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Quantizers With Uniform Encoders and Channel
Optimized Decoders

Benjamin Farber, Student Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract—Scalar quantizers with uniform encoders and
channel optimized decoders are studied for uniform sources
and binary symmetric channels. It is shown that the natural
binary code (NBC) and folded binary code (FBC) induce point
density functions that are uniform on proper subintervals of the
source support, whereas the Gray code (GC) does not induce a
point density function. The mean-squared errors (MSEs) for the
NBC, FBC, GC, and for randomly chosen index assignments are
calculated and the NBC is shown to be mean-squared optimal
among all possible index assignments, for all bit-error rates and
all quantizer transmission rates. In contrast, it is shown that
almost all index assignments perform poorly and have degenerate
codebooks.

Index Terms—Point density function, quantization asymptotics,
source channel coding.

I. INTRODUCTION

THE most basic source and quantizer are the uniform scalar
source and the uniform scalar quantizer. If the source is

uniform on , for example, then an -bit uniform quantizer
has equally spaced encoding cells of size and has equally
spaced output points which are the centers of the encoding cells.
For this source, the mean-squared distortion of this quantizer is
known exactly when there is no channel noise, and is known to
be minimal among all quantizers.

In the presence of channel noise, one approach to improving
system performance is to add explicit error control coding, so
that some of the transmission rate is devoted toward source
coding and some toward channel coding. Drawbacks of this in-
clude the added complexity and delay of channel decoding.

An alternative low-complexity approach in the presence of
channel noise is to add to the quantizer an index assignment,
which permutes the binary words associated with each encoding
cell prior to transmission over the channel, and then unpermutes
the binary words at the receiver prior to assigning a reproduc-
tion point at the output. The cells are assumed to be labeled in
increasing order from left to right, before the index assignment.
Examples of index assignments include the natural binary code
(NBC), the folded binary code (FBC), and the Gray code (GC).
The benefit of an index assignment is derived from the fact that
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reproduction codepoints that are relatively close on the real line
can be assigned binary words which are close in the Hamming
sense (i.e., in the number of same bits) on average. Thus, when
channel errors occur, the mean-squared error (MSE) impact on
the quantizer is reduced.

Yamaguchi and Huang [8] and Huang [9] derived formulas
for the MSE of uniform scalar quantizers and uniform sources
for the NBC, the GC, and for a randomly chosen index as-
signment on a binary symmetric channel. They also asserted
(without a published proof) the optimality of the NBC for
the binary symmetric channel. Crimmins et al. [1] studied the
uniform scalar quantizer for the uniform source and proved the
Yamaguchi–Huang assertion, that the NBC is the best possible
index assignment in the mean-squared sense for the binary
symmetric channel, for all bit-error probabilities, and all quan-
tizer rates. McLaughlin, Neuhoff, and Ashley [3] generalized
this result for certain uniform vector quantizers and uniform
vector sources. Other than these papers, there are no others
presently known in the literature giving index assignment op-
timality results.

There have been some analytic studies on the performance
of various index assignments. Hagen and Hedelin [7] used
Hadamard transforms to study certain lattice-type quantizers
with index assignments on noisy channels. Knagenhjelm and
Agrell [10] introduced an analytic method of approximating
the quality of an index assignment using Hadamard transforms.
Skoglund [12] provided index assignment analysis for more
general channels and sources. In [4], explicit MSE formulas
were computed for uniform sources on binary asymmetric
channels with various structured classes of index assignments.
In [5], it was shown that for the uniform source and uniform
quantizer the MSE resulting from a randomly chosen index
assignment was, on average, equal in the limit of large to
that of the worst possible index assignment. In this sense, the
result showed that randomly chosen index assignments are
asymptotically bad. A number of papers have also studied
algorithmic techniques for designing good index assignments
for particular sources and channels (see the citations in [6, p.
2372]).

While index assignments can improve the robustness of quan-
tizers designed for noiseless channels to the degradation caused
by channel noise, another low-complexity approach is to use
quantizers whose encoders and/or decoders are designed for
the channel’s statistical behavior. It is known that an optimal
quantizer for a noiseless channel must satisfy what are known
as “nearest neighbor” and “centroid” conditions on its encoder
and decoder, respectively [2]. For discrete memoryless chan-
nels, it is known that an optimal quantizer must satisfy what we
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call “weighted nearest neighbor” and “weighted centroid” con-
ditions on its encoder and decoder, respectively (see [11] for
example). Even for uniform scalar sources, the resulting quan-
tizers in general do not have uniform encoding cells nor equally
spaced reproduction codepoints. In fact, very little is presently
understood analytically about quantizers for noisy channels be-
yond the NBC optimality results previously mentioned for uni-
form quantizers.

In the present paper, we attempt to move a step closer toward
understanding optimal quantization for noisy channels by ex-
amining the structure of quantizers with uniform encoders and
channel optimized decoders (i.e., that satisfy the weighted cen-
troid condition), for uniform sources on and for certain
previously studied index assignments. In particular, we study the
high-resolution distribution of codepoints for such quantizers
and the resulting distortions. Slightly more general, but nota-
tionally cumbersome results could also be easily obtained from
our results by allowing the source to be confined to any bounded
interval instead of just .

An important tool in analyzing the performance of quantizers
is the concept of point density functions. Point density functions
characterize the high-resolution distribution of scalar quantizer
codepoints. As a result, they provide insight about the asymp-
totic behavior of scalar quantizer codebooks and encoding
cells. Point density functions also are useful in analyzing the
distortion of quantizers. For example, Bennett’s integral [2, p.
163] gives the average distortion in the high-resolution case for
a nonuniform quantizer in terms of a point density function,
source distribution, and size of the quantizer codebook (see [6]
for more details). For uniform quantizers, the computation of
a point density function is trivial. For nonuniform quantizers,
however, point density functions are not always guaranteed to
exist, and when they do, their computation can be difficult.

Point density functions depend on the quantizer decoders.
Channel optimized quantizer decoders, in turn, depend on the
source, the quantizer encoder, the channel, and the index assign-
ment. For this paper, we assume a uniform source on , a
uniform quantizer encoder, a channel optimized quantizer de-
coder, and a binary symmetric channel with bit-error proba-
bility . An index assignment maps source codewords to channel
codewords. The quantizer has encoding cells, and index as-
signments are one-to-one maps from the index of an encoding
cell to a binary word of length . These words are transmitted
across the channel and decoded according to the weighted cen-
troid condition.

Certain results we obtain are somewhat counter-intuitive. For
example, we show that for a binary symmetric channel with bit-
error probability , quantizers using the NBC index assignment
and bits of resolution have codepoints uniformly distributed
on the interval where

This is peculiar in light of the fact that the source is uniformly
distributed on the interval , and yet asymptotically as

no codepoints are located within a distance of from or .
The lack of codepoints in regions of positive source probability
is due to the reduction in average distortion that results from

moving codepoints closer to the source mean (by the weighted
centroid condition), to avoid large jumps in Euclidean distance
from channel errors. The weighted centroid condition dictates
this movement of codepoints to minimize average distortion for
a given quantizer encoder. A similar result occurs for the FBC.

For the GC index assignment, we show that, in fact, no point
density function exists. In other words, the location of code-
points cannot be described according to a point density function
as . The structure of the GC simply does not allow the
histogram of codepoint locations to converge to a smooth func-
tion in the limit of high resolution.

We also show that asymptotically, almost all index assign-
ments give rise to quantizers which have almost all of their code-
points clustered very close to the source’s mean value (i.e., ).
Thus, almost all index assignments are bad. As grows, the
clustering of codepoints becomes tighter and tighter. This con-
trasts with the NBC and the FBC cases where the codepoints re-
main uniformly distributed on proper subsets of no matter
how large becomes. An additional curiosity we show is that
among all possible index assignments, the NBC is optimal de-
spite its lack of codepoints within of or .

Our main results for quantizers with uniform encoders and
channel optimized decoders are the following. First, we show
that the NBC index assignment yields a uniform point density
function on the interval (Theorem III.3), the FBC
index assignment yields a uniform point density function on a
union of two proper subintervals of (Theorem IV.2), the
GC index assignment does not yield a point density function
(Theorem V.10), and an arbitrarily large fraction of all index
assignments have an arbitrarily large fraction of codepoints ar-
bitrarily close to the source mean as (Theorem VI.4).
Then we extend a result in [5] by showing that most index as-
signments are asymptotically bad (Theorem VII.2), and we ex-
tend results in [4], [8], and [9] by computing the MSE resulting
from the NBC (Theorem VII.4), the FBC (Theorem VII.6), the
GC (Theorem VII.8), and a randomly chosen index assignment
(Theorem VII.10). As comparisons, we state previously known
MSE formulas for channel unoptimized decoders (i.e., that sat-
isfy the centroid condition), for the NBC (Theorem VII.3), the
FBC (Theorem VII.5), the GC (Theorem VII.7), and for a ran-
domly chosen index assignment (Theorem VII.9). Finally, we
extend the (uniform scalar quantizer) proof in [3] by showing
that the NBC is an optimal index assignment for all bit-error
rates and all quantizer transmission rates (Theorem VII.12).

The paper is organized as follows. Section II gives definitions
and notation. Section III gives NBC results, Section IV gives
FBC results, Section V gives GC results, Section VI considers
arbitrarily selected index assignments, and Section VII gives
distortion analysis.

II. PRELIMINARIES

A rate quantizer on is a mapping

The real-valued quantities are called codepoints and the
set
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is called a codebook. For a noiseless channel, the quantizer is
the composition of a quantizer encoder and a quantizer decoder.
These are, respectively, mappings

such that

for all . For each the set

is called the th encoding cell. The quantizer encoder is said to
be uniform if for each

The nearest neighbor cells of a rate quantizer are the sets

for . Let denote Lebesgue measure and for
each let

A quantizer’s encoder is said to satisfy the nearest neighbor
condition if for each

That is, its encoding cells are essentially nearest neighbor cells
(boundary points can be assigned arbitrarily).

For a given , , and source random variable , the centroid
of the th cell of the quantizer is the conditional mean

The quantizer decoder is said to satisfy the centroid condition if
the codepoints satisfy

for all . A quantizer is uniform if the encoder is uniform and
for each the decoder codepoint is the midpoint of the
cell . It is known that if a quantizer minimizes the
MSE for a given source and a noiseless channel, then it satisfies
the nearest neighbor and centroid conditions [2]. In particular,
if the source is uniform, then a uniform quantizer satisfies the
nearest neighbor and centroid conditions.

For a rate- quantizer, an index assignment is a permuta-
tion of the set . Let denote the set of all

such permutations. For a noisy channel, a random variable
is quantized by transmitting the index

across the channel, receiving index from the channel, and then
decoding the codepoint

We impose the following monotonicity constraint on quantizer
encoders in order to be able to unambiguously refer to certain
index assignments: For all

then

The MSE is defined as

The random index is a function of the source random variable
, the randomness in the channel, and the deterministic func-

tions and .
An alternative approach would be to view the quantizer en-

coder as the composition and the quantizer decoder
as the composition , by relaxing the previously made
monotonicity assumption. This would remove the role of index
assignments from the study of quantizers for noisy channels.
However, we retain these encoder and decoder decompositions
as a convenient way to isolate the effects of index assignments,
given known quantizer encoders and decoders.

Assume a binary symmetric channel with bit-error proba-
bility . Denote the probability that index was received, given
that index was sent by

for , where is the Hamming distance
between -bit binary words and . Let denote the prob-
ability that index was sent, given that index was received.

For a given source , channel , index assignment ,
and quantizer encoder, the quantizer decoder is said to satisfy
the weighted centroid condition if the codepoints satisfy

Throughout this paper, we assume a uniform quantizer encoder,
so the centroids of the encoder cells are given by

for . Since the source is uniform and the encoder
cells are each of length , we know that for
all and . Hence, the weighted centroid condition implies that

For a given quantizer encoder and index assignment, we say
the quantizer decoder is channel optimized if it satisfies the
weighted centroid condition.

Notice that if the centroid condition is assumed, then the
quantizer decoder does not depend on the index assignment,
even though the MSE does. In contrast, if the weighted centroid
condition is assumed, then the quantizer decoder does de-
pend on the index assignment, as does the MSE. Thus, under
the centroid condition, minimizing the MSE over all possible
index assignments is carried out for a fixed quantizer decoder.
However, under the weighted centroid condition, minimizing
the MSE over all possible index assignments involves altering
the quantizer decoder for each new index assignment.

For any set , let the indicator function of be
if
if .
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For each and each index assignment , define the
function by

For a sequence (for ) of index assign-
ments, if there exists a function such that

for almost all and , then is said to
be a point density function with respect to .

The following lemma is a result of the fact that index assign-
ments are permutations.

Lemma II.1: For any and any index assignment ,
if , then

Let a decoder optimized uniform quantizer denote a rate-
quantizer with a uniform encoder on and a channel op-
timized decoder, along with a uniform source on , and a
binary symmetric channel with bit-error probability . Let a de-
coder unoptimized uniform quantizer denote a rate- uniform
quantizer on , along with a uniform source on , and a
binary symmetric channel with bit-error probability .

III. NATURAL BINARY CODE INDEX ASSIGNMENT

For each , the natural binary code (NBC) is the index as-
signment defined by

for

The following lemma is easy to prove and is used in the proof
of Proposition III.2.

Lemma III.1:

if (3.1)

if (3.2)

if

(3.3)

if (3.4)

Proposition III.2: The codepoints of a decoder optimized
uniform quantizer with the NBC index assignment are, for

(3.5)

Proof: We use induction on . The weighted centroid con-
dition implies that

(3.6)

In particular, (3.6) gives

which satisfies (3.5). Now assume (3.5) is true for and con-
sider two cases for . If , then

(3.7)

(3.8)

(3.9)

(3.10)

where the first sum in (3.7) and the second sum in (3.8) follow
from (3.1) and (3.2), respectively, (3.9) follows from Lemma
II.1, and (3.10) follows from the induction hypothesis.

If , then

(3.11)



66 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 1, JANUARY 2004

(3.12)

(3.13)

where the sums in (3.11) follow from (3.3) and (3.4), respec-
tively, (3.12) follows from Lemma II.1, and (3.13) follows from
the induction hypothesis.

The following theorem shows that with the NBC, the quantizer
codepoints are uniformly distributed on a proper subinterval
in the source’s support region, in the limit of high resolution.
As the channel improves (i.e., as ), the point density
function approaches a uniform distribution on .

Theorem III.3: A sequence of decoder optimized uniform
quantizers with the NBC index assignment has a point density
function given by

if
otherwise.

Proof: Let

if
if or

From (3.5), the codepoints satisfy

and thus are equally spaced apart. Also,

Thus,

if
if

and, therefore, we get the expression at the bottom of the page.

IV. FOLDED BINARY CODE INDEX ASSIGNMENT

For each , the folded binary code (FBC) is the index assign-
ment defined by

if
if

The FBC is closely related to the NBC and has somewhat similar
properties for decoder optimized uniform quantizers, as shown
by Proposition IV.1 and Theorem IV.2. The proofs of Proposi-
tion IV.1 and Theorem IV.2 are similar to those of Proposition
III.2 and Theorem III.3, respectively, and are therefore omitted
for brevity.

Proposition IV.1: The codepoints of a decoder optimized
uniform quantizer with the FBC index assignment are

if

if

The following theorem shows that with the FBC, the quantizer
codepoints are uniformly distributed on two proper subintervals
of the source’s support region, in the limit of high resolution.
As the channel improves (i.e., as ), the point density
function approaches a uniform distribution on .

Theorem IV.2: A sequence of decoder optimized uniform
quantizers with the FBC index assignment has a point density
function given by

if

otherwise

where

V. GRAY CODE INDEX ASSIGNMENT

For each , let denote the Gray code (GC) index as-
signment, recursively defined by

if

if .

Define the quantity

The definition of the GC directly implies the following lemma.

Lemma V.1:

if (5.1)

if (5.2)

if (5.3)

if

if or

as
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Lemma V.2: The codepoints of a decoder optimized uniform
quantizer with the GC index assignment satisfy

for .
Proof:

(5.4)

(5.5)

where (5.4) and (5.5) follow from Lemma II.1.

Corollary V.3: The codepoints of a decoder optimized uni-
form quantizer with the GC index assignment satisfy

for .
Proof:

(5.6)

(5.7)

where (5.6) follows from (5.3), and (5.7) follows from Lem-
ma V.2.

For and , let be the th
most significant bit of the -bit binary representation of . Then

and it follows that for

(5.8)

Proposition V.4: The codepoints of a decoder optimized uni-
form quantizer with the GC index assignment are

(5.9)

for .
Proof: We use induction on . The weighted centroid con-

dition implies that for all

For this reduces to

which satisfies (5.9). Now assume Proposition V.4 is true for
and consider two cases for .

If , then

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

where the sums in (5.10) follow from (5.1) and (5.2), respec-
tively, (5.11) follows from Lemmas II.1 and V.2, (5.12) fol-
lows from the induction hypothesis, (5.13) follows from (5.8),
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and (5.14) follows from the fact that whenever
.

If , then

(5.15)

(5.16)

where (5.15) follows from Corollary V.3 and (5.14), and (5.16)
follows from (5.8).

To show that no point density function arises from the GC
index assignment, we will show that

almost everywhere on , and hence

To simplify notation, let be denoted by .
First, several preliminary results are necessary. In order to

determine the asymptotic behavior of we examine the values
of and the relationship of to . For any
fixed value of there are groups of nearest neighbor cells with
the same length. These groups and the properties of the cells in
them are key to the subsequent results.

Lemma V.6 describes each of these groups by the number
of cells in the group and their common length. This is done
by identifying a cell in each group whose index is of the form

and considering its length. Lemma V.5 shows that
the codepoints are indexed in increasing order, and is used in the
proof of Lemma V.6.

Lemma V.5: The codepoints of a decoder optimized uniform
quantizer with the GC index assignment satisfy

whenever .
Proof: Let

Then the binary representation of ends in exactly
ones, and therefore,

for

for

for

Thus, from (5.9), we have

Lemma V.6: For , a decoder optimized uniform
quantizer with the GC index assignment has nearest neighbor
cells whose lengths equal .

Proof: By Lemma V.5, the codepoints are in-
creasing in . Thus, for

Note that for , the binary representation of
is

and the binary representation of is

which agree on the first digits and on the last digit. By (5.9),
the difference between the th and th codepoints depends only
on the locations in the binary representations of and where
they differ. For all and , the
binary representations of

and

agree in exactly the same locations that and agree
in, and hence,

The claimed nearest neighbor cells are thus,

The next lemma computes for .
By Lemma V.6, it suffices to consider the lengths of ,

, and for .

Lemma V.7: For a decoder optimized uniform quantizer with
the GC index assignment

(5.17)
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and for

Proof: By Corollary V.3, Lemma V.5, and the definitions
of and

Since the -bit binary representations of and differ only in
the least significant bit

(5.18)

where (5.18) follows from (5.9). Recall from the proof of
Lemma V.6 that

and that the binary representations of and are

and

respectively. Combining this information with (5.9) gives

The next result follows directly from Lemma V.7 and will be
important in determining the behavior of as .

Corollary V.8: For a decoder optimized uniform quantizer
with the GC index assignment

and for each fixed

(5.19)

Define the sets

for

for

and note that and are disjoint for all and .

Lemma V.9: For a decoder optimized uniform quantizer with
the GC index assignment

i)

ii)

iii)

iv)

v) .

Proof: By Lemma V.7

which is decreasing in . This proves part i) and also shows that
(using Corollary V.3)

is increasing in , thus proving part ii). Part iii) follows directly
from parts i) and ii).

To prove part iv), first note that (5.9) implies that for

Also assume without loss of generality that

Suppose and .
If is even (say ), then

(5.20)

where (5.20) follows from the definition of .
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If is odd (say ), then

(5.21)

where (5.21) follows from the definition of .
For each cell in with , the proof

of Lemma V.6 shows that is of the form

where and . If
and is even, then and

or equivalently

which implies . Equation (5.20) shows
that , and hence, .

Likewise, if and is odd, then and

or equivalently

which implies . Equation (5.21)
shows that , and hence,

. Therefore,

proving part iv).
Since is a decreasing sequence of bounded sets

(for each fixed ) by part iv)

(5.22)

where (5.22) follows from Lemmas V.6 and V.7. This proves
part v).

The following theorem shows that the sequence of functions
does not converge to a point density function as .

Theorem V.10: A sequence of decoder optimized uniform
quantizers with the GC index assignment does not have a point
density function.

Proof: We construct disjoint sets whose union
has measure and for which for all
and for all .

Let . Then for any and any , either
or , and therefore,

by Lemma V.7. Hence, for any

by Corollary V.8.
For , let

Then for any and such that and for any ,
there exists an such that and ,
which implies

Hence, for any

by Corollary V.8.
Part v) of Lemma V.9 shows that is nonempty for all

. Subsequently, it will be shown that is nonempty.
and are disjoint for all , since and are

disjoint for all and . The sets are disjoint for , for
otherwise and would intersect for some and some

. Therefore,

(5.23)

(5.24)

where the first term in (5.23) follows from Lemma V.9, part iii)
and the boundedness of and , the second term
in (5.23) follows from Lemma V.9, part v), and the first term in
(5.24) follows from (5.17). Thus, the set

has measure since it is a subset of
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VI. RANDOMLY CHOSEN INDEX ASSIGNMENTS

Suppose for each an index assignment is chosen
uniformly at random from the set of all index assignments.
Then does not exist in a deterministic sense as the limit of

. However, the distribution of codepoints can still be char-
acterized probabilistically.

Proposition VI.1: Suppose an index assignment is chosen
uniformly at random for a decoder optimized uniform quantizer.
Then for all , the expected value of the th codepoint is

Proof: Let and note that .
Then

(6.1)

(6.2)

To justify (6.1), consider the following observations. Suppose
. There are possible values can have, and for each

one there are values can take, of which must
have Hamming distance from . Given any of the

possible choices of and , there are ways
to assign the remaining index assignment words. Equation (6.2)
follows from the fact that

With Proposition VI.1, the variance of the th codepoint is

(6.3)

The motivation for the form of (6.3) will become clear in the
proof of Theorem VI.4. Evaluation of the expectation in (6.3)
yields Proposition VI.3.

Lemma VI.2:

Proof:

Proposition VI.3: Suppose for each , an index assignment
is chosen uniformly at random for the th quantizer (of rate )
in a sequence of decoder optimized uniform quantizers. Then
for all , the variance of the th codepoint decays to zero at
the rate as , where

.
Proof: Recall from (6.3) that the variance of is

(6.4)
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whose second term goes to zero as when .
Expanding the first term of (6.4) yields

(6.5)

We consider four cases. The computation in the last three cases
is justified by an argument similar to the one used to justify (6.1).

1) If , then

2) If , then

3) If , , and , then

if

if

4) If (or ), then

Thus, (6.5) can be written in terms of the four cases as

(6.6)

The first term in (6.6) decays to as as .
The second term in (6.6) is

as , since . To evaluate the third term in (6.6)
note that
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Thus, since , the third term in (6.6) is

which tends to as as . To evaluate the forth
term in (6.6) note that

Thus, the forth term in (6.6) is

as . Thus,

as , where .

Proposition VI.3 is key to the proof of the next result. The fol-
lowing theorem shows that asymptotically, an arbitrarily large
fraction of index assignments induce an arbitrarily large frac-
tion of codepoints to be arbitrarily close to . This result is in
contrast to the fact that the NBC index assignment has an arbi-
trarily small fraction of codepoints arbitrarily close to .

Theorem VI.4: For a decoder optimized uniform quantizer,
arbitrarily small , and sufficiently large, at least

index assignments each have at least codepoints
within a distance of from .

Proof: Assume is chosen uniformly at random from
the set of all index assignments. Let

and note that . Also, let

By the Chebychev inequality, for any

which means that

Thus, for any there are at most

index assignments , such that for each such , there
exist at least codepoints satisfying

Taking we get the following equivalent conclusion.
For any , there are at most

index assignments , such that for each such , there
exist at least codepoints satisfying

This implies that for any , there are at least

index assignments such that for each such , there
exist at most codepoints satisfying

A careful look at the variance shows a dependency on but we
can easily make a uniform upper bound on the variance which
goes to zero at the speed , where

. We choose

This implies that for any , a fraction of at least
of all index assignments have the property that the fraction
of codepoints farther from than , is at most

. In other words, as , an arbitrarily large
fraction of all index assignments give rise to codebooks with
an arbitrarily large fraction of codepoints arbitrarily close to

.

Note that the proof of Theorem VI.4 demonstrates that the
random mapping converges to zero in probability.
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VII. DISTORTION ANALYSIS

Let be the index assignment for a rate- quantizer with a
uniform encoder on for a uniform source on and a
binary symmetric channel with bit-error probability . Then the
end-to-end MSE can be written as

For any index assignment , let denote the
MSE of a decoder unoptimized uniform quantizer and let
denote the MSE of a decoder optimized uniform quantizer. For
given and , an index assignment is said to be
optimal for a decoder unoptimized uniform quantizer if for all

and is said to be optimal for a decoder optimized uniform
quantizer if for all

Lemma VII.1: The MSE of a decoder optimized uniform
quantizer with index assignment is

Proof:

(7.1)

where (7.1) follows from the weighted centroid condition.

In [5], it was shown that randomly chosen index assignments
for a decoder unoptimized uniform quantizer are asymptotically
bad in the sense that their MSE approaches that of the worst
possible index assignment in the limit as . The proof
involved an explicit construction of a worst index assignment.
The following theorem extends the result to a decoder optimized
uniform quantizer and its proof does not require the construction

of a worst case index assignment. In Theorem VII.2, the term
is, in fact, the variance of the source.

Theorem VII.2: The MSE of a decoder optimized uniform
quantizer is at most , and for sufficiently large, an arbi-
trarily large fraction of index assignments achieve an MSE ar-
bitrarily close to .

Proof: For any index assignment , the average of the
codepoints is

Thus,

(7.2)

where (7.2) follows from Jensen’s inequality. The second asser-
tion follows from Theorem VI.4 and Lemma VII.1.

Although Theorem VII.2 indicates that asymptotically most
index assignments yield MSEs close to , in the following
it will be shown that the NBC, the FBC, and the GC perform
substantially better asymptotically.

The next two theorems give the MSEs for the NBC with a
channel unoptimized decoder and with a channel optimized de-
coder. Theorem VII.3 was stated in [8] (see, e.g., [4] for a proof).
The results are given as a function of the quantizer rate and the
channel bit-error probability . Analogous results are then given
for the FBC, the GC, and the average for an index assignment
chosen uniformly at random.

Theorem VII.3: The MSE of a decoder unoptimized uniform
quantizer with the NBC index assignment is

Theorem VII.4: The MSE of a decoder optimized uniform
quantizer with the NBC index assignment is

Proof: Combining Proposition III.2 and Lemma VII.1
gives
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The next two theorems give the MSEs for the FBC with a
channel unoptimized decoder and with a channel optimized de-
coder. Theorem VII.5 was given in [4]. The proof of Theorem
VII.6 is similar to that of Theorem VII.4 and is omitted for
brevity.

Theorem VII.5: The MSE of a decoder unoptimized uniform
quantizer with the FBC index assignment is

Theorem VII.6: The MSE of a decoder optimized uniform
quantizer with the FBC index assignment is

The next two theorems give the MSEs for the GC with a
channel unoptimized decoder and with a channel optimized de-
coder. Theorem VII.7 was stated in [9] (see, e.g., [4] for a proof).

Theorem VII.7: The MSE of a decoder unoptimized uniform
quantizer with the GC index assignment is

Theorem VII.8: The MSE of a decoder optimized uniform
quantizer with the GC index assignment is

Proof: Combining Proposition V.4 and Lemma VII.1
gives

(7.3)

where (7.3) follows from the fact that the average of the code-
points for any index assignment is (see the proof of The-
orem VII.2) and that for , the sum is
even times and odd times as ranges between and

.

It can be seen from Theorems VII.3 and VII.4 that for the
NBC, the reduction in MSE obtained by using a channel op-
timized quantizer decoder instead of one obeying the centroid
condition, is . For small , the MSE reduction
is thus small. For a randomly chosen index assignment how-
ever, Theorems VII.9 and VII.10 show that channel optimized
decoders reduce the average distortion by a factor of two over
decoders obeying the centroid condition, independent of , in
the limit as . Theorem VII.9 was stated in [8], and [5]
contains a concise proof. Let be a random variable de-
noting the MSE of a decoder unoptimized uniform quantizer
with a randomly chosen index assignment.

Theorem VII.9: The average MSE of a decoder unoptimized
uniform quantizer with an index assignment chosen uniformly
at random is

Since most index assignments are asymptotically bad, their
average is bad as well. More precisely, the next theorem shows
that the asymptotic average MSE of a decoder optimized uni-
form quantizer with an arbitrary index assignment converges to

, consistent with Theorem VII.2. Let be a random
variable denoting the MSE of a decoder optimized uniform
quantizer with a randomly chosen index assignment.

Theorem VII.10: The average MSE of a decoder optimized
uniform quantizer with an index assignment chosen uniformly
at random is

Proof: Let

By Lemma VII.1, the expected value of (over all index
assignments) is

(7.4)

(7.5)
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(7.6)

(7.7)

where (7.4) follows from Proposition VI.1 and (6.3), (7.5) fol-
lows from the fact that

(7.6) follows from (6.6), and (7.7) results from the computations
following (6.6). Passing the sum over inside, distributing the

factor of over all terms, applying Lemma VI.2, and multi-
plying the term through gives (7.8)–(7.9) at the bottom
of the page, where (7.8) makes use of the computations fol-
lowing (6.6).

Crimmins et al. [1] and McLaughlin, Neuhoff, and Ashley
[3] showed that for every and every the NBC is optimal for
a decoder unoptimized uniform quantizer. We next extend the
proof in [3] to show that for every and every the NBC is also
optimal for a decoder optimized uniform quantizer.

Lemma VII.11: Let denote the matrix whose
th elements are . For any index assignment

, there exists a permutation matrix such that

Proof: Let be the permutation matrix whose elements
are

if
otherwise

for . Let and , respectively, denote the
th elements of and . Then

or equivalently

which implies

Thus,

since is orthogonal.

Theorem VII.12: The NBC index assignment is optimal for
a decoder optimized uniform quantizer, for every bit-error prob-
ability and every quantizer rate .

Proof: Let

and

(7.8)

(7.9)
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denote the column vectors of cell centroids and codepoints,
respectively. Then Lemma VII.1, Lemma VII.11, and the
weighted centroid condition imply that

(7.10)

where

and where is the same as but with replaced
by . McLaughlin, Neuhoff, and Ashley
[3] showed that for every , the quadratic form

(and thus in particular ) is maxi-
mized for uniform sources and uniform quantizers satisfying

, when . Shifting the support of a
uniform source from to changes each term in
(7.10) by a constant term, independent of the index assignment.
Thus is minimized when , and therefore
the NBC is optimal for decoder optimized uniform quantizers
for all and .
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