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Characteristic-Dependent Linear Rank Inequalities
With Applications to Network Coding

Randall Dougherty, Eric Freiling, and Kenneth Zeger

Abstract— Two characteristic-dependent linear rank
inequalities are given for eight variables. In particular, the first
inequality holds for all finite fields whose characteristic is not
three and does not in general hold over characteristic three. The
second inequality holds for all finite fields whose characteristic
is three and does not in general hold over characteristics other
than three. Applications of these inequalities to the computation
of capacity upper bounds in network coding are demonstrated.

Index Terms— Shannon entropy, network coding, vector
spaces, capacity.

I. INTRODUCTION

THE study of information inequalities is a subfield of
information theory that describes linear constraints on

the entropies of finite collections of jointly distributed discrete
random variables. Historically, the known information inequal-
ities were orignally all special cases of Shannon’s conditional
mutual information inequality I (X; Y |Z) ≥ 0, but later were
generalized to other types of inequalities, called non-Shannon
inequalities. Information inequalities have been shown to be
useful for computing upper bounds on the network coding
capacities of certain networks.

Analagously, the study of linear rank inequalities is a topic
of linear algebra, which describes linear constraints on the
dimensions of collections of subspaces of finite dimensional
vector spaces. In fact, the set of all information inequalities can
be viewed as subclass of the set of all linear rank inequalities.

Information inequalities hold over all collections of a certain
number of random variables. In constrast, linear rank inequal-
ities may hold over only certain vector spaces, such as those
whose scalars have particular field characteristics.

In this paper, we present two new linear rank inequalities
over finite fields, which are not information inequalities, and
with the peculiar property that they only hold for certain
fields, depending on the associated vector space. The first
inequality is shown to hold over all vector spaces when
the field characteristic is anything but three (Theorem 3.1),
but does not always hold when the field characteristic is
three (Theorem 3.2). In contrast, the second inequality is
shown to hold over all vector spaces when the field character-
istic is three (Theorem 4.1), but does not always hold when

Manuscript received November 20, 2013; revised October 5, 2014; accepted
January 12, 2015. Date of publication February 13, 2015; date of current
version April 17, 2015. This work was supported in part by the U.S. National
Science Foundation and in part by the Institute for Defense Analyses.

R. Dougherty is with the Center for Communications Research, San Diego,
CA 92121 USA (e-mail: rdough@ccrwest.org).

E. Freiling and K. Zeger are with the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla, CA 92093 USA
(e-mail: efreiling@gmail.com; zeger@ucsd.edu).

Communicated by Y. Liang, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2015.2403361

the field characteristic is not three (Theorem 4.2). We also
show how these inequalities can be used to obtain bounds on
the capacities of certain networks (Corollaries 3.4 and 4.3).

It will be assumed that the reader has familiarity with linear
algebra, finite fields, information theory, and network coding.
Nevertheless, we will give some brief tutorial descriptions of
these topics for completeness.

A. Background

In 2000, Ahlswede, Cai, Li, and Yeung introduced the field
of Network Coding [1] and showed that coding can outperform
routing in directed acyclic networks.1 There are presently
no known algorithms to determine the capacity or the linear
capacity of a given network. In fact, it is not even known if
such algorithms exist.

Information inequalities are linear inequalities that hold
for all jointly distributed random variables, and Shannon
inequalities are information inequalities of a certain form [18].
Both are defined in Section C. It is known [21] that all
information inequalities containing three or fewer variables
are Shannon inequalities. The first “non-Shannon” information
inequality was of four variables and was published in 1998
by Zhang and Yeung [24]. Since 1998, various other
non-Shannon inequalities have been found, for example, by
Lněnička [13], Makarychev, Makarychev, Romashchenko, and
Vereshchagin [14], Zhang [22], Zhang and Yeung [23],
Dougherty, Freiling, and Zeger [5], and Matúš [15].
Additionally, in 2007, Matúš demonstrated an infinite collec-
tion of independent non-Shannon information inequalities [15]
and there were necessarily an infinite number of such inequal-
ities. In 2008, Xu, Wang, and Sun [19] also gave an infinite
list of inequalities but did not establish their necessity.

There is a close connection between information inequal-
ities and network coding [4]. Capacities of some networks
have been computed by finding matching lower and upper
bounds [6]. Lower bounds have been found by deriving coding
solutions. Upper bounds have been found by using information
inequalities and treating the sources as independent random
variables that are uniformly distributed over the alphabet.
One “holy grail” problem of network coding is to develop
an algorithm to compute the coding capacity of an arbitrary
network. If such an algorithm exists, information inequalities
may potentially play a role in the solution.

It has been shown that linear codes are insufficient for
network coding in general [7]. However, linear codes may
be desirable to use in practice due to ease of analysis

1In what follows, by “network” we shall always mean a directed acyclic
network.
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and implementation. It has been shown that the coding
capacity is independent of the alphabet size [3]. However, the
linear coding capacity is dependent on alphabet size, or more
specifically the field characteristic. In other words, one can
potentially achieve a higher rate of linear communication by
choosing one characteristic over another. To provide upper
bounds for the linear coding capacity for a particular field
one can look at linear rank inequalities [10]. Linear rank
inequalities are linear inequalities that are always satisfied
by ranks2 of subspaces of a vector space. All information
inequalities are linear rank inequalities but not all linear rank
inequalities are information inequalities. The first example of a
linear rank inequality that is not an information inequality was
found by Ingleton [12]. Information inequalities can provide
an upper bound for the capacity of a network, but this upper
bound would hold for all alphabets. Therefore, to determine
the linear coding capacity over a certain characteristic one
would have to consider linear rank inequalities.

All linear rank inequalities up to and including five variables
are known and none of these depend on the vector spaces’
field characteristics [8]. The set of all linear rank inequalities
for six variables has not yet been determined. Characteristic-
dependent linear rank inequalities are given, for example,
in [2] and [10].

An inequality is given in [10] which is valid for charac-
teristic two and another inequality is given which is valid for
every characteristic except for two. These inequalities are then
used to provide upper bounds for the linear coding capacity
of two networks.

In the present paper, we give two characteristic-dependent
linear rank inequalities on eight variables. One is valid for
characteristic three and the other is valid for every characteris-
tic except for three. These inequalities are then used to provide
upper bounds for the linear coding capacity of two networks.

It is our intention that the techniques presented here
may prove useful or otherwise motivate further progress in
determining network capacities.

B. Matroids
In this section a very brief review of matroids is given which

will enable discussion in subsequent sections of a matroid-
based method for constructing a particular network that helps
in the derivation of the linear rank inequalities presented in
this paper.

A matroid is an abstract structure that captures a notion
of “independence” that is found in finite dimensional vector
spaces, graphs, and various other mathematical topics. We will
follow the notation and results of [17].

Definition 1.1: A matroid, M , is a pair (E, I ), where E is
a finite set and I is a set of subsets of E that satisfies the
following properties:
(I1) ∅ ∈ I .
(I2) ∀A, B ⊆ E , if A ⊆ B ∈ I , then A ∈ I .
(I3) ∀A, B ⊆ E , if A, B ∈ I and |A| > |B|, then ∃u ∈ A\ B

such that B ∪ {u} ∈ I .

2Throughout this paper, we will use the terminology “rank” of a subspace to
mean the dimension of the subspace (i.e. the rank of a matrix whose columns
are a basis for the subspace), in order to parallel the terminology of matroid
theory.

The sets in I are called independent sets. If a subset of E is
not in I , then it is called dependent.

An example of a matroid is obtained from linear algebra. Let
F be a finite field and let V (m, F) be the vector space of all
m-dimensional vectors whose components are elements of F.
Suppose A is an m ×n matrix over F. Let E = {1, . . . , n} and
I be the set of all X ⊆ E such that the multiset of columns
of A indexed by the elements of X is linearly independent
in the vector space V (m, F). Then M = (E, I ) is a matroid
called the vector matroid of A.

A matroid is said to be representable over the field F if it
is isomorphic to some vector matroid over V (m, F).

For example, if F is the binary field and

A =
(a b c d e

1 0 0 1 1
0 1 0 0 1

)

where a, b, c, d, e denote the columns of A from left to
right, then M = (E, I ) is a vector matroid of A, where
E = {a, b, c, d, e} and

I = {∅, {a}, {b}, {d}, {e}, {a, b}, {a, e}, {b, d}, {b, e}, {d, e}}.
A base is a maximal independent set. Let B(M) denote the

set of all bases of a matroid M . In our example,

B(M) = {{a, b}, {a, e}, {b, d}, {b, e}, {d, e}}.
It is well known that all the bases of a matroid are of the same
cardinality.

If we let X ⊆ E and I |X = {i ⊆ X : i ∈ I },
then it is easy to see that (X, I |X) is a matroid. The rank
of X , denoted by r(X), is defined to be the cardinality
of a base in M|X . In our example, r(M) = 2. A circuit
is a minimal dependent set. The circuits in our example
are {{c}, {a, d}, {a, b, e}, {b, d, e}}.
C. Information Theory and Linear Rank Inequalities

In this section we will use the information theoretic concepts
of entropy and mutual information to define and use the linear
algebraic concept of linear rank inequalities. Connections
between information inequalities and linear rank inequalities
is also discussed.

Let A, B, C be collections of discrete random variables over
a finite alphabet X , and let p be the probability mass function
of A. The entropy of A is defined by

H (A) = −
∑

u

p(u) log|X | p(u).

The conditional entropy of A given B is

H (A|B) = H (A, B) − H (B), (1)

the mutual information between A and B is

I (A; B) = H (A) − H (A|B) = H (A) + H (B) − H (A, B),

(2)

and the conditional mutual information between A and B
given C is

I (A; B|C) = H (A|C) − H (A|B, C) (3)
= H (A, C) + H (B, C) − H (C) − H (A, B, C).

(4)
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We will make use of the following basic information-theoretic
facts [21]:

0 = H (∅) (5)

0 ≤ H (A) = H (A|∅) (6)

0 ≤ H (A|B) (7)

0 ≤ I (A; B) (8)

H (A, B|C) ≤ H (A|C) + H (B|C) (9)

H (A|B, C) ≤ H (A|B) ≤ H (A, C|B) (10)

I (A; B, C) = I (A; B|C) + I (A; C). (11)

The equations (6)-(10) were originally given by
Shannon in 1948 [18], and can all be obtained from the single
inequality I (A; B|C) ≥ 0.

Definition 1.2: Let q be a positive integer, and let
S1, . . . , Sk be subsets of {1, . . . , q}. Let αi ∈ R for 1 ≤ i ≤ k.
A linear inequality of the form

α1 H ({Ai : i ∈ S1}) + · · · + αk H ({Ai : i ∈ Sk}) ≥ 0 (12)

is called an information inequality if it holds for all jointly
distributed random variables A1, . . . , Aq .

As an example, taking q = 2, S1 = {1}, S2 = {2}, S3 = ∅,
S4 = {1, 2}, α1 = α2 = 1, α4 = −1, and using (9) shows that
H (A1)+H (A2)−H (A1, A2) ≥ 0 is an information inequality.

A Shannon information inequality is any information
inequality that can be expressed as a finite sum of the form

∑
i

αi I (Ai ; Bi |Ci ) ≥ 0

where each αi is a nonnegative real number. Any information
inequality that cannot be expressed in the form above will be
called a non-Shannon information inequality.

Linear rank inequalities are closely related to information
inequalities. In fact, in order to describe linear rank inequalities
we will borrow notation from information theory to use in the
context of linear algebra in the following manner.

Suppose A and B are subspaces of a given vector space V ,
and let 〈A, B〉 denote the span of A ∪ B . We will let
H (A) denote the rank of A, and let H (A, B) denote the
rank of 〈A, B〉. The meanings of some other information
theoretic notation in the context of linear algebra then follows
from (1)-(4). Specifically, note that the conditional entropy
notation H (A|B) denotes the excess rank of subspace A over
that of subspace A ∩ B , or equivalently, the codimension
of A ∩ B in A; and the mutual information notation I (A; B)
denotes the rank of A ∩ B .

A linear rank inequality over a vector space V is a linear
inequality of the form in (12), that is satisfied by every
assignment of subspaces of V to the variables A1, . . . , Aq .

All information inequalities are linear rank inequalities
over all finite vector spaces, but not all linear rank
inequalities are information inequalities. For background
material on these concepts, the reader is referred to
Hammer, Romashchenko, Shen, and Vereshchagin [11].

The first known example of a linear rank inequality over all
finite vector spaces that is not an information inequality is the

Ingleton inequality [12]:

I (A; B) ≤ I (A; B|C) + I (A; B|D) + I (C; D).

To see that the Ingleton inequality is not an information
inequality, let A, B, C, D be binary random variables, and let
X = (A, B, C, D) with probabilities:

P(X = 0000) = 1/4

P(X = 1111) = 1/4

P(X = 0101) = 1/4

P(X = 0110) = 1/4.

Then the Ingleton inequality fails since:

I (A; B)︸ ︷︷ ︸
(5−log2 27)/2

− I (A; B|C)︸ ︷︷ ︸
0

− I (A; B|D)︸ ︷︷ ︸
0

− I (C; D)︸ ︷︷ ︸
0

> 0.

D. Network Coding

In this section, we will briefly review some concepts of
network coding. This will enable the discussion later in
this paper of our construction of linear rank inequalities
using networks constructed from two particular
matroids (T8 and non-T8). For more details on network
coding, see [20].

A network is a finite, directed, acyclic multigraph with
messages and demands. Network messages are arbitrary
vectors of k symbols over a finite alphabet A. Each network
edge carries a vector of n symbols from A. Each message
originates at a particular node called the source node for that
message and is required by one or more demand nodes. When
we draw a network, a message variable appearing above a
node indicates the message is generated by such node3, and
a message variable appearing below a node indicates the
message is demanded by such node, For a given network,
the values of k and n can be chosen in order to implement
certain codes and to obtain certain throughput k/n.

The inputs to a network node are the vectors carried on
its in-edges as well as the messages, if any, generated at the
node. The outputs of a network node are the packets carried
on its out-edges as well as any demanded messages at the
node. Each output of a node must be a function only of its
inputs. A coding solution for the network is an assignment of
such functions to the network edges. When the values of k
and n need to be emphasized, the coding solution will be
called a (k, n)-coding solution. The capacity of a network is
defined as:

C = sup{k/n : ∃ (k, n)-coding solution}.
A solution is called a linear solution, if the alphabet A is

a finite field and the edge functions are linear (i.e. linear
combinations of their input vectors where the coefficients are
matrices over the field).

3We note that in Figures 2 and 3, for convenience, we label source messages
above nodes lying in both the top and bottom layers in each diagram. This is
meant to indicate that there is, in fact, a separate (but hidden) distinct node for
each such source message, whose out-edges go directly to the nodes labeled
by the source message in the top and bottem layers.
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Fig. 1. The Butterfly network with source messages x and y, generated
by source nodes v1 and v2, respectively. Demand nodes v5 and v6 demand
messages y and x , respectively.

The linear capacity is defined the same as the capacity but
restricting solutions to be linear. It is easily verified that if x
is a message, then H (x) = k, and if x is a vector carried by
an edge, then H (x) ≤ n.

Let us illustrate a method for finding capacity bounds
by examining the well-known Butterfly network, depicted
in Figure 1. We assume the network messages x and y are
independent, k-dimensional, random vectors with uniformly
distributed components. Then in any solution it must be the
case that

H (y|x, z) = 0 (13)

since y is a function of x and z, and also that

2k = H (x) + H (y) (14)

= H (x, y) [from independence of x and y]

≤ H (x, y, z) [from (10)]

= H (x, z) + H (y|x, z) [from (1)]

= H (x, z) [from (13)]

≤ H (x) + H (z) [from (9)]

≤ k + n. (15)

This implies 2k ≤ k + n, or equivalently k/n ≤ 1. Since
this bound holds for all choices of k and n, the coding
capacity must be at most 1. On the other hand, a solution with
k = n = 1 is obtained by taking z = x + y over any finite
field alphabet, so the coding capacity is at least 1. Thus the
coding capacity for the Butterfly network is the same as the
linear coding capacity which is exactly equal to 1.

The inequalities in (15) were based on random
variables x, y, z. Later, in the proofs of Corollaries 3.4 and 4.3,

we will obtain bounds on the capacities of networks by using
linear rank inequalities, instead of information inequalities.
In those cases, certain vector subspaces will be used instead
of random variables, but the procedure will appear similar.

II. PRELIMINARIES

In this section, we given some technical lemmas which will
be useful for proving the main results of the paper. Although
some of them have appeared in the literature before, we present
them here for completeness.

If A is a subspace of vector space V , and A is a subspace
of A, then we will use the notation

codimA(A) = dim(A) − dim(A)

to represent the codimension of A in A. We will omit the
subscript when it is obvious from the context which space the
codimension is with respect to.

The proofs of all lemmas in this section are given in the
Appendix.

Lemma 2.1: Let V be a finite dimensional vector space with
subspaces A and B. Then the subspace A∩B has codimension
at most codim(A) + codim(B) in V .

Lemma 2.2: Let A and B be vector spaces over the same
finite scalar field and with subspaces A and B, respectively.
Let f : A → B be a linear function such that
f (A\A) ⊆ B\B. Then the codimension of A in A is at most
the codimension of B in B.

Lemma 2.3: Let A and B be vector spaces over the same
finite scalar field, let B be a subspace of B, and let f : A → B
be a linear function. Then f ∈ B on a subspace of A of
codimension at most the codimension of B.

Lemma 2.4: Let V be a finite dimensional vector space and
let A1, . . . , Ak, B be subspaces of V . Then for i = 1, . . . , k,
there exist linear functions fi : B → Ai such that f1 + · · · +
fk = I on a subspace of B of codimension H (B|A1, . . . , Ak).

Lemma 2.5: Let V be a finite-dimensional vector space and
let A, B, and C be subspaces of V . Let f : A → B and
g : A → C be linear functions such that f + g = 0 on A.
Then f = g = 0 on a subspace of A of codimension at
most I (B; C).

Lemma 2.6: Let V be a finite dimensional vector space and
let A, B1, . . . , Bk be subspaces of V . For each i = 1, . . . , k let
fi : A → Bi be a linear function such that f1 + · · · + fk = 0
on A. Then f1 = · · · = fk = 0 on a subspace of A of
codimension at most H (B1) + · · · + H (Bk) − H (B1, . . . , Bk).

Lemma 2.7: Let A, B, C, D, E be subspaces of a vector
space V and let fR, fL , gR, and gL be functions such that
fR : A → C, fL : C → A, gR : B → D, and gL : D → E.
If fL fR = I on A and gL gR is injective on B, then gL fR is
injective on fL( fR A ∩ gR B).

III. A LINEAR RANK INEQUALITY FOR FIELDS OF

CHARACTERISTIC OTHER THAN 3

In this section, we use the known T8 matroid to construct a
“T8 network”, and then in turn we use the T8 network to
guide a construction of a “T8 linear rank inequality” that
is shown to hold for all vector spaces having finite scalar
fields of characteristic not equal to 3. Then we show that the
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Fig. 2. The T8 network has source messages A, B, C, and D generated at
hidden source nodes with certain hidden out-edges pointing to corresponding
displayed nodes v1, v3, v5, and v9–v15 (which are labeled by incoming
messages above such nodes). The nodes v9–v15 each demand one message,
as labeled below such nodes. The values W , X , Y , Z are labels assigned to
certain edges to facilitate proofs.

T8 inequality does not necessarily hold when such scalar fields
have characteristic 3. Finally, we determine the exact coding
capacity of the T8 network and its linear coding capacity
over finite field alphabets of characteristic 3, as well as a
linear capacity upper bound for finite field alphabets whose
characteristic is not 3.

The T8 matroid [17] is a vector matroid which is represented
by the following matrix, where column dependencies are over
characteristic 3:

⎛
⎜⎜⎝

A B C D W X Y Z

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞
⎟⎟⎠.

The T8 matroid is representable over a field if and only
if the field is of characteristic 3. Figure 2 is a network
whose dependencies and independencies are consistent with
the T8 matroid. It was designed by the construction process
described in [6], and we will refer to it as the T8 network.
Theorem 3.1 uses the T8 network as a guide to derive a linear
rank inequality valid for every characteristic except for 3.
We refer to the inequality in the following theorem as the
T8 linear rank inequality.

Theorem 3.1: Let A, B, C, D, W, X, Y , and Z be
subspaces of a vector space V whose scalar field is finite and
of characteristic other than 3. Then the following is a linear

rank inequality over V:

H (A)

≤ 8H (Z) + 29H (Y ) + 3H (X) + 8H (W ) − 6H (D)

− 17H (C) − 8H (B) − 17H (A)

+ 55H (Z |A, B, C) + 35H (Y |W, X, Z) + 50H (X |A, C, D)

+ 49H (W |B, C, D) + 18H (A|B, D, Y ) + 7H (B|D, X, Z)

+ H (B|A, W, X) + 7H (C|D, Y, Z) + 7H (C|B, X, Y )

+ 3H (C|A, W, Y ) + 6H (D|A, W, Z)

+ 49(H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)).

Proof: See the Appendix.
The next theorem demonstates that the inequality

in Theorem 3.1 does not in general hold for vector spaces
with finite fields of characteristic 3.

Theorem 3.2: There exists a vector space V with a finite
scalar field of characteristic 3 such that the T8 inequality in
Theorem 3.1 is not a linear rank inequality over V .

Proof: Let V be the vector space of 4-dimensional vectors
whose components are from the field G F(3), and define the
following subspaces of V :

A = 〈(1, 0, 0, 0)〉
B = 〈(0, 1, 0, 0)〉
C = 〈(0, 0, 1, 0)〉
D = 〈(0, 0, 0, 1)〉
W = 〈(0, 1, 1, 1)〉
X = 〈(1, 0, 1, 1)〉
Y = 〈(1, 1, 0, 1)〉
Z = 〈(1, 1, 1, 0)〉.

We have:

0 = H (Z |A, B, C)

[from (1, 1, 1, 0) = (1, 0, 0, 0) + (0, 1, 0, 0) + (0, 0, 1, 0)]
= H (W |B, C, D)

[from (0, 1, 1, 1) = (0, 1, 0, 0)+ (0, 0, 1, 0) + (0, 0, 0, 1)]
= H (X |A, C, D)

[from (1, 0, 1, 1) = (1, 0, 0, 0)+ (0, 0, 1, 0) + (0, 0, 0, 1)]
= H (Y |W, X, Z)

[from (1, 1, 0, 1) = 2−1((0, 1, 1, 1) + (1, 0, 1, 1)

+ (1, 1, 1, 0))]
= H (A|B, D, Y )

[from (1, 0, 0, 0) = (1, 1, 0, 1) − (0, 1, 0, 0) − (0, 0, 0, 1)]
= H (D|A, W, Z)

[from (0, 0, 0, 1) = (0, 1, 1, 1) + (1, 0, 0, 0) − (1, 1, 1, 0)]
= H (C|D, Y, Z)

[from (0, 0, 1, 0) = (1, 1, 1, 0)+ (0, 0, 0, 1) − (1, 1, 0, 1)]
= H (B|D, X, Z)

[from (0, 1, 0, 0) = (1, 1, 1, 0)+ (0, 0, 0, 1) − (1, 0, 1, 1)]
= H (C|B, X, Y )

[from (0, 0, 1, 0) = (1, 0, 1, 1)+ (0, 1, 0, 0) − (1, 1, 0, 1)]
= H (C|A, W, Y )

[from (0, 0, 1, 0) = (0, 1, 1, 1)+ (1, 0, 0, 0) − (1, 1, 0, 1)]
= H (B|A, W, X)

[from (0, 1, 0, 0) = (0, 1, 1, 1)+ (1, 0, 0, 0) − (1, 0, 1, 1)].
(16)
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Note that the characteristic 3 assumption is used above in
showing H (Y |W, X, Z) = 0, by using the fact that the ranks
of Y and Y ∩ 〈W, X, Z〉 are both 1, since

(1, 1, 0, 1) = 2−1 · ((0, 1, 1, 1) + (1, 0, 1, 1) + (1, 1, 1, 0))

which holds for scalar fields of characteristic 3 (in fact, for all
characteristics except 2).

We know H (A) = H (B) = H (C) = H (D) = H (W ) =
H (X) = H (Y ) = H (Z) = 1. Also, we have

H (A) + H (B) + H (C) + H (D) = H (A, B, C, D).

So, if the inequality in Theorem 3.1 were to hold over V , then
we would have

1 = H (A)

≤ 8H (Z) + 29H (Y ) + 3H (X) + 8H (W ) − 6H (D)

−17H (C) − 8H (B) − 17H (A)

= 8 + 29 + 3 + 8 − 6 − 17 − 8 − 17

= 0

which is impossible.
Consider a network over finite field F with a (k, n) linear

code. The vector space associated with any message is defined
to be Fk . The vector space associated with any edge is defined
to be the set of all possible vectors from Fn that can be carried
on that edge (i.e. taking into account the linear code).

Since each output of a network node is a function of the
node’s inputs, the conditional entropy of the vector carried by
a node’s out-edge, given the entropies of the vectors carried by
the node’s in-edges, is zero, assuming the network messages
are uniform random vectors. The following lemma extends
this idea from random variables to vector spaces and will be
useful for the proof of Corollary 3.4.

Lemma 3.3: Suppose a network has a node with an
out-edge (or demand) x and in-edges and messages (in some
order) y1, . . . , ym. Suppose the network has a finite field
alphabet and a linear code. Let us view X, Y1, . . . , Ym as the
vector spaces associated with x, y1, . . . , ym, respectively. Then
we have H (X |Y1, . . . , Ym) = 0.

Proof: The vector carried on the node’s out-edge
(or demand) x is a linear combination of the vectors carried on
the node’s in-edges and the node’s messages y1, . . . , ym . Thus,
every vector appearing on the node’s out-edge (or demand) lies
in the span of the subspaces Y1, . . . , Ym . This implies

dim(X) = dim(X ∩ 〈Y1, . . . , Ym〉)
or equivalently,

H (X |Y1, . . . , Ym) = 0.

The following corollary uses the T8 linear rank inequality
to derive capacities and a capacity bound on the T8 network.
Note that although the T8 network itself was used as a guide
in obtaining the T8 linear rank inequality, subsequently using
the inequality to bound the network capacity is not circular
reasoning.

The proof of Corollary 3.4 below makes use of the T8 linear
rank inequality, and resembles the example shown earlier

in (15) for computing the capacity of the Butterfly network
using information inequalities and random variables.

Corollary 3.4: For the T8 network, the linear coding
capacity is at most 48/49 over any finite field alphabet of
characteristic not equal to 3. The linear coding capacity
over finite field alphabets of characteristic 3 and the coding
capacity are both equal to 1.

Proof: Let F be a finite field alphabet. Consider a (k, n)
linear solution of the T8 network over F , such that the
characteristic of F is not 3. Let A, B , C , D be message random
variables in the T8 network, that are uniformly distributed
over vectors in Fk . Let W , X , Y , Z be the resulting random
variables associated with the corresponding labeled edges
of T8 in Figure 2.

Equations (16) now hold with random variables A, B , C ,
D, W , X , Y , Z (i.e., not as subspaces as in Theorem 3.2)
by Lemma 3.3:

0 = H (Z |A, B, C) [from (v1, v2)]
= H (W |B, C, D) [from (v3, v4)]
= H (X |A, C, D) [from (v5, v6)]
= H (Y |W, X, Z) [from (v4, v7)]
= H (A|B, D, Y ) [from v9]
= H (D|A, W, Z) [from v10]
= H (C|D, Y, Z) [from v11]
= H (B|D, X, Z) [from v12]
= H (C|B, X, Y ) [from v13]
= H (C|A, W, Y ) [from v14]
= H (B|A, W, X) [from v15]

and since the vector spaces A, B, C, D are associated with
independent random variables, we have

H (A) + H (B) + H (C) + H (D) = H (A, B, C, D)

so the T8 inequality in Theorem 3.1 reduces to

H (A) ≤ 8H (Z) + 29H (Y ) + 3H (X) + 8H (W ) − 6H (D)

− 17H (C) − 8H (B) − 17H (A).

Now since H (A) = H (B) = H (C) = H (D) = k and
H (W ) = H (X) = H (Y ) = H (Z) ≤ n, we have

k ≤ 8n + 29n + 3n + 8n − 6k − 17k − 8k − 17k

k/n ≤ 48/49.

So, the linear coding capacity over every characteristic except
for 3 is at most 48/49 < 1.

The T8 network has a scalar linear solution over
characteristic 3 by using the following edge functions (here
we are using the notations A, B, C, D, W, X, Y, Z to denote
edge variables rather than vector spaces):

Z = A + B + C

W = B + C + D

X = A + C + D

Y = W + X + Z .
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Fig. 3. The Non-T8 Network has source messages A, B, C, and D
generated at hidden source nodes with certain hidden out-edges pointing to
corresponding displayed nodes v1, v3, v5, v7, and v9–v14 (which are labeled
by incoming messages above such nodes). The nodes v9–v15 each demand
one message, as labeled below such nodes.

and decoding functions:

v9 : A = (2−1 · Y ) − B − D

v10 : D = W − Z + A

v11 : C = Z − (2−1 · Y ) + D

v12 : B = Z − X + D

v13 : C = X − (2−1 · Y ) + B

v14 : C = W − (2−1 · Y ) + A

v15 : B = W − X + A.

Thus the linear coding capacity for characteristic 3 is at least 1.
We know the coding capacity is at most 1 because every

path from source A to node v9 passes through the single
edge (v7, v8). Since the coding capacity is at least as large
as the linear coding capacity for characteristic 3, we conclude
that the coding capacity is exactly equal to 1.

IV. A LINEAR RANK INEQUALITY FOR

FIELDS OF CHARACTERISTIC 3

In the T8 matroid, W + X + Y + Z = (3, 3, 3, 3),
which equals (0, 0, 0, 0) in characteristic 3. We define the
non-T8 matroid to be the T8 matroid except that we force
the T8’s characteristic 3 circuit {W, X, Y, Z} to be a base
in the non-T8 matroid. Figure 3 is a network that we call
the non-T8 network, whose dependencies and independencies
are consistent with the non-T8 matroid. The non-T8 network
was designed by the construction process described in [6].
Theorem 4.1 uses the non-T8 network as a guide to derive a
linear rank inequality valid for characteristic 3. The new linear
rank inequality can then be used to prove the non-T8 network
has linear capacity less than 1 if the field characteristic is 3.

Theorem 4.1: Let A, B, C, D, W, X, Y , and Z be
subspaces of a vector space V whose scalar field is finite
and of characteristic 3. Then the following is a linear rank

inequality over V:

H (A)

≤ 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A)

+ 19H (Z |A, B, C) + 17H (Y |A, B, D) + 13H (X |A, C, D)

+ 11H (W |B, C, D) + H (A|W, X, Y, Z) + H (A|B, W, X)

+ 7H (B|D, X, Z) + 4H (B|C, X, Y ) + 7H (C|D, Y, Z)

+ 5H (C|A, W, Y ) + 4H (D|A, W, Z)

+ 29(H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)).

Proof: See the Appendix.
The next theorem demonstates that the inequality

in Theorem 4.1 does not in general hold for vector spaces
with finite fields of characteristic other than 3.

Theorem 4.2: For each prime number p = 3 there exists a
vector space V with a finite scalar field of characteristic p
such that the non-T8 inequality in Theorem 4.1 is not a linear
rank inequality over V .

Proof: Let V be the vector space of 4-dimensional vectors
whose components are from G F(p), and define the following
subspaces of V:

A = 〈(1, 0, 0, 0)〉
B = 〈(0, 1, 0, 0)〉
C = 〈(0, 0, 1, 0)〉
D = 〈(0, 0, 0, 1)〉
W = 〈(0, 1, 1, 1)〉
X = 〈(1, 0, 1, 1)〉
Y = 〈(1, 1, 0, 1)〉
Z = 〈(1, 1, 1, 0)〉.

We have:

0 = H (W |B, C, D)

[from (0, 1, 1, 1) = (0, 1, 0, 0)+ (0, 0, 1, 0)+ (0, 0, 0, 1)]
= H (X |A, C, D)

[from (1, 0, 1, 1) = (1, 0, 0, 0)+ (0, 0, 1, 0)+ (0, 0, 0, 1)]
= H (Y |A, B, D)

[from (1, 1, 0, 1) = (1, 0, 0, 0)+ (0, 1, 0, 0)+ (0, 0, 0, 1)]
= H (Z |A, B, C)

[from (1, 1, 1, 0) = (1, 0, 0, 0)+ (0, 1, 0, 0)+ (0, 0, 1, 0)]
= H (A|B, W, X)

[from (1, 0, 0, 0) = (1, 0, 1, 1)+ (0, 1, 0, 0) − (0, 1, 1, 1)]
= H (C|A, W, Y )

[from (0, 0, 1, 0) = (0, 1, 1, 1)+ (1, 0, 0, 0) − (1, 1, 0, 1)]
= H (B|C, X, Y )

[from (0, 1, 0, 0) = (1, 1, 0, 1)+ (0, 0, 1, 0) − (1, 0, 1, 1)]
= H (D|A, W, Z)

[from (0, 0, 0, 1) = (0, 1, 1, 1)+ (1, 0, 0, 0) − (1, 1, 1, 0)]
= H (B|D, X, Z)

[from (0, 1, 0, 0) = (1, 1, 1, 0)+ (0, 0, 0, 1) − (1, 0, 1, 1)]
= H (C|D, Y, Z)

[from (0, 0, 1, 0) = (1, 1, 1, 0)+ (0, 0, 0, 1) − (1, 1, 0, 1)]
= H (A|W, X, Y, Z)

[from (1, 0, 0, 0) = 3−1((1, 0, 1, 1) + (1, 1, 0, 1)

+ (1, 1, 1, 0)−2(0, 1, 1, 1))]. (17)
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We know H (A) = H (B) = H (C) = H (D) = H (W ) =
H (X) = H (Y ) = H (Z) = 1, Also, we have

H (A) + H (B) + H (C) + H (D) = H (A, B, C, D).

So, if the inequality in Theorem 4.1 were to hold over V , then
we would have

1 = H (A)

≤ 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A)

= 9 + 8 + 5 + 6 − 4 − 12 − 11 − 1
= 0

which is impossible.
Corollary 4.3: For the non-T8 network, the linear coding

capacity is at most 28/29 over any finite field alphabet of
characteristic equal to 3. The linear coding capacity over finite
field alphabets of characteristic not 3 and the coding capacity
are all equal to 1.

Proof: Let F be a finite field alphabet. Consider a (k, n)
linear solution of the non-T8 network over F , such that the
characteristic of F is 3. Let A, B , C , D be message random
variables in the T8 network, that are uniformly distributed
over vectors in Fk . Let W , X , Y , Z be the resulting random
variables associated with the corresponding labeled edges
of T8 in Figure 3.

Equations (17) now hold when A, B, C, D, W, X, Y, Z
are taken as random variables (i.e. not as subspaces as in
Theorem 4.2) by Lemma 3.3:

0 = H (W |B, C, D) [from (v1, v2)]
= H (X |A, C, D) [from (v3, v4)]
= H (Y |A, B, D) [from (v5, v6)]
= H (Z |A, B, C) [from (v7, v8)]
= H (A|B, W, X) [from v9]
= H (C|A, W, Y ) [from v10]
= H (B|C, X, Y ) [from v11]
= H (D|A, W, Z) [from v12]
= H (B|D, X, Z) [from v13]
= H (C|D, Y, Z) [from v14]
= H (A|W, X, Y, Z) [from v15]

and since the source messages A, B, C, D are independent
random variables, we have

H (A) + H (B) + H (C) + H (D) = H (A, B, C, D)

so the non-T8 inequality in Theorem 4.1 reduces to

H (A) ≤ 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A).

Now, since

H (A) = H (B) = H (C) = H (D) = k

and

H (W ) = H (X) = H (Y ) = H (Z) ≤ n

we have

k ≤ 9n + 8n + 5n + 6n − 4k − 12k − 11k − k

k/n ≤ 28/29.

So, the linear coding capacity over characteristic 3 is at
most 28/29 < 1.

The non-T8 network has a scalar linear solution over
every characteristic except for 3 by using the following edge
functions (here we are using the notations A, B, C, D,
W, X, Y, Z to denote edge variables rather than vector spaces):

W = B + C + D
X = A + C + D
Y = A + B + D
Z = A + B + C

and decoding functions:

v9 : A = X − W + B
v10 : C = W − Y + A
v11 : B = Y − X + C
v12 : D = W − Z + A
v13 : B = Z − X + D
v14 : C = Z − Y + D
v15 : A = 3−1 · (X + Y + Z − 2W ).

We know the coding capacity is at most 1 because there is
a unique path from source A to node v9 (through node v4).
Since the coding capacity is at least as large as the linear
coding capacity for characteristics other than 3, we conclude
that the coding capacity is exactly equal to 1.

V. CONCLUSION

We have demonstrated a linear rank inequality which holds
over all vector spaces when the scalar field characteristic
is anything but three, and have shown that this inequality
does not generally hold over characteristic three. Similarly,
we have demonstrated a linear rank inequality which holds
over all vector spaces with scalar field of characteristic three,
and have shown that this inequality does not generally hold
over characteristics other than three. We have applied these
inequalities to the problem of bounding the network coding
capacity of certain directed acyclic networks. An open problem
is how to use these ideas to bound the capacities of more
general networks using linear rank inequalities.

APPENDIX

Proof of Lemma 2.1: We know H (A)+ H (B)− I (A; B) =
H (A, B) ≤ H (V ). Then adding H (V ) to both sides of the
inequality gives

H (V ) − I (A; B) ≤ H (V ) − H (A) + H (V ) − H (B).

Thus, codim(A ∩ B) ≤ codim(A) + codim(B).
Proof of Lemma 2.2: Suppose a base for A consists of a base

for A together with the vectors a1, . . . , an . Let γ1, . . . , γn be
field elements which are not all zero. Then

γ1a1 + · · · + γnan ∈ A \ A

so

γ1 f (a1) + · · · + γn f (an) = f (γ1a1 + · · · + γnan) ∈ B \ B.

Thus, the vectors f (a1), . . . , f (an) are linearly independent
over the subspace B, and therefore

codimA(A) = n ≤ codimB(B). �
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Proof of Lemma 2.3: Let A = {t ∈ A : f (t) ∈ B}. Then
f (A\A) ⊆ B\B and the result follows from Lemma 2.2.

Proof of Lemma 2.4: Let W be a subspace of B defined by

W = 〈A1, . . . , Ak〉 ∩ B.

The subspace on which this lemma holds is W . If H (W ) = 0,
then the lemma would be trivially true. So, assume that
H (W ) > 0, and let {w1, . . . , wn} be a basis for W . For each
j = 1, . . . , n, choose xi, j ∈ Ai for i = 1, . . . , k such that

w j = x1, j + · · · + xk, j .

For each i = 1, . . . , k, define a linear mapping gi : W → Ai

so that gi (w j ) = xi, j for all i and j . Then extend gi arbitrarily
to fi : B → Ai . Now we have linear functions f1, . . . , fk such
that

f1 + · · · + fk = I

on W . The dimension of W is

H (W ) = I (A1, . . . , Ak; B)

so the codimension of W is

H (B) − I (A1, . . . , Ak; B) = H (B|A1, . . . , Ak). �

Proof of Lemma 2.5: Let K be the kernel of f . Clearly,
f maps A into B ∩ C and since f is linear the rank of its
domain is at most the sum of the ranks of its kernel and
range, so

codim(K ) = H (A) − H (K ) ≤ I (B; C). �

Proof of Lemma 2.6: First we apply Lemma 2.5 to
f1 and ( f2 + · · · + fk) to get

f1 = ( f2 + · · · + fk) = 0

on a subspace A1 of A of codimension at most

I (B1; B2, . . . , Bk)

= H (B1) + H (B2, . . . , Bk) − H (B1, B2, . . . , Bk).

Then apply Lemma 2.5 to f2 and ( f3 + · · · + fk) to get

f2 = ( f3 + · · · + fk) = 0

on a subspace A2 of A1 of codimension at most

I (B2; B3, . . . , Bk)

= H (B2) + H (B3, . . . , Bk) − H (B2, B3, . . . , Bk).

Continue on until we apply Lemma 2.5 to fk−1 and fk to get

fk−1 = fk = 0

on a subspace Ak−1 of Ak−2 of codimension at most

I (Bk−1; Bk) = H (Bk−1) + H (Bk) − H (Bk−1, Bk).

Now Ak−1 is a subspace of A of codimension at most

H (B1) + · · · + H (Bk) − H (B1, . . . , Bk),

on which f1 = f2 = · · · = fk = 0.
Proof of Lemma 2.7: Let x, y ∈ fL( fR A ∩ gR B). We know

fR fL = I on fR A because

fR fL ( fR(w)) = fR( fL fR(w)) = fR(w)

for all w ∈ A. Since x ∈ fL ( fR A ∩ gR B), we know

fR(x) ∈ fR fL( fR A ∩ gR B) = fR A ∩ gR B

which implies fR(x) = gR(bx) for some bx ∈ B . Similarly,
we know fR(y) = gR(by) for some by ∈ B . So, we have

gL gR(bx) = gL fR(x)

and

gL gR(by) = gL fR(y).

If we assume gL fR(x) = gL fR(y), then we have

gL gR(bx) = gLgR(by).

Since gL gR is injective on B , we know bx = by . Thus

fR(x) = gR(bx) = gR(by) = fR(y)

which implies

fL fR(x) = fL fR(y).

Since fL fR = I on A, we know x = y. Thus gL fR is injective
on fL( fR A ∩ gR B).

Proof of Theorem 3.1: The main idea is to establish the
existence of certain linear functions, some of which are injec-
tive on particular subspaces of the original vector space V .
Inequalities relating the dimensions (or co-dimensions) of
various subspaces ultimately use the assumption that the field
is of characteristic other than 3, and then the final linear rank
inequality is obtained. Many of the subspace co-dimension
computations and manipulations are fairly tedious, although
they can be readily followed and verified in a line-by-line
manner.

By Lemma 2.4 we get linear functions:

f1 : Z → A, f2 : Z → B, f3 : Z → C,

f4 : W → B, f5 : W → C, f6 : W → D,

f7 : X → A, f8 : X → C, f9 : X → D,

f10 : Y → Z , f11 : Y → W, f12 : Y → X,

f13 : A → B, f14 : A → D, f15 : A → Y,

f16 : D → Z , f17 : D → W, f18 : D → A,

f19 : C → Z , f20 : C → Y, f21 : C → D,

f22 : B → Z , f23 : B → X, f24 : B → D,

f25 : C → Y, f26 : C → X, f27 : C → B,

f28 : C → Y, f29 : C → W, f30 : C → A,

f31 : B → W, f32 : B → X, f33 : B → A

such that

f1 + f2 + f3 = I

on a subspace of Z of codimension H (Z |A, B, C) (A.1)

f4 + f5 + f6 = I

on a subspace of W of codimension H (W |B, C, D) (A.2)

f7 + f8 + f9 = I

on a subspace of X of codimension H (X |A, C, D) (A.3)

f10 + f11 + f12 = I

on a subspace of Y of codimension H (Y |W, X, Z) (A.4)

f13 + f14 + f15 = I

on a subspace of A of codimension H (A|B, D, Y ) (A.5)
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f16 + f17 + f18 = I

on a subspace of D of codimension H (D|A, W, Z) (A.6)

f19 + f20 + f21 = I

on a subspace of C of codimension H (C|D, Y, Z) (A.7)

f22 + f23 + f24 = I

on a subspace of B of codimension H (B|D, X, Z) (A.8)

f25 + f26 + f27 = I

on a subspace of C of codimension H (C|B, X, Y ) (A.9)

f28 + f29 + f30 = I

on a subspace of C of codimension H (C|A, W, Y )

(A.10)

f31 + f32 + f33 = I

on a subspace of B of codimension H (B|A, W, X).

(A.11)

Now let

fA � f7 f12 + f1 f10

fB � f4 f11 + f2 f10

fC � f8 f12 + f5 f11 + f3 f10

fD � f9 f12 + f6 f11.

Combining the functions we obtained from Lemma 2.4 gives
new functions:

fA f15 : A → A

fB f15 + f13 : A → B

fC f15 : A → C

fD f15 + f14 : A → D.

Using (A.1) - (A.5), Lemma 2.1, and Lemma 2.3 we know
the sum of these functions is equal to I on a subspace of A
of codimension at most

H (Z |A, B, C) + H (W |B, C, D) + H (X |A, C, D)

+ H (Y |W, X, Z) + H (A|B, D, Y )

since, on that subspace,

( fA f15) + ( fB f15 + f13) + ( fC f15) + ( fD f15 + f14)

= f7 f12 f15 + f1 f10 f15 + f4 f11 f15 + f2 f10 f15 + f13

+ f8 f12 f15 + f5 f11 f15 + f3 f10 f15 + f9 f12 f15

+ f6 f11 f15 + f14

= f13 + f14+( f1 + f2 + f3) f10 f15 + ( f4 + f5 + f6) f11 f15

+ ( f7 + f8 + f9) f12 f15

= f13 + f14 + ( f10 + f11 + f12) f15

= f13 + f14 + f15

= I.

Applying Lemma 2.6 and Lemma 2.1 to

fA f15 − I

fB f15 + f13

fC f15

fD f15 + f14

we get a subspace A of A of codimension at most

�A = H (Z |A, B, C) + H (W |B, C, D) + H (X |A, C, D)

+ H (Y |W, X, Z) + H (A|B, D, Y )

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

fA f15 = I (A.12)

fB f15 + f13 = 0 (A.13)

fC f15 = 0 (A.14)

fD f15 + f14 = 0. (A.15)

To see how the T8 network is used as a guide, consider receiver
node v9, which demands A. Let M1, M7, M10, M12, M15 be
matrices corresponding to the transformations along the edges
(A, Z), (A, X), (Z , Y ), (X, Y ), (Y, A), respectively. Using
algebra to solve for A one deduces that

M15 M10 M1 + M15 M12 M7 = I.

Equation (A.12) was designed to model this property.
Similarly, we get a subspace B of B of codimension at most

�B = H (Z |A, B, C) + H (X |A, C, D) + H (B|D, X, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f7 f23 + f1 f22 = 0 (A.16)

f2 f22 = I (A.17)

f8 f23 + f3 f22 = 0 (A.18)

f24 + f9 f23 = 0. (A.19)

We get a subspace B̂ of B of codimension at most

�B̂ = H (W |B, C, D) + H (X |A, C, D) + H (B|A, W, X)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f33 + f7 f32 = 0 (A.20)

f4 f31 = I (A.21)

f8 f32 + f5 f31 = 0 (A.22)

f9 f32 + f6 f31 = 0. (A.23)

We get a subspace C of C of codimension at most

�C = 2H (Z |A, B, C) + H (W |B, C, D) + H (X |A, C, D)

+ H (Y |W, X, Z) + H (C|D, Y, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

fA f20 + f1 f19 = 0 (A.24)
fB f20 + f2 f19 = 0 (A.25)
fC f20 + f3 f19 = I (A.26)

fD f20 + f21 = 0. (A.27)
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We get a subspace Ĉ of C of codimension at most

�Ĉ = H (Z |A, B, C) + H (W |B, C, D) + 2H (X |A, C, D)

+ H (Y |W, X, Z) + H (C|B, X, Y )

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

fA f25 + f7 f26 = 0 (A.28)
fB f25 + f27 = 0 (A.29)

fC f25 + f8 f26 = I (A.30)
fD f25 + f9 f26 = 0. (A.31)

We get a subspace C̃ of C of codimension at most

�C̃ = H (Z |A, B, C) + 2H (W |B, C, D) + H (X |A, C, D)

+ H (Y |W, X, Z) + H (C|A, W, Y )

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

fA f28 + f30 = 0 (A.32)

fB f28 + f4 f29 = 0 (A.33)

fC f28 + f5 f29 = I (A.34)

fD f28 + f6 f29 = 0. (A.35)

We get a subspace D of D of codimension at most

�D = H (Z |A, B, C) + H (W |B, C, D) + H (D|A, W, Z)

+H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f18 + f1 f16 = 0 (A.36)

f4 f17 + f2 f16 = 0 (A.37)

f5 f17 + f3 f16 = 0 (A.38)

f6 f17 = I. (A.39)

First notice that (A.12) implies

f15 is injective on A. (A.40)

We need to define a subspace of A on which f13 and f14 are
injective. The justifications can be found on (A.44) and (A.45).
Let

C
∗ � f3( f19(C ∩ f −1

20 f15 A) ∩ f22 B) ⊆ C

C̃∗ � f5( f29(C̃ ∩ f −1
28 f15 A) ∩ f17 D) ⊆ C̃

A
∗ � fA( f15 A ∩ f20C

∗ ∩ f28C̃∗) ⊆ A.

To justify why C
∗ ⊆ C , by (A.14) we know fC f15 = 0 on A

and by (A.26) we know

fC f20 + f3 f19 = I.

Thus for each c ∈ C ∩ f −1
20 f15 A, we have fC f20 = 0 on C

which gives

f3 f19 = I on C ∩ f −1
20 f15 A. (A.41)

Using (A.14) and (A.34) we have

f5 f29 = I on C̃ ∩ f −1
28 f15 A. (A.42)

Using (A.14) and (A.30) we have

f8 f26 = I on Ĉ ∩ f −1
25 f15 A. (A.43)

We are now going to show f13 is injective on A
∗
. First

we need to apply Lemma 2.7 to show f2 f19 is injective
on C

∗
and then again to show fB f15 is injective on A

∗
.

By (A.17) and (A.41), we know f2 f22 is injective on B and
f3 f19 = I on C ∩ f −1

20 f15 A. So, we can apply Lemma 2.7 by
letting gL = f2, gR = f22, fL = f3, and fR = f19 to get that

f2 f19 is injective on C
∗
. Then using (A.25), we know fB f20

is injective on C
∗
. Now we can apply Lemma 2.7 again by

using the fact that fA f15 = I on A and by letting gL = fB,
gR = f20, fL = fA , and fR = f15 to get fB f15 is injective
on A

∗
. Thus by (A.13),

f13 is injective on A
∗
. (A.44)

Similarly, we are going to show f14 is injective on A
∗
.

We will first apply Lemma 2.7 to show f6 f29 is injective
on C̃∗ and then again to show fD f15 is injective on A

∗
.

By (A.39) and (A.42), we know f6 f17 is injective on D and
f5 f29 = I on C̃ ∩ f −1

28 f15 A. So, we can apply Lemma 2.7 by
letting gL = f6, gR = f17, fL = f5, and fR = f29 to get that
f6 f29 is injective on C̃∗. Then using (A.35), we know fD f28
is injective on C̃∗. Now we can apply Lemma 2.7 again by
using the fact that fA f15 = I on A and by letting gL = fD ,
gR = f28, fL = fA, and fR = f15 to get fD f15 is injective
on A

∗
. Thus by (A.15),

f14 is injective on A
∗
. (A.45)

Now we are going to find an upper bound for codimA(A
∗
).

First we need to find upper bounds for codimC(C
∗
) and

codimC (C̃∗). Using (A.40) to show dim( f15 A) = dim(A),
and again using Lemma 2.1 and Lemma 2.3, we have

codimC (C
∗
)

= H (C) − dim(C
∗
)

= H (C) − dim( f3( f19(C ∩ f −1
20 f15 A) ∩ f22 B))

= H (C) − dim( f19(C ∩ f −1
20 f15 A) ∩ f22 B)

= H (C) − H (Z) + codimZ ( f19(C ∩ f −1
20 f15 A) ∩ f22 B)

≤ H (C)−H (Z) + codimZ ( f19(C ∩ f −1
20 f15 A))

+ codimZ ( f22 B)

= H (C) − H (Z) + H (Z) − dim( f19(C ∩ f −1
20 f15 A))

+ H (Z) − dim( f22 B)

= H (C) + H (Z) − dim(C ∩ f −1
20 f15 A) − dim(B)

= H (C) + H (Z) − H (C) + codimC(C ∩ f −1
20 f15 A)

− H (B) + codimB(B)

= H (Z) − H (B) + codimC(C ∩ f −1
20 f15 A) + codimB(B)

≤ H (Z) − H (B) + �C + codimC( f −1
20 f15 A) + �B

≤ H (Z) − H (B) + �C + codimY ( f15 A) + �B

≤ H (Z) − H (B) + �C + H (Y ) − dim( f15 A) + �B

= H (Z) − H (B) + �C + H (Y ) − dim(A) + �B

= H (Z) − H (B) + �C + H (Y ) − H (A)

+ codimA(A) + �B

≤ H (Z) − H (B) + H (Y ) − H (A) + �C + �A + �B

(A.46)
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codimC (C̃∗)
= H (C) − dim(C̃∗)
= H (C) − dim( f5( f29(C̃ ∩ f −1

28 f15 A) ∩ f17 D))

= H (C) − dim( f29(C̃ ∩ f −1
28 f15 A) ∩ f17 D)

= H (C) − H (W ) + codimW ( f29(C̃ ∩ f −1
28 f15 A) ∩ f17 D)

≤ H (C) − H (W ) + codimW ( f29(C̃ ∩ f −1
28 f15 A))

+ codimW ( f17 D)

= H (C) − H (W ) + H (W ) − dim( f29(C̃ ∩ f −1
28 f15 A))

+ H (W ) − dim( f17 D)

= H (C) + H (W ) − dim(C̃ ∩ f −1
28 f15 A) − dim(D)

= H (C) + H (W ) − H (C) + codimC(C̃ ∩ f −1
28 f15 A)

− H (D) + codimD(D)

= H (W ) − H (D) + codimC (C̃ ∩ f −1
28 f15 A) + codimD(D)

≤ H (W ) − H (D) + �C̃ + codimC ( f −1
28 f15 A) + �D

≤ H (W ) − H (D) + �C̃ + codimY ( f15 A) + �D

= H (W ) − H (D) + �C̃ + H (Y ) − dim( f15 A) + �D

= H (W ) − H (D) + �C̃ + H (Y ) − dim(A) + �D

= H (W ) − H (D) + �C̃ + H (Y ) − H (A)

+ codimA(A) + �D

≤ H (W ) − H (D) + H (Y ) − H (A) + �C̃ + �A + �D.

(A.47)

In the justification for (A.44), we concluded that fB f20 is
injective on C

∗
, which implies f20 is injective on C

∗
. In the

justification for (A.45), we concluded that fD f28 is injective

on C̃∗, which implies f28 is injective on C̃∗. These facts
combined with (A.40) will be used to arrive on line (A.48).

codimA(A
∗
)

= H (A) − dim( fA( f15 A ∩ f20C
∗ ∩ f28C̃∗))

= H (A) − dim( f15 A ∩ f20C
∗ ∩ f28C̃∗)

= H (A) − H (Y ) + codimY ( f15 A ∩ f20C
∗ ∩ f28C̃∗)

≤ H (A) − H (Y ) + codimY ( f15 A) + codimY ( f20C
∗
)

+ codimY ( f28C̃∗)
= H (A) − H (Y ) + H (Y ) − dim( f15 A) + H (Y )

−dim( f20C
∗
) + H (Y ) − dim( f28C̃∗)

= H (A) + 2H (Y ) − dim(A) − dim(C
∗
) − dim(C̃∗)

(A.48)

= H (A) + 2H (Y ) − H (A) + codimA(A) − H (C)

+ codimC(C
∗
) − H (C) + codimC(C̃∗)

= 2H (Y ) − 2H (C) + codimA(A) + codimC(C
∗
)

+codimC(C̃∗)
≤ 2H (Y ) − 2H (C) + �A

+ H (Z) − H (B) + H (Y ) − H (A) + �C + �A + �B

+ H (W ) − H (D) + H (Y ) − H (A) + �C̃ + �A + �D

= H (W ) + 4H (Y ) + H (Z) − 2H (A) − H (B)

−2H (C) − H (D) + 3�A + �B + �C + �C̃ + �D

� �A
∗ . (A.49)

Let t ∈ A. We will next make a collection of assumptions
on t in (A.50)–(A.55). Each such assumption gives rise to

an upper bound on the codimension of a particular subspace
of A. The justification of these upper bounds will be given in
what follows. Ultimately, we will show that these assumptions
imply that 3t = 0 and thus for field characteristics other than 3,
no nonzero t can satisfy this condition. This in turn implies
that the codimension of the intersection of the subspaces
of A in the upper bounds of (A.50)–(A.55) must be at least
as big as the dimension of A, which then yields the desired
inequality.

We will assume t ∈ A
∗
.

This is true on a subspace of A of codimension at

most �A
∗ . (A.50)

We will assume f10 f15t ∈ f19(C ∩ f −1
20 f15 A

∗
).

This is true on a subspace of A of codimension at most

H (Z) − H (C) + H (Y ) − H (A) + �C + �A
∗ . (A.51)

We will assume f11 f15t ∈ f29(C̃ ∩ f −1
28 f15 A

∗
).

This is true on a subspace of A of codimension at most

H (W ) − H (C) + H (Y ) − H (A) + �C̃ + �A
∗ . (A.52)

We will assume f12 f15t ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
).

This is true on a subspace of A of codimension at most

H (X) − H (C) + H (Y ) − H (A) + �Ĉ + �A
∗ . (A.53)

We will assume f10 f15t ∈ f22(B ∩ f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
)).

This is true on a subspace of A of codimension at most

H (Z) − H (B) + H (X) − H (C) + H (Y ) − H (A)

+�A
∗ + �B + �Ĉ . (A.54)

We will assume f11 f15t ∈ f31(B̂ ∩ f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
)).

This is true on a subspace of A of codimension at most

H (W ) − H (B) + H (X) − H (C) + H (Y ) − H (A)

+�A
∗ + �B̂ + �Ĉ . (A.55)

To justify (A.51), first we know f19 is injective on
C ∩ f −1

20 f15 A
∗

by (A.41). Then by Lemma 2.3, we know

f10 f15t ∈ f19(C ∩ f −1
20 f15 A

∗
)

on a subspace of A of codimension at most

H (Z) − H (C) + codimC(C ∩ f −1
20 f15 A

∗
).

By Lemma 2.1, we know

codimC(C ∩ f −1
20 f15 A

∗
) ≤ �C + codimC ( f −1

20 f15 A
∗
).

Then using Lemma 2.3 and (A.40), we know

codimC (C ∩ f −1
20 f15 A

∗
) ≤ �C + codimY ( f15 A

∗
)

= �C + H (Y ) − dim( f15 A
∗
)

= �C + H (Y ) − dim(A
∗
)

≤ �C + H (Y ) − H (A) + �A
∗ .

(A.56)

So, we have

f10 f15t ∈ f19(C ∩ f −1
20 f15 A

∗
)
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on a subspace of A of codimension at most

H (Z) − H (C) + H (Y ) − H (A) + �C + �A
∗ .

To justify (A.52), first we know f29 is injective on
C̃ ∩ f −1

28 f15 A
∗

by (A.42). Then by Lemma 2.3, we know

f11 f15t ∈ f29(C̃ ∩ f −1
28 f15 A

∗
)

on a subspace of A of codimension at most

H (Z) − H (C) + codimC (C̃ ∩ f −1
28 f15 A

∗
).

By Lemma 2.1, we know

codimC(C̃ ∩ f −1
28 f15 A

∗
) ≤ �C̃ + codimC ( f −1

28 f15 A
∗
).

Then using Lemma 2.3 and (A.40), we know

codimC(C̃ ∩ f −1
28 f15 A

∗
) ≤ �C̃ + codimY ( f15 A

∗
)

= �C̃ + H (Y ) − dim( f15 A
∗
)

= �C̃ + H (Y ) − dim(A
∗
)

≤ �C̃ + H (Y ) − H (A) + �A
∗ .

(A.57)

So, we have

f11 f15t ∈ f29(C̃ ∩ f −1
28 f15 A

∗
)

on a subspace of A of codimension at most

H (Z) − H (C) + H (Y ) − H (A) + �C̃ + �A
∗ .

To justify (A.53), first we know f26 is injective on
Ĉ ∩ f −1

25 f15 A
∗

by (A.43). Then by Lemma 2.3, we know

f12 f15t ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
)

on a subspace of A of codimension at most

H (Z) − H (C) + codimC (Ĉ ∩ f −1
25 f15 A

∗
).

By Lemma 2.1, we know

codimC(Ĉ ∩ f −1
25 f15 A

∗
) ≤ �Ĉ + codimC ( f −1

25 f15 A
∗
).

Then using Lemma 2.3 and (A.40), we know

codimC(Ĉ ∩ f −1
25 f15 A

∗
) ≤ �Ĉ + codimY ( f15 A

∗
)

= �Ĉ + H (Y ) − dim( f15 A
∗
)

= �Ĉ + H (Y ) − dim(A
∗
)

≤ �Ĉ + H (Y ) − H (A) + �A
∗ .

(A.58)

So, we have

f12 f15t ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
)

on a subspace of A of codimension at most

H (Z) − H (C) + H (Y ) − H (A) + �Ĉ + �A
∗ .

To justify (A.54), we first know f22 is injective on
B ∩ f −1

23 f26(Ĉ ∩ f −1
25 f15 A

∗
) by (A.17). Then by Lemma 2.3,

we know

f10 f15t ∈ f22(B ∩ f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
))

on a subspace of A of codimension at most

H (Z) − H (B) + codimB(B ∩ f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
)).

Now again we are going to use Lemma 2.1, Lemma 2.3,
and (A.40). Also on line (A.59) we will use the fact that f26 is
injective on Ĉ ∩ f −1

25 f15 A
∗

from (A.43).

codimB(B ∩ f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
))

≤ �B + codimB( f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
))

≤ �B + codimX ( f26(Ĉ ∩ f −1
25 f15 A

∗
))

= �B + H (X) − dim( f26(Ĉ ∩ f −1
25 f15 A

∗
))

= �B + H (X) − dim(Ĉ ∩ f −1
25 f15 A

∗
) (A.59)

≤ �B +H (X) −H (C) + codimC(Ĉ) + codimC ( f −1
25 f15 A

∗
)

≤ �B + H (X) − H (C) + �Ĉ + codimY ( f15 A
∗
)

= �B + H (X) − H (C) + �Ĉ + H (Y ) − dim( f15 A
∗
)

= �B + H (X) − H (C) + H (Y ) + �Ĉ − dim(A
∗
)

= �B + H (X) − H (C) + H (Y ) + �Ĉ − H (A)

+ codimA(A
∗
)

≤ �B + H (X) − H (C) + H (Y ) − H (A) + �Ĉ + �A
∗ .

(A.60)

So, we have

f10 f15t ∈ f22(B ∩ f −1
23 f26(Ĉ ∩ f −1

25 f15 A
∗
))

on a subspace of A of codimension at most

H (Z) − H (B) + H (X) − H (C) + H (Y ) − H (A) + �A
∗

+ �B + �Ĉ .

To justify (A.55), we first know f31 is injective on
B̂ ∩ f −1

32 f26(Ĉ ∩ f −1
25 f15 A

∗
) by (A.21). Then by Lemma 2.3,

we know

f11 f15t ∈ f31(B̂ ∩ f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
))

on a subspace of A of codimension at most

H (W ) − H (B) + codimB(B̂ ∩ f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
)).

Now again we are going to use Lemma 2.1 and Lemma 2.3,

codimB(B̂ ∩ f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
))

≤ �B̂ + codimB( f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
))

≤ �B̂ + codimX ( f26(Ĉ ∩ f −1
25 f15 A

∗
))

≤ �B̂ + H (X) − H (C) + H (Y ) − H (A) + �Ĉ + �A
∗ .

The last line was derived by copying the argument
from (A.60). So, we have

f11 f15t ∈ f31(B̂ ∩ f −1
32 f26(Ĉ ∩ f −1

25 f15 A
∗
))

on a subspace of A of codimension at most

H (W ) − H (B) + H (X) − H (C) + H (Y ) − H (A)

+ �A
∗ + �B̂ + �Ĉ .

From (A.51) and (A.54) we know ∃c ∈ C, b ∈ B such that

f10 f15t = f19c = f22b

where f20c ∈ f15 A
∗

and

f23b ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
). (A.61)
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From (A.52) and (A.55) we know ∃̃c ∈ C̃, b̂ ∈ B̂ such that

f11 f15t = f29c̃ = f31b̂

where f28c̃ ∈ f15 A
∗

and

f32b̂ ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
). (A.62)

From (A.53) we know ∃̂c ∈ Ĉ such that

f12 f15t = f26ĉ

where f25ĉ ∈ f15 A
∗
. (A.63)

From (A.12) and (A.13), we know

fB f15 = − f13 on A

fB = − f13 fA on f15 A. (A.64)

From (A.12) and (A.15), we know

fD f15 = − f14 on A

fD = − f14 fA on f15 A. (A.65)

From (A.12) we have

f7 f12 f15t + f1 f10 f15t = t .

Then (A.63), (A.61), (A.28), and (A.24) give

f7 f12 f15t + f1 f10 f15t = t

f7 f26ĉ + f1 f19c = t

− fA f25ĉ − fA f20c = t

fA f25ĉ + fA f20c = −t . (A.66)

From (A.13) we have

f4 f11 f15t + f2 f10 f15t = − f13t .

Then (A.62), (A.61), (A.33), and (A.25) give

f4 f11 f15t + f2 f10 f15t = − f13t

f4 f29c̃ + f2 f19c = − f13t

− fB f28c̃ − fB f20c = − f13t .

By (A.62) and (A.61), we know f28c̃ ∈ f15 A
∗

and
f20c ∈ f15 A

∗
. Now by (A.64), we have

− fB f28c̃ − fB f20c = − f13t

f13 fA f28c̃ + f13 fA f20c = − f13t .

Then using (A.12), we know fA f28c̃ ∈ A
∗

and fA f20c ∈ A
∗
.

By (A.44), we have

f13 fA f28c̃ + f13 fA f20c = − f13t

fA f28c̃ + fA f20c = −t . (A.67)

From (A.15) we have

f9 f12 f15t + f6 f11 f15t = − f14t .

Then (A.63), (A.62), (A.35), and (A.31) give

f9 f12 f15t + f6 f11 f15t = − f14t

f9 f26ĉ + f6 f29c̃ = − f14t

− fD f25ĉ + − fD f28c̃ = − f14t .

By (A.63) and (A.62), we know f25ĉ ∈ f15 A
∗

and
f28c̃ ∈ f15 A

∗
. Now by (A.65), we have

− fD f25ĉ + − fD f28c̃ = − f14t

f14 fA f25ĉ + f14 fA f28c̃ = − f14t .

Then using (A.12), we know fA f25ĉ ∈ A
∗

and fA f28c̃ ∈ A
∗
.

By (A.45), we have

f14 fA f25ĉ + f14 fA f28c̃ = − f14t

fA f25ĉ + fA f28c̃ = −t . (A.68)

From (A.24) and (A.41), we know

f1 f19 = − fA f20 on C

f1 = − fA f20 f3 on f19(C ∩ f −1
20 f15 A

∗
). (A.69)

From (A.28) and (A.43), we know

f7 f26 = − fA f25 on Ĉ

f7 = − fA f25 f8 on f26(Ĉ ∩ f −1
25 f15 A

∗
). (A.70)

From (A.16), we have

f7 f23b + f1 f22b = 0.

By (A.61), we know

f23b ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
).

By (A.61), we also know

f22b = f19c

which implies

f22b ∈ f19(C ∩ f −1
20 f15 A

∗
).

Now we can apply (A.69) and (A.70) to give us

f7 f23b + f1 f22b = 0

− fA f25 f8 f23b − fA f20 f3 f22b = 0.

Now using (A.18), (A.61), and (A.41), we have

− fA f25 f8 f23b − fA f20 f3 f22b = 0

fA f25 f3 f22b − fA f20 f3 f22b = 0

fA f25 f3 f22b = fA f20 f3 f22b

fA f25 f3 f19c = fA f20 f3 f19c

fA f25c = fA f20c. (A.71)

From (A.31) and (A.43), we know

f9 f26 = − fD f25 on Ĉ

f9 = − fD f25 f8 on f26(Ĉ ∩ f −1
25 f15 A

∗
). (A.72)

From (A.35) and (A.42), we know

f6 f29 = − fD f28 on C̃

f6 = − fD f28 f5 on f29(C̃ ∩ f −1
28 f15 A

∗
). (A.73)

From (A.23), we have

f9 f32b̂ + f6 f31b̂ = 0.
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From (A.62) we know f31b̂ = f29c̃ so f31b̂ ∈ f29
(C̃ ∩ f −1

28 f15 A
∗
). From (A.62) we also know that

f32b̂ ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
)

so (A.72) and (A.73) give us

f9 f32b̂ + f6 f31b̂ = 0

− fD f25 f8 f32b̂ − fD f28 f5 f31b̂ = 0.

From (A.62), we know

f32b̂ ∈ f26(Ĉ ∩ f −1
25 f15 A

∗
).

From (A.43), we know f8 f26 = I on Ĉ ∩ f −1
25 f15 A

∗
.

So f8 f32b̂ ∈ f −1
25 f15 A

∗
, which implies f25 f8 f32b̂ ∈ f15 A

∗
.

By (A.62) and (A.42), we know

f28 f5 f31b̂ = f28 f5 f29c̃ = f28c̃ ∈ f15 A
∗
.

Now we can apply (A.65) to give us

− fD f25 f8 f32b̂ − fD f28 f5 f31b̂ = 0

f14 fA f25 f8 f32b̂ + f14 fA f28 f5 f31b̂ = 0.

Since we already established that f25 f8 f32b̂ ∈ f15 A
∗

and
f28 f5 f31b̂ ∈ f15 A

∗
, by (A.12) and (A.45) we know

f14 fA f25 f8 f32b̂ + f14 fA f28 f5 f31b̂ = 0

fA f25 f8 f32b̂ + fA f28 f5 f31b̂ = 0.

Now by (A.22)

fA f25 f8 f32b̂ + fA f28 f5 f31b̂ = 0

− fA f25 f5 f31b̂ + fA f28 f5 f31b̂ = 0

fA f25 f5 f31b̂ = fA f28 f5 f31b̂.

By (A.62) and (A.42), we have

fA f25 f5 f31b̂ = fA f28 f5 f31b̂

fA f25 f5 f29c̃ = fA f28 f5 f29c̃

fA f25c̃ = fA f28c̃. (A.74)

Now adding (A.66), (A.67), and (A.68), we have

−3t = 2( fA f20c + fA f25ĉ + fA f28c̃).

Now using (A.71) and (A.74) we have

−3t = 2( fA f25c + fA f25ĉ + fA f25c̃)

−3t = 2 fA f25(c + ĉ + c̃).

By (A.41), (A.42), and (A.43) we know

−3t = 2 fA f25( f3 f19c + f8 f26ĉ + f5 f29c̃).

By (A.61), (A.62), (A.63), and (A.14), we have

−3t = 2 fA f25( f3 f10 f15t + f8 f12 f15t + f5 f11 f15t)

−3t = 2 fA f25(0)

3t = 0. (A.75)

Thus if the field is of characteristic other than 3, then no
nonzero t can satisfy conditions (A.50)–(A.55). Therefore the
sum of the codimensions given in the assumptions must be at

least the dimension of A. So we have a linear rank inequality
for fields of characteristic other than 3:

H (A)

≤ �A
∗ + H (Z) − H (C) + H (Y ) − H (A) + �C + �A

∗

+ H (W ) − H (C) + H (Y ) − H (A) + �C̃ + �A
∗

+ H (X) − H (C) + H (Y ) − H (A) + �Ĉ + �A
∗

+ H (Z) − H (B) + H (X) − H (C) + H (Y ) − H (A)

+ �A
∗ + �B + �Ĉ

+ H (W ) − H (B) + H (X) − H (C) + H (Y ) − H (A)

+ �A
∗ + �B̂ + �Ĉ

= 2H (Z) + 5H (Y ) + 3H (X) + 2H (W ) − 5H (A)

− 2H (B) − 5H (C)

+ 6�A
∗ + �B + �B̂ + �C + �C̃ + 3�Ĉ

= 2H (Z) + 5H (Y ) + 3H (X) + 2H (W ) − 5H (A)

− 2H (B) − 5H (C)

+ 6 (H (W ) + 4H (Y ) + H (Z)

− 2H (A) − H (B) − 2H (C) − H (D))

+ 6(3�A + �B + �C + �C̃ + �D)

+ �B + �B̂ + �C + �C̃ + 3�Ĉ

= 8H (Z) + 29H (Y ) + 3H (X) + 8H (W )

− 6H (D) − 17H (C) − 8H (B) − 17H (A)

+ 18�A + 7�B + �B̂ + 7�C + 7�C̃ + 3�Ĉ + 6�D

= 8H (Z) + 29H (Y ) + 3H (X) + 8H (W ) − 6H (D)

− 17H (C) − 8H (B) − 17H (A)

+ 55H (Z |A, B, C) + 35H (Y |W, X, Z)

+ 50H (X |A, C, D) + 49H (W |B, C, D)

+ 18H (A|B, D, Y ) + 7H (B|D, X, Z) + H (B|A, W, X)

+ 7H (C|D, Y, Z)

+ 7H (C|B, X, Y ) + 3H (C|A, W, Y ) + 6H (D|A, W, Z)

+ 49(H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)).

Proof of Theorem 4.1: The proof of this theorem follows a
similar strategy as discussed at the beginning of the proof of
Theorem 3.1, and again, is rather tedious.

By Lemma 2.4 we get linear functions:

f1 : W → B, f2 : W → C, f3 : W → D,

f4 : X → A, f5 : X → C, f6 : X → D,

f7 : Y → A, f8 : Y → B, f9 : Y → D,

f10 : Z → A, f11 : Z → B, f12 : Z → C,

f13 : A → B, f14 : A → W, f15 : A → X,

f16 : C → A, f17 : C → W, f18 : C → Y,

f19 : B → C, f20 : B → X, f21 : B → Y,

f22 : D → W, f23 : D → A, f24 : D → Z ,

f25 : B → X, f26 : B → D, f27 : B → Z ,

f28 : C → Y, f29 : C → Z , f30 : C → D,

f31 : A → W, f32 : A → X

f33 : A → Y, f34 : A → Z
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such that

f1 + f2 + f3 = I

on a subspace of W of codimension H (W |B, C, D)

(A.76)

f4 + f5 + f6 = I

on a subspace of X of codimension H (X |A, C, D)

(A.77)

f7 + f8 + f9 = I

on a subspace of Y of codimension H (Y |A, B, D)

(A.78)

f10 + f11 + f12 = I

on a subspace of Z of codimension H (Z |A, B, C)

(A.79)

f13 + f14 + f15 = I

on a subspace of A of codimension H (A|B, W, X)

(A.80)

f16 + f17 + f18 = I

on a subspace of C of codimension H (C|A, W, Y )

(A.81)

f19 + f20 + f21 = I

on a subspace of B of codimension H (B|C, X, Y )

(A.82)

f22 + f23 + f24 = I

on a subspace of D of codimension H (D|A, W, Z)

(A.83)

f25 + f26 + f27 = I

on a subspace of B of codimension H (B|D, X, Z)

(A.84)

f28 + f29 + f30 = I

on a subspace of C of codimension H (C|D, Y, Z)

(A.85)

f31 + f32 + f33 + f34 = I

on a subspace of A of codimension H (A|W, X, Y, Z).

(A.86)

Now combining some functions we obtained from Lemma 2.4
gives four new functions:

f4 f32 + f7 f33 + f10 f34 : A → A

f1 f31 + f8 f33 + f11 f34 : A → B

f2 f31 + f5 f32 + f12 f34 : A → C

f3 f31 + f6 f32 + f9 f33 : A → D.

Using (A.76)–(A.79), (A.86), Lemma 2.1, and Lemma 2.3
we know the sum of these four functions is equal to I on
a subspace of A of codimension at most

H (W |B, C, D) + H (X |A, C, D) + H (Y |A, B, D)

+ H (Z |A, B, C) + H (A|W, X, Y, Z)

since, on that subspace,

( f4 f32 + f7 f33 + f10 f34) + ( f1 f31 + f8 f33 + f11 f34)

+ ( f2 f31 + f5 f32 + f12 f34) + ( f3 f31 + f6 f32 + f9 f33)

= ( f1 + f2 + f3) f31+( f4 + f5 + f6) f32

+ ( f7 + f8+ f9) f33 + ( f10 + f11 + f12) f34

= f31 + f32 + f33 + f34

= I.

Now applying Lemma 2.6 and Lemma 2.1 to the functions

f4 f32 + f7 f33 + f10 f34 − I

f1 f31 + f8 f33 + f11 f34

f2 f31 + f5 f32 + f12 f34

f3 f31 + f6 f32 + f9 f33

we get a subspace Â of A of codimension at most

� Â = H (W |B, C, D) + H (X |A, C, D) + H (Y |A, B, D)

+ H (Z |A, B, C) + H (A|W, X, Y, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f4 f32 + f7 f33 + f10 f34 = I (A.87)

f1 f31 + f8 f33 + f11 f34 = 0 (A.88)

f2 f31 + f5 f32 + f12 f34 = 0 (A.89)

f3 f31 + f6 f32 + f9 f33 = 0. (A.90)

Similarly, we get a subspace A of A of codimension at most

�A = H (W |B, C, D) + H (X |A, C, D) + H (A|B, W, X)

+H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f4 f15 = I (A.91)

f13 + f1 f14 = 0 (A.92)

f2 f14 + f5 f15 = 0 (A.93)

f3 f14 + f6 f15 = 0. (A.94)

We get a subspace B of B of codimension at most

�B = H (X |A, C, D) + H (Y |A, B, D) + H (B|C, X, Y )

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f4 f20 + f7 f21 = 0 (A.95)

f8 f21 = I (A.96)

f19 + f5 f20 = 0 (A.97)

f6 f20 + f9 f21 = 0. (A.98)

We get a subspace B̂ of B of codimension at most

�B̂ = H (X |A, C, D) + H (Z |A, B, C) + H (B|D, X, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)
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on which

f4 f25 + f10 f27 = 0 (A.99)

f11 f27 = I (A.100)

f5 f25 + f12 f27 = 0 (A.101)

f6 f25 + f26 = 0. (A.102)

We get a subspace C of C of codimension at most

�C = H (W |B, C, D) + H (Y |A, B, D) + H (C|A, W, Y )

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f16 + f7 f18 = 0 (A.103)

f1 f17 + f8 f18 = 0 (A.104)

f2 f17 = I (A.105)

f3 f17 + f9 f18 = 0. (A.106)

We get a subspace Ĉ of C of codimension at most

�Ĉ = H (Y |A, B, D) + H (Z |A, B, C) + H (C|D, Y, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f7 f28 + f10 f29 = 0 (A.107)

f8 f28 + f11 f29 = 0 (A.108)

f12 f29 = I (A.109)

f9 f28 + f30 = 0. (A.110)

We get a subspace D of D of codimension at most

�D = H (W |B, C, D) + H (Z |A, B, C) + H (D|A, W, Z)

+ H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)

on which

f23 + f10 f24 = 0 (A.111)

f1 f22 + f11 f24 = 0 (A.112)

f2 f22 + f12 f24 = 0 (A.113)

f3 f22 = I. (A.114)

Let

B̂∗ = f11( f27 B̂ ∩ f29Ĉ) ⊆ B̂.

Considering (A.100) and (A.109), we can apply Lemma 2.7
to show that f12 f27 is injective on B̂∗. By (A.101), we know

f5 f25 is injective on B̂∗. (A.115)

Let

Ĉ∗ = f12( f29Ĉ ∩ f27 B̂) ⊆ Ĉ.

Considering again (A.100) and (A.109), we can apply
Lemma 2.7 to show that f11 f29 is injective on Ĉ∗. By (A.108),
we know

f8 f28 is injective on Ĉ∗. (A.116)

Let

A
∗ = f4( f15 A ∩ f25 B̂∗) ⊆ A.

Considering (A.91) and (A.115), we can apply Lemma 2.7
to show that f5 f15 is injective on A

∗
. By (A.93), we know

f2 f14 is injective on A
∗

which implies

f14 is injective on A
∗
. (A.117)

Let

C
∗ = f2( f17C ∩ f22 D) ⊆ C.

Considering (A.105) and (A.114),we can apply Lemma 2.7 to
show that f3 f17 is injective on C

∗
. Then by (A.106), we know

f9 f18 is injective on C
∗
. (A.118)

Let

B
∗ = f8( f21 B ∩ f18C

∗
) ⊆ B.

Considering (A.96) and (A.118), we can apply Lemma 2.7 to
show that

f9 f21 is injective on B
∗
. (A.119)

By (A.98), we know

f6 f20 is injective on B
∗

(A.120)

which implies

f20 is injective on B
∗
. (A.121)

Let us define the functions

g14 = ( f14|A∗
)−1

g20 = ( f20|B∗
)−1

where f14|A∗
and f20|B∗

are the restrictions of the functions
f14 and f20 to the sets A

∗
and B

∗
, respectively. Now,

considering (A.96), (A.100), (A.105), and (A.109) we have

f1 = − f8 f18 f2 on f17C [from (A.104)] (A.122)

f2 = − f5 f15g14 on f14 A
∗ [from (A.93)] (A.123)

f3 = − f6 f15g14 on f14 A
∗

and

f3 = − f9 f18 f2 on f17C [from (A.94), (A.106)]
(A.124)

f4 = − f7 f21g20 on f20 B
∗ [from (A.95)] (A.125)

f6 = − f9 f21g20 on f20 B
∗ [from (A.98)] (A.126)

f7 = − f4 f20 f8 on f21 B [from (A.95)] (A.127)

f9 = − f6 f20 f8 on f21 B [from (A.98)] (A.128)

f10 = − f4 f25 f11 on f27 B̂ and

f10 = − f7 f28 f12 on f29Ĉ [from (A.99), (A.107)]
(A.129)

f11 = − f8 f28 f12 on f29Ĉ [from (A.108)] (A.130)

f12 = − f5 f25 f11 on f27 B̂. [from (A.101)] (A.131)

Next, we provide upper bounds for the codimensions of A
∗
,

B̂∗, B
∗
, Ĉ∗, and C

∗
. From (A.100), we know f11 is injective

on f27 B̂ and f27 is injective on B̂ . These facts will be used to
arrive on lines (A.132) and (A.134). From (A.109), we know
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f29 is injective on Ĉ , which will also be used to arrive on
line (A.134). Lemma 2.1 will be used to arrive on (A.133).

codimB B̂∗
= H (B) − dim(B̂∗)
= H (B) − dim( f11( f27 B̂ ∩ f29Ĉ))

= H (B) − dim( f27 B̂ ∩ f29Ĉ) (A.132)
= H (B) − H (Z) + codimZ ( f27 B̂ ∩ f29Ĉ)

≤ H (B) − H (Z) + codimZ ( f27 B̂) + codimZ ( f29Ĉ)

(A.133)
= H (B) − H (Z) + H (Z) − dim( f27 B̂)

+ H (Z) − dim( f29Ĉ)

= H (B) + H (Z) − dim(B̂) − dim(Ĉ) (A.134)
≤ H (B) + H (Z) − H (B) + �B̂ − H (C) + �Ĉ

(A.135)
≤ H (Z) − H (C) + �B̂ + �Ĉ (A.136)
� �B̂∗ .

From (A.91), we know f4 is injective on f15 A and f15
is injective on A. These facts will be used on lines
(A.137) and (A.139). From (A.115), we know f25 is injective
on B̂∗, which will also be used to arrive on line (A.139).
Lemma 2.1 will be used to arrive on (A.138).

codimA A
∗

= H (A) − dim(A
∗
)

= H (A) − dim( f4( f25 B̂∗ ∩ f15 A))

= H (A) − dim( f25 B̂∗ ∩ f15 A) (A.137)
= H (A) − H (X) + codimX ( f25 B̂∗ ∩ f15 A)

≤ H (A) − H (X) + codimX ( f25 B̂∗) + codimX ( f15 A)

(A.138)
= H (A) + H (X) − dim( f25 B̂∗) − dim( f15 A)

= H (A) + H (X) − dim(B̂∗) − dim(A) (A.139)
≤ H (A) + H (X) − H (B) + �B̂∗ − H (A) + �A
= H (X) − H (B) + H (Z) − H (C) + �B̂ + �Ĉ + �A
� �A

∗ .

From (A.105), we know f2 is injective on f17C and f17 is
injective on C . These facts will be used to arrive on lines
(A.140) and (A.142). From (A.114), we know f22 is injective
on D, which will also be used on line (A.142). Lemma 2.1
will be used to arrive on (A.141).

codimCC
∗

= H (C) − dim(C
∗
)

= H (C) − dim( f2( f17C ∩ f22 D))

= H (C) − dim( f17C ∩ f22 D) (A.140)
= H (C) − H (W ) + codimW ( f17C ∩ f22 D)

≤ H (C) − H (W ) + codimW ( f17C) + codimW ( f22 D)

(A.141)
= H (C) − H (W ) + H (W ) − dim( f17C)

+ H (W ) − dim( f22 D)

= H (C) + H (W ) − dim(C) − dim(D) (A.142)

≤ H (C) + H (W ) − H (C) + �C − H (D) + �D

= H (W ) − H (D) + �C + �D

� �C
∗ .

From (A.96), we know f8 is injective on f21 B and f21 is
injective on B . These facts will be used to arrive on lines
(A.143) and (A.145). From (A.118), we know f18 is injective
on C

∗
, which will also be used on line (A.145). Lemma 2.1

will be used to arrive on (A.144).

codimB B
∗

= H (B) − dim(B
∗
)

= H (B) − dim( f8( f21 B ∩ f18C
∗
))

= H (B) − dim( f21 B ∩ f18C
∗
) (A.143)

= H (B) − H (Y ) + codimY ( f21 B ∩ f18C
∗
)

≤ H (B) − H (Y ) + codimY ( f21 B) + codimY ( f18C
∗
)

(A.144)

= H (B) − H (Y ) + H (Y ) − dim( f21 B)

+ H (Y ) − dim( f18C
∗
)

= H (B) + H (Y ) − dim(B) − dim(C
∗
) (A.145)

≤ H (B) + H (Y ) − H (B) + �B − H (C) + �C
∗

= H (Y ) − H (C) + �B + �C
∗

= H (Y ) − H (C) + H (W ) − H (D) + �C + �D + �B

� �B
∗ .

From (A.109), we know f12 is injective on f29Ĉ and f29
is injective on Ĉ . These facts will be used to arrive on
lines (A.146) and (A.148). From (A.100), we know f27 is
injective on B̂, which will also be used on line (A.148).
Lemma 2.1 will be used to arrive on (A.147).

codimCĈ∗

= H (C) − dim(Ĉ∗)
= H (C) − dim( f12( f27 B̂ ∩ f29Ĉ))

= H (C) − dim( f27 B̂ ∩ f29Ĉ) (A.146)

= H (C) − H (Z) + codimZ ( f27 B̂ ∩ f29Ĉ)

≤ H (C) − H (Z) + codimZ ( f27 B̂) + codimZ ( f29Ĉ)

(A.147)

= H (C) − H (Z) + H (Z) − dim( f27 B̂)

+ H (Z) − dim( f29Ĉ)

= H (C) + H (Z) − dim(B̂) − dim(Ĉ) (A.148)

≤ H (C) + H (Z) − H (B) + �B̂ − H (C) + �Ĉ

= H (Z) − H (B) + �B̂ + �Ĉ

� �Ĉ∗ .

Let t ∈ A. Now, we will assume t satisfies conditions
(A.149)–(A.154). The justifications can be found below.

t ∈ Â :
this is true on a subspace of A of codimension at most � Â

(A.149)

f32t ∈ f20 B
∗ ∩ f25 B̂∗ :

this is true on a subspace of A of codimension at most

2H (X) − 2H (B) + �B
∗ + �B̂∗ (A.150)
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f33t ∈ f28Ĉ∗ ∩ f21 B
∗ :

this is true on a subspace of A of codimension at most

2H (Y ) − H (B) − H (C) + �B
∗ + �Ĉ∗ (A.151)

f34t ∈ f29Ĉ∗ ∩ f27 B̂∗ :
this is true on a subspace of A of codimension at most

2H (Z) − H (C) − H (B) + �Ĉ∗ + �B̂∗ (A.152)

f18 f2 f31t ∈ f21 B
∗ ∩ f28Ĉ∗ :

this is true on a subspace of A of codimension at most

2H (Y ) − H (B) − H (C) + �B
∗ + �Ĉ∗ . (A.153)

Now, we need to make two assumptions on t simultaneously:

f31t ∈ f17C ∩ f14 A
∗

and f15g14 f31t ∈ f20 B
∗ ∩ f25 B̂∗;

this is true on a subspace of A of codimension at most

2H (X) − 2H (B) + 2H (W ) − H (C) − H (A)

+ �C + �A
∗ + �B

∗ + �B̂∗ . (A.154)

To justify (A.150), first we know f20 is injective on B
∗

by (A.120). Then by Lemma 2.3, we know f32t ∈ f20 B
∗

on
a subspace of A of codimension at most

H (X) − H (B) + codimB(B
∗
) ≤ H (X) − H (B) + �B

∗ .

By (A.115), we also know f25 is injective on B̂∗. Then by
Lemma 2.3, we know f32t ∈ f25 B̂∗ on a subspace of A of
codimension at most

H (X) − H (B) + codimB(B̂∗) ≤ H (X) − H (B) + �B̂∗ .

Then using Lemma 2.1, we have f32t ∈ f20 B
∗ ∩ f25 B̂∗ on a

subspace of A of codimension at most

2H (X) − 2H (B)�B
∗ + �B̂∗ .

Conditions (A.151)–(A.153) can be justified similarly.
To justify (A.154), first we know f17 is injective on C

by (A.105). Then by Lemma 2.3, we know f31t ∈ f17C on a
subspace of A of codimension at most

H (W ) − H (C) + codimC(C) ≤ H (W ) − H (C) + �C .

By (A.117), we also know f14 is injective on A
∗
. Then by

Lemma 2.3, we know f31t ∈ f14 A
∗

on a subspace of A of
codimension at most

H (W ) − H (A) + codimA(A
∗
) ≤ H (W ) − H (A) + �A

∗ .

Then using Lemma 2.1, we have

f31t ∈ f17C ∩ f14 A
∗

on a subspace, S, of A of codimension at most

2H (W ) − H (C) − H (A) + �C + �A
∗ .

Since f14 is injective on A
∗
, the function f15g14 f31 is defined

on S. Using the same technique as before we can show that

f15g14 f31t ∈ f20 B
∗ ∩ f25 B̂∗

on a subspace, S, of codimension with respect to S at most

2H (X) − 2H (B) + �B
∗ + �B̂∗ .

Thus both conditions are true on S, which has codimension
with respect to A at most

codimS S + codimA S ≤ 2H (X) − 2H (B) + 2H (W )

− H (C) − H (A) + �C + �A
∗ + �B

∗ + �B̂∗ .

Our final goal is to show that t = 3x for some x so
that we may conclude that t = 0 if the characteristic is 3.
We will accomplish this by using (A.87) and by proving that
f4 f32t = f7 f33t = f10 f34t .

Claim 1: f4 f32t = f10 f34t
Proof: First we must show that f28 f12 f34t = f21g20 f32t .

By (A.88), we know

f8 f33t = − f11 f34t − f1 f31t .

Then by using (A.130) and condition (A.152), we have

f8 f33t = f8 f28 f12 f34t − f1 f31t .

Now, by using (A.122) and condition (A.154), we have

f8 f33t = f8 f28 f12 f34t + f8 f18 f2 f31t .

By (A.116), we know f8 is injective on f28Ĉ∗.
By condition (A.151), we know

f33t ∈ f28Ĉ∗.

By condition (A.153), we know

f18 f2 f31t ∈ f28Ĉ∗.

By condition (A.152), we know

f34t ∈ f29Ĉ∗.

Using (A.109), we know

f12 f34t ∈ Ĉ∗.

Thus, we have

f33t = f28 f12 f34t + f18 f2 f31t . (A.155)

By (A.90), we have

f9 f33t = − f6 f32t − f3 f31t .

Then by using (A.126) and condition (A.150), we have

f9 f33t = f9 f21g20 f32t − f3 f31t .

Now, by using (A.124) and condition (A.154), we have

f9 f33t = f9 f21g20 f32t + f9 f18 f2 f31t .

By (A.119), we know f9 is injective on f21 B
∗
.

By condition (A.151), we know

f33t ∈ f21 B
∗
.

By condition (A.150), we know

f32t ∈ f20 B
∗

so

f21g20 f32t ∈ f21 B
∗
.
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By condition (A.153), we know

f18 f2 f31t ∈ f21 B
∗
.

Thus, we have

f33t = f21g20 f32t + f18 f2 f31t . (A.156)

Now, setting (A.155) and (A.156) equal to each other, we have

f21g20 f32t = f28 f12 f34t . (A.157)

By (A.125) and condition (A.150), we know

f4 f32t = − f7 f21g20 f32t .

Using (A.157), we have

f4 f32t = − f7 f28 f12 f34t .

Then using (A.129) and condition (A.152), we know

f4 f32t = f10 f34t . �

Claim 2: f7 f33t = f10 f34t .
Proof: First we must show that f25 f11 f34t = f20 f8 f33t .

By (A.89), we know

f5 f32t = − f12 f34t − f2 f31t .

Then by using (A.131) and condition (A.152), we have

f5 f32t = f5 f25 f11 f34t − f2 f31t .

Now, by using (A.123) and condition (A.154), we have

f5 f32t = f5 f25 f11 f34t + f5 f15g14 f31t .

By (A.115), we know f5 is injective on f25 B̂∗.
By condition (A.150), we know

f32t ∈ f25 B̂∗.

By condition (A.152), we know

f34t ∈ f27 B̂∗.

Now, using (A.100), we know

f11 f34t ∈ B̂∗.

By condition (A.154), we know

f15g14 f31t ∈ f25 B̂∗.

Thus, we have

f32t = f25 f11 f34t + f15g14 f31t . (A.158)

By (A.90), we have

f6 f32t = − f9 f33t − f3 f31t .

Then using (A.128) and condition (A.151), we have

f6 f32t = f6 f20 f8 f33t − f3 f31t .

Now, by using (A.124) and condition (A.154), we have

f6 f32t = f6 f20 f8 f33t + f6 f15g14 f31t .

By (A.120), we know that f6 is injective on f20 B
∗
.

By condition (A.150), we know

f32t ∈ f20 B
∗
.

By condition (A.151), we know

f33t ∈ f21 B
∗
.

Now, using (A.96), we know

f8 f33t ∈ B
∗
.

By condition (A.154), we know

f15g14 f31t ∈ f20 B
∗
.

Thus, we have

f32t = f20 f8 f33t + f15g14 f31t . (A.159)

Now, setting (A.158) and (A.159) equal to each other, we have

f25 f11 f34t = f20 f8 f33t . (A.160)

By (A.127) and condition (A.151), we know

f7 f33t = − f4 f20 f8 f33t .

Using (A.160), we have

f7 f33t = − f4 f25 f11 f34t .

Then using (A.129) and condition (A.152), we know

f7 f33t = f10 f34t . �

Now, by (A.87) and the two claims, we have

t = f4 f32t + f7 f33t + f10 f34t

= f10 f34t + f10 f34t + f10 f34t

= 3 f10 f34t .

Thus if the field has characteristic 3, then

t = 0. (A.161)

No nonzero t can satisfy all of the conditions (A.149)–(A.154),
so we must have

H (A)

≤ � Â + 2H (W ) − H (C) − H (A) + �C + �A
∗

+ 2H (X) − 2H (B) + �B
∗ + �B̂∗

+ 2H (Y ) − H (B) − H (C) + �B
∗ + �Ĉ∗

+ 2H (Z) − H (C) − H (B) + �Ĉ∗ + �B̂∗

+ 2H (Y ) − H (B) − H (C) + �B
∗ + �Ĉ∗

+ 2H (X) − 2H (B) + �B
∗ + �B̂∗

= 2H (Z) + 4H (Y ) + 4H (X) + 2H (W ) − 4H (C)

− 7H (B) − H (A)

+ �A
∗ + 4�B

∗ + 3�B̂∗ + 3�Ĉ∗ + � Â + �C

= 2H (Z) + 4H (Y ) + 4H (X) + 2H (W ) − 4H (C)

− 7H (B) − H (A)

+ H (X) − H (B) + H (Z) − H (C) + �B̂ + �Ĉ + �A

+ 4(H (Y ) − H (C) + H (W ) − H (D) + �C + �D + �B)
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+ 3(H (Z) − H (C) + �B̂ + �Ĉ)

+ 3(H (Z) − H (B) + �B̂ + �Ĉ)

+ � Â + �C

= 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A)

+ � Â + �A + 7�B̂ + 4�B + 7�Ĉ + 5�C + 4�D

= 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A)

+ H (W |B, C, D) + H (X |A, C, D) + H (Y |A, B, D)

+ H (Z |A, B, C) + H (A|W, X, Y, Z) + H (W |B, C, D)

+ H (X |A, C, D) + H (A|B, W, X)

+ 7(H (X |A, C, D) + H (Z |A, B, C) + H (B|D, X, Z))

+ 4(H (X |A, C, D) + H (Y |A, B, D) + H (B|C, X, Y ))

+ 7(H (Y |A, B, D) + H (Z |A, B, C) + H (C|D, Y, Z))

+ 5(H (W |B, C, D) + H (Y |A, B, D) + H (C|A, W, Y ))

+ 4(H (W |B, C, D) + H (Z |A, B, C) + H (D|A, W, Z))

+ 29(H (A) + H (B) + H (C) + H (D) − H (A, B, C, D))

= 9H (Z) + 8H (Y ) + 5H (X) + 6H (W ) − 4H (D)

− 12H (C) − 11H (B) − H (A)

+ 19H (Z |A, B, C) + 17H (Y |A, B, D)

+ 13H (X |A, C, D) + 11H (W |B, C, D)

+ H (A|W, X, Y, Z) + H (A|B, W, X) + 7H (B|D, X, Z)

+ 4H (B|C, X, Y )

+ 7H (C|D, Y, Z) + 5H (C|A, W, Y ) + 4H (D|A, W, Z)

+ 29(H (A) + H (B) + H (C) + H (D) − H (A, B, C, D)).
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