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Abstract—We examine the performance of the Karhunen–Loève
transform (KLT) for transform coding applications. The KLT has
long been viewed as the best available block transform for a system
that orthogonally transforms a vector source, scalar quantizes the
components of the transformed vector using optimal bit allocation,
and then inverse transforms the vector. This paper treats fixed-rate
and variable-rate transform codes of non-Gaussian sources. The
fixed-rate approach uses an optimal fixed-rate scalar quantizer
to describe the transform coefficients; the variable-rate approach
uses a uniform scalar quantizer followed by an optimal entropy
code, and each quantized component is encoded separately. Ear-
lier work shows that for the variable-rate case there exist sources
on which the KLT is not unique and the optimal quantization and
coding stage matched to a “worst” KLT yields performance as
much as 1.5 dB worse than the optimal quantization and coding
stage matched to a “best” KLT. In this paper, we strengthen that
result to show that in both the fixed-rate and the variable-rate
coding frameworks there exist sources for which the performance
penalty for using a “worst” KLT can be made arbitrarily large.
Further, we demonstrate in both frameworks that there exist
sources for which even a best KLT gives suboptimal performance.
Finally, we show that even for vector sources where the KLT
yields independent coefficients, the KLT can be suboptimal for
fixed-rate coding.

Index Terms—Bit allocation, lossy source coding, quantization,
transform coding.

I. INTRODUCTION

THE Karhunen–Loève transform (KLT) plays a funda-
mental role in a variety of disciplines, including statistical

pattern matching, filtering, estimation theory, and source
coding, and has been used, for example, in certain image
coding applications (e.g., [1]). In many of these applications,
the KLT is known to be “optimal” in various senses. This paper
investigates the optimality of the KLT for source coding.

The main application of the KLT in source coding is in scalar
quantized transform coding. In this type of transform code,
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an input vector is linearly transformed into another vector of
the same dimension; the components of that vector are then
described to the decoder using independent scalar quantizers on
the coefficients. We consider both fixed-rate and variable-rate
codes. The fixed-rate code uses an optimal fixed-rate scalar
quantizer; the variable-rate code uses uniform scalar quanti-
zation followed by optimal entropy coding on each quantized
component separately. The decoder reconstructs the quantized
transform vector and then uses a linear transformation to get
an estimate of the original input vector. In both cases, the
goal is to find the pair of linear transforms and the allocation
of an average bit budget among the scalar quantizers that
together minimize the end-to-end distortion. In this work, we
measure distortion as mean squared error (MSE). Unlike the
best possible vector quantizer, a best possible transform code
is suboptimal in general. Nonetheless, transform codes have
served as important models for gaining an understanding of
both optimal quantization and low-complexity code design.

In [2], Huang and Schultheiss show that if the vector source
is Gaussian and the bit budget is asymptotically large, then
the KLT and its inverse are an optimal pair of transforms for
fixed-rate coding. In a more recent paper, Goyal, Zhuang, and
Vetterli ([3, p. 1628, Proof 1 of Theorem 6]) and Telatar ([3, p.
1629, Proof 2 of Theorem 6]) improve that result by showing
that the KLT is optimal for Gaussian inputs without making
any high resolution assumptions. Their results apply to both the
fixed-rate and the variable-rate coding models.

Intuitively, the optimality of the KLT in transform coding of
Gaussian sources is typically explained by the assertion that
scalar quantization is better suited to the coding of independent
random variables than to the coding of dependent random vari-
ables. Thus, the optimality of the KLT for transform coding of
Gaussian sources is believed to be a consequence of the fact
that the KLT of a Gaussian vector yields independent transform
coefficients. The application of the KLT in transform coding of
non-Gaussian sources is then justified using the intuition that the
KLT’s coefficient decorrelation is, for general sources, the best
possible approximation to the desired coefficient independence.
In [4], Koschman shows that if we forgo optimal bit allocation
and instead force a fixed number of the transform coefficients
to be quantized at rate zero and the remaining components to be
quantized with infinite accuracy, then for any stationary source
the KLT minimizes the MSE over all possible choices of or-
thogonal transforms (this is known as “zonal coding”). While
this result does not address the bit allocation problem, it seems
to further support the above intuition. Over the years, this in-
tuition has been taken for granted, and numerous references to
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the “optimality” of the KLT for transform coding appear in texts
and scholarly journals.

In this paper, we investigate this intuition piece by piece,
demonstrating both its failures and its successes. All results
apply in the high rate limit (although some also hold at
lower rates) and to non-Gaussian sources, including some
“near-Gaussian” sources. First, we consider the question of
sample decorrelation, showing that sample decorrelation is
neither sufficient nor necessary for transform optimality in
either fixed-rate or variable-rate transform coding. Then, we
show for the fixed-rate case that even for examples where
decorrelation yields coefficient independence, the KLT may
fail to yield the optimal performance. Finally, we show for the
variable-rate case that for examples where decorrelation yields
coefficient independence, the KLT guarantees the optimal
performance in the high resolution limit for suitably smooth
distributions. Note that in a variable-rate coding framework,
each quantized component is encoded separately.

We demonstrate that sample decorrelation is not sufficient for
transform coding optimality by considering examples where the
KLT is not unique and demonstrating that for these examples
some choices of the KLT give suboptimal transform coding per-
formance. The first such example appears in [5], which shows
that an optimal variable-rate transform code (i.e., the quantiza-
tion and coding stage) matched to a “worst” KLT can give a
signal to quantization noise ratio (SQNR) as much as 1.5 dB
worse than an optimal variable-rate transform code matched to
a “best” KLT and also demonstrates that some previous intuition
for more general sources is not valid.1 In this paper, we extend
that result to show that the performance penalty associated with
using a worst KLT rather than a best KLT can be made arbi-
trarily large in both the fixed-rate and the variable-rate transform
coding scenarios. This result occurs at distortions close to zero,
where small distortion changes can cause arbitrarily large differ-
ences in SQNR. The basic idea for the proof is that when a vector
is composed of independent and identically distributed (i.i.d.)
random variables, then a variety of linear transformations tend
to make the source appear more Gaussian, and thus “harder” to
compress (e.g., see [6]).

We then show that even a best (or only) KLT can give subop-
timal performance. We prove this by demonstrating that there
exist non-Gaussian sources for which it is better to scalar quan-
tize the correlated source symbols than to scalar quantize the
uncorrelated coefficients of a best KLT. These results apply to
both fixed-rate and variable-rate coding.

To test the intuition that scalar quantization gives better
performance for independent random variables than for depen-
dent random variables, we consider examples of dependent
source vectors for which the KLT yields independent transform
coefficients. For the fixed-rate coding scenario, we find an
example that proves that this intuition is also incorrect. In
particular, we demonstrate that there exist sources for which
optimal fixed-rate scalar quantization of the dependent source
symbols yields better performance than optimal fixed-rate
scalar quantization of the independent KLT coefficients. In

1The optimal transform code “matched” to a transform is defined as the bit
allocation, scalar quantizer, and fixed-rate or variable-rate encoder that yield the
optimal performance given the fixed transform.

contrast, for the variable-rate coding scenario, we show that a
transform that yields independent coefficients is optimal for
variable-rate coding when the high-rate approximation applies.

The remainder of this paper is organized as follows. Section II
introduces background material, notation, and definitions. Sec-
tion III lists our main results. The proofs of these theorems ap-
pear in Sections IV–VI.

II. PRELIMINARIES

Denote the entropy of a discrete random variable taking on
outcomes in by2

and denote the differential entropy of a continuous random vari-
able with probability density function (pdf) by

If is a continuous random vector with components
, then define the quantity

The usual notation denotes the pdf of a scalar
Gaussian random variable with mean and variance ,
namely

Let source be an -dimensional random vector (viewed
as a column vector) with real components . Without
loss of generality, we assume that each component has mean
zero, giving covariance matrix

Let transform be an orthogonal matrix with real ele-
ments, and let

denote the transformed random vector with coefficients
. We restrict attention to orthogonal transforms since

it suffices to demonstrate the suboptimality of the KLT over
this class.

A scalar quantizer with resolution bits is a mapping
whose range (called a codebook) has cardinality .

The rate of a fixed-rate scalar quantizer with resolution is

The rate to describe source with a variable-rate scalar quan-
tizer is

2All logarithms in this paper whose bases are omitted are base 2.
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A transform coder is a system that quantizes by trans-
forming by and then applying an independent scalar quan-
tizer to each transform coefficient , for .
Thus the per-symbol expected rate of a transform coder with
transform and quantizers is

for fixed-rate transform coding and

for variable-rate transform coding. The corresponding per
symbol MSE is

where

is the vector of scalar quantized components of vector
and the Euclidean distance between

two arbitrary -dimensional vectors and
is denoted by

Given an average rate budget of bits per symbol and a
fixed transform , the operational distortion-rate function for
a fixed-rate transform code based on is defined as

For variable-rate coding, we restrict attention to uniform scalar
quantizers. Thus, we define the operational distortion-rate func-
tion for a variable-rate transform code based on as

where we define such that if and only if is
a uniform scalar quantizer whenever . When is
the identity matrix , we drop the subscript and use
and to denote the MSE corresponding to the classical
fixed-rate scalar bit allocation problem and variable-rate uni-
form scalar bit allocation problem, respectively.

The optimality of a transform for transform coding is often
considered in an asymptotic sense (e.g., [7]). Let

Then and give the minimal rate required to
perfectly describe the source, with
for continuous sources. The fixed-rate and variable-rate coding
gains obtained by using transform instead of transform
are defined as

respectively. (Note that these two limits exist because the
limits of the numerators and denominators exist since they are
monotonically nonincreasing in .) Each coding gain describes
the asymptotic performance gap (in terms of SQNR) between
the associated optimal transform coders. The gains measured
in decibels (dB) are and .

An orthogonal transform is said to be optimal for
fixed-rate transform coding on source if and

for variable-rate transform coding on if , for all
orthogonal transforms . All of the results that follow refer to
optimality in this asymptotic sense.

A KLT of a source is the linear map given by an
orthogonal matrix such that is a diagonal matrix.
The matrix decorrelates the random vector since

A source may have more than one KLT (for example, any per-
mutation matrix is a KLT of a source with uncorrelated compo-
nents).

Lemma II.1: (Huang and Schultheiss, 1963 in [2]) Any KLT
is optimal for fixed-rate transform coding of Gaussian sources.

It has been conjectured that Lemma II.1 holds for
non-Gaussian sources as well.

We say that the pdf of a scalar random variable is reasonably
smooth if at sufficiently high rate, the pdf of all symbols mapped
to the same reproduction value approaches a uniform density.
We use this somewhat loose definition, as was done in [7], to
avoid burdensome and distracting calculations.

Given a vector source for which the marginal pdf on each
dimension is reasonably smooth, the following high-rate bit al-
location result of Huang and Schultheiss [2] (see also [7, pp.
228–232]) characterizes . We use the notation

Lemma II.2: Let be a random vector
with marginal pdf and component variance for

. If are reasonably smooth, then

It should be noted that Lemma II.2 allows rates for fixed-rate
quantizers that cannot be achieved in practice (e.g., noninteger
rates). Nevertheless, this result bounds the achievable perfor-
mance and provides useful theoretical intuition.

The high-rate approximation for the performance of an op-
timal variable-rate scalar quantizer gives a similar result for
bit allocation in variable-rate coding. This result also describes
the asymptotic performance of a uniform scalar quantizer fol-
lowed by entropy coding (e.g., [7, pp. 296], [8]). The proof of
Lemma II.3, which is very similar to that of Lemma II.2, ap-
pears in the Appendix.

Lemma II.3: Let be a random vector
whose marginal densities are absolutely continuous with respect
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to Lebesgue measure and have finite positive second moments.
Then

III. SUMMARY OF RESULTS

We begin by showing, in Theorem III.1, that decorrelation is
insufficient for optimality in transform coding. We prove this
theorem in Section IV by examining sources for which the KLT
is not unique. While every KLT is, by definition, a decorrelating
transform, there exist sources for which the KLT is not unique
and all KLTs are not equally good. In particular, we show the
following result.

Theorem III.1: In both fixed-rate and variable-rate transform
coding, there exist sources for which the coding gain of a best
KLT for transform coding over a worst KLT for transform
coding can be arbitrarily large.

Thus, decorrelation is insufficient for optimality in both
fixed-rate and variable-rate transform coding.

Next, we demonstrate that even a best (or only) KLT can
be suboptimal in both fixed-rate and variable-rate transform
coding.

Theorem III.2: In both fixed-rate and variable-rate transform
coding, there exist sources for which the coding gain of an op-
timal transform over a best KLT for transform coding is strictly
greater than .

Thus, decorrelation is not only not sufficient for optimality, it
is also not necessary for optimality. The examples used to prove
this result in Section V demonstrate that choosing a decorre-
lating transform can preclude optimality for some sources.

Next, we consider sources for which the KLT is unique and
decorrelation yields independent transform coefficients. The in-
tuition described in Section I suggests that the KLT should be
optimal in this coding framework. In Theorem III.3, we prove
this intuition false for fixed-rate transform coding.

Theorem III.3: There exist sources for which the KLT is
unique and produces independent transform coefficients and
yet the KLT is not optimal for fixed-rate transform coding.

In contrast, we show that the KLT is optimal for variable-rate
coding in Section IV-B.

Theorem III.4: If a KLT produces independent transform co-
efficients, then this KLT is optimal for variable-rate transform
coding.

Note that all of the results refer to optimality in the high res-
olution sense.

IV. KLTS ARE NOT UNIFORMLY GOOD

In this section, we give the proof of Theorem III.1. That is,
we show in both the fixed-rate and the variable-rate transform
coding frameworks that there exist sources for which the KLT
is not unique and a “best” KLT yields an infinite coding gain

over a “worst” KLT. The results in both frameworks rely on the
following family of examples.

Suppose that source with marginal
pdfs is defined as

Here the components of the random vector
are i.i.d. random variables with reason-

ably smooth marginal pdfs and positive variances,
and is an orthogonal matrix.

Let and denote the covariance matrices of and
, respectively. Then for any orthogonal matrix

where denotes the -dimensional identity matrix. That is, any
rotation of creates an uncorrelated random vector , and
thus any transform matrix is a legitimate KLT for . While
the KLT for is not unique, practical implementations of the
KLT (e.g., Householder reduction followed by the QL algorithm
with implicit shifts based on the orthogonal–lower triangular
decomposition of a matrix or Jacobi’s algorithm [9]) give the
identity matrix as the KLT for . Therefore, using the KLT
in an optimal transform coder for is in practice equivalent
to optimal bit allocation followed by scalar quantization on the
original source . We therefore calculate the coding gain of
the transform relative to the practically achieved KLT .3

A. Fixed-Rate Coding

Using Lemma II.2, the fixed-rate coding gain of transform
over transform is

(1)

B. Variable-Rate Coding

Using Lemma II.3, if are drawn i.i.d. according
to a reasonably smooth pdf with finite variance and
differential entropy , then the variable-rate coding gain of
transform over an arbitrary transform is

(2)

where . Then

since are independent, is nonsingular, and

3In practice, performance problems of the KLT are often exacerbated by the
KLT’s sensitivity to errors in estimating the off-diagonal terms of the covariance
matrix when the covariance matrix is close to the identity matrix [5].
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Thus,

with equality if and only if are independent. In this
case, a transform that makes the components independent is re-
quired for optimality in variable-rate coding.4 This also proves
Theorem III.4.

Now let us go back to the i.i.d. source, where

(3)

with equality if and only if the marginal pdf of each is the
Gaussian density . Given any choice of symmetric
such that the central limit theorem applies to

then for sufficiently large and carefully chosen , the mar-
ginal density of can be made arbitrarily close to the above
normal density.5

C. Examples

We next bound the fixed-rate and variable-rate coding gains
for several example distributions.

Example IV.1: is uniform on with .

For this distribution, , and . For
the fixed-rate coding calculations

where

is the convolution of with itself.
If and

then

4While U ; . . . ; U are i.i.d. in this example, the result actually requires
only that they be independent. In addition, this statement is true only under the
high-rate assumption. It has been shown that for some sources, B is sub-
optimal at certain low rates in variable-rate coding, i.e., a transform that yields
independent coefficients is not always optimal for variable-rate coding when the
high-rate approximation does not apply [10].

5This can be accomplished, for example, by letting B be 1=
p
n times a

Hadamard matrix of order n. Hadamard matrices are known to exist at least for
every n that is a power of 2. This would assure that B is orthogonal and has
components all of equal magnitude, on a subsequence of f1;2; . . . ; ng.
It should be noted that this tendency toward Gaussianity of the marginal pdf of
a vector after linear transformation is not limited to this specific distribution or
the Hadamard matrix. Related issues have been investigated in earlier literature
(e.g., see [5] and [6]).

(i.e., 2.27 dB)

If is large and the marginal density of is close to ,
then

(i.e., 4.35 dB)

In this case, is not necessarily the optimal transform, so
this is not necessarily the largest possible coding gain.

For variable-rate coding, is the optimal transform at high
rate as shown earlier, and the coding gain between the best and
worst KLTs for the worst case is

( i.e., 1.5 dB)

which is consistent with [5].

Example IV.2: is uniform on

with .

In this case, , and . For the
fixed-rate coding calculations

If the marginal distribution of is close to , then

The coding gain can be made arbitrarily large by fixing and
letting .

For variable-rate coding

which can again be made arbitrarily large by fixing and letting
.

The problem observed above for reasonably smooth, contin-
uous random variables becomes even more pronounced for dis-
crete random variables. For a discrete random variable, the pre-
vious high-rate approximation does not apply since the proba-
bility mass function (pmf) is not smooth. It is still relatively easy
to calculate the coding gain for certain discrete random vari-
ables, as we show in the following example.

Example IV.3: is discrete.

Consider drawn i.i.d. according to

In both fixed-rate and variable-rate coding, we can quantize
each with distortion at rate 1 bit per symbol (bps).
Achieving for each generally requires more rate. For
example, choose so that the marginal distribution of each
is the binomial distribution. For , achieving re-
quires approximately 4 bps in variable-rate coding and

6 bps in fixed-rate coding. At rate 1 bps, the MSE in (either
fixed-rate or variable-rate) coding of is approximately ,
giving infinite coding gain for both fixed-rate and variable-rate
coding, i.e.,
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Fig. 1. Stationary Markov process S .

V. A BEST KLT CAN BE A SUBOPTIMAL TRANSFORM

In the previous section, we showed for both fixed-rate and
variable-rate transform coding that when the KLT is not unique
the coding gain of a best KLT over a worst KLT can be arbi-
trarily large. Thus, decorrelation is not sufficient for transform
optimality. In this section, we prove Theorem III.2 by showing
that even a best KLT can give suboptimal performance.

We first use the following source structure for both fixed-rate
and variable-rate transform coding. Let be an i.i.d. real-
valued random sequence with and
for all , and symmetric pdf . Let be the stationary
two-state Markov process shown in Fig. 1 with and

. That is, with probability , and
otherwise. The value of determines the tendency of the

process to remain in its current state. Furthermore, assume that
the processes and are independent of each other. Let

be a scalar source and define the two-dimensional random
vector . Let

(4)

Then the vector (note that )
is a KLT for the two-dimensional stationary vector source
(see, e.g., [11, p. 335, Example 12.4.1]), and simply rotates

through an angle of 45 clockwise.6

We next show for both fixed-rate and variable-rate transform
coding that (in the high-rate limit) optimal scalar quantization
of the components of the correlated random vector produces
a smaller MSE than optimal scalar quantization of the compo-
nents of the decorrelated vector . (Note that and are
uncorrelated, but they are not independent.)

Since the Markov process is stationary, we assume without
loss of generality that . Notice that by symmetry
the scalar components of are identically distributed with pdf

(5)

6There are three other possible KLTs of X , namely,

1
p
2

1 1

�1 1
;

1
p
2

1 �1
1 1

; and
1
p
2

�1 1

1 1

which all give equal coding gains. Thus, we will refer to T as “the” best KLT
in this example.

In this example, the KLT is not continuous in �, since only � = 0 yields the
identity matrix, while all � > 0 lead to 45 rotations.

We begin by setting up the coding gain calculations for both
fixed-rate and variable-rate coding. We then calculate those
coding gains for a variety of examples.

A. Fixed-Rate Coding

If for all , then either
or for any , and thus it can be shown that

We can also show that

(6)

(7)

(8)

(9)

where

From the marginal pdfs we obtain

(10)

The details of these calculations appear in the Appendix.
By Lemma II.2, the coding gain obtained by quantizing the

correlated scalar components instead of the uncorrelated com-
ponents is

(11)

The next lemma is useful in calculating the coding gain. Its proof
also appears in the Appendix.
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Fig. 2. The two-dimensional pdf of the correlated source X is uniform on each of the four squares with the heights (1� 2�)=4 as indicated. The dots indicate
reproduction locations associated with using the optimal 16-codeword scalar quantizer on each dimension.

Lemma V.1: Let

where and . Then on the
interval , is monotonically decreasing and

B. Variable-Rate Coding

In this case, if for all , then the
differential entropy of is

where is the differential entropy of . Similarly,

The outcome of the KLT is and
. Thus,

where

is the binary entropy function. Similarly,

By Lemma II.3, the coding gain obtained by quantizing the cor-
related scalar components instead of the uncorrelated compo-
nents is

(12)

C. Examples

Example V.2: is uniform on with .

The solid lines in Figs. 2 and 3 show the regions of support for
the two-dimensional pdfs of and given a uniform distribu-
tion on . Each pdf is uniform in its marked regions. The prob-
ability of each of those regions is marked in the figure. Fig. 4
shows the resulting marginal pdf of the decorrelated vec-
tor .
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Fig. 3. The two-dimensional pdf f of the uncorrelated source Y = TX (i.e., the KLT output) equals the two-dimensional pdf of X rotated 45 about the
origin. The dots indicate reproduction locations associated with using the optimal 16-codeword fixed-rate scalar quantizer on each dimension.

For the fixed-rate coding calculation

and therefore (11) implies that for all

Lemma V.1 and numerical inversion of establish that

whenever . Also, by Lemma V.1,

( i.e., 5.63 dB)

The dots in Figs. 2 and 3 show all possible two-dimensional re-
productions when the individual components of the random vec-
tors are quantized with the optimal fixed-rate scalar quantizers.
The quantizer associated with the decorrelated random vector

(shown in Fig. 3) is very inefficient and thus leads to higher
MSE than the quantizer associated with the correlated random
vector (shown in Fig. 2).

The results for variable-rate transform coding are similar. In
this case

Therefore,

giving whenever7

In the limit of small

(i.e., 4.34 dB

In the previous example, for both fixed-rate and variable-rate
coding, a best KLT is 4–5 dB worse than an optimal transform.
In this case, it is better to scalar quantize correlated data than
uncorrelated data. The following example gives a similar out-
come for a Gaussian source.

Example V.3: is Gaussian with mean and variance
.

Given , the marginal pdfs of are again
given by (5).

7We useH to denote the inverse function of the restriction ofH to [0; 1=2].
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Fig. 4. The marginal pdf f of the decorrelated random vector Y .

For fixed-rate coding, (13) does not apply directly because
we violate the condition for all .
However, (13) provides an approximation that becomes accurate
as , giving

The marginal pdfs of are given by (7) and (9), where in this
case

Following the argument of (10), from the marginal pdfs we ob-
tain

Therefore, (11) holds in the limit as , and the limiting
coding gain obtained by quantizing the correlated source sym-
bols instead of the uncorrelated KLT coefficients is

Therefore, whenever , for some . For
, the coding gain obtained by not decorrelating the source

is

(i.e., 3.36 dB)

Similarly, for variable-rate coding, (12) does not apply di-
rectly but provides an approximation that becomes accurate as

. Moreover,

Therefore,

In this case, whenever

We also get

(i.e., 3.01 dB)

Example V.4: is a constant.

Let with probability . Then the pmfs of and
are

At rate 1 bps, the MSE obtained by using the transform matrix
is for both fixed-rate and variable-rate coding. In contrast,

the pmfs of and are
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For fixed-rate coding, a rate of is required to achieve
distortion if . For variable-rate coding, a rate of

is needed to achieve distortion . Here 1 bps if
. Thus, in either of these cases, the coding gain asso-

ciated with using transform rather than the KLT is infinite
at rate 1 bps.

The previous examples leave us with the impression that the
KLT may be suboptimal only for sources that are very different
from Gaussians. The next example shows that even for a source
whose distribution is very close to a Gaussian, the KLT may still
be suboptimal.

Let us consider a two-dimensional stationary vector source
. Suppose the joint pdf of is

where is a constant, and and are each two-
dimensional Gaussian pdfs. Let the means of and be

and the covariance matrices of and be

respectively. Without loss of generality, we assume that

We also assume that . If is very close to , is close
to the Gaussian pdf and we would expect the optimal trans-
form matrix for to be close to the identity matrix. However,
the mean of is and the covariance matrix is

It is possible to set

by choosing , , and the variances. Then, as long as

the transform matrix given by (4) would be a KLT transform
matrix for , which is inefficient.

Example V.5: The source pdf is nonzero everywhere and is
close to Gaussian.

Let , , and

and

As a result, and

and is a KLT for , where is defined
in (4).

We exploit the interesting fact that any symmetric,
nonsingular matrix with positive entries is decorrelated by a 45
rotation.

Using numerical methods, we find that the coding gain asso-
ciated with using transform rather than the KLT is about
1.6426 dB for fixed-rate coding, and the coding gain for vari-
able-rate coding is about 0.6124 dB. The joint pdf is still very
close to a Gaussian, e.g.,

and

where the relative entropy between and is defined as

and

for any function . Some of the analysis can be found in the
Appendix in Lemma IX.1.

If we leave , , and unchanged and set

and

then the coding gain is about 2.1609 dB for fixed-rate coding
and 1.4572 dB for variable-rate coding with

and

We have also ran a series of experiments with different pa-
rameters (allowing the KLT to deviate from a 45 rotation and

to grow to ). The numerical results show that for most
sources, the KLT is suboptimal with varying degrees of perfor-
mance degradation.

This also suggests that the KLT may be suboptimal for most if
not all non-Gaussian sources. Consider estimating an arbitrary
source by a Gaussian mixture model (GMM). Even if a natural
source is modeled by a single dominant Gaussian component
mixed with a collection of far smaller Gaussian components,
the above example suggests that the KLT may be suboptimal.



EFFROS et al.: SUBOPTIMALITY OF THE KARHUNEN–LOEVE TRANSFORM FOR TRANSFORM CODING 1615

VI. KLTS WITH INDEPENDENT TRANSFORM COEFFICIENTS

CAN BE SUBOPTIMAL FOR FIXED-RATE TRANSFORM CODING

The previous examples show that even a best KLT can be sub-
optimal for transform coding. In those examples, the transform
vector has coefficients that are decorrelated but not indepen-
dent. In this section, we prove Theorem III.3 by showing that
even when the transform vector has independent coefficients, a
KLT can be suboptimal for fixed-rate transform coding. Notice
that this result applies only to fixed-rate coding since we showed
in Section IV that when the coefficients of the KLT are indepen-
dent, a KLT is optimal for variable-rate transform coding (for
reasonably smooth pdfs).

We construct an example by using a two-dimensional Lapla-
cian source with independent components. We
show that the transform matrix that rotates the source by 45
is a better transform for fixed-rate transform coding on than
the identity matrix given by the KLT.

Let and be positive constants and

Then

Similarly,

Let the transform matrix be the transform matrix defined
in (4). Then the marginal pdfs of the transform vector

are (details appear in the Appendix), for

If we let , then

Therefore, the coding gain obtained by quantizing instead of
the independent component source is

(i.e., 0.40 dB 0 dB)

Note that the observed problem is not limited to . For
example, if , the KLT is not unique, and it is still not
optimal to quantize the independent components. The marginal
pdfs of become

Therefore,

where the “incomplete Gamma function” is defined as

(see [12, p. 317, eq. 3.381.3]). Therefore, the coding gain ob-
tained by using transform rather than the KLT (that is quan-
tizing instead of the independent component source ) is

(i.e., 0.67 dB)

Since in each of these examples, the distortion in
quantizing the independent Laplacian random variables and

is greater than the distortion in quantizing the dependent
random variables and , giving the following corollary.

Corollary VI.1: For an i.i.d. Laplacian source , it is
asymptotically better to scalar quantize successive sums and
differences than to scalar quantize the source directly if using
fixed-rate coding. That is, for all

where , , and are optimal scalar quantizers for ,
, and , respectively.

It should be noted that, in this scenario, the suboptimality
of the KLT stems in part from the fixed-rate coding frame-
work, which is inherently suboptimal to the variable-rate coding
framework in terms of rate-distortion performance.

VII. SUMMARY AND CONCLUSION

In this paper, a family of sources has been demonstrated for
which the KLT transform is suboptimal in a scalar quantized
transform coding system (using either fixed-rate or variable-rate
scalar quantizers).

We considered three scenarios. First, there are sources for
which the KLT is not unique, and the worst KLT may be arbi-
trarily worse than the optimal transform in terms of coding gain
in both fixed-rate and variable-rate transform coding. Second,
there are sources for which even a best (or only) KLT can give
suboptimal performance in both fixed-rate and variable-rate
transform coding. An independent work by Goyal also shows
this result for variable-rate transform coding by using a dif-
ferent example [13] and Mallat also mentioned briefly in [14,
Sec. 11.3.2] that for non-Gaussian circular stationary processes
with piecewise smooth realizations, wavelet bases yield better
distortion-rate performance than KLT bases. Finally, there exist
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sources for which the KLT that yields independent components
is suboptimal in fixed-rate coding. The transform that yields
independent components is generally optimal in variable-rate
coding under the high-rate assumption (note that this is not true
at low rates in general).

In some cases, the suboptimality stems in part from the sub-
optimality of fixed-rate coding versus variable-rate coding, e.g.,
when the KLT yields independent components. In this respect,
it may be better to consider entropy coding as a part of the stan-
dard model of transform coding as proposed by Goyal in [15].
However, the results on fixed-rate coding are still interesting
since they give us a better picture of the KLT’s weakness and
fixed-rate coding has lower complexity and is less sensitive to
transmission errors. In addition, the original work on the opti-
mality of the KLT [2] uses this framework.

For real sources, some experimental results on the subopti-
mality of the KLT have been reported in [5] and [16]. Especially
in [16], the transform matrices found by a new algorithm out-
perform the KLT by 0.3 to 1.2 dB on benchmark images like
“Barbara” and “Goldhill.” When the impact of the lack of sta-
tionarity in the source is reduced by using adaptive coding, the
performance of the KLT is about 0.4–1 dB worse.

All these results indicate that decorrelation is not sufficient
for optimality. There are two possible ways to pursue a truly op-
timal transform in variable-rate coding: we can either minimize
the sum of the transformed component’s entropy as (2) suggests,
or minimize the distortion directly for a particular probabilistic
model (e.g., the GMM model) as done in [16].

Another relevant issue is the suboptimality of the popular dis-
crete cosine transform (DCT). The DCT has several advantages
over the KLT since the DCT is low in complexity and is data in-
dependent. However, the DCT is generally inferior to the KLT in
terms of rate-distortion performance, especially when the source
contains more high-frequency content (e.g., text in an image) as
shown in previous literature (e.g., [17]).

APPENDIX

Proof of Lemma II.3: If the bit allocation results in rate
and distortion in coding , for , then let

The quantity is the code’s total distortion. If

then

i.e., is equivalent to each , or in order to
minimize , is equivalent to each . From
[18] (see also [7, pp. 295–302])

Thus,

where the last inequality follows from the arithmetic/geometric
mean inequality

with equality if and only if for .
Thus the optimal bit allocation gives the desired result.

Now we present detailed calculations of Section V-A.
Since for all , then either

or for any , and thus,

(13)

The joint cumulative distribution function and joint pdf of
are

Since

and is symmetric, the marginal pdfs of the decorrelated
random vector are
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From the marginal pdfs we obtain

Similarly,

Proof of Lemma V.1: Since is continuous on

follow by substitution. Let , , and

Then for all

since , , and . Thus, is monotonically
decreasing and therefore so is .

The following lemma is useful in estimating the coding gain
in Example V.5.

Lemma IX.1: If and are two pdfs, and

then

Proof: The first inequality comes directly from the fact
that is a concave function of (a discrete version appears
in [19, Theorem 2.7.3]).

For the second inequality, since and
for any , one gets

that gives us the desired result.

This lemma gives a good estimate of when is close to
or .
We give here some analysis for Example V.5.
Since

the marginal pdfs of and are

where represents a normal pdf with mean and vari-
ance . Thus,

by Lemma IX.1. Similarly, we can bound as
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and numerical methods show that

On the other hand,

and thus, by Lemma IX.1

Numerical methods show that

Therefore, for variable-rate coding, the coding gain associated
with using transform rather than the KLT is

(i.e., 0.0424 dB)

The relative entropy can be bounded
using its convexity (see, e.g., the discrete version from Theorem
2.7.2 in [19]), i.e.,

Numerical results show that .

Here we present detailed calculations of Section VI.
Let the transform matrix be the transform matrix defined in

(4). Then the joint pdf of the transform vector
is

and the marginal pdfs are (for )

Therefore, by setting

one gets

If we let , then

If , the joint density of becomes

and the marginal pdfs are
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