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Quantization of Multiple Sources Using Nonnegative
Integer Bit Allocation
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Abstract—Asymptotically optimal real-valued bit allocation
among a set of quantizers for a finite collection of sources was
derived in 1963 by Huang and Schultheiss, and an algorithm for
obtaining an optimal nonnegative integer-valued bit allocation
was given by Fox in 1966. We prove that, for a given bit budget, the
set of optimal nonnegative integer-valued bit allocations is equal
to the set of nonnegative integer-valued bit allocation vectors
which minimize the Euclidean distance to the optimal real-valued
bit-allocation vector of Huang and Schultheiss. We also give an
algorithm for finding optimal nonnegative integer-valued bit
allocations. The algorithm has lower computational complexity
than Fox’s algorithm, as the bit budget grows. Finally, we compare
the performance of the Huang–Schultheiss solution to that of
an optimal integer-valued bit allocation. Specifically, we derive
upper and lower bounds on the deviation of the mean-squared
error (MSE) using optimal integer-valued bit allocation from the
MSE using optimal real-valued bit allocation. It is shown that, for
asymptotically large transmission rates, optimal integer-valued
bit allocations do not necessarily achieve the same performance as
that predicted by Huang–Schultheiss for optimal real-valued bit
allocations.

Index Terms—Data compression, high-resolution quantization,
source coding.

I. INTRODUCTION

THE classical bit allocation problem for lossy source coding
is to determine the individual rates of a finite collection of

scalar quantizers so as to minimize the sum of their distortions,
subject to a constraint on the sum of the quantizer rates. Bit al-
location arises in applications such as speech, image, and video
coding. It has been shown [1], [21] that finding optimal integer
bit allocations is NP-hard (as the number of sources grows), via
reduction to the multiple-choice knapsack problem.

Huang and Schultheiss [20] analytically solved the bit alloca-
tion problem when the mean-squared error (MSE) of each quan-
tizer decreases exponentially as its rate grows. The results in
[20] were generalized in [26] by finding optimal real-valued bit
allocations when the MSE of each quantizer is a convex function
of its rate. Other generalizations were given in [17] and [24].
Bit allocation was studied in [3], in the context of trading off
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the total bit budget and the quantization error, a generalization
of the Lagrangian approach.

The formulaic solution given in [20] allows arbitrary real-
valued bit allocations. However, applications generally impose
integer-value constraints on the rates used. In practice, bit allo-
cations may be obtained by using some combinatorial optimiza-
tion method such as integer linear programming or dynamic pro-
gramming [10], [15], [16], [19], [30], [31], [34] or by optimizing
with respect to the convex hull of the quantizers’ rate-versus-dis-
tortion curves [6], [7], [25], [29], [32]. These techniques gen-
erally ignore the Huang–Schultheiss solution. Alternatively, a
widely used technique is to explicitly use an optimal real-valued
bit allocation as a starting point and then home in on an in-
teger-valued bit allocation that is close by. As noted in the text-
book by Gersho and Gray [14, pp. 230-231]:

“In practice, … if an integer valued allocation is needed,
then each non-integer allocation is adjusted to the nearest
integer. These modifications can lead to a violation of the
allocation quota, , so that some incremental adjustment
is needed to achieve an allocation satisfying the quota. The
final integer valued selection can be made heuristically. Al-
ternatively, a local optimization of a few candidate alloca-
tions that are close to the initial solution obtained from [the
Huang–Schultheiss solution] can be performed by simply
computing the overall distortion for each candidate and se-
lecting the minimum. … Any simple heuristic procedure,
however, can be used to perform this modification.”

In 1966, Fox [12] gave an algorithm for finding nonnegative in-
teger-valued bit allocations. His algorithm is greedy in that at
each step it allocates one bit to the quantizer whose distortion
will be reduced the most by receiving an extra bit. Fox proved
this intuitive approach is optimal for any convex decreasing
quantizer distortion function. There are many other algorithmic
techniques in the literature for obtaining integer-valued bit allo-
cations. Some examples of these include [1], [4], [5], [13], [22],
[23], [27], [35].

In this paper, we first prove that, for a given bit budget,
the set of optimal nonnegative integer-valued bit allocations
is equal to the set of nonnegative integer-valued bit allocation
vectors which minimize the Euclidean distance to the optimal
real-valued bit-allocation vector of Huang and Schultheiss. The
proof of this result yields an alternate algorithm to that given
by Fox for finding optimal nonnegative integer-valued bit allo-
cations. This algorithm uses asymptotically (as the bit budget
grows) less computational complexity than Fox’s algorithm.

Despite the wealth of knowledge about bit allocation algo-
rithms, there has been no published theoretical analysis com-
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paring the performance of optimal bit allocations with integer
constraints to the performance obtained using the real-valued
allocations due to Huang and Schultheiss.

We provide some such theoretical analysis. Specifically,
we derive upper and lower bounds on the deviation of the
MSE using optimal integer-valued bit allocation from the MSE
using optimal real-valued bit allocation. Informally speaking,
we show that no matter what bit budget is chosen, optimal
integer-valued bit allocation might be as much as 6% worse
than optimal real-valued bit allocation, but never more than
26% worse.

Our main results are summarized in the following (for ).
i) For any scalar sources and any bit budget, the set of

optimal nonnegative integer-valued bit allocations is the
same as the set of nonnegative integer-valued bit alloca-
tion vectors (with the same bit budget) which are closest
to the optimal real-valued bit-allocation vector of Huang
and Schultheiss (Theorem III.13).

ii) An algorithm is given for finding the set of optimal
nonnegative integer-valued bit allocations from the
Huang–Schultheiss optimal real-valued bit allocation
(Algorithm III.14).

iii) For any scalar sources, suppose the optimal real-valued
bit allocation is never integer-valued for any bit budget.
Then, the ratio of the MSE due to optimal nonnegative
integer-valued bit allocation and the MSE due to optimal
real-valued bit allocation is bounded away from over all
bit budgets (Theorem IV.3).

iv) There exist scalar sources, such that for all bit budgets,
the MSE due to optimal nonnegative integer-valued bit al-
location is at least 6% greater than the MSE due to optimal
real-valued bit allocation (Theorem IV.5).

v) For any scalar sources and for all bit budgets, the MSE
due to optimal integer-valued bit allocation is at most 26%
greater than the MSE due to optimal real-valued bit allo-
cation (Theorem V.2).

Our results are for memoryless scalar quantizers and pos-
sibly correlated sources. Cases i) and ii) are first established
for integer-valued bit allocations and then extended to such al-
locations with nonnegative components. In case ii), the problem
of finding an optimal nonnegative integer-valued bit allocation
is reduced to first computing a particular real-valued bit allo-
cation for the same bit budget, and then performing a (low-
complexity) nearest neighbor search in a certain lattice using
the real-valued bit allocation vector as the input to the search
procedure. In each of the cases iii), iv), and v), we derive ex-
plicit bounds on the MSE penalty paid for using integer-valued
bit allocation rather than real-valued bit allocation. A prelimi-
nary version of our results without the nonnegativity constraint
was presented in [11].

This paper is organized as follows. Section II gives defini-
tions, notation, and some lemmas. Section III shows the equiva-
lence of closest nonnegative integer-valued bit allocation and
optimal nonnegative integer-valued bit allocation. Section IV
characterizes, for a given set of sources, the set of bit budgets
for which no penalty occurs when using integer-valued bit allo-
cation instead of real-valued bit allocation. Also, a lower bound
is given on the ratio of the MSEs achieved by using optimal

integer-valued bit allocation and optimal real-valued bit alloca-
tion. Section V presents an upper bound on the ratio of the MSEs
achieved by using optimal integer-valued bit allocation and op-
timal real-valued bit allocation. The Appendix contains proofs
of lemmas.

II. PRELIMINARIES

Let be real-valued, possibly correlated, random
variables (i.e., scalar sources) with variances .
Throughout this paper, we assume and

The sources are memoryless scalar quantized with
resolutions , respectively, measured in bits. The goal
in bit allocation is to determine the quantizer resolutions, sub-
ject to a constraint on their sum, so as to minimize the sum of
the resulting MSEs.

Let denote the reals and denote the integers. We will use
the following notation:

The vector will be called a bit allocation and the integer
a bit budget. We say that is a nonnegative bit allocation if

for all . , , and are, respectively,
the sets of all real-valued, integer-valued, and nonnegative in-
teger-valued bit allocations with bit budgets . Bit allocations
in and are said to be integer bit allocations. We
use the notation to represent the unique integer sat-
isfying and . If the components of two
vectors are the same but ordered differently, then each vector is
said to be a permutation of the other vector.

We will assume the MSE of the th quantizer is equal to

(1)

where is a quantity dependent on the distribution of , but
independent of . It is known that (1) is satisfied for asymptot-
ically optimal scalar quantization [14], in which case

where denotes the probability density function of . Also,
uniform quantizers satisfy (1), but with a different constant .
Many useful quantizers have distortions of the form in (1), as the
distortion in (1) often represents a reasonable approximation
even for non-asymptotic bit rates.
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The total (MSE) resulting from the bit allocation is

We will also assume that

for all . It is straightforward to generalize our results to the case
where is a weighted combination of the ’s and where not all
the ’s are equal. Such multiplicative constants can essentially
be absorbed by .

For any scalar sources and for each bit budget , let

We call the optimal real-valued bit allocation and
the MSE achieved by . In 1963, Huang and Schultheiss
[20] derived the optimal high-resolution real-valued bit alloca-
tion for the multiple-source quantization problem. Their result,
stated in the following lemma, shows that is unique.

Lemma II.1: For any scalar sources and for each bit
budget ,

Lemma II.1 implies that the components of the bit allocation
are positive for a sufficiently large bit budget ; how-

ever, need not be an integer bit allocation for any par-
ticular bit budget. The next lemma follows immediately from
Lemma II.1. Let

denote the th component of the vector obtained from sub-
tracting component-wise from .

Lemma II.2: For any scalar sources, for each bit budget ,
and for any bit allocation , the MSE resulting from

is

For any scalar sources and for each bit budget , let

By Lemma II.1, these equations are equivalent to

(2)

We call the set of optimal integer bit allocations and
the MSE achieved by any bit allocation in . The set

and the scalar are the analogous quantities for non-
negative bit allocations. In order to analyze and , we
will first obtain results about and .

A. Lattice Tools

We next introduce some notation and terminology related to
lattices that will be useful throughout the paper. We exploit cer-
tain facts from lattice theory to establish bit allocation results,
specifically Theorems IV.5 and V.2. Most of the following def-
initions and notation are adapted from [8].

For any , denote a set translated by the
vector by

For any , define1 the following lattice:

The lattice is useful for analyzing bit allocations for
scalar sources since it consists of points with integer coordi-
nates which sum to zero. For , define the -di-
mensional vector

(3)

Note that

for all and .

1Usually denotedA in the literature. We use alternate notation to avoid con-
fusion with sets of bit allocations.
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Let denote the Euclidean norm of . For any and
, define

i.e., the closest lattice points in to . Typically, con-
tains a single point, however it can contain more than one point
when equidistant from muliple lattice points.

Lemma II.3: For any

Denote the Voronoi cell associated with any point in the
lattice by

This definition implies shares boundary points with neigh-
boring cells. Let

The lattice is a subset of and also a subset of the -di-
mensional hyperplane . Define the quantity

III. CLOSEST INTEGER BIT ALLOCATION

In this section, we first demonstrate the equivalence of closest
integer bit allocation and optimal integer bit allocation. Then,
we extend this equivalence to the case where the bit alloca-
tions must have nonnegative integer components. Finally, we
obtain an algorithm for finding optimal nonnegative integer bit
allocations.

For any scalar sources and for each bit budget , let

For a given bit budget , is the set of closest integer
bit allocations, with respect to Euclidean distance, to the op-
timal real-valued bit allocation. Note that each is,
in general, different from a bit allocation obtained by finding the
closest integer to each component of , since such a com-
ponent-wise closest bit allocation might result in using either
more or less than bits. The set is a translate of and
is a function of and , although we will notation-
ally omit these dependencies. and are the analogous
quantities to and , respectively, for nonnegative bit
allocations.

The following lemma will be used to prove Lemmas III.2 and
IV.4, and Theorem V.2. Define the quantities

and note that . The union in the definition of is
over all -tuples of sources that satisfy the assumptions made in
Section II.

Lemma III.1: For any scalar sources with variances
and for each bit budget

Furthermore, for all .

The next lemma states that the smallest distance (in the Eu-
clidean sense) that a closest integer bit allocation can be to the
optimal real-valued bit allocation vector must occur when the
bit budget is at most the number of sources.

Lemma III.2: For any scalar sources

A. An Algorithm for Finding

The following theorem is adapted from [9, pp. 230-231] and
immediately yields an algorithm for finding closest integer bit
allocation vectors (the components of the resulting bit allocation
vectors need not all be nonnegative). For all , define

The quantity is a closest integer to .

Theorem III.3: Let be a bit budget,

and
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Let denote the set of all permutations of
such that

and let

such that

if
if

such that

if
if

Then

if
if
if .

Proof: For any

Suppose . Then

Thus, is a point in of minimum distance to .
This means that . Since is a closest integer to
and since breaks ties by rounding upward, any other integer bit
allocation with minimum distance from must satisfy

. Thus, and hence, .
Suppose and let

if
if .

It can be seen that every element of is a bit allocation
which minimizes the difference between

and . Since does not depend on such
, we have

To finish the proof, we will show that . Let
. For any and , the following identity holds:

(4)

Suppose there exists an such that

Then there must exist a such that

since

But then the right-hand side of (4) would be negative which
would imply , since subtracting from and
adding to would result in an integer bit allocation closer than

to . A similar contradiction results in the case where

Thus, for every , we must have

Since

we conclude that

for all .
Now, suppose . Then there exists at least one such that

For each , it cannot be the case that

for otherwise the Euclidean distance between and
could be reduced by adding to and subtracting from ,
which violates the fact that . Thus, for all , we have

To minimize the distance between and , the compo-
nents of for which must be those components with
the smallest values of . Thus .

A similar argument shows that if , then for all , we have
; this then implies that the components of

for which must be those components with the
largest values of , i.e., . In summary, .

Note that in practice will usually consist of a single
bit allocation, although in principle it can contain more than one
bit allocation.

We note that Guo and Meng [18] gave a similar algorithm to
that implied by Theorem III.3. Instead of rounding each com-
ponent of the Huang–Schultheiss solution to the nearest
integer, they round each component down to the nearest integer
from below. Then, they added 1 bit at a time to the rounded
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components, based on which components were rounded down
the most. The technique implied from our Theorem III.3 uses the
same idea, but also adds bits to components which were rounded
up too far. The authors of [18] did not claim that their resulting
bit allocation gave a closest integer bit allocation. They did,
however, assert that their resulting bit allocation was optimal;
but, in fact, their proof was not valid. They attempted to show
that adding bits, one at a time, in the manner they described was
optimal among all ways to add bits to the rounded bit allocation.
However, their proof did not eliminate the possibility of adding
more than two bits to multiple components of the rounded bit
allocation. Nor did they rule out the possibility of subtracting
extra bits from some components in order to add even more bits
to other components. We believe their algorithm is indeed cor-
rect, despite the lack of proof.

Wintz and Kurtenbach [33, p. 656] also gave a sim-
ilar algorithm for obtaining integer-valued bit allocations.
Their technique was to round off the components of the
Huang–Schultheiss solution to the nearest integer, and then add
or subtract bits to certain components until the bit budget was
satisfied. However, their choice of which components to adjust
up or down was based on the magnitudes of the components,
rather than how much they were initially truncated. The authors
of [33] note that their technique is suboptimal.

The algorithm in [18] assumes the Huang–Schultheiss solu-
tion has nonnegative components, as does the algorithm implied
by our Theorem III.3. However, in Section III-C, we generalize
the result of Theorem III.3 to give an algorithm for finding op-
timal nonnegative integer bit allocations without any such as-
sumptions about the Huang–Schultheiss solution.

B. Equivalence of Closest Integer Bit Allocations and Optimal
Integer Bit Allocations

In this subsection, we allow bit allocations to have nega-
tive components. In Section III-C we will add the nonnegativity
constraint. The next two technical lemmas are used to prove
Lemma III.6.

Lemma III.4: For any scalar sources and for each bit budget
, let be such that for some .
If , then

If , then

Lemma III.5: For any scalar sources and for each bit budget
, let

Then for any and for all

if
if
if .

For each and , define a -dimensional vector whose
components are

if
if
otherwise.

(5)

Lemma III.6: For any scalar sources, for each bit budget ,
and for any , let . Then for all

If , then

(6)

The following theorem establishes that for each bit budget,
the closest integer bit allocations and the optimal integer bit al-
locations are the same collections.

Theorem III.7: For any scalar sources and for each bit
budget

Proof: First, we show that . Let
and , and let and denote the resulting

MSEs, respectively. It suffices to show that .
Define

and consider any sequence of integer bit allocation vectors

(7)

such that for each there exists an and
a such that

(8)

By (8) we have that

for each since exactly one element of is incremented and
exactly one element of is decremented going from to

. Such a sequence is guaranteed to exist since .
For each , let be the MSE achieved by . To establish

, we will show that is monotonic nondecreasing in .
The construction of the sequence implies that

for each
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where and are defined by (8), and are functions
of . Thus,

Let

Then

[from Lemma III.6]

and therefore for each , we get

or equivalently (by the definition of )

(9)

Canceling terms in (9) and raising to the remaining quantity
on each side of the inequality gives

(10)

or equivalently

[from (8)]

which implies

[from Lemma II.2]

[from Lemma II.2] (11)

Thus, is monotonic and therefore we have shown

The fact that then immediately follows.
Next, we show that . Let .

Since , a decomposition as in (7) still holds.
Our goal is to show , which will be accomplished by
showing . By the optimality of , we must have

, which by the monotonicity of implies

Hence, equality holds in (11) and therefore also in (10), which
implies for each that

(12)

Now, we use induction to show . The case
holds since

Now suppose for all (where ) that

Then we can apply Lemma III.6 to (12) in the case , and
use (8) to obtain

Note that an immediate consequence of Theorem III.7 is that
the components of every element in tend to infinity as
the bit budget grows without bound.

C. Equivalence of Closest Nonnegative Integer Bit Allocations
and Optimal Nonnegative Integer Bit Allocations

The problem of finding nonnegative bit allocations was ad-
dressed by Segall [26], but his solution did not assure integer-
valued quantizer resolutions. Fox [12] gave a greedy algorithm
for finding nonnegative integer bit allocations by allocating one
bit at a time to a set of quantizers. His algorithm is optimal for
any convex decreasing distortion function, and in particular, it
is optimal for the distortion function we assume in (1).

In this subsection, we prove (in Theorem III.13) that optimal
nonnegative integer bit allocations are equivalent to closest non-
negative integer bit allocations. Our proof leads to an alternate
algorithm for finding optimal nonnegative integer bit alloca-
tions. The algorithm is faster than Fox’s algorithm (as the bit
budget grows).

First we introduce some useful notation and then establish
five lemmas that will be used to prove Theorem III.13.

For any bit budget and any nonempty set
, define a vector whose compo-

nents are

if
otherwise

where

Lemma II.1 shows that the -dimensional vector obtained
by extracting the coordinates of , corresponding to
the elements of , is the optimal real-valued bit allocation for
the quantizers corresponding to the elements of . For any bit
budget , any bit allocation , and any nonempty set

, let
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and for any set and any function , let

Define the quantities

For a given bit budget , is the set of closest integer
bit allocations to , and is the set of closest
nonnegative integer bit allocations to .

Lemma III.8: If , then
.

The following lemma shows that to find a closest integer bit
allocation to , one can assume without loss of gener-
ality that zeros are located in bit allocation vector components
corresponding to integers not in .

Lemma III.9: For each bit budget and for any nonempty
set

Lemma III.10: For any scalar sources, for each bit budget
, and for any nonempty set , if is

nonnegative, then every bit allocation in is nonnega-
tive.

Lemma III.11: Consider scalar sources with bit budget
and a nonempty set . If ,
then . If , then

.

Lemma III.12: Consider scalar sources with bit
budget and a nonempty set . Suppose

and there exists an such
that . Then for all .

The following theorem shows that optimal nonnegative in-
teger bit allocation is equivalent to closest nonnegative integer
bit allocation. In other words, minimizing the distortion among
all nonnegative integer bit allocations is equivalent to finding
which nonnegative integer bit allocation vectors are closest in
Euclidean distance to the Huang-Schultheiss real-valued bit-al-
location vector. This, in turn, can be accomplished with a nearest
neighbor search in a lattice. Following Theorem III.13, we give
an efficient algorithm for finding optimal nonnegative integer
bit allocation vectors.

Theorem III.13: For any scalar sources and for each bit
budget

Proof: Let and consider the sequence
of bit allocations

where

and is the smallest nonnegative integer such that

for all . Such an integer exists since the following hold.
• , for all .
• If , then , for all .
• is monotone decreasing in .

We will show that both and are equal to
. The fact that then follows from the

definition of .
Note that for any , if

then (by Lemma III.12) any optimal or closest nonnegative in-
teger bit allocation must satisfy

for , and therefore,

Thus, since

we obtain by induction that

(13)

Now using (13) and Lemma III.11, we have

(14)

(15)

Since is nonnegative by definition, Lemma III.10
implies that each is nonnegative, i.e.,

(16)

From (16) and the fact that

we can apply Lemma III.8 with
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to obtain

Thus, we have

[from (14)]

Now consider a set of sources with variances

if

if .

Lemma II.1 shows that is the optimal real-valued
bit allocation for (mimicking the argument
from the proof of Lemma III.10). Therefore, by Lemma III.9,

is the set of closest integer bit allocations (without
requiring any zero components) for . Hence, by
Theorem III.7, is also the set of optimal integer
bit allocations for . Thus,

[from (2)] (17)

[from (16), (17)]

Now applying Lemma III.8 with

gives

Therefore, we have

[from (15), (17)]

The proof of Theorem III.13 yields an alternative procedure
to that given by Fox [12] for finding optimal nonnegative integer
bit allocations. The main idea is to remove any negative com-
ponents in the Huang-Schultheiss real-valued solution and then
re-compute the Huang-Schultheiss solution for the surviving
quantizers, iteratively repeating this procedure until no nega-
tive components remain. Then, the set of closest integer-valued
vectors (with the same bit budget) to the resulting nonnegative
real-valued vector is computed as the output of the algorithm.

Algorithm III.14: (Procedure to Find and
)

For any scalar sources and for each bit budget , the fol-
lowing procedure generates a set of bit allocations which is both
the set and the set .

• Step 1: Set .
• Step 2: Compute and let

• Step 3: If go to Step 4.
Otherwise, set and go to Step 2.

• Step 4: Set equal to in Theorem III.3 and
then compute .
Set .

Remark: We briefly remark on the computational complexity
of the algorithm above as a function of the bit budget , for a
fixed . When there exists a unique closest nonnegative integer
bit allocation, the computational complexity of the algorithm re-
duces to the complexity of determining . The complexity
of this lattice search is known to be constant in (e.g., see [9,
p. 231]). In contrast, Fox’s algorithm has complexity linear in

. Thus, for large , Algorithm III.14 is faster than Fox’s al-
gorithm.

Also, by examining the proof of Theorem III.13, one can
readily verify a possible modification to Algorithm III.14.
Namely, in Step 2 of the algorithm, instead of zeroing out all
negative components of the Huang–Schultheiss bit allocation,
one could zero out one negative component per iteration in the
algorithm. The optimal nonnegative integer bit allocation is
still achieved.

IV. DISTORTION PENALTY FOR INTEGER BIT ALLOCATIONS

For any scalar sources and for each bit budget , let

We call the distortion penalty resulting from optimal non-
negative integer bit allocation. The distortion penalty measures
the increase in distortion when one uses (the practical) optimal
nonnegative integer bit allocation instead of (the fictitious) op-
timal real-valued bit allocation given by the Huang–Schultheiss
formula. For any , we have

[from (2), Lemma II.1] (18)

Also, clearly .
It is straightforward to see that for any scalar sources with

variances and a bit budget , the following three
statements are equivalent.

i) .
ii) The optimal real-valued bit allocation is a nonnegative

integer bit allocation.
iii) .

Lemma IV.1: For any

For any , if , then Lemma IV.1
gives bounds on the sum in Lemma II.2. Moreover, both the
upper and lower bounds in Lemma IV.1 are functions only of
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and , both bounds are monotone increasing with , and
as the bounds become tight.

Lemma IV.2: For any scalar sources, for each bit budget ,
and for any bit allocation , the MSE resulting from

satisfies

For any scalar sources, define

The quantity is the minimum distance, for fixed sources, be-
tween an optimal integer bit allocation (with possibly negative
values) and the optimal real-valued bit allocation vector, over all
bit budgets. Lemma III.2 and Theorem III.7 show that we can
write

Hence, is simple to compute since typically consists
of a single bit allocation, easily found using Theorem III.3. The
minimal value of the quantity is , which occurs when
is integer-valued for some bit budget. The maximum value of
is

which is the covering radius of the dual of the lattice (see
[8, p. 115]).

One can show that for scalar sources, if , then there
exists a nonnegative integer such that for each suffi-
ciently large bit budget

if and only if

Theorem IV.3 examines the case when . In this case

for all . Theorem IV.3 shows that, in fact, if

for all , then the distortion penalty resulting from optimal non-
negative integer bit allocation is bounded away from for all bit
budgets. This may appear surprising since one might expect the
distortion penalty due to optimal nonnegative integer bit alloca-
tion to tend to as the bit budget grows.

Theorem IV.3: Consider scalar sources. If , then for
every bit budget

Proof: For each bit budget , for any , and for
any , we have

and

by Theorems III.13 and III.7, respectively. Since bit allocations
in minimize the distance to over a smaller set
of integer bit allocations than bit allocations in

(19)

The definition of and (19) imply

(20)

Define a function by

For each bit budget and for every

[from Lemma IV.2]

[from Lemma II.1]

[from (20) and the monotonicity of ]

[from the arithmetic-geometric mean inequality]

A. Lower Bound on Worst Case Distortion Penalty for Integer
Bit Allocations

For any particular set of sources, the distortion obtained
by using optimal nonnegative integer-valued bit allocation may
be larger than the distortion predicted by optimal real-valued
bit allocation. Theorem IV.5 below illustrates how much worse
nonnegative integer-valued bit allocation can be compared to
real-valued bit allocation.

Let

Lemma IV.4: If the variances of scalar sources
satisfy

then for each bit budget and for any , the vector
is a permutation of .
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Theorem IV.5: For each , there exist scalar sources, such
that for any bit budget, the distortion penalty resulting from op-
timal nonnegative integer bit allocation satisfies

The distortion penalty in Theorem IV.5 is monotone in-
creasing with and is bounded as

where the lower bound is attained at and the upper
bound is approached as . Thus, the theorem guaran-
tees that for some sources, the MSE due to optimal nonnega-
tive integer-valued bit allocation is at least 6% greater (and as
much as 8% greater for large ) than the MSE due to optimal
real-valued bit allocation. We do not claim this is the largest
or smallest possible distortion penalty—indeed can range
from , when happens to be nonnegative integer-valued,
to as shown by Theorem V.1. Rather, Theorem IV.5 demon-
strates that can be bounded away from . Unfortunately,
one cannot qualify the distortion penalty in Theorem IV.5 as
typical, or atypical, without first defining what constitues a typ-
ical set of sources. We leave this task to the reader for any par-
ticular application.

Proof of Theorem IV.5: Let be arbitrary. For each
, consider a scalar source whose variance is given by

Then

and Lemma IV.4 implies that for each bit budget and for any
, the vector is a permutation of .

Hence, for each

[from (18)]

(21)

Applying the arithmetic-geometric mean inequality to (21)
gives .

We note that for the sources used in the proof of The-
orem IV.5, the lower bound in Theorem IV.5 is greater than
that given in Theorem IV.3, for all .

V. UPPER BOUND ON DISTORTION PENALTY FOR

INTEGER BIT ALLOCATIONS

The Huang–Schultheiss formula gives a bit allocation which
can include the fictitious concept of “negative” bits. In prac-
tice, such negative bits tend to disappear as the bit budget
grows. However, for any bit budget , there exist collections
of pathological sources that always lead to negative bits in the
Huang–Schultheiss allocation. As a result, when restricted to
using nonnegative integer bit allocations, these pathological
sources prevent one from obtaining a finite uniform upper
bound on the distortion penalty . This fact is demonstrated
in Theorem V.1 below.

In contrast, by mathematically allowing negative integer bit
allocations (to more closely approximate Huang–Schultheiss al-
locations containing negative bits), a useful upper bound on a
new distortion penalty can be obtained. For any scalar
sources and for each bit budget , let

We call the distortion penalty resulting from optimal integer
bit allocation.

One implication of Lemma III.5 and Theorem III.7 is that
no component of an optimal integer bit allocation can differ
form the corresponding component of the Huang–Schultheiss
allocation by more than one, i.e., , for
all . Thus, we have , with equality whenever the
Huang–Schultheiss bit allocation is nonnegative. An upper
bound on is only practical, however, for sources whose
Huang–Schultheiss bit allocation is nonnegative. Such an upper
bound is given in Theorem V.2.

Theorem V.1: For each and for any bit budget

where the supremum is taken over all -tuples of sources with
positive, finite variances.

Proof: For a bit budget , let and suppose the
variances of scalar sources satisfy

if
if .

Then

and Lemma II.1 implies

if
if .
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Fig. 1. Plot of the achievable distortion penalty from Theorem IV.5 and the upper bound on the distortion penalty from Theorem V.2.

Algorithm III.14 shows that

Hence, by (18) we have

as

In the following theorem we give an upper bound on the dis-
tortion penalty resulting from optimal integer bit allocation. The
bound does not depend on the source distribution or the bit
budget.

Theorem V.2: For each , for any scalar sources, and
for any bit budget, the distortion penalty resulting from optimal
integer bit allocation is upper-bounded as

where

The upper bound on in Theorem V.2 is tight since, for
arbitrary , if

and the bit budget is a multiple of , then by Theorem III.3,
Theorem III.7, and (18) we have

For all , the upper bound on in Theorem V.2 satisfies

(22)

where the lower bound in (22) is attained at and
and the upper bound in (22) is approached as . Thus,

Theorem V.2 guarantees that for any scalar sources and for all
bit budgets, the MSE due to optimal integer-valued bit allocation
is at most 26% greater than the MSE due to optimal real-valued
bit allocation.

Fig. 1 compares the upper bound in Theorem V.2 with the
distortion penalty from Theorem IV.5.

Proof: We show that

where, for a fixed , the suprema are taken over all possible
-tuples of sources and over all bit budgets.
Define a mapping by

Then we have

[from (18)]

[from Theorem III.7]

[from the definition of ]

[from the definition of ]

[from Lemma III.1]

(23)

[from (3)]
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where (23) follows from the fact that the convex function ,
restricted to the closed and bounded polytope , achieves
a global maximum (e.g., see [28, Theorem 6.12 on p. 154]) on
the polytope’s set of vertices, which consists of all coordinate
permutations [8, pp. 461–462] of

For , define

Since if and only if , the function must
attain its maximum when . In the range ,
the ratio

is greater than if and only if

so attains is maximum when

APPENDIX

Proof of Lemma II.3:

Proof of Lemma III.1: First, note that for each and
for any , the symmetry of implies that

if and only if (A1)

Also, note that since consists of all vectors with in-
teger coordinates which sum to , and since

it follows that

(A2)

Now, Lemma II.3 and (A2) imply that

Thus, Lemma II.1 gives

Since for all , we have that for
each

(A3)

(A4)

Since , we have for all .
Thus, by (A1) and the definition of , (A3)–(A4) imply

. Hence, , and therefore,

Now, for any and for arbitrary , setting

for results in

and therefore

Since , by (A1), we also have .
Hence, , and thus . So,

and therefore, .

Proof of Lemma III.2: From (3) we have

Lemmas II.3 and III.1 imply that for each , any element of
is the difference between the vector
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and a point (not necessarily unique) closest to it from the set

Hence,

so, in fact, these two unions are equal. The result then follows
from the fact that for each , the set is finite.

Proof of Lemma III.4: Let and be defined as in The-
orem III.3 and let

Then for all

[from the definitions of and ] (A5)

[from the definitions of and ] (A6)
if
if

[from Theorem III.3] (A7)
Since , we have

[from (A5)]

(A8)

[from (A6), (A7), (A8)] (A9)

[from (A5), (A9)]

Suppose . Then

[from (A5)]

[from (A6)]

(A10)

[from (A7), (A10)]

(A11)

[from (A5), (A11)]

By (A9), (A11), the fact that , and Theorem III.3,
there exists such that

Suppose . Then

[from (A5)]

[from (A6)] (A12)

[from (A7), (A12)] (A13)

[from (A5), (A13)]

By (A9), (A13), the fact that , and Theorem III.3,
there exists such that

Proof of Lemma III.5: Let and be defined as in The-
orem III.3. If , then the result follows from Theorem III.3
and the definitions of and .

Suppose and let

By Theorem III.3, there exists such that

if
if .

(A14)

Subtracting from both sides of (A14) gives

if
if

if
if .

Since

we have

Thus, it suffices to show that

for , since then

Let denote the number of components of such that
. Since the subscripts are ordered by in-

creasing value of , we have for
. Hence, it suffices to show that . We

have

The result then follows by symmetry for .
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Proof of Lemma III.6: Since , Lemma III.5 gives
. It is easy to verify that

in the following three cases:
• ,
• , ,
• , .

The inequality also holds for

and

since

[from Lemma III.4]

and it holds for

and

since

[from Lemma III.4]

Finally, Lemma III.5 implies that it cannot be the case that
and . Thus, for all and .

Let

and suppose . Then

Hence,

if
if
otherwise .

Therefore,

which, by the definition of , implies .

Proof of Lemma III.8: Assume

If , then

[from ]

[from ]

[from ]

and therefore, . Thus,

If , then

[from ]

[from ]

[from the definition of ]

and therefore, . Thus,

Proof of Lemma III.9: Suppose

For any and , the following identity holds:

(A15)

Now, suppose there exists an such that

Then there must exist a such that

since

But then the right-hand side of (A15) would be negative which
would imply

since subtracting from and adding to would result in
an integer bit allocation closer than to . A similar
contradiction results in the case where

Thus, for every , we must have

The definition of then implies for all .
Thus, , and therefore,

Now applying Lemma III.8 with
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gives

Proof of Lemma III.10: Consider a set of sources
with variances given by

if

if .

The geometric mean of the variances is

from

Therefore, substituting the variances and their geometric mean
into Lemma II.1 gives

if
otherwise

Hence, is the optimal real-valued bit allocation for
. Thus, by Lemma III.9, is the set of

closest integer bit allocations for (regardless of ).
Let

and for , let

Then Lemma III.5 implies that for all

if
if
if .

(A16)

Combining the fact that for all with (A16)
gives for all .

Proof of Lemma III.11: Let

Then, for all

(A17)

Suppose

Since every vector in is nonnegative, we have

(A18)

From (A18), we can apply Lemma III.8 with

to obtain

(A19)

For any

[from (A20)

[from (A17)]

[from ]

[from ]

(A21)

Equations (A20)–(A21) show that the quantities

and

differ by a constant which is independent of . Hence, among all
bit allocations in , we see that is of minimal distance
from if and only if is of minimal distance from

, i.e.,
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Thus, by (A19), we have

Now, to show the second part of the lemma, suppose

Since every vector in is nonnegative, we have

(A22)

From (A22), we can apply Lemma III.8 with

to obtain

(A23)

For any

[from Lemma II.2]

[from ]

[from (A17)]

[from ]

which is an affine function of , with coefficients which
are independent of . Therefore, among all bit allocations in

, we see that minimizes if and only if mini-
mizes , i.e.,

Thus, by (A23), we have

Proof of Lemma III.12: We prove that for all
, if , then

Let satisfy , where and
. By Lemma III.11, we know that

and

We will show that and . In par-
ticular, we demonstrate that there exists such that adding
1 bit to and subtracting 1 bit from reduces both and

, i.e., the original chosen could not have been an optimal
nor a closest nonnegative integer bit allocation.

Suppose

(A24)

Then we get

[from (A24)]

[from ]

which implies

a contradiction, since and . Therefore,
(A24) is false, so there exists such that and

(A25)

Multiplying each side of (A25) by and adding

to each side gives

or equivalently
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Thus, subtracting 1 bit from and adding 1 bit to reduces
. Some algebra shows that the inequality in (A25) is equiv-

alent to

from which it follows that can be reduced by adding 1 bit
to and subtracting 1 bit from .

Proof of Lemma IV.1: The proof is trivial for , so
assume . We determine the extrema of

(A26)

subject to the constraints

(A27)

(A28)

Define a Lagrangian associated with multipliers and by

The extrema of must satisfy (for )

(A29)

Suppose . Then is monotone increasing in and
approaches as . Thus, exactly one satisfies
(A29) for each , and therefore for all . So, by
(A27), it follows that for all , contradicting .

Thus, we can assume . Since is strictly concave,
(A29) can have at most two solutions. It cannot be the case that
(A29) has only one solution, for otherwise (A27) would again
imply that for all , contradicting . So (A29)
has exactly two solutions and by (A27) these two solutions must
be of different signs.

Thus, the extrema of must lie in the set

where is the set of all component-wise permutations of
the vector

(A30)

The constant factor in (A30) ensures that the elements of sat-
isfy (A27) and (A28).

Summing both sides of (A29) over and solving for yields

(A31)

From (A29), we obtain

which when squared, summed over , and simplified using
(A28) and (A31) gives

(A32)

Now, for any component of any , using (A30),
(A31), and (A32) gives

(A33)

where (A33) follows by considering the cases

and

Hence, every satisfies (A29), and therefore, is the
set of solutions to (A29) subject to the constraints in (A27) and
(A28).

Substituting an arbitrary element (i.e., an extremum
of ) into (A26) gives

[ from (A28)] (A34)
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To complete the proof it suffices to show that (A34) is de-
creasing in . This implies (A26) is upper-bounded by (A34)
when and lower-bounded by (A34) when .

Note that if the right-hand side of (A34) is viewed as a con-
tinuous function of , then its derivative with respect to is

which is negative if and only if

where

Since

and

for all , we have for all .

Proof of Lemma IV.2: The result follows from Lemma II.2
and Lemma IV.1 with .

Proof of Lemma IV.4: First we show the result for each bit
budget and for all . Then we prove that

for each bit budget .
For any vector and any permutation of the positive inte-

gers less than or equal to the dimension of , let denote the
component-wise permutation of according to . First observe
that

for any and any permutation of . To see this,
note that for any , since for all ,
we have

if

if

which implies

and therefore,

Now observe that is the left-cyclic shift of
by positions, for any , since

In particular, for each bit budget , Theorem III.7 and Lemma
III.1 imply that for every

where denotes left-cyclic shifted by po-
sitions. Since the components of are the same as those
of , so are the components of . Thus, is a
permutation of . Hence, for each bit budget and for all

, the vector is a permutation of .
To show that for each bit budget , it

suffices to show that for each bit budget
. Lemma II.1 and the definition of imply that for each bit

budget and for

Thus, the definition of implies that for each bit budget
and for

(A35)

For each bit budget , let

as in Theorem III.3. Then

(A36)

(A37)

where (A36) follows from (A35). Equation (A37) and
Theorem III.3 imply

Therefore, by Theorem III.7. Since (A35) shows
that is nonnegative

for each bit budget .
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