
for odd

(C7)

and if , then

for even
for odd

(C8)

for even
for odd.

(C9)

Proof of Lemma III.2: It follows from the definition of the
NBC.

Lemma III.3: If , then

for even
for odd.

Proof of Lemma III.3: If , then using
(C1)–(C3) in Lemma III.1 to express

in terms of , , and gives
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for even
for odd

(C10)

where (C10) follows from Lemma II.2 and (C6) and (C7) in
Lemma III.2.

If then using (C4), (C5), and (C1) in
Lemma III.1 to express

in terms of , , and gives

for even
for odd

(C11)

where (C11) follows from Lemma II.2 and (C8) and (C9) in
Lemma III.2.

The following lemma is used in the proof of Lemma III.5.

Lemma III.4: If , then

for even
for odd

(C12)

for even
for odd

(C13)

and if , then

for even

for odd

(C14)

for even

for odd.

(C15)

Proof of Lemma III.4: For each sum in (C12)–(C15), the
first and last digits of the binary expansions of and are con-
stant over all terms in the sum. Therefore, their contribution to
the Hamming distance is the same for each term in the
sum. Hence, by summing over the middle bits of , the
left-hand sides of (C12)–(C15) are times, respectively,

for even

for odd,

for even

for odd,

for even

for odd,

for even

for odd.

The right-hand sides of (C12)–(C15) then follow from
Lemma II.2.

Lemma III.5: If , then

for even

for odd
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and if , then

for even

for odd.

Proof of Lemma III.5: If , then using
(C1)–(C3) in Lemma III.1 to express

in terms of , , and , and simplifying with (C6) and
(C7) from Lemma III.2 gives

for even

for odd
(C16)

where (C16) follows from Lemma II.3 and (C12) and (C13) in
Lemma III.4.

If , then using (C1), (C4), and (C5) in
Lemma III.1 to express

in terms of , , and , and simplifying with (C8) and
(C9) from Lemma III.2 gives

for even

for odd
(C17)

where (C17) follows from Lemma II.3 and (C14) and (C15) in
Lemma III.4.

Proof of Lemma IV.1: Since

the cubic function has exactly one root (i.e., ) in ,
on , and on . Furthermore,

since

The fact that

follows from the fact that

Proof of Theorem IV.2: The encoding cells satisfy (3) in
Lemma II.1, with

for even or odd
for even, odd
for even, odd

(C18)

where (C18) follows from Lemma III.3. Let

for . Note that is well defined because
whenever , by (C18). Also, from (C18), we have that

if and only if , and if and only
if .

Thus, (3) can be rewritten as

and

(C19)
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Therefore, the encoding cell with index is empty if and only if
at least one of the following conditions holds:

(C20)

(C21)

(C22)

For notational convenience, assume

We will examine four cases, corresponding to the parity and
size of a cell’s index .

Case 1: even,
Equations (5) and (C18) as well as Lemma III.5 imply (C23)

at the bottom of the page. Equations (C24) and (C25) follow
from (C23) and the fact that is increasing in for
and .

(C24)

(C25)

For , the th encoding cell is nonempty if and
only if the conditions in (C20)–(C22) are each false. Equations
(C24), (C25) and Lemma IV.1 imply (C20) is false if and only if

or, equivalently, if and only if

(C26)

Equation (C21) is false if and only if (C25) is positive, or
equivalently

(C27)

Similarly, (C22) is false if and only if (C24) is less than , or
equivalently

(C28)

which is always true, since

and . Lemma IV.1 implies that

for . Hence, if , then (C27) holds, and therefore,
is nonempty for if and only if .

For the conditions in (C20) and (C21) are equivalent
and the condition in (C22) is always false. Therefore, the en-
coding cell is nonempty (from (C21) and (C25)) if and
only if

(C29)

Case 2: odd,
Equations (5) and (C18) as well as Lemma III.5 imply (C30)

at the bottom of the page.
If , then from (C30)

(C31)

for

for .
(C32)

Equation (C32) was obtained by noting that in (C31) the first
term is greater than the second term if and only if both
(since is even) and (after some algebra) (i.e.,
via Lemma IV.1). If , then from (C30)

(C33)

for even
for even

for odd
for odd.

(C23)

for even
for even
for odd
for odd.

(C30)
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For

(C34)

for

for .
(C35)

Equation (C35) was obtained by noting that in (C34) the third
term is less than the forth term evaluated at any odd between

and ; and the first term is less than the third
term if and only if both (since is even) and (after
some algebra) (i.e., via Lemma IV.1). If

, then

(C36)

(C37)

Equation (C37) was obtained by noting that in (C36) the second
term evaluated at any odd between and is
always greater than the first term.

The th encoding cell is nonempty if and only if the
conditions in (C20)–(C22) are each false. Suppose

. Then (C32), (C33), and (C35) imply (C20) is false for
if and only if

(C38)

which is always true. If , then (C32) and (C37)
imply (C20) is false if and only if

(C39)

which is always true. Equations (C35) and (C37) imply (C21)
is always false since

by inspection. Equations (C32) and (C33) imply (C22) is false
if and only if

(C40)

which is always true. Hence, if , then is
nonempty.

Suppose . Equations (C32) and (C35) imply
(C20) is false (assuming and ) if and only if

(C41)

which is always true. If , then (C32) and (C37)
imply (C20) is false if and only if

(C42)

which is always true. If , then (C33) and (C35) imply (C20)
is false if and only if

(C43)

which is always true. Equations (C35) and (C37) imply (C21)
is always false since

by inspection. Equation (C32) implies (C22) is false for
if and only if

(C44)

which is always true. If , then (C40) implies that

and hence (C22) is false. Therefore, if , then
is nonempty.

Case 3: even ,
Equations (5), (C18), and (C30) as well as Lemma III.5 imply

(C45) at the bottom of the page. Equation (C45) implies (C46) at

for even
for even
for odd
for odd

(C45)
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for and

for and
for

(C46)

for

and

for and

(C47)

the top of the page, where (C46) follows from (C35) and (C37),
as well as (C47) also at the top of the page, where (C47) follows
from (C32) and (C33).

The th encoding cell is nonempty if and only if the
conditions in (C20)–(C22) are each false. Equation (C45) im-
plies (C20) is false if and only if

for odd

which is always true, as shown by (C38), (C39), (C41), (C42),
and (C43). Equation (C45) implies (C21) is false if and only if

for odd

which is always true, as shown by (C40) and (C44). Equation
(C45) implies (C22) is false if and only if

for odd

which is always true, as shown by inspection of (C35) and
(C37). Hence, is nonempty.

Case 4: odd,
Equations (5), (C18), and (C23) as well as Lemma III.5 imply

(C48) at the bottom of the page. Equation (C48) implies that

(C49)

(C50)

where (C50) follows from (C25), and (assuming )

(C51)

(C52)

where (C52) follows from (C24).
For , the th encoding cell is nonempty if and

only if the conditions in (C20)–(C22) are each false. Equations
(C49) and (C51) imply (C20) is false if and only if

for even

(C53)

where (C53) follows from (C26). Equation (C51) implies (C21)
is false if and only if

for even (C54)

Equation (C28) implies (C54) is always true. Equation (C49)
implies (C22) is false if and only if

for even (C55)

for even
for even

for odd
for odd

(C48)
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Equation (C27) implies that (C55) holds if and only if

(C56)

Lemma IV.1 implies that is smaller than the right-hand side
of (C56) for . Hence, if , then (C56) holds
and, therefore, is nonempty for if and only if

.
For , the conditions in (C20) and (C22) are equiv-

alent and the condition in (C21) is always false. Therefore, the
encoding cell is nonempty (from (C22) and (C49))
if and only if

(C57)

where (C57) follows from (C29).

Proof of Theorem IV.4: The definition of implies

(C58)

For , Theorem IV.2 and Corollary IV.3 give as
follows. If and , then

for

for .

If and , then

for

If and , then

for

for odd; or
even

for even; or
odd

for .

If and , then

for

for
for odd; or

even
for .

If and , then

for
for odd; or

even
for .

The result follows from (C58) and routine algebra.

APPENDIX IV
LEMMAS AND PROOFS FOR SECTION V

Lemma IV.1: .
Proof of Lemma IV.1: Let and denote the indices of two

adjacent, nonempty encoding cells. Then for all , the
weighted nearest neighbor condition implies that

Assume, without loss of generality, that . Then

for all . The weighted nearest neighbor condition also
implies that

for all , or equivalently that

for all because

Note, however, that

Hence,

must be the boundary between and , for otherwise
they cannot be adjacent. The lemma now follows from the def-
inition of .

Proof of Lemma V.1: From (1), we have

(D1)
Substituting

into (D1), expanding the squared term, integrating and then
summing over constant terms, and expressing the result in
terms of and gives

(D2)

where (D2) follows since each is an interval. Re-ex-
pressing the elements of (D2) which include in terms
of , collecting terms using the definitions of
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and in (4) and (5), respectively, and simplifying with
Lemma IV.1 gives

Proof of Theorem V.4: Let

Case 1:
Theorem IV.2 and Corollary IV.3 imply that

Hence, using Lemmas III.3 and III.5 to evaluate the last two
sums in Lemma V.1 and (C18) to simplify the first sum in
Lemma V.1 gives

(D3)

where (D3) follows from considerable arithmetic and using
(from Theorem IV.2)

for even

for even

for odd

for

for odd.

Case 2:
Theorem IV.2 and Corollary IV.3 imply that

for

Hence, using Lemmas III.3 and III.5 to evaluate the last two
sums in Lemma V.1; using (C18) and Theorem IV.2 to simplify
the first sum in Lemma V.1; and collecting terms according to
which power of they contain gives

(D4)

Theorem IV.2 shows that

for and even when

Therefore, using Theorem IV.2 to evaluate , the last term
in (D4) can be rewritten as

(D5)

where (D5) follows after considerable arithmetic. Substituting
(D5) for the last term in (D4) and collecting terms gives

(D6)
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Case 3:
Theorem IV.2 and Corollary IV.3 imply that

Theorem IV.2 also shows that if , then the
expressions for and are the same as the expressions
for and in Case 2. Hence, Lemma V.1 gives

(D7)

Simplifying (D7) with (4) and Theorem IV.2, using (C18) to
evaluate , and using Lemma III.5 to calculate the sum over

gives

(D8)

Theorem IV.2 implies

(D9)

Substituting (D6) and (D9) into (D8) and performing consid-
erable arithmetic gives

Proof of Lemma V.5: Let . The proof is straight-
forward for the case , so assume . Note that

We have since

and

and we have for since

and

Thus, the function has a root in

for , and it has a root in for since
and . The first three derivatives of are

Since on and

we must have on , which implies at most
once on . Therefore, since

and

the function has exactly one root on , which implies
that on if and only if .

Note that the root of could be found explicitly using
the formula for the general solution to a quartic polynomial
equation.

Proof of Theorem V.6: If , then Theorem V.4 implies
that the value of is the same for

and

which gives

for

for
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Theorem V.3 gives

Therefore, for

for

for

Now let .
Case 1:
Theorems V.3 and V.4 imply that

which (by Lemma V.5) is positive if and only if .
Case 2:
Theorems V.3 and V.4 imply that

(D10)

For , the right-hand side of (D10) is

(D11)

where (D11) follows from and

For , the right-hand side of (D10) can be lower-bounded
as

(D12)

(D13)

(D14)

where (D12) follows from and simplifying; (D13)
follows by eliminating all positive terms except , and then sim-
plifying; and (D14) follows from the fact that when

(by Lemma IV.1), and the fact that

for all .
Case 3:
Theorems V.3 and V.4 imply that

(D15)

(D16)

where (D15) follows from the fact that and

for ; and (D16) follows from the facts that
is monotone increasing with and

for

and .
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