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receive antennas, neglecting the rate loss factor. We also show that the
STTC [12] is a special case of our proposed high-rate STTC.
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Abstract—We prove that for any finite directed acyclic network, there ex-
ists a corresponding multiple-unicast network, such that for every alphabet,
each network is solvable if and only if the other is solvable, and, for every fi-
nite-field alphabet, each network is linearly solvable if and only if the other
is linearly solvable. The proof is constructive and creates an extension of
the original network by adding exactly s+5m(r� 1) new nodes where, in
the original network,m is the number of messages, r is the average number
of receiver nodes demanding each source message, and s is the number of
messages emitted by more than one source. The construction is then used to
create a solvable multiple-unicast network which becomes unsolvable over
every alphabet size if all of its edge directions are reversed and if the roles
of source-receiver pairs are reversed.

Index Terms—Flow, multiple unicast, network coding.

I. INTRODUCTION

A network here will refer to a finite, directed, acyclic multigraph,
some of whose nodes are information sources or receivers (e.g., see
[18]). Associated with the sources are messages, which are assumed to
be arbitrary elements of a fixed finite alphabet of size at least 2. At any
node in the network, each out-edge carries an alphabet symbol which
is a function (called an edge function) of the symbols carried on the
in-edges to the node, and/or a function of the node’s message sym-
bols if it is a source. Associated with each receiver are demands, which
are a subset of all the messages of all the sources. Each receiver has
decoding functions which map the receiver’s inputs to symbols in an
attempt to produce the messages demanded at the receiver. The goal is
for each receiver to deduce its demanded messages from its in-edges
and sources by having information propagate from the sources through
the network. Each edge is allowed to be used at most once (i.e., at most
one symbol can travel across each edge). Throughout this correspon-
dence, if a network node in a figure is labeled by say x (inside a circle),
then we refer to the node as nx and we refer to an edge connecting nx
and ny as ex;y .

A network code is a collection of edge functions, one for each edge
in the network, and decoding functions, one for each demand of each
node in the network. A network solution is a network code which results
in every receiver being able to compute its demands via its demand
functions. A network is said to be solvable if it has a solution over some
alphabet. A network is linearly solvable over a particular finite-field
alphabet if it has a solution consisting of only linear edge functions and
linear decoding functions over the field. A multiple-unicast network is
a network for which every source message is emitted by exactly one
source node and is demanded by exactly one receiver node. Multiple-
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unicast networks thus consist of communications between collections
of pairs of nodes.

The solvability and linear solvability of networks have been a subject
of interest (e.g., [3], [4], [6], [11], [12], [15], [16]). For example, it
was shown in [12] that solvable multicast networks are always linearly
solvable. The class of multiple-unicast networks has also been studied
in various contexts (e.g., [1], [7], [8], [13], [14]).

We prove that for any network, there exists a corresponding mul-
tiple-unicast network, such that for every alphabet, each network is
solvable if and only if the other is solvable, and, for every finite-field
alphabet, each of the two networks is linearly solvable if and only if
the other is linearly solvable (Theorem II.1). The proof is construc-
tive and creates an extension of the original network by adding exactly
s + 5m(r � 1) new nodes where, in the original network, m is the
number of messages, r is the average number of receiver nodes de-
manding each source message, and s is the number of messages emitted
by more than one source.

The reverse of a networkN is a networkN 0 satisfying the following.
1) The nodes of N 0 are the same as in N .
2) The edges of N 0 are the same as in N but each in the reversed

direction.
3) Each node which emits messages inN , instead demands the same

messages in N 0.
4) Each node which demands messages inN , instead emits the same

messages in N 0.
A network is said to be reversible if its reverse is solvable. A network

is linearly reversible if its reverse is linearly solvable. Note that the
reverse of a multiple-unicast network is also multiple-unicast.

Clearly, if a multiple-unicast network has a routing solution, then it
is reversible, by simply reversing the direction of information flow of
the given routing solution. However, if network coding is used, then re-
versibility is not as straightforward. It was shown, however, in [9], [10],
[17], that all linearly solvable multiple-unicast networks are linearly
reversible over the same alphabet. In [9], [10], an elegant “duality”
principle is given, connecting algebraic coding theory and linearly re-
versible networks, and applications of reversibility are discussed. In
[17], a network is given which has a binary (nonlinear) solution but
whose reverse does not have a binary solution.

However, it has been an open question whether a solvable network
could be nonreversible (i.e., over all alphabets). Clearly (in light of the
results in [9], [10], [17]), to achieve such a result, one would need to
use a network which never has a linear solution over any finite field
alphabet.

We modify a solvable network constructed in [4] in such a way that
it becomes unsolvable (Lemma III.5). We show that the solvable net-
work and the unsolvable network are either both reversible or both not
reversible. Thus, at least one of the two networks demonstrates the ex-
istence of a solvable nonreversible network. We then modify these two
networks, using the construction presented in the first part of this paper,
so that they become multiple-unicast, while preserving the solvability
properties (Corollary III.9). This proves that there exists a solvable non-
reversible multiple-unicast network. Finally, we reveal which of the two
candidate solvable nonreversible multiple-unicast networks is the true
one (Theorem III.10).

II. MODIFYING ARBITRARY NETWORKS INTO

MULTIPLE-UNICAST NETWORKS

In this section, we give a construction which creates a new network
from an arbitrary network containing at least some message demanded
by more than one receiver. The new network has one fewer receivers
demanding a particular message in the original network. Also, the new
network is solvable if and only if the original network is solvable, and
this property holds for linear solvability as well. As a result, if the con-

Fig. 1. An arbitrary network with two nodes n and n each demanding mes-
sage b.

struction is iteratively applied to each new network until no source mes-
sages are demanded by more than one receiver, then a multiple-unicast
network is achieved with the same solvability as the original network.

Definition: Two networks N and N 0 are CSLS-equivalent1 if the
following two conditions hold.

1) For any alphabet A, N is solvable over A if and only if N 0 is
solvable over A.

2) For any finite field F and any positive integer k,N is vector solv-
able over F in dimension k if and only if N 0 is vector solvable
over F in dimension k.

Theorem II.1: Any network is CSLS-equivalent to a multiple-uni-
cast network.

Proof: Without loss of generality, we may assume that every
source message is demanded by at least one receiver. For each message
b that has multiple sources, add a new node to be the source for b

with connections to all the old sources for b (which will no longer be
sources for b). The new network is clearly CSLS-equivalent to the old
one.

Now, if some message b is demanded at more than one node, select
two such nodes n1 and n2 (as indicated in Fig. 1), and add a gadget
consisting of five new nodes nx1; . . . ; nx5 connected as indicated in
Fig. 2, to get a new network. Now nx1 is the source for a new message
z, which is demanded at node nx5.

A solution for the old network can be extended to the new network
by putting

e1;x2 = e2;x5 = b

ex2;x3 = b+ z

where + is the given vector addition (in the vector linear case) or any
group operation onA (in the arbitrary coding case). Now suppose that
we have a solution to the new network. We will show that b can be
computed from e1;x2 and also from e2;x5 (linearly in the vector linear
case), which means that we get a solution to the old network with the
same parameters. The solution to the new network gives us functions
f; g; h (linear in the linear case) such that

ex2;x3 = f(z; e1;x2)

b = g(z; ex2;x3)

z =h(ex2;x3; e2;x5):

Fix an element � of the alphabet (in the linear case let � = 0). We have

b = g(z; f(z; e1;x2))

for any z, where e1;x2 and b do not depend on z, so

b = g(�; f(�; e1;x2))

1CSLS means “coding solvability and linear solvability.”
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Fig. 2. An arbitrary network is modified by adding a gadget consisting of five
new nodes n ; . . . ; n and some new edges from them. Node n is a source
emitting a new message z which is demanded by receiver node n . Node n
demands message b, but nodes n and n no longer demand b.

and b is computable from e1;x2. We also have

b = g(h(ex2;x3; e2;x5); ex2;x3):

If we hold all the old messages fixed (i.e., all messages except z), then
e1;x2 and e2;x5 are fixed and therefore,

ex2;x3 = f(z; e1;x2)

is a one-to-one (and therefore also onto) function of z, because

z = h(ex2;x3; e2;x5):

So, given all the old messages, we can choose z so that ex2;x3 = �. In
such a case,

b = g(h(�; e2;x5); �)

so b is computable from e2;x5.
So the new network is CSLS-equivalent to the old one; it has the

same number of message demands, but the number of distinct messages
has increased by one. Repeat such modifications until the number of
distinct messages equals the number of message demands; then, the
final network will be multiple-unicast.

Suppose that in the original network s messages were emitted by
two or more sources (e.g., if the network had three messages, which
were emitted by four sources, one source, and five sources, respectively,
then s = 2). Then s new nodes were added at the first stage of the
construction. Suppose that in the original network, the ith (of m total)
source message is demanded by di receiver nodes. Then, di � 1 itera-
tions of the construction above will create a new network with the same
solvability and where exactly one receiver node demands this message.
Thus, the total number of iterations needed to avoid any messages being
demanded by two or more receivers is (d1�1)+ � � �+(dm�1). Each
such iteration adds five new nodes. If we define

r =
1

m

m

i

di

then we can summarize this fact in Corollary II.2.

Corollary II.2: For any directed acyclic network, there exists a mul-
tiple-unicast network with s + 5m(r � 1) additional nodes which is

Fig. 3. An example illustrating that a linearly solvable network might not be re-
versible if the network is not multiple-unicast. Nodesn andn both are sources
emitting the message x, and nodes n is a receiver, demanding message x.

Fig. 4. An example illustrating that a linearly solvable network might not have
a solvable reverse if the network is not multiple-unicast. Node n is a source
emitting message x, and nodes n and n are sources, both emitting message
y. Nodes n and n are receivers, demanding messages y and x, respectively.

solvable if and only if the original network is solvable, where, in the
original network,m is the number of messages, r is the average number
of receiver nodes demanding each source message, and s is the number
of messages emitted by more than one source. The same result holds
for linear solvability as well.

III. NONREVERSIBILITY OF MULTIPLE-UNICAST NETWORKS

The classification of reversible networks is of theoretical interest and
has been considered in [9], [10], [17]. In this section, we demonstrate
that not all solvable multiple-unicast networks are reversible.

First, note that a very simple example of a solvable network that
is not reversible is shown in Fig. 3. The network is trivially solvable
by sending message x along the edge e1;3, and yet the network is not
reversible since there is no way to get message x from n3 to n2. This
network is redundant in the sense that the source node n2 could be
removed while retaining the network’s solvability. If n2 is removed,
then the network becomes reversible too.

One could, more specifically, consider the reversibility of minimal
solvable networks, namely, those for which no edge or source node
can be removed without causing the network to become unsolvable.
However, the following small example demonstrates the difficulty with
such an approach.

Fig. 4 gives an example of a minimal network which is linearly solv-
able over every alphabet size (by taking e4;5 = x + y), and yet the
network is not reversible (since in the reverse network, the demand y

at n3 cannot be met).
An alternative direction to pursue for classifying reversibility is to

examine multiple-unicast networks. In [9], [10], [17], the interesting
result that every linearly solvable network is linearly reversible was
shown. In [17], a (nonlinearly) solvable network was demonstrated
which is not reversible over a binary alphabet. However, up to now, it
has been an open question whether or not all solvable multiple-unicast
networks are reversible (i.e., over all alphabets). We prove here that not
all solvable multiple-unicast networks are reversible.

Our approach exploits results from [4], [5], and the first part of the
present correspondence. Specifically, we make use of the networksN1

(Fig. 5) and N2 (Fig. 6) to establish some useful lemmas.
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Fig. 5. The network N . The network is solvable only for alphabets with
power-of-two cardinalities. Also, the reverse of the network is itself.

Fig. 6. The networkN . The network’s solutions are characterized in terms of
an Abelian group and certain fixed permutations.

More general versions of Lemma III.1 and Lemma III.2 were proved
in [4] and [5], respectively.

Lemma III.1: The networkN1 is solvable over an alphabetA if and
only there exists a positive integer n, such that jAj = 2n.

Lemma III.2: For any solution to network N2 over an alphabet A
and for any element 0 2 A, there exist permutations �1; . . . ; �6 of A
and a mapping + : A�A ! A such that (A;+) is an Abelian group
with identity element 0, �3(0) = 0, and

w =�4(�1(a) + �2(b))

x =�5(�1(a) + �3(c))

y =�6(�2(b) + �3(c)):

We will refer to the network shown in Fig. 7 as the “Insufficiency”
network. It was shown in [4] that the Insufficiency network has a non-
linear scalar solution over a 4-ary alphabet but has no vector linear
solution over any finite field and any vector dimension.

One immediate consequence of Theorem II.1 is that linear coding is
insufficient (even asymptotically) for multiple-unicast networks. This
follows by adding gadgets to the Insufficiency network for messages
that are demanded at two or more receiver nodes, in order to convert
the Insufficiency network into a multiple-unicast network. The vector
linear solvability properties of the resulting network are the same as
the Insufficiency network, so the resulting multiple-unicast network re-
mains solvable but not vector linearly solvable (as shown in [4]).

LetN3 be the network obtained by deleting nodes n1; n2; n3 of the
Insufficiency network, changing the messages at n4; n5; n6 to a0, b0,
and c0, and merging nodes n9 and n10, as illustrated in Fig. 8.

Now create a new networkN4, by modifying networkN3, as shown
in Fig. 9. To obtain N4, the six edges in N3 entering receiver n43 are
replaced by four new nodes (i.e., nx1, nx2, nx3, and a new n43) and
nine new edges.

Note that in the networksN3 andN4, the message c is demanded in
each network by three receivers (n40, n43, and n46) and all other mes-
sages are each demanded by exactly one receiver. We can create mul-
tiple-unicast networks from N3 and N4 by using the technique from
the first part of this correspondence.

Specifically, create two multiple-unicast networks N5 (see Fig. 10)
and N6 (see Fig. 11), by adding gadgets to networks N3 and N4, re-
spectively, according to the construction given in the proof of The-
orem II.1.

Lemma III.3: The network N3 is solvable.
Proof: It follows immediately from the solvability of the Insuffi-

ciency network [4].

Corollary III.4: The network N5 is solvable.

Proof: It follows immediately from Lemma III.3 and The-
orem II.1. [4].

Lemma III.5: The network N4 is not solvable.
Proof: Suppose there is a solution to the right half of N4 on al-

phabet S. Fix an element 0 of the alphabet. By Lemma III.2, there exist
permutations�1; . . . ; �6, �̂1; . . . ; �̂6, and Abelian groups operations+
and +0 on S, both with 0 as the identity element and with

�3(0) = �̂3(0) = 0;

such that

e23;31 =�4(�1(a) + �2(b))

e24;32 =�5(�1(a) + �3(c))

e25;33 =�6(�2(b) + �3(c))

e28;36 = �̂4(�̂1(e) +
0

�̂2(d))

e27;35 = �̂5(�̂1(e) +
0

�̂3(c))

e26;34 = �̂6(�̂2(d) +
0

�̂3(c)):

Therefore, in order for the demand at node n43 to be satisfied, there
must exist functions g; f̂1; f̂2; f̂3 such that

c = g(f̂1(�5(�1(a) + �3(c)); �̂6(�̂2(d) +
0

�̂3(c)));

f̂2(�4(�1(a) + �2(b)); �̂4(�̂1(e) +
0

�̂2(d)));

f̂3(�6(�2(b)+ �3(c)); �̂5(�̂1(e) +
0

�̂3(c)))):

Define for all x; y 2 S the functions

f1(x; y) = f̂1(�5(�3(x)); �̂6(�̂3(y)))

f2(x; y) = f̂2(�4(�3(x)); �̂4(�̂3(y)))

f3(x; y) = f̂3(�6(�3(x)); �̂5(�̂3(y)))
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Fig. 7. The Insufficiency network.

Fig. 8. The network N , which is a modification of the Insufficiency network.

and the quantities

A =�
�1

3 (�1(a))

B =�
�1

3 (�2(b))

D = �̂
�1

3 (�̂1(d))

E = �̂
�1

3 (�̂1(e))

and the binary operations

+1 :S � S ! S

and

+2 :S � S ! S

given by

x+1 y =�
�1

3 (�3(x) + �3(y))

x+2 y = �̂
�1

3 (�̂3(x) +
0

�̂3(y)):

Then one can verify that (A;+1) and (A;+2) are Abelian groups, each
with identity 0, and we can write

c = g(f1(A+1 c; c+2 D);

f2(A+1 B;D +2 E);

f3(B +1 c; c+2 E)): (1)

For any value of c, there exist values of a; b; d; e (and hence
A;B;D;E) such that

A +1 c = B +1 c = c+2 D = c+2 E = 0:

Thus, for each c, there exist A;B;D;E such that

c = g(f1(0; 0); f2(A+1 B;D +2 E); f3(0; 0));
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Fig. 9. The network N , which is a modification of network N .

Fig. 10. The multiple-unicast network N , which consists of N and two additional gadgets.

so since c assumes jSj different values, f2(A+1B;D+2E)must also
assume jSj different values. Thus, the range of f2 is all of S. A similar
argument shows that the ranges of f1 and f3 are also all of S.

So, for any x; y; c 2 S, we can find r; s; t; u 2 S such that

f1(r; s) =x

f2(t; u) = y

and then we can find A;B;D;E such that

A+1 c = r

c+2 D = s

A +1 B = t

D +2 E =u:
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Fig. 11. The multiple-unicast network N , which consists of N and two additional gadgets.

For such choices, if we let z = f3(B +1 c; c +2 E), then we get
c = g(x; y; z). Thus, g is surjective (and hence bijective) in its third
argument. A similar argument shows that g is also bijective in its first
and second arguments. Thus, g is a Latin cube.

Now if we set A = c = D = 0 in (1), we get

0 = g(f1(0; 0); f2(B;E); f3(B;E)):

Since g is Latin, it follows that

f3(B;E) = f3(B
0

; E
0)() f2(B;E) = f2(B

0

; E
0):

This means that there exists a permutation �0 of S such that f3 =
�0
� f2. Similarly, by setting B = c = E = 0, we can show that

f1 = �00
� f2 for some permutation �00 of S. If we define

ĝ(x; y; z) = g(�00(x); y; �0(z))

then (1) can be rewritten as

c = ĝ(f2(A+1 c; c+2 D);

f2(A+1 B;D +2 E);

f2(B +1 c; c+2 E)): (2)

Note that since g is Latin and �0 and �00 are permutations, the function
ĝ is also Latin.

Next, letting c = 0, we have

0 = ĝ(f2(A;D); f2(A+1 B;D +2 E); f2(B;E)):

Since ĝ is Latin, we get the following.
If f2(A;D) = f2(A

0; D0) and f2(B;E) = f2(B
0; E0),

then f2(A+1 B;D +2 E) = f2(A
0 +1 B

0; D0 +2 E
0).

Therefore, we can define an operation

+3 : S � S ! S

as follows. For every x; y 2 S, let A;B;D;E 2 S be such that

f2(A;D) =x

f2(B;E) = y

and let

x+3 y = f2(A+1 B;D +2 E):

Thus, f2 is a homomorphism from (S;+1) � (S;+2) onto (S;+3).
Since (S;+1) � (S;+2) is an Abelian group, one can verify that
(S;+3) is an Abelian group with identity element f2(0; 0).

We now show that the mapping

c 7�! f2(c+1 c; c+2 c)
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from S to S must be injective. Suppose there exist c; c0 2 S such that

f2(c+1 c; c+2 c) = f2(c
0 +1 c

0

; c
0 +2 c

0):

From (2) we get

c = ĝ(f2(c
0 +1 c; c+2 c

0);

f2(c
0 +1 c

0

; c
0 +2 c

0);

f2(c
0 +1 c; c+2 c

0))

c
0 = ĝ(f2(c+1 c

0

; c
0 +2 c);

f2(c+1 c; c+2 c);

f2(c+1 c
0

; c
0 +2 c)):

Since +1 and +2 are commutative, the arguments to ĝ in the above two
equations are the same, so c = c0.

So, the elements f2(c; c) +3 f2(c; c) of S are distinct for distinct c.
Hence, the elements f2(c; c) are distinct, so the map c 7�! f2(c; c) is
injective and therefore also surjective.

Now, suppose (S;+3) had an element x of order 2. Then there would
exist a nonzero c 2 S such that

f2(c; c) = x

which would imply that both f2(c; c) +3 f2(c; c) and f2(0; 0) +3

f2(0; 0) would be the identity element of (S;+3), which is a contra-
diction. Therefore, the group (S;+3) has no elements of order 2, so,
by Cauchy’s theorem, jSj must be odd.

Thus, we have shown that the right half of N4 is solvable only
for odd alphabet sizes. Since the left half of N4 is solvable only for
power-of-two alphabet sizes (by Lemma III.1), the combined network
N4 is not solvable.

Corollary III.6: The network N6 is not solvable.
Proof: It follows from Lemma III.5 and Theorem II.1.

Lemma III.7: Network N3 is reversible if and only if network N4

is reversible.
Proof: Given a solution to the reverse of N3, one can get a so-

lution to the reverse of N4 by letting the new eX2;31 be the same as
the old e43;31, the new eX1;32 be the same as the old e43;32, and so on
(and letting the new e43;X1, e43;X2, and e43;X3 be c). And given a so-
lution to the reverse of N4, one can get a solution to the reverse of N3

by letting the new e43;31 be the same as the old eX2;31, the new e43;32

be the same as the old eX1;32, and so on (these new values are com-
putable from c since they are computable from the old e43;X1, e43;X2,
and e43;X3, which are all computable from c).

Lemma III.8: Network N5 is reversible if and only if network N6

is reversible.
Proof: Same as the proof of Lemma III.7 (using e49;43 instead

of c).

Corollary III.9: There exists a solvable multiple-unicast network
that is not reversible.

Proof: From Lemma III.8, either network N5 is solvable and its
reverse is not solvable, or networkN6 is not solvable and its reverse is
solvable.

Corollary III.9 gives an existence proof of the nonreversibility of
solvable multiple-unicast networks. The proof is semi-constructive
since it narrows down a specific network exhibiting the nonreversibility
property to one of two closely related networks. In order to give a
definitive network witnessing nonreversibility, we next show which of
the two networks is solvable with a nonsolvable reverse.

Theorem III.10: The reverse of the multiple-unicast network N6 is
solvable but not reversible.

Proof: We give an explicit nonlinear solution to the reverse of net-
work N6 as shown in Fig. 12. The nontrivial edge functions are speci-
fied; all other edge functions are simply copied from their inputs. The
solution is over a 4-ary alphabet A = f0; 1; 2; 3g. The operations +
and � are modulo-4 addition and subtraction (i.e., in the ring Z4) and
� is bitwise modulo-2 addition (i.e., in the ring Z2 �Z2) viewing the
alphabet as A = f00;01; 10; 11g. The mapping t : A ! A switches
the bits in the binary representation of its argument. The quantities
H;L 2 f0; 1g are, respectively, the high and low bits in the binary
representation of y � z. The messages can be recovered as follows:

n4 : a0 =(a0 � c
0)� c

0

n5 : b0 =(a0 � b
0 � c

0)� (a0 � c
0)

n6 : c0 =(a0 � b
0 � c

0)� (a0 � b
0)

n7 : a =(a+ b+ t(y))� (t(y) + L)� (b� L)

n8 : b =(a+ b+ t(y))� (t(y) + L)� (a� L)

n11 : d =(e+ d+ (c� z))� (e�H)� ((c� z) +H)

n12 : e =(e+ d+ (c� z))� (d�H)� ((c� z) +H)

n47 : y =(y � z)� z

n48 : z =(c� z)� c:

The message c can be recovered at node n9 since

t((a+ b+ t(y))� (a� L)� (b� L))

� ((e+ d+ (c� z)� (e�H)� (d�H))

= t(t(y) + 2L)� ((c� z) + 2H)

= t(t(y)� 2L)� ((c� z)� 2H)

[since r + s = r � s whenever s is even]

= y � t(2L)� c� z � 2H [since t commutes with �]

= c� y � z � (t(2L)� 2H)

= c� y � z � (y � z)

= c:

While the reverse of N6 is an example of a network that is solv-
able but not reversible, the fact that it is a union of two disjoint net-
works might suggest that two different alphabets could be used when
describing the network’s solvability (i.e., one alphabet for each of the
two disjoint subnetworks). We will show that a small modification of
N6 can yield a connected network which is solvable but not reversible.

Theorem III.11: Suppose two disjoint multiple-unicast networksN 0

and N 00 are connected with a gadget to form a new network N , as
shown in Fig. 13. Then N is solvable (respectively, reversible) over
alphabet A if and only if both N 0 and N 00 are solvable (respectively,
reversible) over A.

Proof: Suppose N 0 and N 00 are each solvable over an alphabet
of size m, which we assume, without loss of generality, is f0; 1; . . . ;
m�1g. We describe a solution forN . Let nodes n5, n6, and n8 simply
copy their inputs to their outputs. Let edge e7;8 add the two input edges
of node n7 modulo m (i.e., e7;8 carries the symbol p + q (mod m)),
so that node n1 can deduce message p by subtracting e5;1 from e8;1
modulom, and node n3 can deduce message q by subtracting e6;3 from
e8;3 modulom. Let the remaining edges ofN perform the same coding
functions as in the solutions forN 0 andN 00. This gives a solution toN .

Now, supposeN has a solution over some alphabetA. Let e1; . . . ; ej
be the out-edges of n1. In the solution for N , for all i we can write

ei = fi(e5;1; e8;1; x)
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Fig. 12. A nonlinear solution over a 4-ary alphabet is shown for the reverse of network N . The source messages are shown above the source nodes and the
demand messages are shown below the receiver nodes.

Fig. 13. Two arbitrary disjoint multiple-unicast networksN andN (depicted in the ovals) connected with a gadget to form a new multiple-unicast networkN .
NetworkN has a source node n with message p which is demanded by node n , and networkN has a source node n with message q which is demanded by
node n . Network N is connected by a gadget, consisting of nodes n , n , n , n and edges e , e , e , e , e , e , e . In N , the messages p and q

originate at nodes n and n , respectively.
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Fig. 14. A solvable connected multiple-unicast network N that is not reversible.

where x is the collection of all input source messages to n1 and
in-edges of n1 other than e5;1 and e8;1. Since e5;1 depends only on q

and since e8;1 depends only on p and q, we can write

ei = gi(p; q; x):

For each i, let us define a function

f
0

i(p; x) = gi(p; 0; x):

Now, to construct a solution for N 0, copy from the solution for N all
edge functions from nodes other thann1 and all demand functions other
than at n1. For the ith out-edge of n1 inN 0, define the coding function

ei = f
0

i(p; x):

This gives a solution to N 0 on A and a similar construction gives a
solution to N 00 on A.

Suppose the reverses ofN 0 andN 00 are solvable over an alphabet of
size m. Then in a similar manner as before, a solution to the reverse of
N is obtained by having nodes n1, n3, and n7 simply copy their inputs

to their outputs and having edge e8;7 add the two input edges of node
n8 modulo m.

Likewise, if the reverse of N is solvable, then in order for p to be
obtained at n6 and q to be obtained at n5, message p must be deducible
at n1 and message q must be deducible at n3, thus giving solutions to
networksN 0 andN 00 .

Theorem III.11 provides a mechanism for connecting two disjoint
networks into a single network which is solvable over a particular al-
phabet if and only if both of the disjoint pieces were solvable over that
alphabet. In particular, if the two disjoint networks were both solvable,
but never over a common alphabet, then the new connected network
would not be solvable.

Corollary III.12: The connected multiple-unicast network N7 is
solvable but not reversible.

Proof: The network N7 in Fig. 14 is the reverse of a network
obtained by adding a gadget to the disjoint union networkN6 in Fig. 11,
connecting nodes n6 and n7. By Theorem III.11, the reverse of N7 is
solvable over alphabetA if and only if the two disjoint pieces ofN6 are
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solvable over A. But, by Theorem III.10, network N6 is not solvable
over any alphabet, so neither is the reverse of N7. Hence, N7 is not
reversible. Also, by Theorem III.10, the reverse ofN6 is solvable, and
thus N7 is solvable, by Theorem III.11.

IV. CONCLUSION

We have demonstrated a multiple-unicast network which is solvable,
but whose reverse is not solvable. However, we note that the network
and its reverse each have coding capacity equal to one. In particular,
this implies that the reverse network is asymptotically solvable. An in-
teresting open question is whether a multiple-unicast network could
have coding capacity different from the coding capacity of its reverse.
Another interesting open problem is to characterize the class of all non-
reversible solvable multicast networks.
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Min-Cost Selfish Multicast With Network Coding

Sandeep Bhadra, Student Member, IEEE,
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Abstract—The single-source min-cost multicast problem, which can be
framed as a convex optimization problem with the use of network codes and
convex increasing edge costs is considered. A decentralized approach to this
problem is presented by Lun, Ratnakar et al. for the case where all users
cooperate to reach the global minimum. Further, the cost for the scenario
where each of the multicast receivers greedily routes its flows is analyzed
and the existence of a Nash equilibrium is proved. An allocation rule by
which edge cost at each edge is allocated to flows through that edge is pre-
sented. We prove that under our pricing rule, the flow cost at user equilib-
rium is the same as the min-cost. This leads to the construction of a selfish
flow-steering algorithm for each receiver, which is also globally optimal.
Further, the algorithm is extended for completely distributed flow adapta-
tion at nodes in the network to achieve globally minimal cost in steady state.
Analogous results are also presented for the case of multiple multicast ses-
sions.

Index Terms—Convex optimization, game theory, minimum cost multi-
cast, Nash equilibrium, network coding.

I. INTRODUCTION

The single-source multicast problem for network coding has
received much attention in recent years due to the tractability of de-
signing optimal linear network codes for this case. Ahlswede, et al. in
[2] prove that for networks where the min-cut max-flow rate cannot be
achieved by simple forwarding of packets, coding incoming packets at
intermediate routers (network-coding) can help achieve the max-flow
min-cut rate for such networks. Further, Ho et al. [3], [4] suggest the
use of random linear codes (RLCs) that can achieve the above linear
network code rate asymptotically in the size of the symbol alphabet
used for encoding/decoding. Since the intermediate routers can code
randomly independent of other routers in the network, RLCs offer the
means for decentralized design of network codes and form the basis
for practical network coding schemes [5].

The problem of finding the minimum-cost multicast tree for net-
works has been studied extensively. For a general directed graph with
a cost function at each edge, a specified root (source) and a subset
of the nodes (receivers), the problem of finding a minimum-cost ar-
borescence rooted at the source and spanning all the receivers is called
the Directed Steiner Tree (DST) problem. Approximation algorithms
for the DST, which is known to be NP-hard, has received consider-
able attention in recent years. Charikar et al. [6] present a non-trivial
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